
M4M 2011

On a Logic for Coalitional Games with

Priced-Resource Agents

Della Monica, Dario1 Napoli, Margherita2 Parente, Mimmo3

Dipartimento di Informatica
Università di Salerno

Italy

Abstract

Alternating-time Temporal Logic (ATL) and Coalition Logic (CL) are well-established logical for-
malisms particularly suitable to model games between dynamic coalitions of agents (like e.g. the
system and the environment). Recently, the ATL formalism has been extended in order to take into
account boundedness of the resources needed for a task to be performed. The resulting logic, called
Resource-Bounded ATL (RB-ATL), has been presented in quite a variety of scenarios. Even if the
model checking problem for extensions of ATL dealing with resource bounds is usually undecidable,
a model checking procedure for RB-ATL has been proposed. In this paper, we introduce a new
formalism, called PRB-ATL, based on a different notion of resource bounds and we show that its
model checking problem remains in EXPTIME and has a PSPACE lower bound.
Then, we tackle the problem of coalition formation. How and why agents should aggregate is not
a new issue and has been deeply investigated, in past and recent years, in various frameworks,
as for example in algorithmic game theory, argumentation settings, and logic-based knowledge
representation. We face this problem in the setting of priced resource-bounded agents with the goal
specified by an ATL formula. In particular we solve the problem of determining the minimal cost
coalitions of agents acting in accordance to rules expressed by a priced game arena and satisfying
a given formula. We show that such problem is computationally not harder than verifying the
satisfaction of the same formula with fixed coalitions.

Keywords: multi-agent systems, coalition logics, bounded resources, model checking, coalition
formations

1 Introduction

Automated verification of multi-agent systems is a significant topic in the
recent literature in artificial intelligence [1]. The need of modeling this

1
Email: ddellamonica@unisa.it

2
Email: napoli@dia.unisa.it

3
Email: parente@unisa.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:ddellamonica@unisa.it
mailto:napoli@dia.unisa.it
mailto:parente@unisa.it

Della Monica, Napoli, Parente

kind of systems has inspired logical formalisms, the most famous being the
Alternating-time Temporal Logics [4] and the Coalition Logic (CL) [10,11],
oriented towards the description of collective behaviors.

The idea of such logics is that agents can join together in teams (or coali-
tions) and share resources to accomplish a task (reach a goal). In particular,
Alternating-time Temporal Logics have been introduced in [4], where the full
alternating-time temporal language, denoted by ATL

∗, has been presented,
along with two significant fragments, namely, ATL and ATL

+. These logics
are natural specification languages for open system, that is, systems whose
behavior depends on the interactions with an external entity, usually called
the environment.

In [9], Goranko has studied the relationship between the (expressive power
of the) two formalisms. In particular, he has shown that CL can be embedded
into ATL. Recently these two logics have been used for the verification of
multi-agent systems (MAS), where the agents are equipped with a limited
amount of resources to reach their goal [2,3,6,7] (more on this in the Related
works section below).

The framework we present here hinges on these approaches and represents
a further step towards the formalization of such complex systems: multi-agent
systems in which agents can cooperate to perform a task and are subject to a
limited availability of resources, that is an intrinsic feature of most real-world
systems. In particular formulae of the formalisms proposed in [2,3,6,7] allow
one to assign an endowment of resources to the agents by means of the so-
called team operators (borrowed from ATL). The problem is then to determine
whether the agents in the proponent team have a strategy to carry out the
assigned goals with that bounded amount of resources, whatever the agents in
the opponent team do. Anyway, the treatment of this boundedness presents
some weakness, as we will point out below.

Based on the natural observation that, in order to acquire a resource, there
is a price to be paid, usually depending also on the availability of the resource
on the market, we propose to consider bounded resources that have each a price
to be paid by the agents for their use in reaching the goal. Thus differently
from the existing approaches, agents are equipped with an amount of money
instead of an endowment of resources. Money is in a sense a meta-resource.
On one hand, its introduction is essential to model the natural scenario in
which acquiring the resources needed to perform the task, has a price that
depends on several factors: on their global availability, on the acting agent,
and on the current system state. On the other hand, money has the peculiarity
of “measuring” the value of all the resources, thus, it makes sense to consider
problems of optimization (e.g., minimization of the amount of money needed
to acquire the resources to perform a task).

In the previous approaches the notion of boundedness of resources is some-

2

Della Monica, Napoli, Parente

how weak, in the sense that resource bounds only appear in the formulae and
are applied solely to the proponent team, but they are not represented inside
the model at all. This means that it is possible to ask whether a team can
reach a goal with a given amount of resources, but it is not possible to keep
trace of the evolution of the availability of resources in the world (in particular,
the resource consumption due to the actions of the opponent is not controlled).
For example, consider the formula 〈〈Ab〉〉2p, belonging to the formalism pro-
posed in [3]. Its intuitive semantics is that the team A can guarantee that
p always holds, independently from the behavior of the opponent (AG \ A),
using an amount of resources bounded by b. A model for this formula must
contain a loop where the joint actions of agents in the team A do not consume
resources, but the joint actions of agents in the opponent team may possibly
consume resources, leading to an unlimited consumption of resources. In our
opinion, such a behavior is not realistic.

We introduce hence a notion of global availability of resources on the mar-
ket (or in nature) that evolves depending on both proponent and opponent
behaviors. Such resources are shared, in the sense that all the agents draw on
resources from a shared pool and acquisition of a resource by an agent (in-
dependently if the agent belong to the proponent or opponent team) implies
that the resources will be available in smaller quantity.

The notion of money used here presents several similarity with the notion
of resources used in [3]. Indeed, here money is given to the agents to perform a
task (like resources are given to the agents in [3]). Moreover, the consumption
of money of the opponent is not controlled (like resource consumption of the
opponent in [3]). Money, unlike the other resources, can thus be thought of as a
private (non-shared) resource. Additionally, opponent has unlimited economic
power, in the sense that opponent’s agents are supposed to have enough money
to acquire all resources they need (this reflects the choice to not limit the
opponent power, as it is usual in game theory, to look for robust strategies of
the proponent). Roughly speaking, the opponent can buy everything, except
for resources that do not exist anymore.

Another aspect that has not been fully analyzed in the literature is the
problem of actions producing resources. On the one hand, in [2,3], actions
can only consume resources; on the other hand, in [7], the authors state that
whenever actions can produce resources the model checking problem is un-
decidable. It can be easily argued that the undecidability comes from the
unboundedness production of resources, thus we naturally constrain the way
in which actions can produce resources: it is possible for an action to produce
a resource in a quantity that is not greater than the amount that has already
been consumed so far. Such a notion makes sense as, in practical terms, it al-
lows one to model significant real-world scenarios, such as, acquiring memory
by a program, leasing a car during a travel, and, in general, any scenario in

3

Della Monica, Napoli, Parente

which an agent is releasing resources previously acquired.

Finally, we also tackle the problem of coalition formation. How and why
agents should aggregate is not a new issue and has been deeply investigated,
in past and recent years, in various frameworks, as for example in algorithmic
game theory, argumentation settings, and logic-based knowledge representa-
tion (see [8,5]). We face this problem in the setting of priced resource-bounded
agents with the goal specified by an ATL formula. In particular we solve the
problem of determining the minimal cost coalitions of agents acting in ac-
cordance to rules expressed by a priced game arena and satisfying a given
formula.

We show that both the model checking problem and the optimal coalition
problem are in EXPTIME and have a PSPACE lower bound.

Related works. In [2], Alechina et al. introduce the logic RBCL, whose lan-
guage extends the one of CL with explicit representation of resource bounds. In
[3], the same authors propose an analogous extension for ATL, called RB-ATL,
and give a model checking procedure that runs in time O(|ϕ|2·r+1×S), where
ϕ is the formula to be checked, S is the model, and r is the number of re-
sources. Thus, if the number of resources is treated as constant, the model
checking problem for RB-ATL is in PTIME. However, the problem of determin-
ing a lower bound to the model checking problem and, in particular, whether
a PTIME algorithm exists even if the number of resources is not treated as a
constant factor is left open.

In [7], Bulling and Farwer introduce the logics RAL and RAL
∗. The former

represents a generalization of Alechina et al.’s RB-ATL, the latter is ATL
∗

extended with bounded resources. The authors study several syntactic and
semantic variants of RAL and RAL

∗ with respect to the (un)decidability of
the model checking problem. In particular, while previous approaches only
conceive actions consuming resources, they introduce the notion of actions
producing resources. It turned out that such a new notion makes the model
checking problem undecidable.

The paper is structured as follows. In the next section, we formalize our
logic to consider priced resources, then in section 3 we analyze the complexity
of the model checking problem and in section 4 we deal with the problem
of finding optimal coalitions. Last, we conclude with some considerations on
future research directions.

2 A logical formalization: PRB-ATL

In this section we define the logic Priced RB-ATL (PRB-ATL). We start with
the introduction of some notations we will use in the rest of the paper. The
set of agents is AG = {1, 2, . . . , n} and a team is any subset of AG. The
set of resources types, called also simply resources, is R = {R1, R2, . . . , Rr},

4

Della Monica, Napoli, Parente

where R1 represents the resource ‘time’. The numbers n and r will be used
through the paper to denote the number of agents and resources, respectively.
Let M = (N ∪ {∞})r denote the set of global availabilities of resources on
the market (or in nature) and N = (N ∪ {∞})n denote the set of money
availabilities for the agents, where N is the set of non-negative integers. Given
a money availability $ ∈ N , by $[a] we denote the money availability for
the agent a, for each a ∈ AG. Finally, the set Π is a finite set of atomic
propositions.

The formulae of PRB-ATL are given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A$〉〉 © ϕ | 〈〈A$〉〉ϕUϕ | 〈〈A$〉〉2ϕ | ∼ b

where p ∈ Π, A ⊆ AG, ∼∈ {<,≤,=,≥, >}, b ∈ M and $ ∈ N . Intu-
itively, formulae of the kind ∼ b test the current availability of resources on
the market.

Formulae of the kind 〈〈A$〉〉ψ, with ψ ∈ {©ϕ, ϕUϕ,2ϕ}, state that the
team A has a strategy such that, for every action performed by the opponent
(i.e, AG \ A), ψ is satisfied, and such that the total expenses of each agent
a ∈ A is less than or equal to $[a]. Without loss of generality, we can assume
$[a] = ∞ for each a /∈ A.

Formulae of this logic are evaluated with respect to (a location of) a priced
game structure and an initial availability of resources. Intuitively, a priced
game structure G is a graph whose vertices, called locations, are labeled by
atomic propositions. In each location, each agent can choose among a non-
empty set of actions to be performed. Any possible combination of actions
gives rise to transitions, that are the edges of the graph. In general, actions
consume and produce resources. Each resource has a price that is variable and
depends on, inter alia, the current availability of that resource on the market.
Thus, a transition can be executed if the resources needed to perform the
actions are available and the agents of a team have enough money to acquire
them.

We extend the sum operation to sum between vectors component-wise.
Additionally, we use the usual component-wise comparison relations between
vectors and denote by 0k the vector of k 0s. When the size of the vector is
clear, we will simply write 0. Finally, the behavior of ∞ with respect to the
sum operation is defined as usual, that is, ∞+ c = c+∞ = ∞+∞ = ∞, for
each constant c.

Formally, priced game structures are defined extending the definitions of
concurrent game structure and resource-bounded concurrent game structure
given in, respectively, [4] and [3].

Definition 2.1 [priced game structure] A priced game structure G is defined
as a tuple 〈Q, π, d, qty, δ, ρ,m0〉, where:

5

Della Monica, Napoli, Parente

• Q is the finite set of locations.

• π : Q→ 2Π is the valuation function.

• d : Q × AG → N is the action function, that defines the actions which are
available to each agent a ∈ AG at each location q ∈ Q. We assume that
each agent has at least one available action at each location, that could
be thought of as the action do-nothing and without loss of generality we
assume it is always the first, denoted thus by the natural number 1. As
a consequence, we have that d(q, a) ≥ 1, for each a ∈ AG, q ∈ Q. Given
a team A, an action profile αA is a vector assigning an action to each
agent a ∈ A. Action profiles represent joint actions of a team. For each
location q ∈ Q and team A = {a1, . . . , ak} ⊆ AG, we denote by DA(q) the
set of action profiles available to the team A at the location q, defined as
DA(q) = {1, . . . , d(q, a1)}×. . .×{1, . . . , d(q, ak)}. For the sake of readability,
we denote DAG(q) by D(q). Given a team A, an agent a ∈ A, and an action
profile αA, we will refer to the component of the vector αA corresponding
to the agent a as αA(a). Actions (resp., action profiles) are usually denoted
by α, α1, . . . (resp., α,α1, . . .).

• qty : Q×AG×N → Z
r is a partial function, defined over the triples (q, a, i)

with i ∈ d(q, a), defining the amount of resources required by an available
action to a given agent at a given location. A negative cost represents a
resource consumption, while a positive one represents a resource produc-
tion. Moreover, we have that qty(q, a, 1) = 0r, that is the vector whose
components are all equal to 0, for every q ∈ Q, a ∈ AG (doing nothing
neither consumes nor produces resources). With an abuse of notation we
also denote by qty the function defining the amount of resources required by
an action profile αA ∈ DA(q), that is qty(q,αA) =

∑
a∈A qty(q, a,αA(a)).

Finally, we define the function consd : Q × AG × N → N
r in such a way

that consd(q, a, α) returns the vector of the resources which are consumed
by an agent a for an action α. This vector is obtained from qty(q, a, α) by
replacing the positive components, representing a resource production, with
zeros, and the negative components, representing a resource consumption,
with their absolute values.

• δ : Q × N
n → Q is the transition function, that defines the next location

reached from q if the agents perform the action profile α ∈ N
n. It is a

partial function defined over the set of pairs (q,α) ∈ Q × N
n such that

α ∈ D(q).

• ρ : M × Q × AG → N
r is the price function, denoting the price of each

resource, depending on the current resource availability, the acting agent,
and the current location. Without loss of generality, we can assume the
price of the resource ‘time’ to be always zero, as it is a resource that cannot
be acquired and thus its price is meaningless.

6

Della Monica, Napoli, Parente

• m0 is the initial global availability of resources. It represents the resource
availability on the market at the initial state of the system.

In order to give the formal semantics we must define the following notions.

Definition 2.2 [configuration and computation] A configuration c of a priced
game graph G is a pair 〈q,m〉 ∈ Q×M. A computation over G is an infinite
sequence of configurations of G λ = c1c2 . . ., such that, for each i, if ci =
〈qi,mi〉 and ci+1 = 〈qi+1,mi+1〉, then there exists a transition δ(qi,α) = qi+1,
with α = 〈α1, . . . , αn〉, such that mi+1 = mi + qty(qi, α).

Let λ = c1c2 . . . be a computation. We denote by λ[i] the i-th configura-
tion ci in λ and by λ[i, j], with i ≤ j, the finite sequence of configurations
cici+1 . . . cj in λ.

Definition 2.3 [strategy] A strategy FA for the team of agents A is a function
which associates, to each finite sequence of configurations c1c2 . . . cs, with s ≥
1, and cs = 〈qs,ms〉, an action profile αA ∈ DA(qs).

In other words, a strategy FA determines the behavior, that is action profile
αA, of the agents in the team A. Anyway, for each action profile αA and
configuration c ∈ Q × M, depending on the different action profiles of the
opponent teamAG\A, there are several possibilities for the next configuration,
called outcomes of αA at the configuration c.

In determining such outcomes, we do not consider unfeasible action profiles
of the proponent (resp., opponent) team, that is, action profiles which consume
an amount of resources greater than the current availability m or produce an
amount of resources greater than m0−m. (Notice that an action profiles can
be unfeasible even if each action of a single agent is feasible) This reflects the
natural concept that the proponent team cannot conceive a strategy based on
unfeasible action profiles. Analogously, the opponent team cannot prevent the
achievement of a goal by the proponent through an unfeasible action profile.

Formally, given a configuration c = 〈q,m〉, the set out(c,αA) of the out-
comes of αA at the configuration c, contains 〈q′,m′〉 if there exists αAG

extending αA such that

• q′ = δ(q,αAG),

• m
′ = m+ qty(q,αAG),

• 0 ≤ qty(q,αA) +m ≤ m0.

• 0 ≤ qty(q,αAG\A) + m ≤ m0, where αAG\A is the restriction of αAG to
the team AG \ A.

As a consequence of the above definition, given a configuration c, a strategy
FA gives rise to a tree of computations. A computation λ = c1c2 . . . is called
an outcome of the strategy FA from the configuration c, if c1 = c and ci+1 ∈

7

Della Monica, Napoli, Parente

out(ci, FA(λ[1, i])), for each i ≥ 1. The set of such computations is denoted
by out(c, FA).

Finally, we introduce the concept of consistent strategy, whose outcomes
are such that in every configuration the agents have enough money to realize
it.

Definition 2.4 [($,m0)-strategy] Let $ ∈ N and m0 ∈ M. A strategy FA
is said to be a ($,m0)-strategy if for each λ = c1c2 . . ., with ci = 〈qi,mi〉 for
all i, belonging to out(c1, FA), the following conditions hold, for every i ≥ 1
and a ∈ A:

• 0r ≤ mi ≤ m0,

•
∑i

j=1 ρ(mj , qj, a) · consd(qj, a, FA(q1 . . . qj)(a)) ≤ $[a].

The two above conditions state the consistency of a computation with
respect to the m and $, where the dot operator denotes the usual scalar
product of vectors. Observe that, in the second condition, only the money
availability of the team A is tested. Actually, we suppose that the opponent
teamAG\A always have money enough to make its choice. Notice also that, as
another consequence of the second condition, the actions producing resources
do not cause a reimbursement of money to the agents.

Observe that, as it is usual when dealing with temporal logics, we guarantee
that priced game structures are non-blocking, in the sense that a finite prefix
of a computation satisfying the two conditions can always be followed by a
next configuration without violating the consistency. Actually, a team A can
always choose all the do-nothing actions of its agents, and the opponent team
have choices which do not require an amount of resources greater than the
resource availability.

We now can give the semantics of PRB-ATL formulae. The truth of a
formula of PRB-ATL is defined with respect to a priced game structure G and
a configuration c = 〈q,m〉. The definition of the semantics of PRB-ATL is
completed by the definition of the satisfaction relation |=, as follows:

• (G, c) |= p iff p ∈ π(q)

• (G, c) |= ¬ψ iff (G, c) 6|= ψ

• (G, c) |= ψ1 ∧ ψ2 iff (G, c) |= ψ1 and (G, c) |= ψ2

• (G, c) |= 〈〈A$〉〉© ψ iff there exists a ($,m0)-strategy FA such that, for all
λ ∈ out(c, FA), it holds that (G, λ[1]) |= ψ

• (G, c) |= 〈〈A$〉〉ψ1Uψ2 iff there exists a ($,m0)-strategy FA such that, for
all λ ∈ out(c, FA), there exists i ≥ 0 such that (G, λ[i]) |= ψ2 and, for all
0 ≤ j < i, it holds that (G, λ[j]) |= ψ1

• (G, c) |= 〈〈A$〉〉2ψ iff there exists a ($,m0)-strategy FA such that, for all
λ ∈ out(c, FA), it holds that (G, λ[i]) |= ψ for all i ≥ 0

8

Della Monica, Napoli, Parente

• (G, c) |= ∼ b iff m∼ b

3 Model checking

In this section we study the model checking problem for PRB-ATL and we
show that it is in EXPTIME and has a PSPACE lower bound. The model
checking problem consists in verifying whether a formula ϕ is satisfied with
respect to a configuration c = 〈q,m〉 of a priced game structure G, (G, c) |= ϕ.

3.1 A model-checking algorithm

The algorithm for model checking our logic is mostly based on the ones pro-
posed in [4] and [3] for model checking, respectively, ATL and its resource-
bounded extension RB-ATL (see Algorithm 1, where M≤m denotes the set
{m′ ∈ M | m′ ≤ m}, for a resource availability m ∈ M). Roughly speak-
ing, it computes, for each sub-formula ϕ′ of the formula ϕ to be checked against
a model G, the set of configurations in which ϕ′ holds. Note that in our set-
ting it is not sufficient to compute the set of states where a sub-formula holds,
we need to take into account also the current resource availability. The main
issues when dealing with bounds on resources are the following. First, the
set of sub-formulae must be replaced by an extended set of formulae, called
Sub+, that includes also, for each sub-formula of the form 〈〈A$〉〉ϕ′, all the
formulae 〈〈A$′

〉〉ϕ′, with $′ < $. Second, we need to take trace not only of
the states but also of the configurations since we must take into account the
resource availability on the market to guarantee that during the computation
the needed resources are available, as well as to be able to compute the cur-
rent prices of these resources, that depend also on their availability. Finally,
it must be ensured that, even if actions can produce resources, availability of
each resource may not be higher than the initial availability. Let us stress
that such a requirement is crucial to preserve decidability even when actions
are allowed to produce resources.

Algorithm 1 heavily relies on the function Pre(A, [ϕ], $, G,m) (see Algo-
rithm 2) which computes the pre-image of a set of configurations with respect
to the transition relation of G and according to the resource and money avail-
abilities. More precisely, it returns all the configurations 〈q′,m′〉 for which
there exists an action profile αA such that for all αAG extending αA, the con-
figuration 〈q′′,m′′〉 satisfies ϕ where q′′ = δ(q′,αAG), m

′′ = m
′+qty(q′,αAG),

and the conditions of Definition 2.4 are satisfied.

Let M be the maximum component occurring in the initial resource avail-
ability vector m0 and S be the maximum component occurring in the money
endowment vectors $i occurring in ϕ. Thus the proposed algorithm runs in
time O(|ϕ| · |G| ·M r · Sn). Indeed, the outermost loop (line 1) is executed

9

Della Monica, Napoli, Parente

Algorithm 1 MC(ϕ,G, q,m) // returns true iff (G, 〈q,m〉) |= ϕ
1: for all ϕ′ ∈ Sub+(ϕ) do

2: if ϕ′ = p then

3: [ϕ′]← {〈q′,m′〉 | p ∈ π(q′),m′ ≤m0}
4: else if ϕ′ =∼ b then

5: [ϕ′]← {〈q′,m′〉 |m′ ∼ b and m′ ≤m0}
6: else if ϕ′ = ¬ψ then

7: [ϕ′]← (Q ×M≤m0) \ [ψ]
8: else if ϕ′ = ψ1 ∧ ψ2 then

9: [ϕ′]← [ψ1] ∩ [ψ2]
10: else if ϕ′ = 〈〈A$〉〉 © ψ then

11: [ϕ′]← Pre(A, [ψ],$, G,m)

12: else if ϕ′ = 〈〈A0
n

〉〉ψ1Uψ2 then

13: τ ← [false], σ ← [ψ2]
14: while τ 6= σ do

15: τ ← σ

16: σ ← τ ∪ (Pre(A, τ, 0n, G,m) ∩ [ψ1])
17: end while

18: [ϕ′]← σ

19: else if ϕ′ = 〈〈A$〉〉ψ1Uψ2, with $ ≥ 0n, ¬($ = 0n) then

20: τ ← [〈〈A0n

〉〉ψ1Uψ2]
21: for all $′ s.t. $′ ≤ $, ¬($′ = $) do

22: σ ← τ ∪ (Pre(A, [〈〈A$
′

〉〉ψ1Uψ2],$− $′, G,m) ∩ [ψ1])
23: while τ 6= σ do

24: τ ← σ

25: σ ← τ ∪ (Pre(A, τ,0n, G,m) ∩ [ψ1])
26: end while

27: end for

28: [ϕ′]← σ

29: else if ϕ′ = 〈〈A0
n

〉〉2ψ then

30: τ ← [true], σ ← [ψ]
31: while τ 6= σ do

32: τ ← σ

33: σ ← [ψ] ∩ Pre(A, τ,0n, G,m)
34: end while

35: [ϕ′]← σ

36: else if ϕ′ = 〈〈A$〉〉2ψ, with $ ≥ 0n, ¬($ = 0n) then

37: τ ← [〈〈A0
n

〉〉2ψ]
38: for all $′ s.t. $′ ≤ $, ¬($′ = $) do

39: σ ← τ ∪ (Pre(A, [〈〈A$
′

〉〉2ψ], $− $′, G,m) ∩ [ψ])
40: while τ 6= σ do

41: τ ← σ

42: σ ← τ ∪ (Pre(A, τ,0n, G,m) ∩ [ψ])
43: end while

44: end for

45: [ϕ′]← σ

46: end if

47: end for

48: return (〈q,m〉 ∈ [ϕ])

at most |Sub+(ϕ)| = |ϕ| · Sn times. The cases in which ϕ′ is of the form
〈〈A$〉〉ψ1Uψ2 or 〈〈A$〉〉2ψ require 2 loops. The outer one (lines 19 and 36,
respectively) is executed at most Sn times, while the inner one (lines 21 and
38, respectively) is executed at most |Q × M≤m0| ≤ |Q| ·M r times. Since
|Q| ≤ |G|, we have the above asymptotic complexity. Notice that the com-
plexity of the function Pre can be ignored as it is absorbed in the complexity
of the main algorithm. To sum up, the algorithm runs in exponential time
with respect to the size of the input.

10

Della Monica, Napoli, Parente

Algorithm 2 Pre(A, [ϕ], $, G,m)
1: res← ∅
2: for all 〈q′,m′〉 ∈ Q×M≤m0 do

3: for all αA ∈ DA(q′) s.t. 0 ≤ qty(q,αA) +m ≤m0 do

4: ins← true

5: for all 〈q′′,m′′〉 where (i) q′′ = δ(q′,αAG) for some αAG ∈ D(q′)
that generalizes αA, (ii) m′′ = m′ + qty(q,αAG), and
(iii) 0 ≤ qty(q,αAG\A) +m ≤m0 do

6: if 〈q′′,m′′〉 6∈ [ϕ] or ¬(0r ≤m′′ ≤m0)
or ¬($[a] ≥ ρ(m′, q′, a) · consd(q′, a,αAG(a)) for some a ∈ A then

7: ins← false

8: end if

9: end for

10: if ins then

11: res← res ∪ {〈q′,m′〉}
12: end if

13: end for

14: end for

15: return res

Theorem 3.1 Model checking PRB-ATL can be solved in exponential time in
the number of agents and resources.

3.2 PSPACE-hardness

Here, we provide a lower bound to the complexity of the model checking
problem for PRB-ATL. To this aim, we will reduce the problem of determining
the truth value of Fully Quantified Boolean Formulae, TQBF problem [12], to
the model checking problem for PRB-ATL. A fully quantified Boolean formula
is a Boolean formula in which all the Boolean variables occur inside the scope
of an existential or universal quantifier. A fully quantified Boolean formula is
said to be in prenex normal form if all the quantifiers appear at the beginning
of the formula and each quantifier’s scope is everything following it. Any
formula may be easily put into prenex normal form, thus we consider formulae
in this form only. Without loss of generality, we can also assume that the
Boolean quantifier-free part of the formula is in conjunctive normal form with
clauses having at most three literals, where a literal is either a variable or its
negation. For example, ∀x∃y[(x ∨ y) ∧ (¬x ∨ ¬y)] and ∃x1∀x2∃x3[(x1 ∨ x2 ∨
¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)] are fully quantified Boolean formulae in the desired
normal form. TQBF is the problem of determining whether a fully quantified
Boolean formula is true.

Let Φ = Q1x1Q2x2 . . . Qkxk[(x
1
1 ∨ x

1
2 ∨ x

1
3)∧ . . .∧ (xh1 ∨ x

h
2 ∨ x

h
3)] be a fully

quantified Boolean formula, where Qi are quantifiers, xi are Boolean variables,
for 1 ≤ i ≤ k, and xj1, x

j
2, x

j
3 are literals, for 1 ≤ j ≤ h. We must exhibit a

priced game structure G, a configuration c of G, and a PRB-ATL formula ϕ
such that (G, c) |= ϕ if and only if Φ is true.

The priced game structure GΦ corresponging to Φ is computed as follows.
(As an example, in Figure 3.2 the graph of the priced game structure generated
from the formula Φ = ∃x1∀x2∃x3[(x1∨x2∨¬x3)∧ (¬x1∨¬x2∨x3)] is shown).

11

Della Monica, Napoli, Parente

The set of locations is made up of the following locations:

• 3 locations, denoted qi, q
⊤
i , q

⊥
i for each quantifier Qi,

• the location qk+1,

• a location qci for each clause ci,

• 2 locations, denoted qxi and q¬xi , for each variable xi,

• the locations q⊤.

There exist r = 2 · k resources, two for each Boolean variable, that is,
R = {R⊤x1, R

⊥
x1
, . . . , R⊤xk , R

⊥
xk
} and only one agent (AG = {1}). Initially, there

is only one item available for each resource, that is, the vector m0 has all com-
ponents equal to 1. Notice that, since there is only one agent, there are only
2 possible teams, namely ∅ and AG. This means that the reduction (and the
hardness result) also applies to the extension of CTL with prices for bounded
resources.

The idea of the reduction is that from any location qi there are only two
significant transitions, leading to q⊤i and q⊥i . The intended meaning of the
transition leading to q⊤i (resp., q⊥i), which is called true transition (resp., false
transition), is to assign the truth value true (resp., false) to the Boolean
variable xi. We need a machinery to remember such an assignment. To this
aim, we make use of the resources and their limited availability: the transition
leading from qi to q

⊤
i (resp., q⊥i) is such that exactly 1 item of the resource R⊤xi

(resp., R⊥xi) is consumed. Analogously, there exists a transition starting from
the location qxi (resp., q¬xi) and leading to q⊤. The transition leading from qxi
(resp., q¬xi) to q⊤ is such that exactly 1 item of the resource R⊥xi (resp., R

⊤
xi
)

is consumed. In this way, if in the location qi the true (resp., false) transition
has been chosen, when the game is on the location q¬xi (resp., qxi), the agent
is not able to choose the transition leading to q⊤, indicating that the literal
is false. There exists only one atomic proposition, namely p, that is true only
over the location q⊤.

Let Φ be a fully quantified Boolean formula with k Boolean variables,
let m0 be the vector, of length 2 · k, with all components equal to 1, and
let ϕΦ = 〈〈A0

1〉〉 © 〈〈AG0〉〉 © 〈〈A0
2〉〉 © 〈〈AG0〉〉 © . . . 〈〈A0

k〉〉 © 〈〈AG0〉〉 ©
〈〈AG0〉〉© 〈〈∅0〉〉© 〈〈AG0〉〉© p, with Ai = ∅ if Qi is an universal quantifier,
Ai = AG, otherwise, for all 1 ≤ i ≤ k.

It is possible to show that (GΦ, 〈q1,m0〉) |= ϕΦ if and only if Φ is true.

Theorem 3.2 The model checking problem for PRB-ATL is PSPACE-hard.

4 Optimal coalitions

In this section we define the problem of determining optimal coalitions that
are capable to satisfy a PRB-ATL formula. In doing that, we introduce the

12

Della Monica, Napoli, Parente

q1

q
⊤

1
q
⊥

1

q2

q
⊤

2
q
⊥

2

q3

q
⊤

3
q
⊥

3

q4

qc1

qc2

qx1

q¬x1

qx2

q¬x2

qx3

q¬x3

q⊤

Fig. 1. The graph of the priced game structure GΦ corresponding to the fully quantified Boolean
formula Φ = ∃x1∀x2∃x3[(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)].

notion of parametric PRB-ATL formula, that is, a PRB-ATL formula in which
parametric team operators 〈〈X$〉〉 may occur in the place of the classical team
operators 〈〈A$〉〉. If 〈〈X$〉〉 is a parametric team operator, then X is a team
variable.

Given a parametric PRB-ATL formula ϕ with team variables X =
〈X1, . . . , Xk〉, and a vectorA = 〈A1, . . . , Ak〉 of k teams, we denote by ϕ[X/A]
the PRB-ATL formula obtained from ϕ by replacing every occurrence of Xi

with Ai, for every 1 ≤ i ≤ k. We denote by Solϕ the set of the vectors A of
teams such that (G, c) |= ϕ[X/A].

Finally, we associate a cost to each PRB-ATL formula by means of the
function f cost, defined as follows. Suppose that a team A is represented by
means of the characteristic vector of the set A, that is, A is a vector of n
binary components such that the i-th component is 1 if and only if the agent
i belongs to the team A, for each 1 ≤ i ≤ n. For every PRB-ATL formula ϕ,
containing the team operators 〈〈A$1

1 〉〉, 〈〈A$2

2 〉〉, . . . , 〈〈A$k

k 〉〉,

f cost(ϕ) =

k∑

i=1

($i · Ai)

4.1 The problem

In this section, we introduce the problem of finding an optimal (with respect to
the function f cost) vector of teams that satisfies a given parametric PRB-ATL
formula.

Given a parametric PRB-ATL formula ϕ, a priced game structure G, a
configuration c of G, the Optimal Coalition problem for PRB-ATL (OC, for

13

Della Monica, Napoli, Parente

short) consists in finding a vector A, if any, such that (G, c) |= ϕ[X/A] and
that minimizes the function f cost.

Thus, an algorithm to solve such problem takes the following parameters
as input:

• a PRB-ATL formula ϕ, over team variables X = 〈X1, X2, . . . , Xk〉

• the priced game structure G,

• a configuration c of G,

and outputs the triple 〈res,A∗, cost〉, where:

• res ∈ {true, false} is true if and only if there exists a vector of teams A

such that (G, c) |= ϕ[X/A],

• A
∗ is a vector of teams such that f cost(ϕ[X/A∗]) =
min

A∈Solϕ
f cost(ϕ[X/A]); its value is undefined if Solϕ = ∅,

• cost ∈ N is the value of the function f cost applied to ϕ[X/A∗].

Our aim is to show that OC has the same complexity as the model checking
problem for PRB-ATL.

The upper bound is given by a brute force algorithm that tries to solve
the model checking problem for each possible vector of teams. Since there
are (2n)k different vectors of teams, the algorithm will call (2n)k times the
algorithm for model checking PRB-ATL.

For the lower bound, consider the decisional version of the OC problem:
given a parametric PRB-ATL formula ϕ, a priced game structure G, a con-
figuration c of G, and an integer U , decide if there is a vector A such that
(G, c) |= ϕ[X/A] and f cost applied to ϕ[X/A] does not exceed U . The
hardness for such a problem directly descends from Theorem 3.2.

Theorem 4.1 The decisional OC problem is in between PSPACE and EXP-
TIME.

5 Discussion

In this paper we have studied the model checking problem for the logic
PRB-ATL, very suitable for modeling scenarios in which teams of agents have
to perform a task and they are subject to boundedness of resources.

Several formalisms have already been proposed to model such a kind of
real-word situations [3,7]. Our main contribution is to present a new formal-
ism, called PRB-ATL, based on a stronger notion of resource bounds and we
show that its model checking problem We also introduce the problem, called
the optimal coalitions (OC) problem, of finding optimal coalitions (with re-
spect to the amount of money needed by the different coalitions) capable to
perform the task. We have shown that both the model checking problem for

14

Della Monica, Napoli, Parente

PRB-ATL and the OC problem are in EXPTIME and have a PSPACE lower
bound. As a matter of fact, to solve the OC problem we give an algorithm that
explores the entire space of solutions to compute the optimum. The problem
of finding the exact characterization of the computational complexity is an
open problem and currently is under investigation.

Further research directions concern the study of variants of the logic, to
naturally express more kinds of scenarios. As an example, it is interesting in
our opinion to consider the money endowment as a component of the game
arena (i.e., the model), instead of explicitly specifying a fresh money avail-
ability for each occurrence of a team operator in the formula. Furthermore,
related to this argument, one can consider the money availability not as an
input of the problem, but rather as a parameter to minimize, to establish how
much money each agent should be provided with, to perform a given task.

References

[1] Ågotnes, T., W. van der Hoek and M. Wooldridge, On the logic of coalitional games, in:
AAMAS, 2006, pp. 153–160.

[2] Alechina, N., B. Logan, N. H. Nga and A. Rakib, A logic for coalitions with bounded resources,
in: Proc. of the 21st International Joint Conference on Artificial Intelligence, IJCAI ’09, 2009,
pp. 659–664.

[3] Alechina, N., B. Logan, N. H. Nga and A. Rakib, Resource-bounded alternating-time temporal
logic, in: Proc. of the 9th International Conference on Autonomous Agents and Multiagent
Systems: Volume 1, AAMAS ’10, 2010, pp. 481–488.
URL http://portal.acm.org/citation.cfm?id=1838206.1838274

[4] Alur, R., T. A. Henzinger and O. Kupferman, Alternating-time temporal logic, Journal of ACM
49 (2002), pp. 672–713.

[5] Bulling, N. and J. Dix, Modelling and verifying coalitions using argumentation and ATL,
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 14 (2010), pp. 45–73.

[6] Bulling, N. and B. Farwer, Expressing properties of resource-bounded systems: The logics RTL∗

and RTL, in: J. Dix, M. Fisher and P. Novák, editors, Computational Logic in Multi-Agent
Systems (CLIMA X) (2009), pp. 22–45.

[7] Bulling, N. and B. Farwer, On the (un-)decidability of model checking resource-bounded agents,
in: Proc. of the 19th European Conference on Artificial Intelligence, ECAI ’10, 2010, pp. 567–
572.

[8] Dunne, P. E., S. Kraus, E. Manisterski and M. Wooldridge, Solving coalitional resource games,
Artificial Intelligence 174 (2010), pp. 20–50.
URL http://www.sciencedirect.com/science/article/pii/S0004370209001076

[9] Goranko, V., Coalition games and alternating temporal logics, in: Proc. of the 8th Conference
on Theoretical Aspects of Rationality and Knowledge, TARK ’01 (2001), pp. 259–272.

[10] Pauly, M., A logical framework for coalitional effectivity in dynamic procedures, Bulletin of
Economic Research 53 (2001), pp. 305–324.
URL http://dx.doi.org/10.1111/1467-8586.00136

[11] Pauly, M., A modal logic for coalitional power in games, Journal of Logic and Computation 12

(2002), pp. 149–166.

[12] Sipser, M., “Introduction to the Theory of Computation,” International Thomson Publishing,
1996, 1st edition.

15

http://portal.acm.org/citation.cfm?id=1838206.1838274
http://www.sciencedirect.com/science/article/pii/S0004370209001076
http://dx.doi.org/10.1111/1467-8586.00136

	Introduction
	A logical formalization: PRB-ATL
	Model checking
	A model-checking algorithm
	PSPACE-hardness

	Optimal coalitions
	The problem

	Discussion
	References

