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Abstract

In this paper, we study the finite satisfiability problem for the logic BE under the homogeneity
assumption. BE is the cornerstone of Halpern and Shoham’s interval temporal logic, and features
modal operators corresponding to the prefix (a.k.a. “Begins”) and suffix (a.k.a. “Ends”) relations
on intervals. In terms of complexity, BE lies in between the “Chop” logic C, whose satisfiability
problem is known to be non-elementary, and the PSpace-complete interval logic D of the sub-interval
(a.k.a. “During”) relation. BE was shown to be ExpSpace-hard, and the only known satisfiability
procedure is primitive recursive, but not elementary. Our contribution consists of tightening the
complexity bounds of the satisfiability problem for BE, by proving it to be ExpSpace-complete.
We do so by devising an equi-satisfiable normal form with boundedly many nested modalities. The
normalization technique resembles Scott’s quantifier elimination, but it turns out to be much more
involved due to the limitations enforced by the homogeneity assumption.

1 Introduction

In this paper, we study the computational complexity of the satisfiability problem for the logic BE of the
prefix and suffix interval relations. The considered interpretation setting is the one with intervals over
finite linear orders, under the homogeneity assumption (see below). The logic BE is at the core of the
galaxy of interval temporal logics [9] and has interesting connections with standard point-based temporal
logics [2]. In general, formulas of interval temporal logics can express properties of pairs of time points,
rather than properties of single time points, and are evaluated as sets of such pairs, that is, as binary
relations on points. They are very expressive in comparison to point-based ones, and it does not come as
a surprise that, in general, there is no reduction of their satisfiability problem to satisfiability of classical
monadic second-order logic.

The logic BE has two (unary) modalities, ⟨B⟩ and ⟨E⟩, that quantify over prefixes and suffixes of the
current interval, respectively. These modalities can be viewed as the logical counterparts of Allen’s binary
relations Begins and Ends [1]. In particular, the logic BE can be considered as a fragment of Halpern
and Shoham’s interval temporal logic [9], denoted HS, which features one modal operator for each of the
twelve non-trivial Allen’s relations.

The satisfiability problem for BE turns out to be undecidable over all relevant classes of interval struc-
tures [7, 10]. One can however escape this bleak landscape by constraining the semantics, in particular,
the interpretation of the propositional letters. An interesting example is given by the homogeneity as-
sumption, according to which a propositional letter holds at an interval if and only if it holds at all of its
points. In other words, according to the homogeneous semantics, the labelling of an arbitrary interval in
a model is uniquely determined by those of the singleton intervals contained in it.
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An advantage of the homogeneity assumption is that it makes it possible to define a natural inter-
pretation of interval logics over Kripke structures. For example, this comes in handy when studying the
model-checking problem, which is defined as the problem of deciding whether a given formula is valid over
all (homogeneous) interval structures generated by a given Kripke structure. As such, the problem can
be seen as a variant of the classical validity/satisfiability problem, and many decidability and complexity
results can be transferred from one problem to another. In [12] it was shown that the model-checking
and satisfiability problems for BE, and in fact for full HS logic, become decidable when one restricts to
homogeneous interval structures.

Despite its simple syntax and the homogeneity assumption, the logic BE turns out to be quite expres-
sive and succinct. In [2], Bozzelli et al. have shown that, when interpreted over finite words, LTL (Linear
Temporal Logic) and BE, under homogeneity, define the same class of star-free regular languages, but
with the latter formalism being at least exponentially more succinct than the former. This is also reflected
in the complexity of the satisfiability problem for BE, which was shown to be ExpSpace-hard [3, Theo-
rem 3.1].1 On the other hand, the only known decision procedure [12] for satisfiability of BE formulas is
basically the one for full HS, and is not elementary.

It is also worth contrasting the expressiveness and complexity of BE, under homogeneity, with those
of two close relatives of it: the Chop logic C [16] and the logic D of the sub-interval relation [4]. The
logic C has a binary modality ⟨C⟩ that allows one to split the current interval in two parts and predicate
separately on them. The logic D has a unary modality ⟨D⟩ that allows one to predicate about sub-intervals
of the current interval. It is easy to see that, in terms of expressiveness, BE lies in between D and C, in
the sense that modality ⟨D⟩ can be defined in BE, i.e., ⟨D⟩ϕ is equivalent to ⟨B⟩ ⟨E⟩ϕ, and modalities
⟨B⟩ and ⟨E⟩ can in turn be defined in C, e.g., ⟨B⟩ϕ is equivalent to ϕ ⟨C⟩ true. Under the homogeneity
assumption, the satisfiability problem for C is non-elementarily decidable, precisely, tower-complete, in
view of the existence of straightforward reductions to and from language-emptiness of generalized star-
free regular expressions [13, 15], while the satisfiability problem for D was shown to be PSpace-complete
by a suitable contraction method [4]. It is also worth pointing out that if the homogeneity assumption is
removed, the satisfiability problem for D becomes undecidable [11].

Based on the observations above, it is crucial to close the gap between the complexity lowerbound
and upperbound of the satisfiability problem for BE. Significant effort has been invested in recent years
towards both raising the ExpSpace lowerbound, e.g. using variants of Stockmeyer’s counters [15], and
developing elementary satisfiability procedures. Despite these efforts, the complexity gap remained un-
changed and proved to be an intriguing challenge. The special status of BE is witnessed by the fact that
the many results about the complexity of the satisfiability and/or model-checking problems for proper
fragments of HS, under the homogeneity assumption, concern logics that include neither modality ⟨B⟩
nor modality ⟨E⟩ or feature only one of them (an up-to-date picture can be found in [5, 6]).

In this paper, we manage to prove that the satisfiability problem for the logic BE, under homogeneity,
is elementarily decidable, and precisely ExpSpace-complete. This result is established using a rather
unexpected normalization technique, which consists of transforming an arbitrary BE formula into an
equi-satisfiable one with boundedly many nested modalities. Specifically, we will show that one can
compute, in polynomial time, normalized formulas with nesting depth of modalities at most 4, and with
at most 2 alternations between universal and existential modalities. The transformation of BE formulas
into normalized ones can be also viewed as a quantifier elimination technique à-la Scott [14]. In this
perspective, however, the transformation has to deal with an increased difficulty: due to the homogeneity
assumption, the elements over which we predicate cannot be labelled in an arbitrary way. In view of this
difficulty, it is quite surprising that an equi-satisfiable normalized formula can be computed in polynomial
time from any given arbitrary BE formula.

The rest of the paper is organized as follows. In Section 2, we introduce the logic BE and we point
out the relevant implications of the homogeneity assumption. In Section 3, we define the transformation
of BE formulas into normalized ones. In Section 4, we derive an optimal satisfiability procedure and
analyse its complexity. Conclusions provide an assessment of the work done and outline future research
directions. For reader convenience, technical terms and notation in the electronic version of the paper
are linked to their definitions, which can then be accessed with a mouse click.

1In fact, the cited result focuses on the model-checking problem for BE, which takes as input, not only a formula, but
also a Kripke structure. It happens that the Kripke structure used in the proof of the ExpSpace lowerbound generates every
possible homogeneous interval structure, and hence the result can be immediately transferred to the validity/satisfiability
problem for BE.
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2 Preliminaries

Let the time domain be a finite prefix of the natural numbers (N,<). Intervals over N are denoted
by [x, y], for x, y ∈ N and x ≤ y, and the set of all intervals over N is denoted I(N). We let <B
(resp., <E) be the proper prefix (resp., suffix) relation on intervals, defined by J <B I if and only if
min(I) =min(J) ≤max(J) <max(I) (resp., J <E I if and only if min(I) <min(J) ≤max(J) =max(I)).

Formulas of the logic BE are constructed starting from propositional letters belonging to a finite
non-empty set Σ, called signature, using classical Boolean connectives and modal operators. The latter
operators are used to quantify over prefixes and suffixes of the current interval. Formally, BE formulas
satisfy the following grammar:

ϕ ∶∶= p (for p ∈ Σ) ∣ ¬ϕ ∣ ϕ ∨ϕ ∣ ⟨B⟩ϕ ∣ ⟨E⟩ϕ.
Semantics is given in terms of an interval structure S and one of its intervals I. Formally, an interval
structure over a signature Σ is a pair S = (I(N), σ), where σ ∶ I(N) → ℘(Σ) is a labelling of intervals by
subsets of Σ. Whether a BE formula ϕ holds at an interval I of S, denoted S, I ⊧ϕ, is determined by the
following rules:

• S, I ⊧ p if p ∈ σ(I);
• S, I ⊧ ¬ϕ if S, I /⊧ ϕ;
• S, I ⊧ϕ1 ∨ ϕ2 if S, I ⊧ϕ1 or S, I ⊧ϕ2;

• S, I ⊧ ⟨B⟩ϕ if S, J ⊧ϕ for some J <B I;

• S, I ⊧ ⟨E⟩ϕ if S, J ⊧ϕ for some J <E I.

A formula is valid if it holds at every interval of every interval structure; similarly, it is satisfiable if
it holds at some interval of some interval structure. Two formulas ϕ and ϕ′ are equivalent if for every
interval structure S and every interval I in it, S, I ⊧ ϕ iff S, I ⊧ ϕ′. They are equi-satisfiable if either
they are both satisfiable or none of them is. The notions of validity, satisfiability, and equivalence can
be relativized to a specific class of interval structures (possibly even to a single interval structure). As
an example, we say that a formula ϕ is valid over a class C of interval structures if S, I ⊧ϕ for all S ∈ C

and all I ∈ S. In the particular case where C contains a single interval structure S, we will say that a
formula ϕ is valid over S if S, I ⊧ϕ for all I ∈ S.

It is possible to add syntactic sugar to the logic BE. As an example, we will often use shorthands like
ϕ1 ∧ϕ2 = ¬(¬ϕ1 ∨¬ϕ2), false = p ∧¬p (for any p ∈ Σ), true = ¬false, and [X]ϕ = ¬⟨X⟩¬ϕ, for X ∈ {B,E}.
Some other useful shorthands are π = [B] false, which constrains the interval where it is evaluated to be
a singleton, and [G]ϕ = ϕ ∧ [B]ϕ ∧ [E]ϕ ∧ [B] [E]ϕ, which constrains all sub-intervals (including
the current interval, its proper prefixes, and its proper suffixes) to satisfy ϕ. The shorthands π and [G]
can be viewed as derived nullary and unary modal operators, respectively, and can be added as syntactic
sugar to BE.

Homogeneity assumption. We recall from [10, 12] that the satisfiability problems for the logic BE is
undecidable, unless one restricts to homogeneous interval structures. An interval structure S = (I(N), σ)
is homogeneous if its labelling satisfies the condition σ(I) = ⋂x∈I σ([x,x]) for all I ∈ I(N). Intuitively,
this means that the labelling σ is uniquely determined by its restriction to singleton intervals. Let us
take a closer look at the implications of homogeneity.

First of all, we have that every formula ⟨B⟩(p1 ∧ p2) is equivalent to ⟨B⟩ p1 ∧ ⟨B⟩ p2, and similarly for
⟨E⟩. Note, however, that homogeneity does not imply similar properties for arbitrary formulas ϕ1, ϕ2

replacing the propositional letters p1, p2. As an example, the formulas ⟨B⟩(p∧¬p) and (⟨B⟩ p)∧(⟨B⟩ ¬p)
are not equivalent.

Homogeneity can also be exploited to efficiently rewrite any BE formula into an equivalent one where
every occurrence of a propositional letter is conjoined with π. Based on this observation, we introduce
the following mild normal form:

Definition 1. A BE formula ψ is in homogeneous normal form if every occurrence of a propositional
letter p in ψ appears inside the subformula π ∧ p.

Basically, the homogeneous normal form restricts propositional letters to be only evaluated at singleton
intervals. As an example, the formula (π ∧ q) ∨ ⟨B⟩(π ∧ ¬(π ∧ p)) is in homogeneous normal form and
holds at an interval I iff I consists of a single point labelled by q or the left endpoint of I is not labelled
by p.
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ψ = ⟨B⟩ϕ

ϕ = ⟨B⟩ ⟨E⟩(π ∧ p)

⟨E⟩(π ∧ p)
q fresh letter

p

Figure 1: Example of normalization of a formula ψ = ⟨B⟩ϕ.

Proposition 2. One can transform in linear time any formula ψ into one in homogeneous normal form
that is equivalent to ψ when interpreted over homogeneous interval structures.

Proof. It suffices to replace every occurrence of a propositional letter p in ψ by the formula
everywhere(p) = (π ∧ p) ∨ ( ⟨B⟩(π ∧ p) ∧ ⟨E⟩(π ∧ p) ∧ [B](π ∨ ⟨E⟩(π ∧ p))). The resulting formula is
equivalent to ψ since, over homogeneous interval structures, p is equivalent to everywhere(p).

We denote by BEπ the fragment of logic BE that contains only formulas in homogeneous normal form.
From this point forward, we will exclusively work with BEπ formulas, with the understanding that this
assumption may occasionally go unstated. Accordingly, we will treat (sub)formulas of the form π ∧ p as
atomic.

3 A bounded-nesting normal form for BEπ

In this section, we describe a transformation of arbitrary BEπ formulas into equi-satisfiable ones with
boundedly many nested modalities. The transformation is somehow reminiscent of the so-called Scott
normal form for the two-variable fragment of first-order logic [14], since it results in a formula, over an ex-
tended set of propositional letters, that is satisfiable if and only if the original formula was. The increased
difficulty here is that the valuation of the new propositional letters emerging from the transformation
must satisfy the homogeneity assumption. This is to say that we cannot identify intervals satisfying a
certain (sub)formula ϕ by labelling them with a fresh propositional letter qϕ. Rather, we will identify
these intervals by appropriately correlating fresh labels assigned to their endpoints. Our transformation
will exploit in a crucial way the fact that, under homogeneity, valuations of formulas at two overlapping
intervals have “less degrees of freedom” than valuations of the same formulas at disjoint intervals.

Definition 3. The modal depth (or simply depth) of a BEπ formula is the maximum number of nested
modal operators ⟨B⟩ and ⟨E⟩ in it, not counting those defining the operator π. A BEπ formula is in
shallow normal form if it is of the form ψ ∧ [G] ξ, where both ψ and ξ have depth at most 2.

Concerning the above definition, we recall that [G] ξ is a shorthand for ξ ∧ [B] ξ ∧ [E] ξ ∧ [B] [E] ξ, so
a formula in shallow normal form has depth at most 4. However, not all depth-4 formulas are in shallow
normal form.

Theorem 4. Given any BEπ formula ψ, one can compute in in polynomial time an equi-satisfiable
formula ψ⋆ that is in shallow normal form.

To highlight one of the key ideas underlying the proof of the theorem, which we postpone to the next
subsections, we give an example of normalization of a formula.

Example 5. Consider the formula ψ = ⟨B⟩ϕ over the signature Σ = {p}, where ϕ = ⟨B⟩ ⟨E⟩(π∧p). Figure
1 shows an example of an interval structure satisfying ψ; in particular, it highlights intervals witnessing ϕ
(in red) and ⟨E⟩(π∧p) (in blue). Note that ψ has depth 3 and is not in shallow normal form. To rewrite
ψ into an equi-satisfiable formula in shallow normal form, we introduce a new propositional letter q with
the purpose of marking the right endpoints of the intervals that satisfy ϕ and that are minimal w.r.t. the
prefix relation (we call these intervals prefix-minimal, for short). Note that the right endpoints of these
intervals are immediately to the right of the p-labelled points. We thus consider interval structures over
the expanded signature Σ′ = {p, q} that make the following formula valid:

ξ = (¬π ∧ ¬⟨B⟩ ¬π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

interval has exactly two points

→ ( ⟨B⟩(π ∧ p) ↔ ⟨E⟩(π ∧ q))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q is to the right whenever p is to the left

We can verify that, over interval structures that make ξ valid, every prefix-minimal interval that satisfies
ϕ also satisfies ϕ′ = ⟨E⟩(¬π) ∧ ⟨E⟩(π ∧ q), and, conversely, every interval that satisfies ϕ′ also satisfies
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ϕ. This implies that, again over interval structures that make ξ valid, the depth-3 formula ψ = ⟨B⟩ϕ
is equivalent to the depth-2 formula ψ′ = ⟨B⟩ϕ′. Moreover, since the labelling of any interval structure
over Σ = {p} can always be expanded with the fresh letter q so as to satisfy [G] ξ, we conclude that ψ is
equi-satisfiable as the formula ψ⋆ = ψ′ ∧ [G] ξ. Since ξ has depth 1, ψ⋆ is also in shallow normal form.

The normalization procedure for an arbitrary formula ψ iterates a rewriting similar to the one pre-
sented in Example 5. More precisely, we start by replacing every outermost subformula of ψ of depth
d > 2 and of the form ⟨B⟩ϕ (resp., ⟨E⟩ϕ) with an equi-satisfiable formula ⟨B⟩ϕ′ (resp., ⟨E⟩ϕ′) of depth
2. This rewriting step extends the signature with new propositional letters, which are constrained while
preserving equi-satisfiability using formulas similar to the [G] ξ of Example 5. Constraints will contain
occurrences of the original subformula ϕ, and thus need to be normalized in their turn in order to even-
tually obtain formulas of depth at most 2. More details and formal arguments about the normalization
procedure of Theorem 4 will be provided in the next subsections.

We conclude this part by observing an immediate consequence of Theorem 4. We recall from [12]
the existence of a rather simple, but non-elementary procedure for deciding satisfiability of a BE formula
ψ under homogeneity. A close inspection to the description of this procedure shows that it has non-

deterministic time complexity O(tow(h, ∣ψ∣)), where tow(h,n) = 22 ⋱n
is the tower of h exponents ending

with n and h is the maximum number of nested modal operators in the input formula ψ. As the shorthand
π can be directy handled in constant time, the parameter h of the said complexity bound can be identified
with our notion of modal depth for BEπ formulas. In particular, when we consider a formula ψ in shallow
normal form, the parameter h is at most 4. Together with Proposition 2 and Theorem 4, this gives a first
rough complexity bound to the satisfiability problem for BE logic under the homogeneity assumption:

Corollary 6. The satisfiability problem for BE logic restricted to homogeneous interval structures is
elementarily decidable, i.e., at least in 4NExpTime.

We shall provide later, in Section 4, a more careful complexity analysis, showing that the satisfiability
problem for BE logic under homogeneity is actually ExpSpace-complete.

3.1 Expanders

A first ingredient of the normalization procedure of BEπ formulas is that of an expander. Intuitively,
this is a formula that constrains new propositional letters on the basis of the old ones in an arbitrary
(homogeneous) interval structure.

Definition 7. Let Σ ⊆ Σ′ be two signatures, and let S = (I(N), σ) and S′ = (I(N ′), σ′) be interval
structures over Σ and Σ′, respectively. We say that S′ is an expansion of S if N ′ =N and σ′(I)∩Σ = σ(I)
for all intervals I ∈ I(N).

An expander from Σ to Σ′ is a BEπ formula ξ over Σ′ such that, for every interval structure S over
Σ, there is an expansion S′ of S over Σ′ that makes ξ valid.

We report below a simple lemma about expanders.

Lemma 8. If ξ is an expander from Σ to Σ′, ψ and ψ′ are formulas over the signatures Σ and Σ′,
respectively, and ψ,ψ′ are equivalent over all interval structures where ξ is valid, then ψ and ψ′ ∧ [G] ξ
are equi-satisfiable.

Proof. Suppose that ψ′ ∧ [G] ξ is satisfied by an interval structure S′ over Σ′. Because, ξ is valid over
S′, ψ is equivalent to ψ′ over S′, and hence S′ satisfies ψ. Conversely, if ψ is satisfied by an interval
structure S over Σ, then there is an expansion S′ of S that makes ξ valid. This implies that ψ and ψ′

are equivalent over S′. Hence S′ satisfies ψ′, and ψ′ ∧ [G] ξ as well.

3.2 Minimal witnessing intervals

Recall that the normalization of a BEπ formula replaces subformulas ⟨B⟩ϕ (resp., ⟨E⟩ϕ) of depth d > 2
with equivalent formulas ⟨B⟩ϕ′ (resp., ⟨E⟩ϕ′) of depth 2. In this respect, a simple observation is that,
in order to determine which intervals satisfy ⟨B⟩ϕ (resp., ⟨E⟩ϕ), one could look at intervals that satisfy
ϕ and that are minimal for the prefix (resp., suffix) relation.

Definition 9. Given a BEπ formula ϕ, an interval structure S, and an interval I in it, we say that I is
prefix-minimal (resp., suffix-minimal) for ϕ if S, I ⊧ϕ and S, J /⊧ ϕ for every J <B I (resp., J <E I).
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ψ = ⟨B⟩ϕ
ϕ

ψ = ⟨B⟩ϕ
ϕ

¬ψ = ¬⟨B⟩ϕ
¬ϕ

ℓ ℓ r r fresh letters

Figure 2: Overlapping prefix-minimal intervals for ϕ, and their intersection.

We will see later that prefix/suffix-minimal intervals for ϕ can be unambiguously identified, once their
endpoints are annotated with fresh propositional letters, using a formula ϕ′ of size proportional to that
of ϕ, but with depth just 1. A simplified account of this technique was already given in Example 5.
Below, we discuss the approach under a more general perspective and highlight a potential issue with
overlapping minimal witnesses.

Example 10. Suppose that ϕ is a formula of depth 2. We aim at replacing it with a formula ϕ′ of depth
1, so that ⟨B⟩ϕ′ turns out to be equivalent to ⟨B⟩ϕ in an appropriate expansion of the interval structure.
As discussed earlier, a natural approach is to focus only on intervals that are prefix-minimal for ϕ, and
mark their endpoints with suitable fresh propositional letters. For example, two prefix-minimal intervals
for ϕ are represented in Figure 2 by the red brackets. We mark their left and right endpoints with fresh
propositional letters ℓ and r, respectively, and we assume that the interval structure is expanded so as to
satisfy the intended use of ℓ and r. We then define ϕ′ = (⟨B⟩(π ∧ ℓ)∧ ⟨E⟩(π ∧ r))∨ ((π ∧ ℓ)∧ (π ∧ r)) and
observe that every interval satisfying ⟨B⟩ϕ must also satisfy ⟨B⟩ϕ′. So one might be tempted to replace
ϕ with ϕ′. Unfortunately, while ⟨B⟩ϕ entails ⟨B⟩ϕ′, the converse is not true, as the intersection of any
two prefix-minimal intervals for ϕ does not always satisfy ϕ (see the blue bracket in Figure 2). In general,
in order to mark the endpoints of minimal intervals without ambiguities, one could use different letters to
mark the endpoints of any two overlapping intervals. More precisely, one should introduce as many copies
of letters ℓ, r as the maximum number of overlapping prefix-minimal intervals for ϕ that have different
right endpoints.

3.3 Encoding of minimal witnessing intervals

Example 10 brings up a third ingredient that is crucial for the normalization procedure, as it suggests that,
in order to mark without ambiguities the endpoints of prefix-minimal (resp., suffix-minimal) intervals for
a formula ϕ, one must first bound the number of distinct right (resp., left) endpoints of overlapping
intervals. A bound will be shown precisely in Corollary 14 below.

Definition 11. A set I of intervals is an intersecting family if there is a point x that is contained in
every interval of I.

An example of an intersecting family of intervals is shown to the left of Figure 3.
Towards proving the desired bound, we shall first establish two auxiliary lemmas. The first lemma

relates the maximum cardinality of a partially ordered set (e.g., an intersecting family of intervals,
partially ordered by containment) to the maximum cardinality of its chains and anti-chains. Formally,
a chain of a partially ordered set is a subset of pairwise comparable elements. An anti-chain is a subset
of pairwise incomparable elements. The first lemma is in fact a rephrasing of Dilworth’s theorem [8] (we
give a proof here for self-containment):

Lemma 12. Let X be a partially ordered set and suppose that all its chains and anti-chains have cardi-
nality at most n. Then the cardinality of X is at most n2.

Proof. To begin with, notice that X is well-founded, due to the hypothesis that chains have cardinality
at most n. Define the partition Y1, Y2, . . . of X , where each Yi contains all and only the minimal elements

6



⋮ ⋮ ⋮

Figure 3: From left to right: an intersecting family of intervals, a chain, and an anti-chain.

of X ∖⋃j<i Yj — in particular, each Yi is defined inductively on the basis of the previous sets Y1, . . . , Yi−1.
By construction, every subset Yi is an anti-chain, and hence, by the hypotheses of the claim, it has
cardinality at most n.

Let us now bound by n the number of subsets of the partition. Towards a contradiction, assume that
Y1, Y2, . . . , Yn+1 belong to the partition of X . By construction, for every 1 < i ≤ n + 1 and every y ∈ Yi,
there is y′ ∈ Yi−1 such that y′ < y (otherwise y should have been added to Yi−1). Using this property and
a simple induction, we can construct a chain of length n + 1: we start by taking an arbitrary yn+1 ∈ Yn+1
and then we repeatedly use the property to prepend to a chain yi < yi+1 < ⋅ ⋅ ⋅ < yn+1, with i > 1, yi ∈ Yi,
yi+1 ∈ Yi+1, . . . , yn+1 ∈ Yn+1, a new element yi−1 < yi, with yi−1 ∈ Yi−1. Clearly, such a chain of length
n + 1 leads to a contradiction, and hence the partition Y1, Y2, . . . of X contains at most n elements. We
conclude that ∣X ∣ = ∑i ∣Yi∣ ≤ n2.

Ultimately, we aim at applying Lemma 12 to bound the cardinality of every intersecting family of
prefix-minimal (resp., suffix-minimal) intervals with pairwise distinct right (resp., left) endpoints, using
the containment relation as partial order. To this end, it is crucial to bound the cardinalities of the chains
and anti-chains of such an intersecting family. It will be also convenient to avoid singleton intervals when
reasoning about intersecting families (note that there is at most one singleton interval in every intersecting
family).

Lemma 13. Let S be an interval structure, ϕ a BEπ formula, I an intersecting family of non-singleton
prefix-minimal (resp., suffix-minimal) intervals for ϕ, with pairwise distinct right (resp., left) endpoints,
and I ′ a chain or an anti-chain of I, where the partial order is given by containment. We have that

∣I ′∣ ≤ 22∣ϕ∣. (1)

Proof. We present the proof for an intersecting family of non-singleton prefix-minimal intervals for ϕ
(the case of suffix-minimal intervals uses symmetric arguments). Towards a contradiction, assume that
there exist a BEπ formula ϕ, an intersecting family I of non-singleton prefix-minimal intervals for ϕ with
pairwise distinct right endpoints, and a subset I ′ of I that is a chain or an anti-chain and that violates
the bound (1), i.e., I ′ contains more than 22∣ϕ∣ intervals. We also assume, without loss of generality, that
ϕ is a smallest formula witnessing this violation of the bound (later we will exploit this assumption when
considering families of prefix-minimal intervals for subformulas of ϕ).

Let ∂Bϕ (resp., ∂Eϕ) be the set of formulas α such that ⟨B⟩α (resp., ⟨E⟩α) is a subformula of ϕ
with no other modal operator above it. For example, if ϕ = ⟨B⟩α1 ∧ ⟨B⟩ ⟨B⟩α2 ∧ ⟨E⟩ ⟨B⟩α3, then
∂Bϕ = {α1, ⟨B⟩α2} and ∂E={⟨B⟩α3}. Note that ∣ϕ∣ ≥ ∣∂Bϕ ∣ + ∣∂Eϕ ∣.

Define the ϕ-profile of a non-singleton interval I as the pair (B,E), where B (resp., E) is the set
of formulas α ∈ ∂Bϕ (resp., α ∈ ∂Eϕ) that hold at prefixes (resp., suffixes) of I. Note that any two
non-singleton intervals with the same ϕ-profile either both satisfy ϕ or both satisfy ¬ϕ; in particular, this
holds thanks to the fact that ϕ is in homogeneous normal form.

We also observe that there are at most 2∣∂Bϕ ∣+∣∂Eϕ ∣ distinct ϕ-profiles. Therefore, by our assumption
on I ′, there are

n > 22∣ϕ∣−∣∂Bϕ ∣−∣∂Eϕ ∣

intervals I1, . . . , In ∈ I
′ with the same ϕ-profile. Without loss of generality, assume that the intervals

I1, . . . , In are listed based on the natural ordering of their right endpoints, that is, max(I1) < ⋅ ⋅ ⋅ <max(In).
Depending on I ′ being a chain or an anti-chain, the left endpoints of these intervals are also ordered, in
descending, resp., ascending order (see Figure 3).

For the rest of the proof, unless otherwise stated, i will denote a natural number from 1 to n−1, and will
be used in particular to index pairs of consecutive intervals, say Ii and Ii+1. For every i, let wi < xi ≤ yi < zi
be the four endpoints of Ii and Ii+1. Further, let left-∆i = [wi + 1, xi] and right-∆i = [yi, zi − 1] (these
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Figure 4: Special witnesses in a chain (left) and in an anti-chain (right).

intervals are represented by the red dashed rectangles in Figure 3). Thanks to the fact that I ′ is a chain
or an anti-chain, the left-∆i’s and the right-∆i’s are pairwise disjoint across all i (this property will be
used later and is the main reason for restricting our attention to chains and anti-chains).

Given α ∈ ∂Bϕ and 1 ≤ i < n, a special ⟨B⟩-witness of α at i (if it exists) is the prefix-minimal interval
for α that has the same left endpoint as Ii+1 and whose right endpoint belongs to right-∆i. Figure 4
gives two examples of special ⟨B⟩-witnesses, represented by green brackets: one example is for the chain
arrangement and the other is for the anti-chain arrangement. Symmetrically, given α ∈ ∂Eϕ and 1 ≤ i < n,
a special ⟨E⟩-witness of α at i (if it exists) is the suffix-minimal interval for α that has the same right
endpoint as Ii and whose left endpoint belongs to left-∆i. Special ⟨E⟩-witnesses are represented in Figure
4 by blue brackets.

Now, we tag an index 1 ≤ i < n with a pair (B,α) (resp., (E,α)) whenever α ∈ ∂Bϕ (resp., α ∈ ∂Eϕ)
and there is a special ⟨B⟩-witness (resp., ⟨E⟩-witness) of α at i. If there is no special witness for any α,
then we tag i with the symbol �. Let Ki = [min(Ii+1),max(Ii)] and observe that Ki is a proper prefix of
Ii+1. We will prove that, for some index i, the interval Ki satisfies ϕ, thus contradicting prefix-minimality
of Ii+1. Towards this, it will be sufficient to find an index i tagged with �. Indeed, if this happens, then
we claim that

Claim 13.1. Every formula α ∈ ∂Bϕ (resp., α ∈ ∂Eϕ) that holds at a prefix (resp., suffix) of Ii also
holds at a prefix (resp., suffix) of Ki, and vice versa.

The above claim would then imply that the ϕ-profile of Ki coincides with that of Ii, and hence Ki⊧ϕ.

Proof of the claim. Assume that index i is tagged with �. Consider some α ∈ ∂Bϕ . If α holds at a prefix
of Ii, then α holds at some prefix of Ii+1 as well, because Ii and Ii+1 have the same ϕ-profile. Let J be the
smallest prefix of Ii+1 that satisfies α. Due to i being tagged with �, we have that max(J) < max(Ii) =
max(Ki), meaning that J is also a prefix of Ki. Conversely, if α holds at a prefix of Ki, then it trivially
holds at a prefix of Ii+1 as well, and thus it holds at a prefix of Ii, too, because Ii and Ii+1 have the same
ϕ-profile. Next, consider some α ∈ ∂Eϕ . If α holds at some suffix of Ii, then let J be the smallest suffix
of Ii that satisfies α. Due to i being tagged with �, we have that min(J) >min(Ii+1) =min(Ki), meaning
that J is also a suffix of Ki. Conversely, assume that α holds at some suffix of Ki and let J be the
smallest suffix of Ki that satisfies α. Once again, since i is tagged with �, we have that min(J) >min(Ii),
meaning that J is a suffix of Ii, too.

It remains to prove that at least one index i is tagged with �. For this, we bound the number of indices
tagged with pairs of the form (X,α), with X = B (resp., X = E) and α ∈ ∂Xϕ . By construction, for each
tag (X,α), the special ⟨X⟩-witnesses of α form an intersecting (anti-)chain IX,α of prefix-minimal (resp.,
suffix-minimal) intervals for α. Moreover, we know that:

• All intervals in IX,α are non-singleton.

This is because the only scenario where a singleton special ⟨X⟩-witness arises is when I ′ is an-
ti-chain, n = 2, and max(I1) = min(I2). This scenario is however excluded by the fact that

n > 22∣ϕ∣−∣∂Bϕ ∣−∣∂Eϕ ∣ ≥ 2.

• The intervals in IX,α have pairwise distinct right (resp., left) endpoints.

This is because those endpoints belong to the intervals right-∆i (resp., left-∆i), which are pairwise
disjoint across all i’s.

• The cardinality of each (anti-)chain IX,α is at most 22∣α∣.

This is thanks to the previous properties and because α is a proper subformula of ϕ, which was
assumed to be a smallest formula violating the bound (1).
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In view of the last property, we derive that the number of indices that are not tagged with � is

n′ ≤ ∑α∈∂Bϕ
22∣α∣ + ∑α∈∂Eϕ

22∣α∣

≤ 2
∑

α∈∂Bϕ
2∣α∣ + ∑

α∈∂Eϕ
2∣α∣

,

where the last inequality follows from majorating sums with products. Next, recall that n >

22∣ϕ∣−∣∂Bϕ ∣−∣∂Eϕ ∣, and hence the number of indices 1 ≤ i < n that are tagged with � is

n − 1 − n′ ≥ 22∣ϕ∣−∣∂Bϕ ∣−∣∂Eϕ ∣ − 2
∑

α∈∂Bϕ
2∣α∣ +∑

α∈∂Eϕ
2∣α∣

.

We prove that the right hand-side number is always positive by showing that 2∣ϕ∣ − ∣∂Bϕ ∣ − ∣∂Eϕ ∣ >
∑α∈∂Bϕ 2∣α∣ + ∑α∈∂Eϕ 2∣α∣. We distinguish two cases, depending on whether or not ϕ contains modal

operators. If ϕ contains no modal operators, then 2∣ϕ∣ − ∣∂Bϕ ∣ − ∣∂Eϕ ∣ = 2∣ϕ∣ > 0 = ∑α∈∂Bϕ 2∣α∣ +
∑α∈∂Eϕ 2∣α∣. Otherwise, if ϕ contains at least one modal operator, then we observe that (i) the size

of ϕ is at least the sum of the sizes of the subformulas ⟨X⟩α, for X ∈ {B,E} and α ∈ ∂Xϕ , which are
∣ ⟨X⟩α∣ = ∣α∣ + 1, and (ii) ∑α∈∂Xϕ (∣α∣ + 1) = (∑α∈∂Xϕ ∣α∣) + ∣∂Xϕ ∣, for X ∈ {B,E}. From this we derive:

2∣ϕ∣ − ∣∂Bϕ ∣ − ∣∂Eϕ ∣
≥ ∑α∈∂Bϕ

2∣α∣ + ∑α∈∂Eϕ
2∣α∣ + ∣∂Bϕ ∣ + ∣∂Eϕ ∣

> ∑α∈∂Bϕ
2∣α∣ + ∑α∈∂Eϕ

2∣α∣ .

We have just shown that at least one index i must be tagged with �, which completes the proof of the
lemma.

Putting together Lemmas 12 and 13, we obtain the desired bound for an arbitrary intersecting family
of non-singleton prefix/suffix-minimal intervals for ϕ:

Corollary 14. Let S be an interval structure, ϕ a BEπ formula, and I an intersecting family of non-
singleton prefix-minimal (resp., suffix-minimal) intervals for ϕ. Then the number of distinct right (resp.,
left) endpoints of intervals of I is at most 24∣ϕ∣.

We conclude this part by showing how prefix-minimal intervals for ϕ can be characterized using
fresh propositional letters and suitable formulas flat(ϕ) and enc(ϕ) (a similar corollary can be stated for
suffix-minimal intervals).

Corollary 15. Consider a BEπ formula ϕ over a signature Σ and let Σ′ = Σ⊎ {p1, . . . , pm, ℓ, r, s}, where
p1, . . . , pm, ℓ, r, s are fresh propositional letters and m = 4∣ϕ∣ (this m is precisely the exponent appearing
in the bound of Corollary 14). Define the BEπ formulas2

flat(ϕ) = ( ⟨B⟩(π ∧ ℓ) ∧ ⟨E⟩(π ∧ r) ∧

⋀i=1,...,m ( ⟨B⟩(π ∧ pi)↔ ⟨E⟩(π ∧ pi)))
∨ (π ∧ s)

enc(ϕ) = (flat(ϕ) ∧ ¬ ⟨B⟩flat(ϕ) → ϕ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prefix-minimial intervals for flat(ϕ) satisfy ϕ

∧ (ϕ ∧ ¬ ⟨B⟩flat(ϕ) → flat(ϕ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prefix-minimal intervals for ϕ satisfy flat(ϕ)

We have that enc(ϕ) is an expander from Σ to Σ′ and that ⟨B⟩ϕ and ⟨B⟩flat(ϕ) are equivalent over all
interval structures that make enc(ϕ) valid.

2Note that, despite the notation, the formula flat(ϕ) only depends on the signature and the size of ϕ, whereas enc(ϕ)
depends entirely on ϕ.
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Proof. Let us first explain the intended use of the fresh propositional letters p1, . . . , pm, ℓ, r, s. The
letters p1, . . . , pm will annotate points of an interval structure with m-tuples of bits, thus enumerating
an exponentially-large set (e.g., {1, . . . ,2m}). More precisely, the left and right endpoints of every non-
singleton prefix-minimal interval for ϕ will be identified by having labels ℓ and r, respectively, and the
same m-tuple of bits — this correlation between endpoints is checked by the first disjunct of flat(ϕ).
Singleton prefix-minimal intervals for ϕ will instead be identified by the special label s — this is checked
in the second disjunct of flat(ϕ). Another important constraint is that every two intersecting intervals
that are non-singleton, prefix-minimal for γ, and not a suffix one of another will have their endpoints
marked by different m-tuples of bits.

Corollary 14 guarantees the existence of an annotation satisfying all the above constraints. Such an
annotation is enforced precisely by the formula enc(ϕ), which turns out to be an expander from Σ to Σ′

(namely, every interval structure over Σ admits an expansion over Σ′ that makes enc(ϕ) valid). Moreover,
if the annotation is correct, namely, if enc(ϕ) is valid over an expanded interval structure, then every
prefix-minimal interval for ϕ is also a prefix-minimal interval for flat(ϕ), and vice versa. Note that there
may still exist intervals that satisfy ϕ but not flat(ϕ), or vice versa; however, those intervals will always
contain proper prefixes that satisfy both ϕ and flat(ϕ). Overall, this proves that the two formulas ⟨B⟩ϕ
and ⟨B⟩flat(ϕ) are equivalent over expanded interval structures that make enc(ϕ) valid.

3.4 Normalization procedure

We are now ready to describe the normalization procedure underlying Theorem 4. Let ψ be a BEπ

formula. The normalization of ψ consists of repeatedly applying some rewriting steps that preserve
satisfiability and progressively reduce the number of distinct subformulas of depth larger than 2, until a
shallow normal form is eventually obtained.

Every rewriting step is applied to a formula of the form ψi ∧ [G] ξi over a signature Σi (initially,
ψ0 = ψ, ξi = true, and Σi = Σ), and results in an equi-satisfiable formula ψi+1 ∧ [G] ξi+1 over an extended
signature Σi+1. To perform the rewriting step, we must choose a subformula ⟨X⟩ϕ of ψi ∧ [G] ξi, for
some X ∈ {B,E}, that has depth d > 2 and that does not occur under the scope of any other modal
operator, except possibly the operator [G] that has ξi as argument. We then use Corollary 15 to obtain
an expander enc(ϕ) from Σi to Σi+1 and a formula ⟨X⟩flat(ϕ) equivalent to ⟨X⟩ϕ over every interval
structure that makes enc(ϕ) valid. We then rewrite ψi ∧ [G] ξi into the formula

ψi[ ⟨X⟩ϕ / ⟨X⟩flat(ϕ)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψi+1

∧

[G] ( ξi[ ⟨X⟩ϕ / ⟨X⟩flat(ϕ)] ∧ enc(ϕ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ξi+1

) (†)

Thanks to distributivity of [G] with respect to ∧, the formula (†) is equivalent to (ψi ∧

[G] ξi)[⟨X⟩ϕ / ⟨X⟩flat(ϕ)] ∧ [G] enc(ϕ). Moreover, thanks to Lemma 8, the latter formula is equi-sat-
isfiable as ψi ∧ [G] ξi. This completes the description of a rewriting step.

Let us now analyse the complexity of the normalization procedure. The procedure terminates when
one cannot choose any subformula ⟨X⟩ϕ with the desired properties: in this case the rewritten formula
ψi∧ [G] ξi turns out to be in shallow normal form and we can let ψ⋆ = ψi ∧ [G] ξi. To bound the number of
rewriting steps, we study how a single rewriting step affects the number of distinct subformulas of depth
larger than 2. As for ⟨X⟩ϕ, we observe that this subformula does not occur anymore in the rewritten
formula ψi+1 ∧ [G] ξi+1 (in particular, the inteded use of enc(ϕ) is to entail ⟨X⟩ϕ ↔ ⟨X⟩flat(ϕ), but
the chosen writing in the statement of Corollary 15 avoids having ϕ under the scope of a modal operator,
thus guaranteeing that enc(ϕ) has depth at most 2). On the other hand, new occurrences of subformulas
may emerge in ψi+1 ∧ [G] ξi+1: these are either formulas of depth at most 2 (e.g., ⟨X⟩flat(ϕ)) or copies
of formulas that already occur in ψi ∧ [G] ξi (e.g., ϕ). Summing up, the effect of a rewriting step is
to decrease the number of distinct subformulas of depth larger than 2. This implies that the number of
rewriting steps is at most linear in the size of the original formula ψ. Finally, each rewriting step is purely
syntactical and can be carried out efficiently on the involved formula ψi ∧ [G] ξi, whose size grows at
most linearly with i. This shows that the entire normalization procedure can be performed in polynomial
time w.r.t. ∣ψ∣, and completes the proof of Theorem 4.
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4 Complexity of the satisfiability problem

In this section, we build up on the previous normalization result to prove a tight complexity bound:

Theorem 16. The satisfiability problem for BE logic restricted to homogeneous interval structures is
ExpSpace-complete.

An ExpSpace lowerbound for BE under homogeneity was already proven in [3], so we focus on the
upperbound. In view of Proposition 2 and Theorem 4, given any BE formula ψ, one can compute in
polynomial time a BEπ formula ψ⋆ that is equi-satisfiable over homogeneous interval structures. Of
course, this also means that ψ⋆ has size at most polynomial in ∣ψ∣. We argue below that one can test
satisfiability of a formula in shallow normal form in exponential space with respect to the size of the
formula itself. Together with the previous observations, this proves Theorem 16.

4.1 Composition of logical types

We need to formalize a notion of logical type, similar to the notion of profile used in the proof of Lemma
13, that not only determines which formulas hold at a given interval, but also satisfies mild compositional
properties, that is, under suitable conditions, one can compute the type of the sum of two adjacent
intervals on the basis of the types of the original intervals. It will be convenient to define types separately
for formulas of depth 0, 1, and 2 (there is no need to consider higher depths, as we assume to deal with
formulas in shallow normal form). We will first present the rather simple definitions and properties of
depth-0 and depth-1 types, and then focus on the more complex notion of depth-2 type.

Depth-0 and depth-1 types. We fix, once and for all, an interval structure S = (I(N), σ) and we assume
that all formulas are over the signature Σ of S.

Definition 17. The depth-0 type of an interval I, denoted type0(I), is either the set {π} ∪ {p ∈ Σ ∶

S, I ⊧ π ∧ p} or the empty set, depending on whether I is a singleton or not.
The depth-1 type of an interval I = [x, y] is the quadruple type1(I) = (S,T,B,E), where S is the

symbol 1, 2, or 3, depending on whether I contains one point, two points, or more, T = type0(I),
B = type0([x,x]), and E = type0([y, y]).

It is easy to see that depth-0 (resp., depth-1) types of adjacent intervals can be composed to form the
depth-0 (resp., depth-1) type of the sum of the two intervals. One can also verify that the depth-0 (resp.,
depth-1) type of an interval determines which formulas of depth 0 (resp., depth at most 1) hold at that
interval. These simple results are formalized in the next two lemmas below.

Lemma 18. For both d = 0 and d = 1, there is a composition operator ⋅ on depth-d types that is computable
in polynomial time and such that, for all pairs of adjacent intervals I, J , with max(I) + 1 = min(J),
typed(I) ⋅ typed(J) = typed(I ∪ J).
Proof. The composition of depth-0 types is trivial: for every pair of depth-0 types T,T ′, we simply let
T ⋅ T ′ = ∅. This is correct because the sum of two adjacent intervals always results in a non-singleton
interval, whose depth-0 type is the empty set.

As for the composition of two depth-1 types, say T = (S,T,B,E) and T ′ = (S′, T ′,B′,E′), we let
T ⋅ T ′ = (S′′, T ⋅ T ′,B,E′), where S′′ is either 2 or 3 depending on whether S = S′ = 1 or not, and T ⋅ T ′

is the composition of the depth-0 types T and T ′, as defined just above. It is immediate to check that if
T = type1([x, y]) and T ′ = type1([y + 1, z]), then type1([x, z]) = T ⋅ T ′.

Lemma 19. For both d = 0 and d = 1, for every BEπ formula ϕ of depth at most d, and for all intervals
I, J such that typed(I) = typed(J), we have S, I ⊧ϕ iff S, J ⊧ϕ. Moreover, whether S, I ⊧ϕ holds or not
can be decided in polynomial time given ϕ and typed(I).
Proof. We first prove the claim for d = 0. For the case ϕ = π, we have S, I ⊧ ϕ if and only if I is a
singleton, or, equally, π ∈ type0(I). The case ϕ = π ∧ p is trivial as well, as we have S, I ⊧ ϕ if and only
if p ∈ type0(I). It remains to consider the case where ϕ is a Boolean combination of the previous atomic
formulas. In this case, we determine the evaluation of ϕ at I “homomorphically” on the basis of the
evaluations of the atomic formulas.

Let us now prove the claim for d = 1. The interesting cases are when ϕ has depth 0 or it is of
the form ⟨B⟩α or ⟨E⟩α, with α again of depth 0. Once the claim is proved for these cases, it can be
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generalized to Boolean combinations of those formulas using the same arguments as before. Let I = [x, y]
and type1(I) = (S,T,B,E), and recall that T = type0(I), B = type0([x,x]), and E = type0([y, y]).

If ϕ has depth 0, then we know that the component T (= type0(I)) already determines whether or
not S, I ⊧ ϕ.

If ϕ = ⟨B⟩α, we further distinguish three subcases, depending on S. If S = 1, then I is a singleton and
hence S, I /⊧ ⟨B⟩α. If S = 2, then the only prefix of I is the singleton interval [x,x], hence S, I ⊧ ⟨B⟩α iff
S, [x,x] ⊧ α. Since α has depth 0, the latter condition can be decided using the type B = type0([x,x]).
If S = 3, then since α is a Boolean combination of formulas of the form π or π ∧ p, with p ∈ Σ, it suffices
to consider only two prefixes of I: the singleton interval J0 = [x,x] and the interval J1 = [x,x + 1]. In
particular, we have S, I ⊧ ⟨B⟩α if and only if S, J0 ⊧ α or S, J1 ⊧ α. Again, the latter two conditions
are determined by the depth-0 types of J0 and J1, which are B and ∅, respectively. This shows how to
determine whether S, I ⊧ ⟨B⟩α using the type type1(I) = (S,T,B,E).

The remaining case is that of a formula ϕ = ⟨E⟩α, which can be handled by symmetric arguments,
using the component E instead of B.

Depth-2 types. We now introduce types for depth-2 formulas. The machinery here is not as neat as
one could hope, as there is a trade-off between the desired compositional properties and the number of
possible depth-2 types. As an example, full compositionality of types for depth-2 formulas can only hold
if we allow doubly exponentially many types with respect to the size of the underlying signature — this
can be shown formally using arguments based on communication complexity and the fact that a depth-2
formula can describe a Stockmeyer’s counter of level 2 [15]. In order to ease compositional properties
while maintaining the number of types as low as possible, we will parameterise depth-2 types by a formula
and some contexts.

We first discuss a couple of tentative definitions, with their drawbacks. Following the same principle
used to define depth-1 types, one may define the depth-2 type of an interval I as (T ,B,E ), where
T = type1(I), B = {type1(J) ∶ J <B I}, and E = {type1(J) ∶ J <E I}. This notion of depth-2 type would
be fully compositional and would determine the evaluation of every depth-2 formula in homogeneous
normal form (proofs omitted). Unfortunately, there could be doubly exponentially many such types with
respect to the size of the signature, and this would not be compatible with the intended use that we
will make in the satisfiability procedure. Another option would be to parameterise the depth-2 type of
I by a formula ϕ and define it as the triple (T ,B,E ), where T = type1(I) as before, and B (resp.,
E ) is the set of subformulas α of ϕ that hold at proper prefixes (resp., suffixes) of I. Of course, the
resulting type would determine the evaluation of ϕ at the interval I. This second attempt would also
generate at most exponentially many depth-2 type with respect to the size of ϕ. On the other hand,
the resulting types would not carry enough information to be composable, the reason being that it is
not sufficient to know which depth-1 subformulas hold at two adjacent intervals in order to derive which
depth-1 subformulas hold at the union interval. The appropriate notion of depth-2 type is somehow a
blend of the two attempts that we have just discussed.

Let us now fix some other useful notation and terminology:

• Given a BEπ formula ϕ, we denote by Depth≤1(ϕ) the set of subformulas of ϕ of depth at most 1.

• Lemma 19 states that the depth-1 type of an interval I effectively determines which formulas of
depth at most 1 hold at I. This motivates the following notation: given a depth-1 type T and
a formula α ∈ Depth≤1(ϕ), we write T ⊢ α to state that S, I ⊧ α for some (or, equally, for every)
interval I such that type1(I) = T (this latter property can be tested efficiently given T and α).

• By Lemma 18, depth-1 types are equipped with a composition operation ⋅ that forms a semigroup
structure. We complete the structure into a monoid by introducing the dummy depth-1 type ε and
by assuming that ε ⋅ T = T ⋅ ε = T for every depth-1 type T .

Definition 20. Let L,R be some (possibly dummy) depth-1 types. The depth-2 ϕ-type of an interval I
with left and right contexts L,R is the tuple type2ϕ,L,R(I) = (L,R,T ,B,E ), where

• T = type1(I),
• B = {α ∈ Depth≤1(ϕ) ∶ ∃J <B I L ⋅ type1(J) ⊢ α},

• E = {α ∈ Depth≤1(ϕ) ∶ ∃J <E I type1(J) ⋅R ⊢ α}.
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Figure 5: Components of a depth-2 type.

L T R = T ′ ⋅R′

B

L′ = L ⋅ T T ′ R′

B ′

L T ⋅ T ′ R′

B

∪ B⋆

∪ B ′

Figure 6: Composition of depth-2 types.

We give some intuition about the components of a depth-2 ϕ-type (the reader can also refer to Figure
5). The component T is nothing but the depth-1 type of the reference interval I, thus determining which
formulas of depth at most 1 hold at I. The components L and R represent the depth-1 types of some
intervals adjacent to I, to the left and to the right respectively, and will be used as contexes for an
operation of composition. The set B represents which subformulas of ϕ of depth at most 1 hold at some
intervals I ′ that overlap I to the left (i.e., such that min(I ′) ≤min(I) ≤max(I ′) <max(I)), provided that
the depth-1 type of K = I ′ ∖ I coincides with the left context L. The set E provides similar information
for the intervals I ′ that overlap I to the right and such that type1(I ′ ∖ I) = R. As a special case, we
observe that when L = R = ε, one could let I ′ range over prefixes or suffixes of I, thus determining which
subformulas hold at prefixes and suffixes of the reference interval I. In particular, this can be used to
determine the evaluation of ϕ at I, and generalizes the second attempt of definition of type that we
discussed earlier.

Below, we prove the analogous of Lemmas 18 and 19 for depth-2 types.

Lemma 21. There is a composition operator ⋅ on depth-2 ϕ-types that is computable in polynomial time
and such that, for all contexts L,L′,R,R′ and for all pairs of adjacent intervals I, I ′, if L ⋅ type1(I) = L′
and type1(I ′) ⋅R′ = R, then

type2ϕ,L,R(I) ⋅ type2ϕ,L′,R′(I ′) = type2ϕ,L,R′(I ∪ I ′) .

Proof. For the sake of brevity, let T = type2ϕ,L,R(I) and T ′ = type2ϕ,L′,R′(I ′), where T = (L,R,T ,B,E ),
T

′ = (L′,R′,T ′,B′,E ′), L ⋅ T = L′, and T ′ ⋅R′ = R. We define the composition as

T ⋅T ′
= (L, R′, T ⋅ T ′, B ∪B

′ ∪B⋆, E ∪ E
′ ∪ E⋆)

where

B⋆ = {α ∈ Depth≤1(ϕ) ∶ L′ ⊢ α}
E⋆ = {α ∈ Depth≤1(ϕ) ∶ R⊢ α}

(see Figure 6).
Note that, thanks to Lemma 19, the composition T ⋅T ′ can be computed in polynomial time given

the types T and T
′.

Below, we prove that the defined composition T ⋅T ′ is correct, namely, it coincides with type2ϕ,L,R′(I∪
I ′). The latter type is of the form (L,R′,T ′′,B′′,E ′′), so the first two components of T ⋅T ′ are clearly
correct. It remains to prove that T ′′ = T ⋅ T ′, B′′ = B ∪B′ ∪B⋆, and E ′′ = E ∪ E ′ ∪ E⋆. By Lemma 18
we have T ′′ = type1(I ∪ I ′) = type1(I) ⋅ type1(I ′) = T ⋅ T ′. Moreover, by Definition 20, B

′′ contains the
formulas α ∈ Depth≤1(ϕ) that satisfy one of the following conditions:

1. I ′′ ⊧α, for some interval I ′′ that overlaps I to the left (i.e., min(I ′′) ≤min(I) ≤max(I ′′) <max(I))
and such that type1(I ′′ ∖ I) = L.
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Letting K = I ′′ ∖ I and J = I ′′ ∩ I and using Lemma 19, this condition is equivalent to

type1(I ′′) = type1(K) ⋅ type1(J) = L ⋅ type1(J) ⊢ α

and hence to α ∈B.

2. I ′′ ⊧α, for some interval I ′′ that has I as a suffix (i.e., min(I ′′) ≤min(I) ≤max(I ′′) =max(I)) and
such that type1(I ′′ ∖ I) = L.
Letting K = I ′′ ∖ I and using Lemma 19, together with the assumptions about the contexts L and
L′, this condition turns out to be equivalent to

type1(I ′′) = type1(K) ⋅ T = L ⋅ T = L′ ⊢ α

and hence to α ∈B⋆.

3. I ′′⊧α, for some interval I ′′ that contains I, overlaps I ′ to the left (i.e., min(I ′′) ≤min(I) ≤max(I) <
max(I ′′) <max(I ′)), and such that type1(I ′′ ∖ I ′) = L.
Letting K = I ′′ ∖ I ′ and J = I ′′ ∩ I ′, and using again Lemma 19 and the assumptions about the
contexts L and L′, this condition turns out to be equivalent to

type1(I ′′) = type1(K) ⋅ T ⋅ type1(J)
= L ⋅ T ⋅ type1(J) = L′ ⋅ type1(J) ⊢ α

and hence to α ∈B′.

We have just shown that B
′′ =B∪B

′∪B⋆. One proves E
′′ = E ∪E

′∪E⋆ using symmetric arguments.

Lemma 22. For all intervals I and J such that type2ϕ,ε,ε(I) = type2ϕ,ε,ε(J) and for every BEπ formula
ϕ of depth at most 2, we have S, I ⊧ ϕ iff S, J ⊧ ϕ. Moreover, whether S, I ⊧ ϕ holds can be decided in
polynomial time from the given type type2ϕ,ε,ε(I).
Proof. Let ϕ be a formula of depth at most 2 and let I be an interval with depth-2 type (ε, ε,T ,B,E ),
where both left and right contexts are ε.

If ϕ has depth smaller than 2, then by Lemma 19 the component T = type1(I) already determines
(effectively in polynomial time) whether S, I ⊧ϕ.

Otherwise, if ϕ has depth 2 and is of the form ⟨B⟩α, then S, I ⊧ ⟨B⟩α iff there is a proper prefix J
of I such that S, J ⊧ α. Since α ∈ Depth≤1(ϕ), the latter condition is equivalent to ε ⋅ type1(J) ⊢ α, and
hence S, I ⊧ ⟨B⟩α iff α ∈B. The case of ϕ = ⟨E⟩α is similar, but uses the component E .

Finally, Boolean combinations of the previous formulas are evaluated homomorphically.

4.2 Satisfiability procedure

As a warm-up, let us first describe the satisfiability procedure for a formula of depth at most 2; later we
will generalize this to a formula in shallow normal form.

Let us fix a BEπ formula ψ of depth at most 2. Deciding satisfiability of ψ can be done in polynomial
space, by reducing to non-emptiness of a language recognized by a suitable finite state automaton. To
formalize the construction of the automaton from the given formula ψ, it is convenient to encode an
interval structure S = (I(N), σ) over the signature Σ by the finite word wS = a0 . . . amax(N) over the
alphabet ℘(Σ), where ai = σ(i) for all i ∈ N (recall that N is a finite prefix of the natural numbers).

Lemma 23. Given a BEπ formula ψ of depth at most 2, one can compute in polynomial space3 a finite
state automaton Aψ that accepts all and only the encodings wS of the interval structures S such that
S, I ⊧ψ, where I is the largest interval of S.

Proof sketch. The construction of Aψ is quite standard, as it is the cascade product of three automata:

1. a deterministic automaton that computes in its states the depth-1 types of intervals corresponding
to prefixes of the input,

3By computing an automaton in polynomial space we mean that its initial states, final states, and transitions can be
enumerated in polynomial space. The enumeration procedures can be used within other algorithms of similar complexity,
e.g., to test emptiness of the recognized language.
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2. a co-deterministic automaton that computes in its states the depth-1 types of intervals correspond-
ing to suffixes of the input,

3. a deterministic automaton that computes the depth-2 ψ-type of prefixes of the input, with a constant
dummy left context and right contexts given by the states of the previous automaton.

Transitions of these automata are defined using compositional properties of depth-1 and depth-2 types
(Lemmas 18 and 21).

Below, we provide full details for the construction ofAψ . Like we have done for depth-1 types, we intro-
duce dummy depth-2 types for abstracting an empty interval: these are tuples of the form (L,R, ε,∅,∅),
where L and R are left and right contexts and ε is the dummy depth-1 type (of course, there is exactly
one dummy depth-2 type for each choice of the left and right contexts). As usual, a dummy type behaves
as an identity w.r.t. composition with a depth-2 type, provided the contexts are compatible. We shall also
use a generalization of the relation ⊢ that works with depth-2 types. Precisely, given a depth-2 type T ,
we write T ⊢ψ whenever S, I ⊧ψ for some (or, equally, for every) interval I such that type2ϕ,ε,ε(I) = T .

• the alphabet A consists of subsets of the signature Σ;

• the state space Q consists of triples q = (L,R,T ), where L,R are a depth-1 types and T is a
depth-2 ψ-type with ε as left context and R as right context;

• the set I of initial states consists of triples q = (L,R,T ), where L = ε is the dummy depth-1 type
and T = (L,R, ε,∅,∅) is a dummy depth-2 type;

• the set F of final sates consists of triples q = (L,R,T ), with R = ε and T ⊢ψ;

• the set T of transition rules consists of the triples (q, a, q′), with q = (L,R,T ), a ⊆ Σ, and q′ =

(L′,R′,T ′), such that L′ = L ⋅ type1(Ia), R = type1(Ia) ⋅R, and T ′ = T ⋅ type2ψ,L,R′(Ia), where Ia
denotes the singleton interval labelled by the set a of propositional letters.

It is worth noting that the automaton Aψ is unambiguous, namely, it admits at most one successful run
on each input.

We now claim that, on every input wS = a0 . . . an−1, the only possible runs of Aψ that start and end
in arbitrary states (not necessarily initial or final ones) are of the form

q0
a0ÐÐ→ q1

a1ÐÐ→ . . . . . . an−1ÐÐ→ qn

with qi = (Li,Ri,Ti) such that, for all i = 0, . . . , n,

1. Li = L0 ⋅ type1([0, i − 1]),
2. Ri = type1([i, n − 1]) ⋅Rn,
3. Ti = T0 ⋅ type

2

ψ,ε,Ri
([0, i − 1]).

Each of the above properties can be verified using a simple induction, either from smaller to larger i’s or
vice versa (we omit the tedious details).

From the properties stated in items 1., 2., 3. and the definitions of initial and final states, it immedi-
ately follows that Aψ admits a successful run on wS if and only if S, [0, n − 1] ⊧ψ.

Finally, as for the complexity of constructing Aψ , we recall from Lemmas 18 and 21 that depth-1
and depth-2 types can be enumerated in polynomial space, and can be composed in polynomial time.
This implies that the initial states and the transitions of Aψ can be enumerated in polynomial space. To
enumerate the final states, it suffices to test properties like T ⊢ψ, for a given depth-2 type T . This can
be done in polynomial time thanks to Lemma 22.

The fact that the automaton Aψ above can be constructed from ψ in polynomial space, implies that
(non-)emptiness of the recognized language can also be decided in polynomial space w.r.t. ∣ψ∣. In its turn,
this shows that the satisfiability of a BEπ formula ψ of depth at most 2 can be decided in polynomial
space.

To conclude the proof of Theorem 16 it remains to reduce the satisfiability problem for a BEπ formula
ψ in shallow normal form to the non-emptiness problem of an automaton Aψ that is computable from ψ

in exponential space. For this, it suffices to recall that ψ must be of the form ϕ∧[G] ξ, where both ϕ and ξ
are BEπ formulas of depth at most 2. One uses Lemma 23 to construct the automata Aϕ and A¬ξ, whose
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languages contain encodings of models of ϕ and ¬ξ, respectively. From A¬ξ, one can efficiently construct
an automaton A⟨G⟩¬ξ recognizing the language of words with infixes accepted by A¬ξ, thus encoding

models of ⟨G⟩¬ξ (= ¬ [G] ξ). One then complements the latter automaton to obtain an automaton A[G] ξ
accepting the encodings of models of [G] ξ. Note that the latter step can be performed in exponential
space in the size of ξ, by using an online version of the classical subset construction. Finally, one computes
the product of the automata Aϕ and A[G] ξ, so as to recognize the language of encodings of models of

ψ = ϕ ∧ [G] ξ. It follows that non-emptiness of the latter language can be decided in exponential space
w.r.t. the size of the original formula ψ.

5 Conclusions

We have settled the question of whether the logic BE, interpreted over homogeneous interval structures,
admits an elementary satisfiability problem. We have actually answered the question by giving an optimal
ExpSpace decision procedure (ExpSpace-hardness was shown in [3]). As a by-product result, we have
also devised a normal form for BE formulas that enforces a small bound to the number of nested modalities,
while preserving satisfiability. Quite suprisingly such a normal form can be computed in polynomial time
from arbitrary BE formulas, using a series of rewriting steps reminiscent of a quantifier elimination
technique a-la Scott.

As for future work, one could try to see whether similar techniques are applicable to extensions of BE
with modalities based on other Allen’s interval relations (e.g., overlap, meet, the inverses of the prefix
and suffix relations, etc.).
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