
Crossing the Undecidability Border with Extensions of
Propositional Neighborhood Logic over Natural Numbers

Dario Della Monica
(Reykjavik University, Reykjavik, Iceland

dariodm@ru.is)

Valentin Goranko
(Technical Institute of Denmark Kongens Lyngby, Denmark
and University of Johannesburg, Johannesburg, South Africa

vfgo@imm.dtu.dk)

Angelo Montanari
(University of Udine, Udine, Italy

angelo.montanari@uniud.it)

Guido Sciavicco
(University of Murcia, Murcia, Spain

guido@um.es)

Abstract: Propositional Neighborhood Logic (PNL) is an interval temporal logic featuring two
modalities corresponding to the relations of right and left neighborhood between two intervals
on a linear order (in terms of Allen’s relations, meets and met by). Recently, it has been shown
that PNL interpreted over several classes of linear orders, including natural numbers, is decid-
able (NEXPTIME-complete) and that some of its natural extensions preserve decidability. Most
notably, this is the case with PNL over natural numbers extended with a limited form of metric
constraints and with the future fragment of PNL extended with modal operators corresponding to
Allen’s relations begins, begun by, and before. This paper aims at demonstrating that PNL and its
metric version MPNL, interpreted over natural numbers, are indeed very close to the border with
undecidability, and even relatively weak extensions of them become undecidable. In particular,
we show that (i) the addition of binders on integer variables ranging over interval lengths makes
the resulting hybrid extension of MPNL undecidable, and (ii) a very weak first-order extension
of the future fragment of PNL, obtained by replacing proposition letters by a restricted subclass
of first-order formulae where only one variable is allowed, is undecidable (in contrast with the
decidability of similar first-order extensions of point-based temporal logics).
Key Words: interval neighborhood logics, undecidability, hybrid logics, interval length binders,
first-order logic
Category: F.2, F.4.1, F.4.3

1 Introduction

Reasoning about time arises naturally in various fields of computer science, including
artificial intelligence, temporal databases, and software specification and verification,
and temporal logics provide a natural framework for it. Among them, Linear Tempo-
ral Logic (LTL) [Pnu77] and Computation Tree Logic (CTL) [CE81] turned out to be
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particularly well suited for a variety of applications. In particular, they have been ex-
tensively applied to satisfiability and model checking. LTL and CTL model checking
has proved itself to be a tremendously successful technology to verify requirements and
design for a variety of systems, ranging from hardware systems to real-time, embed-
ded, and safety-critical systems [CGP99, BBF+01]. A number of automatic verifica-
tion tools have been developed, including SMV [McM93], COSPAN [HHK96], SPIN
[Hol03], and PSL [Var08]. Even though “durationless” time points are assumed to be
the basic ontological temporal entities in many applications, often they are not suitable
to properly reason about real-world events, which have an intrinsic duration, as well
as to deal with essential aspects of temporality like accomplishments and temporal ag-
gregations. These temporal features are definitely better modeled and dealt with if the
underlying temporal ontology is based on time intervals (periods), rather than points, as
the primitive entities. Interval temporal logics, possibly extended with a metric dimen-
sion, have been successfully applied, for instance, to the specification and verification
of hardware [Mos83] and of real-time systems [ZH04, ZHR91]. In this paper, we fo-
cus our attention on one of the most interesting (decidable) interval temporal logics,
namely, Propositional Neighborhood Logic.

1.1 Halpern-Shoham interval logic and fragments: undecidability rules

A systematic analysis of the variety of relations between two intervals on a linear or-
der was initiated by Allen [All83]. He studied the distinctive properties of the thirteen
binary relations that may hold between any pair of intervals on a linear order, since
called Allen’s relations, and he proposed the use of interval reasoning in systems for
time management and planning. In [HS91], Halpern and Shoham introduced a multi-
modal logic, thereafter called HS, featuring modal operators for all Allen’s interval
relations, and they showed that such a logic is undecidable under very weak assump-
tions on the class of interval structures in which it is interpreted. Since then, much
effort has been devoted to the search of expressive enough, decidable interval logics
(see, e.g. [BMSS11a, BMSS11b, Del11, MPS10]). Unfortunately, the overwhelming
majority of the interval logics studied in the literature turned out to be undecidable
[Ven91, Lod00]. The underlying technical reason for the robust undecidability of HS
and most of its fragments is rooted in the very nature of purely interval-based tempo-
ral reasoning, where all proposition letters, and therefore all formulae, are interpreted
as true or false on intervals, rather than points in the model. This amounts to say that
the set-theoretic interpretation of an HS formula in an interval model is a set of ab-
stract intervals, that is, a set of pairs of points. Thus, all HS formulae translate into
binary relations over the underlying linear orders, and consequently the validity (resp.,
satisfiability) problem for HS translates into the respective problem for the universal
(resp., existential) dyadic fragment of second-order logic over linear orders. Conse-
quently, none of the well known and widely applied decidability results for fragments
of monadic second-order logic following from Rabin’s theorem applies here.
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1.2 An island of decidability: Propositional Neighborhood Logic (PNL) and its
metric extensions

In some cases, decidability has been recovered by imposing strong syntactic and/or
semantic restrictions on the logic [Mon08]. One of the few known cases of decidable
interval logics with a genuine interval semantics – that is, not reducible to point-based
semantics – is Propositional Neighborhood Logic (PNL) [GMS03, BGMS09]. PNL
is a proper fragment of HS with two modal operators only, corresponding to Allen’s
relations meets and its inverse met by. It can be viewed as the propositional frag-
ment of Zhou and Hansen’s Neighborhood Logic [ZH98]. PNL has been first studied
in [GMS03], and further investigated in [BGMS09]. The language of PNL is built on a
set of proposition letters, the standard logical connectives, and two modal operators that
allow one to move from the current interval to a right (resp., left) neighboring interval.
PNL formulae take truth values over intervals, that is, ordered pairs of time points [a, b],
with a ≤ b. In some interpretations (strict semantics), the set of admissible intervals ex-
cludes zero-length intervals (often called point-intervals), that is, intervals of the form
[a, a]; here, we adopt the so-called non-strict semantics, including them. To deal with
point-intervals, a modal constant π can be incorporated into the language of PNL such
that π holds true over an interval if and only if it is a point-interval.

The satisfiability problem for PNL has been proved to be decidable (NEXPTIME-
complete) for a number of classes of linear orders [BGMS09, BMSS11b]. In this pa-
per, we confine ourselves to models over the natural numbers. Results in [BGMS09,
MPS10] show that the addition to PNL of any other modality for Allen’s relations (with
the exception of the modalities for Allen’s relations before and after, which are defin-
able in PNL) makes the logic undecidable when interpreted over natural numbers. As
a matter of fact, it has been shown that the addition of other modalities from Allen’s
repository to PNL yields undecidability for most classes of linear orders, and not only
for natural numbers. The only known exception is the extension of PNL with modalities
for Allen’s relation begins and its inverse begun by, interpreted over finite linear orders,
which turns out to be decidable, but non-primitive recursive [MPS10].

In [BDG+10, BDG+11, BMSS11a], a ‘metric’ extension of PNL, called Metric
PNL (MPNL for short), has been investigated. MPNL makes use of special propo-
sition letters expressing equality or inequality constraints on the length of the cur-
rent interval with respect to fixed positive integer constants. In [BDG+10, BDG+11],
Bresolin et al. prove that the satisfiability problem for MPNL over natural numbers is
decidable. More precisely, they show that it is NEXPTIME-complete, when the pos-
itive integer constraints occurring in formulae are constant or represented in unary,
and in between EXPSPACE and 2NEXPTIME, when they are represented in binary.
EXPSPACE-completeness of the satisfiability problem for MPNL, with a binary rep-
resentation of constraints, over the class of finite linear orders, natural numbers, and
integer numbers, has been recently proved in [BMSS11a].
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1.3 The contributions of this paper

In quest of more expressive interval logics, in this paper we explore two different, but
related, ways of extending the expressive power of (metric) PNL. First, we consider
the idea of adding features from hybrid logics to metric PNL. Hybrid modal logics (see
e.g., [BS95, BT99, BdRV02]) expand modal logic with some first-order features that
enable a more direct reference to the possible worlds of the model in the language.
The most common features of this kind are: nominals, a special sort of propositional
variables ranging over single possible worlds and thus serving as their names; universal
and difference modalities, that refer to all (resp., all other than the current one) possible
worlds; and binders (first introduced as reference pointers [Gor96]), which, by using
an additional type of variables over possible worlds, called state variables, allow for
storing the current possible world where the formula is being evaluated in the memory
and later referring to it. The advantage of hybrid modal languages is that they extend
naturally and considerably the expressive power of modal logic, while preserving its
syntactic and semantic simplicity and often its decidability. As discussed in Section
1.4, some quite non-trivial decidability results have also been obtained for some hybrid
extensions of the interval logic Duration Calculus.

What hybrid features can be meaningfully added to interval logics and, in particular,
to PNL? Since the difference modality is already definable in PNL [GMS03], nominals
are essentially definable there as well, and thus their addition is unproblematic with re-
gards to decidability, but also uninteresting. On the other hand, it is not difficult to show
that the addition of binders over state variables, even to the plain PNL, immediately
leads to undecidability. However, the most natural and useful binders in the context of
metric interval logics are not those on variables ranging over intervals, but those on
variables ranging over non-negative numbers representing lengths of intervals. Such
binders make it possible to store not the current interval itself, but only its length, and
to later refer to it. However, as we show in the paper, adding to PNL only binders for
interval lengths suffices to cross the undecidability border even without any metric con-
straints. Indeed, the first main result of this paper is a proof of the undecidability of the
extension of PNL, interpreted over natural numbers, with length binders (PNL+LB for
short). We note that PNL+LB is not expressively comparable with MPNL, as MPNL
does not involve length binders, but it allows one to constrain the length of the current
interval to be equal to (resp., less than, greater than) a certain positive integer k.

The second natural extension of PNL we consider here is a (restricted) first-order
extension obtained by replacing propositional variables by first-order formulae, called
PNL+FO. Since first-order logics are usually undecidable, one cannot expect other-
wise if extending an interval logic to a full-blown first-order logic. Suitable restrictions,
however, can still preserve decidability in the case of point-based temporal logics, as
demonstrated e.g., in [HWZ00] (see more details in Section 1.4), which gives some
hope for the case of PNL too. It turns out, however, that even a very limited first-order
extension of PNL – with a single individual variable – interpreted over a finite first-
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MPNL [BDG+10] PNL+LB and PNL+FO (this paper)

PNL+other independent interval

modalities [MPS10]

PNL [BGMS09]

Decidable Undecidable

Figure 1: Decidable and undecidable extensions of PNL over natural numbers.

order domain or over N, is already undecidable. In fact, we show that even a single
modal operator is sufficient for undecidability, by proving that for purely-future frag-
ment Right PNL (RPNL for short) [BMS07b]. Moreover, it turns out to be that the same
undecidability result holds for other classes of linear orders, such as dense orders and
finite orders [BMSS11b].

The rest of the paper is organized as follows. In Subsection 1.4, we briefly discuss
related work. In Section 2, we give syntax and semantics of PNL and we recall basic de-
cidability and complexity results for it. In Section 3, we introduce hybrid and first-order
extensions of (metric) PNL. We provide their syntax and semantics, and we show that
undecidability of most hybrid extensions of PNL can be easily derived from that of HS.
Next, in Section 4, we introduce the basic features of the method we will later exploit
to prove undecidability of hybrid and first-order extensions of (metric) PNL, namely,
a reduction from the finite tiling problem. In Section 5, we prove the undecidability of
the extension of PNL with equality constraints over length variables. A minor decid-
able variant of hybrid (metric) PNL is considered in Section 6. Finally, undecidability
of first-order extensions of PNL is the subject of Section 7. The concluding section
provides an assessment of the work and outlines future research directions.

For the reader’s convenience we have depicted graphically in Figure 1 the variety
of PNL extensions considered here and their (un)decidability status.

1.4 Related work

Here we briefly survey related work about hybrid and first-order extensions of proposi-
tional (metric) temporal logics. Some of the cited papers are directly, technically related
to the present research, whereas other are related in a more conceptual, indirect way, by
treating similar phenomena but with different languages and semantic structures.

The length variables and binders we deal with in this paper bear a natural resem-
blance with the interval length variables used in Duration Calculus (DC/ITL) [ZH04,
HZ97] – an extension of Moszkowski’s Interval Temporal Logic (ITL) [Mos83] devel-
oped by Zhou, Hoare, and Ravn [ZHR91]. The original version of ITL involves only
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one, binary modal operator C, called chop, where ϕCψ states that the current interval
[a, b] can be split (chopped) into two consecutive intervals [a, c] and [c, b] such that [a, c]
satisfies ϕ and [c, b] satisfies ψ. DC/ITL is a real-time extension of ITL that adds state
expressions to the language of ITL to make it possible to model the states of the system;
moreover, it allows one to associate a duration with state expressions, in order to con-
strain the length of the time period during which the system remains in the given state.
In [ZH98], Zhou and Hansen propose a version of DC based on Neighborhood Logic
(NL), denoted by DC/NL, which involves the two interval neighborhood modalities � r

and �l of NL, and which, as the authors point out, subsumes the original DC/ITL. The
satisfiability/validity problem for ITL, and thus those for DC/ITL and DC/NL, turns out
to be undecidable over all relevant classes of linear orders.

A lot of work has been done in the search for decidable variants and fragments of
DC/ITL (and of ITL). A variant of DC/ITL, called Interval Duration Logic (IDL), has
been developed by Pandya in [Pan02]. In its full generality, such a logic is undecid-
able. However, it admits interesting fragments, such as LIDL−, which can be proved
to be decidable by exploiting an automata-theoretic argument [Pan02]. Checking IDL
formulae for validity has been further investigated in [CP03]. In that work, Chakravorty
and Pandya provide a syntactic characterization of the proper subset of IDL-formulae
that satisfy the property of strong closure under inverse digitalization, and they show
that the problem of checking the validity of formulae belonging to such a subset can be
reduced to that for Discrete Time Duration Calculus, a discrete-time logic whose va-
lidity problem has been shown to be decidable following an automaton-based approach
in [Pan01] (a complexity improvement to such a decidability result has been given in
[KP05]). In [FH07], Fränzle and Hansen prove the decidability of a quite expressive
fragment of DC/ITL, properly extending the work on linear duration invariants by Zhou
et al. [ZJLX94]. Other fragments of DC/ITL have been studied in [HH07]. In particular,
the Restricted Duration Calculus, abbreviated RDC1, allows one to constrain the length
of the current interval to be equal to a given constant value. RDC 1 is decidable over
discrete linear orders and undecidable over dense ones. Richer fragments, such as, for
instance, RDC3, that allows one to quantify over the variable denoting the length of the
current interval, turn out to be undecidable over both discrete and dense linear orders.

Since the original formulation of ITL by Moszkowski [Mos83], an alternative path
to decidability has been the enforcement of locality: all proposition letters are point-
wise and truth over an interval is defined as truth at its initial point. The assumption of
locality has also been exploited in DC/ITL to recover decidability. In [BHH07], Bolan-
der et al. describe a hybrid extension of local DC/ITL, introducing interval binders (over
intervals, not over their lengths) and nominals, that allow one to refer to specific inter-
vals, and prove its decidability over natural numbers. This does not come as a surprise,
as the locality assumption essentially reduces the logic to a point-based one, and there-
fore reduces its satisfiability problem to the one for monadic second-order logic (over
the same linear order).

2803Della Monica D., Goranko V., Montanari A., Sciavicco G.: Crossing  ...



Some work has also been devoted to the model checking problem for duration cal-
culi. For instance, in [BLR95], Bouajjani at al. address the problem of specifying and
verifying hybrid systems in the framework of duration calculi, exploiting techniques
borrowed from hybrid automata. Model checking algorithms for duration calculi have
been developed in [Frä04, FH08, MFHR08].

First-order point-based temporal logics have been systematically studied by Hod-
kinson et al. in [HWZ00]. They show that (un)decidability of such logics depends on
both the classical (first-order) and the temporal components of the language. In par-
ticular, they prove that the two-variable fragment of first-order Linear Temporal Logic
(LTL), with Since and Until, interpreted over N and Z, is undecidable. The same results
hold for LTL with Next and Future modalities only. Then, they show that decidabil-
ity can be recovered by restricting the first-order component to a decidable fragment
of first-order logic and the temporal one to monodic formulae, that is, formulae whose
sub-formulae with a temporal operator as their outermost operator have at most one free
variable. In particular, they prove that the two-variable fragment of monodic first-order
LTL (without equality and function symbols, and with constant first-order domains) is
decidable over various linear time structures, including N,Z,Q, and R (the latter holds
for finite first-order domains only). In the following, we will show that there is not a
counterpart of these decidability results in the setting of first-order extensions of PNL.

2 Preliminaries

The language of Propositional Neighborhood Logic (PNL) consists of a set AP of
proposition letters, the propositional connectives ¬ and ∨, and the modal operators � r

and �l, corresponding to Allen’s interval relation meets and its inverse met-by, respec-
tively [All83]. The other propositional connectives, as well as the logical constants �
(true) and ⊥ (false), and the dual modal operators � r and �l, are defined as usual
(�r = ¬�r¬ and �l = ¬�l¬). PNL has been studied both by assuming the so-called
strict semantics, which excludes point-intervals, and by assuming the non-strict one,
which includes them. In the latter case, it is natural to include in the language a special
proposition letter (modal constant), usually denoted by π, that is true over all and only
the point-intervals. A systematic analysis and comparison of the expressiveness of the
various PNL instances can be found in [GMS03, BGMS09].
PNL formulae, denoted by ϕ, ψ, . . ., are generated by the following grammar:

ϕ ::= π | p | ¬ϕ | ϕ ∨ ϕ | �rϕ | �lϕ.

The future fragment of PNL (Right PNL, RPNL for short) is obtained by removing the
past modality �l.

Given a linearly ordered domain D = 〈D,<〉, a (non-strict) interval over D is any
ordered pair [a, b], with a ≤ b. We denote by I(D) the set of all intervals over D.
The semantics of PNL is given in terms of models of the form M = 〈D, V 〉, where
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V : AP → 2I(D) is a valuation function assigning to every proposition letter the set of
those intervals over which it is true (notice that no conditions on the valuation, such as
locality or homogeneity, are imposed). We recursively define the satisfiability relation
� as follows:

– M, [a, b] � π iff a = b;

– M, [a, b] � p iff [a, b] ∈ V (p), for any p ∈ AP;

– M, [a, b] � ¬ψ iff it is not the case that M, [a, b] � ψ;

– M, [a, b] � ψ ∨ τ iff M, [a, b] � ψ or M, [a, b] � τ ;

– M, [a, b] � �rψ iff there exists c ≥ b such that M, [b, c] � ψ;

– M, [a, b] � �lψ iff there exists c ≤ a such that M, [c, a] � ψ.

The satisfiability problem for (various instances of) PNL has been shown to be decid-
able in [BMS07a, BGMS09, BMSS11b, MS12].

Theorem 1. The satisfiability problem for PNL, over the classes of all linear orders,
well-orders, dense linear orders, discrete linear orders, and finite linear orders, as well
as over N, Z, Q, and R, is NEXPTIME-complete.

In [BDG+11], Bresolin et al. develop a metric extension of PNL interpreted over
finite linear orders (resp., natural numbers, integers), called MPNL. In this paper, we
restrict our attention to the class of interval structures over the ordering of the natu-
ral numbers, that is, we assume D = N. As a matter of fact, most results also hold
for Z as well as for various other linear orders on which a distance function is defin-
able. MPNL extends PNL by featuring proposition letters for length constraints. These
(pre)interpreted proposition letters allow one to refer to the length of the current inter-
val, and can be viewed as the metric generalization of the modal constant π. Formally,
let C = {<, ≤, =, ≥, >}. For each C ∈ C and k ∈ N, the length constraint lenCk is
defined as follows:

M, [a, b] � lenCk iff δ(a, b)Ck,

where δ : N× N → N is the distance function on N, defined as δ(a, b) = |a− b|.
Decidability and complexity of the satisfiability problem for MPNL, interpreted

over N, have been investigated in [BDG+10, BDG+11, BMSS11b].

Theorem 2. The satisfiability problem for MPNL, interpreted over N, is NEXPTIME-
complete, if length constraints are either constants or represented in unary, and it is
EXPSPACE-complete, if they are represented in binary.

Expressiveness and (potential) applications of MPNL have been extensively dis-
cussed in [BDG+10, BDG+11]. We refer the reader to such a publication for details.
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Here, we provide a short summary of its outcomes. First, it has been shown that MPNL
is expressive enough to encode classical point-based temporal operators, like ‘some-
times in the future’ and ‘sometimes in the past’, as well as to define a metric version of
the ‘until’ operator. Moreover, it has been proved that almost all Allen’s relations (all
but the relation during), over bounded intervals, can be expressed in MPNL, by making
use of the universal modality [G] ([G]φ ensures that φ holds over every interval of the
model) and the difference modality [�=] ([�=]φ ensures that φ holds over every interval
of the model but the current one), which can be defined in pure PNL (see next section).
Finally, a set of application examples, ranging from formal specification of complex
systems (like a gas burner or a railway signaling system) to medical guidelines and
ambient intelligence, has been given.

3 Hybrid and First-Order Extensions of (Metric) PNL

In this section, we introduce hybrid and first-order extensions of (metric) PNL. In the
first part, we focus our attention on hybrid extensions. We start by showing that some
typical components of hybrid logics, such as nominals, can actually be defined in PNL.
Then, we discuss the effects of the addition of binders to (metric) PNL. In the second
part, we take into consideration first-order extensions of PNL. Both extensions will be
investigated in detail in the following sections.

3.1 Metric Hybrid Extensions

Despite its simplicity, PNL makes it possible to define significant hybrid features such
as nominals. Let [G] be the universal modality, that is, given a formula ϕ, [G]ϕ is true
over an interval if and only if ϕ is true over all intervals. The universal modality can
be defined in all variants of PNL. For instance, if the non-strict semantics is assumed,
it can be defined as follows: [G]ϕ ≡ �l�l�r�rϕ. The same holds for the difference
modality [�=]. In the strict semantics, it can be defined as follows [GMS03]:

[�=]ϕ ≡ �l�l�rϕ ∧ �l�r�rϕ ∧�r�l�lϕ ∧ �r�r�lϕ.

Such a formula can be easily modified to define the modality [�=] when non-strict se-
mantics is assumed (the revised formula makes an essential use of the modal constant π
for point-intervals). Thus, nominals over intervals can be simulated in PNL, and there-
fore this (basic) hybrid extension of PNL remains decidable over a large family of linear
orders, including N. However, it is quite easy to see that the addition of stronger hybrid
features, such as binders or quantifiers over intervals, immediately leads to undecidabil-
ity, even under very weak assumptions about the class of linear orders.

In this paper, we focus our attention on the addition of length binders to MPNL.
Besides binders on state variables, ranging over intervals, one may introduce binders
on integer variables, ranging over interval lengths. In its “classical” version, MPNL
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involves metric constraints expressed by constants. As an example, � r(len=5 ∧ p →
�l�rq) is a well-formed MPNL formula, while �r(len=x ∧ p), for some variable x, is
not. This means that, despite the fact that MPNL can be considered a quite expressive
interval logic (a number of meaningful examples of temporal conditions that can be
specified in MPNL are given in [BDG+10, BDG+11]), there are simple and natural
properties that it cannot express, such as, for instance, the right neighbor interval, whose
length is equal to the length of the current interval, satisfies the property q. To deal
with properties like this one, we extend the language of MPNL with a sort of hybrid
machinery making it possible to store the length of the current interval and to use it
further in formulae.

Let us denote by MPNL+LB the hybrid extension of MPNL with length binders,
which is defined as follows. First, we introduce a binder ↓, called length binder, a count-
able set of length variables DVar = {x, y, . . .}, where DVar ∩ AP = ∅, and a set of
hybrid metric constraints of the form lenCx, for each C ∈ C and x ∈ DVar . Semantics
of MPNL+LB formulae is defined as usual, pairing the classical valuation function for
proposition letters with a length assignment g : DVar → N. An MPNL+LB model
over N is a triplet M = 〈N, V, g〉, where V : AP → 2I(N) is the valuation function for
proposition letters and g is the length assignment. For any pair of length assignments
g, g′ and any variable x, we write g ′ ∼x g to mean that g′ possibly differs from g on the
value of x only. Formally, formulae are defined by the following grammar:

ϕ ::= p | lenCk | lenCx | ¬ϕ | ψ ∨ ϕ | �rϕ | �lϕ | ↓x ϕ,

where k ∈ N and x ∈ DVar .
Let M = 〈N, V, g〉. The semantic rules for MPNL+LB consist of those for MPNL

plus the following clauses:

– M, [a, b] � lenCx iff δ(a, b)Cg(x);

– M, [a, b] �↓x ϕ iff M ′, [a, b] � ϕ for M ′ = 〈N, V, g′〉, where g′ is a length
assignment such that g ′ ∼x g and g′(x) = δ(a, b).

It is worth pointing out that a universal analogue of the hybrid operator @, with the
following semantics:

– M, [a, b] � @xϕ iff for every interval [c, d] such that δ(c, d) = g(x) it is the case
that M, [c, d] � ϕ,

can be easily defined in MPNL+LB as follows:

@xϕ := [G](len=x → ϕ).

The same holds for the existential analogue of @.
We show now that undecidability of almost all extensions of MPNL with length

binders can be easily proved by a reduction from the satisfiability problem for unde-
cidable fragments of HS, the only difficult case being that of the extension of MPNL
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with equality constraints over length variables (len=x, with x ∈ DVar ), which will be
dealt with in Section 5. As a matter of fact, we prove a stronger result showing that the
fragment PNL+LB of MPNL+LB, devoid of proposition letters for length constraints
over constants (lenCk, with k ∈ N), is already undecidable.

Unlike what happens with proposition letters for length constraints over constants,
that is, len=k, len>k, len≥k, len<k, and len≤k, with k ∈ N, which are known to be defin-
able in terms of each other, no general interdefinability rules are known for constraints
over length variables. As an example, it can be easily shown that len≥x is equivalent
to ¬len<x, but we are not aware of any way of expressing len≤x or len<x in terms of
len=x (since the value of x is unknown, len≤x and len<x cannot be expressed as logical
disjunctions of equalities, as in the case of constant metric constraints). The undecid-
ability of PNL+LB immediately follows from that of HS, as HS operators 〈B〉, 〈E〉,
〈B〉, and 〈E〉, that is, the modalities corresponding to Allen’s relations starts, finishes,
started-by, and finished-by, respectively, which suffice to define all other HS operators
when non-strict semantics is assumed, can be easily defined in it as follows:

〈B〉p := ↓x �l�r(p ∧ len<x),

〈E〉p := ↓x �r�l(p ∧ len<x).

〈B〉p := ↓x �l�r(p ∧ len>x),

〈E〉p := ↓x �r�l(p ∧ len>x).

Theorem 3. The satisfiability problem for PNL+LB over N is undecidable.

Proof. As shown in [BDG+08, Del11], the HS fragment featuring the pair of modalities
〈B〉 and 〈E〉 (resp., 〈B〉 and 〈E〉, 〈B〉 and 〈E〉, 〈B〉 and 〈E〉) only, interpreted overN, is
undecidable. Hence, the fragments of PNL+LB featuring only one length variable and
only one (type of) constraint among {<,≤, >,≥} are already undecidable. The only
remaining case is that of the PNL+LB fragment with one length variable and length
constraints of the form len=x. We will complete the proof of the theorem by proving its
undecidability in Section 5.

Undecidability of the satisfiability problem for MPNL+LB overN immediately follows.

3.2 First-Order Extensions

We now consider a completely different extension of PNL over N, which is obtained
by lifting it to the first-order setting. We call the resulting logic PNL+FO. PNL+FO
is obtained from PNL by replacing proposition letters by predicate symbols P,Q, . . .
of fixed arity (proposition letters can be recovered as 0-ary predicate symbols) and by
adding a set of individual variables x, y, . . ., a set of individual constants c 1, c2, . . .,
that is, functions of arity 0 (for the sake of simplicity, we exclude function symbols of
arity greater than 0), and the universal (first-order) quantifier ∀. The terms τ 1, τ2, . . . are
either individual variables or individual constants. As usual, the existential (first-order)
quantifier can be defined in terms of the universal one: ∃xϕ(x) ≡ ¬∀x¬ϕ(x).
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A first-order interval model is a tuple M = 〈N,D, I〉, where D is the first-order
domain of M and I is the interpretation function that maps every interval of I(N) into
a first-order structure:

I([a, b]) = 〈D, P I([a,b]), QI([a,b]), . . .〉.

For every interval [a, b] and predicate symbol P , P I([a,b]) is a relation on D with the
same arity as P (for proposition letters, it is simply true or false).

An assignment λ is a function that maps terms into elements of D. We assume
constants to be rigid, that is, we assume that each constant refers to the same element
of D regardless of which is the current interval.

The set of semantic clauses for PNL+FO is obtained from that for PNL by adding
the assignment as an additional parameter, by replacing the clause for proposition letters
by a clause for predicates, and by introducing a clause for the universal quantifier:

– for each predicate symbol P , M, [a, b], λ � P (τ1, . . . , τn) iff P I([a,b])(λ(τ1), . . . ,

λ(τn));

– M, [a, b], λ � ∀xψ iff M, [a, b], λ′ � ψ for every assignment λ′ that differs from λ

at most for the value of x.

PNL+FO can thus be viewed as a limited first-order generalization of PNL: it allows
one to move along the time domain by applying the modalities and to formulate specific
statements about what is true over a given interval by using first-order constructs.

What can we say about the (un)decidability of PNL+FO? On the one hand, first-
order modal and temporal logics are usually undecidable. On the other hand, there are
at least two important decidability results in the first-order setting, that are relevant
here: (i) the decidability of the two-variable fragment of first-order logic [BGG97], and
(ii) the decidability of the two-variable fragment of first-order logic interpreted over
various classes of linear orders, in particular, over the class of all linear orders and over
N [Ott01]. In the framework of temporal logics, as we have already pointed out, it has
been shown that a first-order extension of LTL (with Since and Until, but the result also
applies to the fragment with Future and Next only) where two distinct variables may
be used yields undecidability [HWZ00]. To recover decidability, one must restrict the
language by allowing one variable only. We will show that in the interval setting the
situation is way worse: the addition of very elementary first-order ingredients to PNL
suffices to cross the undecidability border.

4 A General Path to Undecidability

The undecidability of both hybrid and first-order extensions of (metric) PNL will be
proved by exploiting reduction from the Finite Tiling Problem (FTP for short). The
method for proving undecidability via tiling is very common, but we have adapted it
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here in a quite non-trivial way, building on our previous developments of that technique
(see, for instance, [BDG+08, BDG+09, BDMG+11]). In this section, we provide the
reader with a gentle introduction to the method.

The FTP is the problem of establishing whether, given a finite set of tile types T =

{t1, . . . , tk}, there exists a finite rectangle R = [0, X ] × [0, Y ] = {(i, j) : i, j ∈
N ∧ 0 ≤ i ≤ X ∧ 0 ≤ j ≤ Y }, for some X,Y ∈ N, such that T can correctly tile
R with the entire border colored by the same designated color $, also called side color.
More precisely, for every tile type ti ∈ T , let right(ti), left(ti), up(ti), and down(ti) be
the colors of the corresponding sides of t i. To solve the FTP for T , one must find two
natural numbers X and Y , and a mapping f : R → T such that

∀ 0 ≤ i < X, 0 ≤ j ≤ Y (right(f(i, j)) = left(f(i+ 1, j)));

∀ 0 ≤ i ≤ X, 0 ≤ j < Y (up(f(i, j)) = down(f(i, j + 1))),

and

∀ 0 ≤ j ≤ Y (left(f(0, j)) = $); ∀ 0 ≤ j ≤ Y (right(f(X, j)) = $);

∀ 0 ≤ i ≤ X (down(f(i, 0)) = $); ∀ 0 ≤ i ≤ X (up(f(i, Y )) = $).

The FTP has been first introduced and shown to be undecidable in [LPRT95].
In order to perform the reduction from the FTP for a given set of tile types T =

{t1, . . . , tk} to the satisfiability problem for the logic under consideration, we will make
use of some special proposition letters, that depend on the logic. For every proposition
letter p, we call any interval satisfying p a p-interval. The reduction consists of three
main steps:

(i) the encoding of the rectangle by means of a suitable chain of so-called ‘unit’ inter-
vals (u-intervals for short);

(ii) the (difficult) encoding of the ‘above-neighbor’ relation by means of a suitable
family of so-called Up rel-intervals;

(iii) the (easy) encoding of the ‘right-neighbor’ relation.

The idea of the encoding is as follows. First, we introduce a set of proposition letters
T = {t1, t2, . . . , tk} corresponding to the set of tile types T = {t1, t2, . . . , tk}. Next,
we set our framework by forcing the existence of a unique finite chain of u-intervals
on the linear ordering (u-chain), u-intervals being used as cells to arrange the tiling.
Then, we define a chain of Id-intervals (Id-chain), each one consisting of a sequence
of u-intervals and representing a row of the rectangle (Id is a shorthand for identifier
borrowed from [HS91]). Finally, the above-neighbor relation that connects each tile
with its above neighbor in R is encoded by means of the proposition letter Up rel.
The last step is the definition of a formula Φ which is satisfiable if and only if there
is a finite rectangle R for some X,Y ∈ N and a proper tiling of R by T , that is, a
tiling that satisfies the color constraints on the border tiles and between vertically- and
horizontally-adjacent tiles.
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5 Undecidability of PNL + equality constraints over length variables

As we have already shown in Section 3.1, the fragments of PNL+LB with only one
length variable and only one type of constraint from the set {<,≤, >,≥} are undecid-
able. In this section, we provide a reduction of the above-described FTP to the satisfi-
ability problem for the fragment of PNL+LB with only one length variable and length
constraints of the form len=x only, thus proving its undecidability. Together with those
given in Section 3.1, this result allows one to conclude that extending PNL with length
binders always leads to undecidability, even when only one length variable is used and
regardless of the kind of length constraints allowed. As a matter of fact, we will show
that the use of π in the undecidability proof is inessential: we first give an encoding of
FTP that makes use of π, and then we show how to get rid of it.

The u-chain is defined by the following set of formulae:

Start ∧ �r¬Start ∧�r�rStop (1)

[G]((Start ∨ Stop → u) ∧ (u → len=x)) (2)

[G](�rStart → �r(¬π → �r¬Start)) (3)

[G](�rStop → �r(¬π → �r¬Stop)) (4)

[G](u ∧ ¬Stop → �ru) (5)

[G]((Start → �l�l¬u) ∧ (Stop → �r�r¬u)) (6)

(1) ∧ . . . ∧ (6) (7)

beginning / ending the u-chain

u, Start, and Stop same length

Start is unique

Stop is unique

u-chain to the right

no u out of the chain

Lemma 4. Let M = 〈N, V, g〉 be a PNL+LB model and [a, b] ∈ I(N) such that

M, [a, b] �↓x (7).

Then, there exists a finite sequence of points b0 < b1 < . . . < bk, with k > 0, such that
b0 = a, b1 = b, and

1. all intervals [bi, bi+1], for 0 ≤ i ≤ k − 1, have the same length b− a > 0;

2. M, [bi, bi+1] � u for each 0 ≤ i ≤ k − 1;

3. no other interval satisfies u.

Proof. First of all, by (1), the interval [a, b](= [b0, b1]) satisfies Start and it is not a
point-interval, as it satisfies �r¬Start as well; moreover, there exists a Stop-interval
to the right of it. By (2), Start- and Stop-intervals are u-intervals, and all u-intervals
have the same length (equal to b − a > 0). Hence, two different Start-intervals (resp.,
Stop-intervals, u-intervals) cannot start at the same point. Then, from (3) (resp., (4)), it
follows that the interval satisfying Start (resp., Stop) is unique.

Next, by (1), (2), (5), and (6), the interval [b 0, b1] starts a finite chain of u-intervals
[bi, bi+1], with 0 ≤ i ≤ k − 1. The finiteness follows from the fact that, by (1) and (2),
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some future u-interval satisfies Stop and, by (6), there are no u-intervals starting to the
right of it. Moreover, the (unique) Stop-interval must belong to the u-chain, otherwise,
by (5), the u-chain would go beyond the Stop-interval, that is, there would be a u-
interval following the Stop-interval, thus contradicting (6). Hence, the (unique) Stop-
interval must be the last u-interval of the u-chain, that is, the interval [bk−1, bk].

To conclude the proof, suppose, by contradiction, that there exists a u-interval [c, d]
not belonging to the u-chain. By (6), it can be neither to the left of the Start-interval
[b0, b1] nor to the right of the Stop-interval [bk−1, bk]. Thus, it must lie in between b0
and bk, and it must start another chain of u-intervals, all of the same length b − a (by
(2)), whose u-intervals overlap those of the first u-chain. However, the unique interval
satisfying Stop cannot belong to this second u-chain, and thus it will be crossed by it,
leading to a contradiction with (6). ��

We now define the Id-chain with the following formulae:

IdStart ∧�r�rIdStop (8)

[G]((IdStart ∨ IdStop → Id) ∧ (Id → len=x)) (9)

[G](�rStart ↔ �rIdStart) (10)

[G](�lStop ↔ �lIdStop) (11)

[G]((u ↔ Tile ∨ ∗) ∧ (∗ → ¬Tile)) (12)

[G]((�rId ↔ �r∗) ∧ (Id → �r�lTile)) (13)

[G](Id ∧ ¬IdStop → �rId) (14)

(8) ∧ . . . ∧ (14) (15)

beginning / ending the Id-chain

Id, IdStart, IdStop same length

IdStart is unique

IdStop is unique

u is either Tile or ∗
Ids begin / end with * / Tile

Id-chain to the right

Lemma 5. Let M = 〈N, V, g〉 be a PNL+LB model and [a, b] ∈ I(N) such that

M, [a, b] �↓x (7) ∧�l�r ↓x (15).

Then, there exist two positive integers h, v and a finite sequence of points b01 = a <

b11 = b < . . . < bh1 = b02 < . . . < bh2 = b03 < . . . < bhv−1 = b0v < . . . < bhv such that for
each 1 ≤ j ≤ v, we have:

1. M, [b0j , b
1
j ] � ∗;

2. M, [bij , b
i+1
j ] � Tile for each 0 < i < h;

3. M, [b0j , b
h
j ] � Id.

Moreover, no other interval satisfies ∗, Tile, or Id.

Proof. First of all, by Lemma 4, there is a finite sequence of points b 0 = a < b1 = b <

. . . < bk, which defines a finite chain of u-intervals. By (12), each of these u-intervals is
either a ∗-interval or a Tile-interval and no other interval is a ∗-interval or a Tile-interval.
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By (9), IdStart- and IdStop-intervals are Id-intervals, and all Id-intervals have the same
length. By (10) and (11), IdStart-intervals can only start where the unique Start-interval
(u-interval [b0, b1]) starts, and IdStop-intervals can only end where the unique Stop-
interval (u-interval [bk−1, bk]) ends. Since all IdStart-intervals (resp., IdStop-intervals)
have the same length, it immediately follows that there is a unique IdStart-interval
(resp., IdStop-interval).

We prove now that Id-intervals (including the IdStart- and the IdStop-interval) are
neither point-intervals nor u-intervals. By contradiction, let us assume Id-intervals to
be point-intervals. By (13) (second conjunct), it follows that there exists a Tile-interval
to the left of IdStart, and thus, by (10), to the left of Start as well, which contradicts
(6) (no u-interval before Start). Together with (8), this allows us to conclude that the
IdStart-interval and the IdStop-interval are distinct (the IdStop-interval is to the right
of the IdStart-interval). Now, we show that Id-intervals cannot be u-intervals. Let us
assume, by contradiction, that they are u-intervals. By (13) (first conjunct), it follows
that the IdStart-interval is a ∗-interval and by (13) (second conjunct) it follows that it
is a Tile-interval, which contradicts (12) (a u-interval is either a ∗-interval or a Tile-
interval).

Now, we show that each Id-interval spans a round number of u-intervals. By (13)
(first conjunct), every Id-interval starts with a ∗-interval, and, by (13) (second conjunct),
it ends with a Tile-interval. By Lemma 4 and (12), this implies that every Id-interval
spans a round number, greater than one, of u-intervals. By (9) (second conjunct), this
round number is the same, say h, for every Id-interval.

We prove now that Id-intervals are arranged to form a unique (finite) chain. Let us
consider the unique IdStart-interval. By (10), it starts with a Start-interval. By Lemma
4, there are not u-intervals to the left of such a unique Start-interval, and thus, by (13),
there are no Id-intervals starting (strictly) to the left of it. Since the IdStart-interval is
not an IdStop-interval, by (14), it follows that it starts a chain of Id-intervals. Such a
chain must be finite, as there are only finitely many u-intervals, and its last Id-interval
must be the unique IdStop-interval. Indeed, if this was not the case, there would be
an Id-interval crossing the IdStop-interval, and thus an u-interval to the right of the
IdStop-interval (contradiction, by (11), Lemma 4, and (13)). Thus, such a sequence of
Id-intervals define a partition of the sequence of u-intervals. Let v be the total number
of u-intervals divided by h. The sequence b0 < b1 < . . . < bk can be rewritten as b01 =

b0 < b11 = b1 < . . . < bh1 = b02 < . . . < bh2 = b03 < . . . < bhv−1 = b0v < . . . < bhv = bk,
as required. Points 1, 2, and 3 of the lemma immediately follow.

To complete the proof, we only need to show that no other interval in between b 0
1

and bhv satisfies Id. To this end, it suffices to observe that any such Id-interval would
start a second chain of Id-intervals overlapping those of the first Id-chain. Since the
unique IdStop-interval cannot belong to this second Id-chain, it will be crossed by it
(contradiction). ��

The above lemma guarantees the existence of a unique Id-chain. Now, we want to
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constrain the proposition letter Up rel to correctly encode the relation that connects
pairs of tiles of the rectangle that are vertically adjacent. We force such a condition by
means of the following set of formulae:

[G](Up rel → len=x ∧�l�rTile) (16)

[G](Tile → (�r�rIdStop ↔ �l�rUp rel)) (17)

(16) ∧ (17) (18)

Up rel and Id same length

Tile begins Up rel

Lemma 6. Let M = 〈N, V, g〉 be a PNL+LB model and [a, b] ∈ I(N) such that

M, [a, b] �↓x (7) ∧�l�r ↓x ((15) ∧ (18))

and let b01 = a < b11 = b < . . . < bh1 = b02 < . . . < bh2 = b03 < . . . < b0v < . . . < bhv
be the sequence of points whose existence is guaranteed by Lemma 5. Then, for each
1 ≤ j < v and 1 ≤ i < h, the interval [bij, b

i
j+1] satisfies Up rel, and no other interval

satisfies Up rel.

Proof. As (15) and (18) are in the scope of the same length binder ↓ x, by (16), Up rel-
intervals have the same length as Id-intervals. Moreover, by (17), each Tile-interval, but
the ones belonging to the last Id-interval, starts an Up rel-interval. Finally, by (16), each
Up rel-interval is started by a Tile-interval. Given that the length of all u-intervals is the
same and every Id-interval spans the same number of u-intervals, the claim immediately
follows from Lemma 5. ��

Finally, we can force all color-matching conditions to be fulfilled by means of the
following set of formulae, where Tr (resp., Tl, Tt, Tb) is the subset of T containing all
and only those tiles whose right (resp., left, up, down) side is colored with $.

[G]((Tile ↔
∨

tq∈T
tq) ∧

∧

tq,tq′∈T ,tq �=tq′
¬(tq ∧ tq′)) (19)

[G](Tile ∧�rTile →
∨

right(tq)=left(tq′ )

(tq ∧�rtq′)) (20)

[G](Up rel →
∨

up(tq)=down(tq′ )

(�l�rtq ∧�rtq′)) (21)

[G](�lIdStart → �l�l(Tile →
∨

tq∈Tb

tq)) (22)

[G](�rIdStop → �r�r(Tile →
∨

tq∈Tt

tq)) (23)

[G](((Tile ∧�r∗) ∨ (Tile ∧ Stop)) ↔ Rtile) (24)

[G](Tile ∧�l∗ ↔ Ltile) (25)

[G](Ltile →
∨

tq∈Tl

tq) (26)

Tiles are tiles

right-left constraint

up-down constraint

bottom side constraint

top side constraint

right side Tiles

left side Tiles

left side constraint
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[G](Rtile →
∨

tq∈Tr

tq) (27)

(24) ∧ . . . ∧ (27) (28)

right side constraint

Theorem 7. Given a finite set of tile types T = {t1, . . . , tk} and a side color $, the
formula

Φ :=↓x (7) ∧�l�r ↓x ((15) ∧ (18) ∧ (28))

is satisfiable in N if and only if T can tile some finite rectangle R = {(x, y) | 1 ≤ x ≤
X and 1 ≤ y ≤ Y }, for some X,Y ∈ N, with side color $.

Proof. (Only if:): Suppose that M, [a, b] � Φ. By Lemma 5, there is a sequence of
points b01 = a < b11 = b < . . . < bh1 = b02 < . . . < bh2 = b03 < . . . < b0v < . . . <

bhv = bk such that M, [bsr, b
s+1
r ] � Tile if and only if s > 0. We put X = h − 1 and

Y = v. Then, by (19), it holds that, for every s > 0, M, [b sr, b
s+1
r ] � tq for a unique tq.

We define a function f : R → T , with R = {(x, y) | 1 ≤ x ≤ X and 1 ≤ y ≤ Y },
such that f(s, r) = tq , for all s, r, with 1 ≤ s ≤ X , 1 ≤ r ≤ Y , if and only if
M, [bsr, b

s+1
r ] � tq. By exploiting Lemmas 4, 5, and 6, as well as the conditions imposed

by formulae (20-27), it can be easily shown that f defines a correct tiling of R.
(If:) Let f : R → T be a correct tiling of the rectangle R = {(x, y) | 1 ≤ x ≤

X and 1 ≤ y ≤ Y } for some X and Y , and a given border color $. We show that there
exist a modelM and an interval [a, b] such that M, [a, b] � Φ. Let n = (X+1) ·Y . We
define a model M = 〈N, V, g〉 such that M, [0, 1] � Φ. Since the only length variable
occurring in Φ is x and it has no free occurrences there, any possible valuation of x is as
good as any other, so we put g(x) = 1. The valuation function V is defined as follows.

V (u) := {[i, i+ 1] | 0 ≤ i < n};
V (Start) := {[0, 1]};
V (Stop) := {[n− 1, n]}.

This guarantees that ↓x (7) is satisfied. Now, in order to satisfy the remaining part of Φ
on [0, 1], it suffices to show that the formula ↓x ((15) ∧ (18) ∧ (28)) can be satisfied
on the interval [0, X + 1], i.e., (15) ∧ (18) ∧ (28) can be satisfied on [0, X + 1] by a
valuation assigning value X + 1 to the length variable x. In the following, we define
the valuation for the remaining proposition letters:

V (Id) := {[i · (X + 1), (i+ 1) · (X + 1)] | 0 ≤ i < Y };
V (∗) := {[i · (X + 1), i · (X + 1) + 1] | 0 ≤ i < Y };

V (Tile) := V (u) \ V (∗);
V (IdStart) := {[0, X + 1]};
V (IdStop) := {[(X + 1) · (Y − 1), (X + 1) · Y ]};
V (Up rel) := {[i, j] | δ(i, j) = X + 1, [i, j] /∈ V (Id), 0 ≤ i, j < n};
V (Ltile) := {[i · (X + 1) + 1, i · (X + 1) + 2] | 0 ≤ i < Y };
V (Rtile) := {[i · (X + 1)− 1, i · (X + 1)] | 0 < i ≤ Y }.
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Finally, the valuation of the proposition letters in T = {t1, . . . tk} (tile-variables)
is defined as follows. For each ti ∈ T:

V (ti) := {[i+ (j − 1) · (X + 1), i+ (j − 1) · (X + 1) + 1)] | f(i, j) = ti}.

It is straightforward to check that M, [0, 1] � Φ, hence the claim. ��

Corollary8. The satisfiability problem for PNL+LB with one length variable and
length constraints of the form len=x only, over N, is undecidable.

The above reduction can be easily adapted to the case of PNL+LB with strict semantics
(which excludes point-intervals). To this end, it suffices to replace formulae of the form
�r�rψ (resp.,�l�lψ) by formulae of the form�rψ∧�r�rψ (resp.,�lψ∧�l�lψ) and
formulae of the form �r�rψ (resp., �l�lψ) by formulae of the form �rψ ∧ �r�rψ

(resp., �lψ ∧ �l�lψ). The rest of the reduction is basically the same, apart from the
fact that some complications coming from point-intervals disappear, because nominals
can be defined directly when the strict semantics is assumed.

We conclude the section by showing that the removal of the modal constant π does
not suffice to recover decidability. First, we observe that the modal constant π is used in
formulae (3) and (4) only, to force the uniqueness of the u-intervals satisfying Start and
Stop, and, consequently, the uniqueness of the u-chain. We prove that the uniqueness
of Stop can also be forced by the following formulae that make no use of π:

[G](Stop → u ∧ �r�r¬Stop) (29)

[G](Stop → �l(u ∧ �l�r(�rStop ↔ u))) (30)

By contradiction, let us assume that there exist two distinct Stop-intervals, say, [a, b]
and [c, d]. Since Stop-intervals have the same length, it must hold that a �= c. Without
loss of generality, we assume a < c, and thus b < d. Two cases are possible. If b ≤ c,
then formula (29), over [a, b], is false. Otherwise, if c < b, then [a, b] overlaps [c, d]

(a < c < b < d), and formula (30), over [c, d], is false. Indeed, consider the u-interval
immediately to the left of the Stop-interval [c, d], say, [c ′, c]. Since δ(c′, c) = δ(a, b),
c′ < a. Moreover, by (30), [c ′, c] must satisfy �l�r(�rStop ↔ u). In particular, [c′, a]
must satisfy �rStop ↔ u. However, [c′, a] satisfies �rStop, but it is not a u-interval
as it is shorter than [c′, c], which is a u-interval (contradiction). The case with Start-
intervals is completely symmetric. Thus, we obtain the following.

Theorem 9. The satisfiability problem for PNL+LB with one length variable and length
constraints of the form len=x only, devoid of the modal constant π, over N, is undecid-
able.

6 A decidable variant of PNL + equality constraints over length variables

As we have seen so far, even the addition of a single length variable and a binder over
it to PNL yields undecidability. A natural question is whether decidability can be re-
gained by imposing suitable restrictions on length binders, e.g., by limiting the amount
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of memory at their disposal. In the following, we show that this can be done by limit-
ing the range of binders over length variables. As a matter of fact, the resulting logic
improves succinctness, but no increase in expressiveness is achieved.

The idea is to replace the binder ↓x by a hierarchy of restricted binders {↓kx | k ∈ N}
and to properly define their semantics when the length of the current interval exceeds the
limit of the binder. Formally, let M = 〈N, V, g ′〉. The semantics of ↓kx, called truncated
semantics, is defined as follows:

M, [a, b] �t↓kx ϕ iff

i) δ(a, b) ≤ k and M ′, [a, b] � ϕ, for some M ′ = 〈N, V, g′〉, where g′ ∼x g and
g′(x) = δ(a, b), or

ii) δ(a, b) > k and M ′, [a, b] � ϕ, for some M ′ = 〈N, V, g′〉, where g′ ∼x g and
g′(x) = k + 1.

The rationale behind the above definition is evident: the binder ↓ kx can store the length
of the current interval only if it does not exceed k; otherwise, it stores k + 1.

Consider now the truncated fragment of PNL+LB, where only restricted length
binders may occur and all hybrid metric constraints occur inside the scope of a binder
↓kx (as in the case of PNL + equality constraints over length variables, the only metric
constraints are of the form len=x), interpreted according to the semantics given above.

Let τ t be the translation defined as follows:

τ t(p) := p

τ t(len=x) := len=x

τ t(¬ψ) := ¬τ t(ψ)
τ t(ψ1 ∨ ψ2) := τ t(ψ1) ∨ τ t(ψ2)

τ t(�rψ) := �rτ
t(ψ)

τ t(�lψ) := �lτ
t(ψ)

τ t(↓kx ψ) := (len>k ∧ τ t(ψ)[len=k+1/len=x]) ∨
k∨

j=0

(len=j ∧ τ t(ψ)[len=j/len=x])

The translation function τ t maps every formulaψ of the truncated fragment of PNL+LB
into a formula τ t(ψ) of MPNL with length at most exponential in |ψ|. However, when
applied to a sub-formula of a formula of such a fragment, τ t does not necessarily pro-
duce an MPNL formula (the fragment is not closed under sub-formulae).

It is worth pointing out that the condition that every hybrid metric constraint of the
form len=x occurs inside the scope of a binder ↓kx plays a fundamental role. Indeed, it
can be easily checked that the application of τ t to a formula with an occurrence of len=x

which is not in the scope of any binder produces a formula not belonging to MPNL.
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Lemma 10. The translation τ t preserves the truth value of every formula ψ of the trun-
cated fragment of PNL+LB when interpreted over N.

Proof. The proof is by structural induction on the input formula. All cases, but the one
of formulae of the form ↓kx ψ, are straightforward. Thus, we focus our attention on such
a case. In the following, we will denote models of MPNL formulae as pairs 〈N, V 〉 and
models of formulae of the truncated fragment of PNL+LB as triples 〈N, V, g〉. More-
over, we will denote by M both kinds of model whenever we do not need to refer to
model components. We will prove that, given a formula ϕ of the truncated fragment of
PNL+LB and a model 〈N, V, g〉 for it, a model for its translation τ t(ϕ) can be obtained
by removing its third component g.

We now show that, for every valuation function V , length assignment g, and interval
[a, b], the following equation holds:

〈N, V 〉, [a, b] � τ t(↓kx ψ) ⇔ 〈N, V, g〉, [a, b] �↓kx ψ.

⇒ (only if direction) Suppose that 〈N, V 〉, [a, b] � τ t(↓kx ψ). Then, 〈N, V 〉, [a, b] �
(len>k ∧ τ t(ψ)[len=k+1/len=x]) ∨

∨k
j=0(len=j ∧ τ t(ψ)[len=j/len=x]). We must

prove that, for any g, 〈N, V, g〉, [a, b] �↓kx ψ. We distinguish two cases:

1. If b − a > k, then 〈N, V 〉, [a, b] ��
∨k
j=0(len=j ∧ τ t(ψ)[len=j/len=x]), and

thus 〈N, V 〉, [a, b] � len>k ∧ τ t(ψ)[len=k+1/len=x]. The following chain of
implications holds:

〈N, V 〉, [a, b] � len>k ∧ τ t(ψ)[len=k+1/len=x]

⇒ 〈N, V 〉, [a, b] � len>k ∧ τ t(ψ′), where ψ′ is obtained from ψ

by replacing every free occurrence of x by k + 1

⇒ 〈N, V, g〉, [a, b] � len>k ∧ ψ′, by the inductive hypothesis

⇒ 〈N, V, g〉, [a, b] � len>k∧ ↓kx ψ′, as there are no free occurrences of x in ψ ′

⇒ 〈N, V, g〉, [a, b] �↓kx ψ, by len>k and the semantics of ↓kx

2. If b − a ≤ k, then 〈N, V 〉, [a, b] �� (len>k ∧ τ t(ψ)[len=k+1/len=x]), and thus
〈N, V 〉, [a, b] �

∨k
j=0(len=j ∧ τ t(ψ)[len=j/len=x]). The following chain of
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implications holds:

〈N, V 〉, [a, b] �
k∨

j=0

(len=j ∧ τ t(ψ)[len=j/len=x])

⇒ 〈N, V 〉, [a, b] � len=j ∧ τ t(ψ)[len=j/len=x], for 0 ≤ j ≤ k

such that b− a = j

⇒ 〈N, V 〉, [a, b] � len=j ∧ τ t(ψ′), where ψ′ is obtained from ψ

by replacing every free occurrence of x by j

⇒ 〈N, V, g〉, [a, b] � len=j ∧ ψ′, by the inductive hypothesis

⇒ 〈N, V, g〉, [a, b] � len=j∧ ↓kx ψ′, as there are no free occurrences of x in ψ ′

⇒ 〈N, V, g〉, [a, b] �↓kx ψ by len=j and the semantics of ↓kx

⇐ (if direction) Suppose that 〈N, V, g〉, [a, b] �↓kx ψ. We show that 〈N, V 〉, [a, b] �
τ t(↓kx ψ). We distinguish two cases:

1. If b− a > k, we have that:

〈N, V, g〉, [a, b] �↓kx ψ
⇒ 〈N, V, g〉, [a, b] � ψ′, where ψ′ is obtained from ψ

by replacing every free occurrence of x by k + 1

⇒ 〈N, V 〉, [a, b] � τ t(ψ′), by the inductive hypothesis

⇒ 〈N, V 〉, [a, b] � len>k ∧ τ t(ψ)[len=k+1/len=x]

⇒ 〈N, V 〉, [a, b] � τ t(↓kx ψ), by the definition of τ t

2. If b− a = j ≤ k, we have that:

〈N, V, g〉, [a, b] �↓kx ψ
⇒ 〈N, V, g〉, [a, b] � ψ′, where ψ′ is obtained from ψ

by replacing every free occurrence of x by j

⇒ 〈N, V 〉, [a, b] � τ t(ψ′), by the inductive hypothesis

⇒ 〈N, V 〉, [a, b] � len=j ∧ τ t(ψ)[len=j/len=x]
⇒ 〈N, V 〉, [a, b] � τ t(↓kx ψ), by the definition of τ t

��

Corollary11. The satisfiability problem for the truncated fragment of PNL+LB, over
N, is decidable in 2EXPSPACE, when length constraints in the formulae are represented
in binary, and in 2NEXPTIME, when they are constant or represented in unary.

Corollary 11 immediately follows from Theorem 2.
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We conclude the section by pointing out that one must be extremely careful in the
search for decidable variants of PNL+LB. Let us consider, for instance, the following
restricted semantics for length binders proposed in [DGS10]:

M(= 〈N, V, g〉), [a, b] �r↓kx ϕ iff

i) δ(a, b) ≤ k and M ′, [a, b] � ϕ, for all M ′ = 〈N, V, g′〉, where g′ ∼x g and
g′(x) = δ(a, b), or

ii) δ(a, b) > k and M ′, [a, b] � ϕ, for all M ′ = 〈N, V, g′〉, where g′ is an assign-
ment such that g′ ∼x g and g′(x) > k.

Unlike the case of truncated semantics, in such a case, when the length of the current
interval exceeds k, the binder ↓kx stores the constraint len>k.

In [DGS10], the authors consider a variant of PNL+LB with such a restricted se-
mantics for length binders and an additional constraint imposing that variable length
constraints of the form len=x may only occur positively, that is, once the formula has
been transformed into the negation normal form, the logic does not allow sub-formulae
of the form ¬len=x. They claim that every formula ψ of such a restricted fragment of
PNL+LB can be effectively translated into a formula τ r(ψ) of MPNL which is equisat-
isfiable with ψ when interpreted over N and has length at most exponential in |ψ|. The
translation rule for ↓kx they propose is the following one:

τr(↓kx ψ) := (len>k ∧ τr(ψ)[len>k/len=x]) ∨
k∨

j=0

(len=j ∧ τr(ψ)[len=j/len=x]).

In [DGS10], it has been shown that the translation τ r would not properly work with
variable length constraint len=x occurring negatively, as ¬len=x is not equivalent to
¬len>k when x > k. As an example, ↓kx (len>k ∧ �r(¬len=x ∧ len>k)) is satisfiable
according to the restricted semantics, but τ r(↓kx (len>k ∧ �r(¬len=x ∧ len>k))) =

(len>k ∧�r(¬len>k ∧ len>k))∨
∨k
j=0(len=j∧(len>k ∧�r(¬len=j ∧ len>k))) is not.

It is possible to show that forcing variable length constraints of the form len=x to
occur only positively does not suffice to guarantee that τ r preserves (un)satisfiability
(and thus the claim in [DGS10] turns out to be incorrect). As an example, consider the
formula �r ↓kx (len

=x∧p∧�l�r(len=x∧¬p)). Such a formula is clearly unsatisfiable
according to the restricted semantics, while its translation in MPNL �r((len>k ∧ p ∧
�l�r(len>k ∧ ¬p)) ∨

∨k
j=0(len=j ∧ p ∧�l�r(len=j ∧ ¬p))) is satisfiable.

7 Undecidability of single-variable fragments of (R)PNL+FO

In this section, we focus our attention on first-order extensions of (R)PNL, (R)PNL+FO
for short. As it is clear from our discussion so far, there are a number of parameters to
be set for (R)PNL+FO. Besides the usual alternatives about the nature of the tempo-
ral domain, which can be finite or infinite, dense or discrete, bounded or unbounded,

2820 Della Monica D., Goranko V., Montanari A., Sciavicco G.: Crossing  ...



and so on, we have different options for the first-order domain, which can be finite or
infinite, constant, variable, or expanding, and so on (as a matter of fact, we can also
constrain the first-order domain to be ordered and to satisfy additional properties such
as, for instance, linearity, discreteness, or denseness). Moreover, we can impose suitable
syntactic restrictions to formulae, such as, for instance, limiting the number of distinct
variables that may occur in a formula. Since we are interested in tight undecidability
results, in contrast with decidability results for first-order point-based temporal logic,
we will make quite restrictive assumptions, thus showing that the addition of a very
weak first-order flavor to (R)PNL immediately yields undecidability. More precisely,
we consider a first-order extension of RPNL, which involves only one variable, no first-
order constants, and no free variables (this means that the variable assignment λ plays
no role, and thus it can be safely omitted). Moreover, we assume a (countable) constant
first-order domain D, and, to make the undecidability proof simpler, we choose a finite
linear order as the temporal domain. At the end of the section, we will show how to
adapt the proof to the case of N.

The proof hinges on the fact that the addition of first-order features makes it possible
to express properties like: “if an interval satisfies ϕ, then all its beginning intervals
(resp., ending intervals, strict sub-intervals) satisfy ψ” (the set of strict sub-intervals of
an interval [a, b] contains all and only the intervals [c, d] such that a < c < d < b).
To this end, we make use of a unary predicate P that associates a distinct element
(possibly more than one) of the first-order domain with each element of the temporal
domain. More precisely, we constrain the predicateP to satisfy the following condition:
for any e ∈ D, if P (e) holds over an interval [a, b], then P (e) does not hold over any
interval [c, d], with c �= a. Such a condition can be formally stated as follows:

[G](∃x�rP (x) ∧ ∀x(�rP (x) → �r(¬π → �r¬P (x)))) (31)

where [G], by an abuse of notation, is the universal modality for RPNL. Given a formula
ϕ, [G]ϕ holds over an interval [a, b] if and only if ϕ holds over [a, b] and over all
intervals [c, d], with c ≥ b. Formally, [G]ϕ is defined as: ϕ ∧ �rϕ ∧�r�rϕ.

Lemma 12. Let M = 〈D,D, I〉 be an RPNL+FO model and [a, b] ∈ I(D). If

M, [a, b] � (31),

then, for each c ∈ D, with c ≥ b, there exists d ≥ c such that P I([c,d])(c1) holds for
some c1 ∈ D and, for any e, f ≥ b, with e �= c and e ≤ f , P I([e,f ])(c1) does not hold.

The proof is straightforward, and thus omitted.
By using the unary predicate P above, we can define a formula [B ϕ

ψ ] (resp., [Eϕψ ],
[Dϕ

ψ]) expressing the condition “if an interval [b, e] satisfies ϕ, then all its beginning
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intervals (resp., ending intervals, strict sub-intervals) satisfy ψ” as follows:

[Bϕψ ] ≡ [G]∀x(�r(ϕ ∧�rP (x)) → �r(�r(¬π ∧�rP (x)) → ψ))

[Eϕψ ] ≡ [G]∀x(�r(ϕ ∧�rP (x)) → �r(¬π → �r(�rP (x) → ψ)))

[Dϕ
ψ] ≡ [G]∀x(�r(ϕ ∧�rP (x)) → �r(¬π → �r(�r(¬π ∧�rP (x)) → ψ)))

The three formulae [Bϕ
ψ ], [E

ϕ
ψ ], and [Dϕ

ψ] closely resemble the modalities [B], [E], and
[D] of HS for Allen’s relations begins, ends, and during, respectively. However, they
are not equivalent to them, as they do not (allow one to) refer to the beginning intervals,
ending intervals, and strict subintervals of the current interval.

The following formulae allow us to define the u-chain (see Section 4):

¬u ∧�r(¬π ∧ u) (32)

[G](u → (¬π ∧ (�ru ∨ �rπ))) (33)

[Bu
¬u] ∧ [Bu

¬π→�r¬u] (34)

(31) ∧ (32) ∧ (33) ∧ (34) (35)

starts the u-chain

completes the u-chain

makes the u-chain unique

Lemma 13. Let M = 〈D,D, I〉 be an RPNL+FO model and [a, b] ∈ I(D) such that

M, [a, b] � (35).

Then, there is a finite sequence of points b0 = b < b1 < .. < bn, with n > 0, such that:

1. M, [bl, bl+1] � u for each 0 ≤ l ≤ n− 1;

2. M, [c, d] � u holds for no other interval [c, d], unless c < b.

Proof. If M, [a, b] � (35), then, by (32), the interval [b, c], for some c > b, is a u-
interval. Hence, by (33), b(= b0) starts a finite chain of u-intervals [bl, bl+1], with l ≥ 0

and bl < bl+1. (The satisfiability of (33) over finite temporal domains follows from
the fact that the last point of the temporal domain satisfies �rπ.) Now suppose, by
contradiction, that for some interval [c, d], with c ≥ b, it is the case that [c, d] is a
u-interval, but [c, d] �= [bl, bl+1] for any l ≥ 0. Then, either c = bl for some l, thus
contradicting the first conjunct of (34), or b l < c < bl+1, thus contradicting the second
conjunct of (34). ��

Notice that, unlike the case of the fragment of PNL+LB analyzed in Section 5, we
cannot force the length of u-intervals to be the same.

The Id-chain can be expressed by the following formulae:

¬Id ∧�rId ∧ [G]((�r Id → �ru)∧
(Id → ¬π ∧ ¬u ∧ (�rId ∨ �rπ))) (36)

[BId
¬Id] ∧ [BId

¬π→�r¬Id] (37)

(36) ∧ (37) (38)

constructs the Id-chain

makes the Id-chain unique
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Lemma 14. Let M = 〈D,D, I〉 be an RPNL+FO model and [a, b] ∈ I(D) such that

M, [a, b] � (35) ∧ (38).

Then, there exist a positive integer v, a finite sequence of positive integers m1,m2, . . . ,

mv, and a finite sequence of points b10 < b11 < . . . < b1m1
= b20 < . . . < b2m2

=

. . . = bv−1
0 < . . . < bv−1

mv−1
= bv0 < . . . < bvmv

such that for each 1 ≤ s ≤ v,
M, [bs0, b

s
ms

] � Id and, for each 0 ≤ l < ms, M, [bsl , b
s
l+1] � u, and no other interval

[c, d] satisfies Id, unless c < b.

Proof. First, by Lemma 13, there is a finite sequence of points b0 = b < b1 < . . . < bn,
with n > 0, which defines a finite chain of u-intervals. By (36), b0 begins an Id-interval,
each Id-interval must start at some bl and spans several u-intervals, and each Id-interval
that does not end at the last point of the finite linear order is followed by another Id-
interval. Moreover, since the linear order is finite, there are finitely many Id-intervals.
Let v be the number of Id-intervals. The sequence b0 < b1 < . . . < bn can be rewritten
as b10 = b0 < b11 < . . . < b1m1

= b20 < . . . < b2m2
= . . . = bv−1

0 < . . . < bv−1
mv−1

=

bv0 < . . . < bvmv
= bn, as required. To conclude the proof, we must show that there are

no other Id-intervals apart from those of the form [b s0, b
s
ms

]. This can be proved exactly
as in Lemma 13, by using (37). ��

The above lemma guarantees the existence of an Id-chain (but it does not constrain the
number of u-intervals each Id-interval consists of).

[G](u ∧ �r¬Id ∧ �r�r¬Id ↔ Final) (39)

[G](u → (¬Final ↔ �rUp rel)) (40)

¬Up rel ∧ ¬�rUp rel ∧ [G](�rUp rel → �ru) (41)

[G](Up rel → ¬Id ∧ ¬π ∧ ¬u ∧�ru) (42)

∀x(�r(Id ∧ ((�ru ∧�rP (x)) ∨�r(�ru ∧�rP (x)))) →
�r�r(Up rel ∧�rP (x))) (43)

[BUp rel
¬Up rel] ∧ [EUp rel

¬Up rel] ∧ [DUp rel
¬Up rel] (44)

[BUp rel
¬Id ] ∧ [EUp rel

¬Id ] ∧ [DUp rel
¬Id ] (45)

[DId
¬Up rel] (46)

(39) ∧ . . . ∧ (46) (47)

set Final

start the Up rel-chain

Up rel starts with a u

Up rel spans various u

no u is skipped

Up rels are unique

the Up rel-chain. . .

. . . overlaps the Id-chain

Now, we force the proposition letter Up rel to correctly encode the relation that con-
nects pairs of tiles which are vertically adjacent. On the basis of the correspondence be-
tween tiles and u-intervals, we express the relation of vertical adjacency between pairs
of tiles in terms of the truth of Up rel over intervals whose endpoints are the endpoints
of suitable u-intervals. Formally, we say that two u-intervals [b l, bl+1] and [bl′ , bl′+1] are
above-connected if (and only if) [b l+1, bl′ ] is an Up rel-interval. We must guarantee that
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(i) each Id-interval spans the same number of u-intervals (tiles), (ii) each u-interval of
an Id-interval is connected to exactly one u-interval of the next Id-interval (if any), and
to exactly one u-interval of the previous Id-interval (if any). To this end, we first label u-
intervals belonging to the last Id-interval with the proposition letter Final (formula (39)
below). Next, we force each Up rel-interval to start with a u-interval (formula (41))
and to span several u-intervals (formula (42)). Then, making use of Up rel-intervals,
we constrain each u-interval not belonging to the last Id-interval to be connected to at
least one u-interval in the future (formula (40)) and each u-interval not belonging to the
first Id-interval to be connected to at least one u-interval in the past (formula (43)). To
guarantee that each u-interval is connected to at most one u-interval in the future and
to at most one u-interval in the past, we force any Up rel-interval not to be a beginning
interval, an ending interval, or a strict sub-interval of another Up rel-interval (formula
(44)). Finally, to guarantee that Up rel-intervals connect u-intervals belonging to con-
secutive Id-intervals, we constrain any Id-interval not to be a beginning interval (resp.,
ending interval, strict sub-interval, strict super-interval) of an Up rel-interval (formulae
(45) and (46)).

Lemma 15. Let M = 〈D,D, I〉 be a PNL+FO model and [a, b] ∈ I(D) such that

M, [a, b] � (35) ∧ (38) ∧ (47),

and let b10 < b11 < . . . < b1m1
= b20 < . . . < b2m2

= . . . = bv−1
0 < . . . < bv−1

mv−1
=

bv0 < . . . < bvmv
be the sequence of points whose existence is guaranteed by Lemma 14.

Then, for each 1 ≤ s < v and 0 ≤ l < ms, M, [bsl+1, b
s+1
l ] � Up rel, and, for each

1 ≤ s, s′ ≤ v, ms = ms′ . Moreover, no other interval [c, d] satisfies Up rel, unless
c < b.

Proof. By (39) and (40), no u-interval belonging to the last Id-interval meets an Up rel-
interval. Let [bsi , b

s
i+1] be a u-interval not belonging to the last Id-interval. By (40), b si+1

starts an Up rel-interval, that, by (42), is neither a point-interval nor a u-interval, and
it meets a u-interval. Hence, it must span more than one u-interval, ending at some
bs

′
i′ > bsi+2. By (46), bs

′
i′ ≥ bs+1

0 , and, by (45), bs
′
i′ < bs+1

ms+1
. We prove by induction on i

that [bsi , b
s
i+1] is above-connected to [bs+1

i , bs+1
i+1 ]. Let us consider [bs0, b

s
1] and suppose,

by contradiction, that it is above-connected to [bs+1
i′ , bs+1

i′+1], for some i′ > 0. Now, by
(43), there must be an Up rel-interval ending at bs+1

0 . By the second conjunct of (45),
such an Up rel-interval cannot start at a point bs

′
h , with s′ < s and 0 ≤ h ≤ ms′ , and,

by (42), it cannot start at bs0. Moreover, by the third conjunct of (44), it cannot start at
a point bsh, with 1 < h < ms′ (in such a case, the Up rel-interval [bsh, b

s+1
0 ] would be

a strict sub-interval of the Up rel-interval [bs1, b
s+1
i′ ]). Finally, by the first conjunct of

(44), it cannot at start at bs1 (there would be two distinct Up rel-intervals starting at the
same point). Hence, [bs0, b

s
1] is above-connected to [bs+1

0 , bs+1
1 ]. Now we suppose the

thesis to hold for 1, 2, . . . , i, with i < ms, and we prove it for i + 1. The argument is
quite similar to the one for the base case, provided that b s+1

0 is replaced by bs+1
i . By
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contradiction, let us assume [bsi , b
s
i+1] to be above-connected to [bs+1

i′ , bs+1
i′+1], for some

i′ > i (the case i′ < i is excluded by the second disjunct of (44) making use of the
inductive hypothesis). By (43), there must be an Up rel-interval ending at b s+1

i . By the
third conjunct of (44), this Up rel-interval can start neither at some point before b si nor
at some point after bsi+1, and, by the first conjunct of (44), it can start neither at b si nor
at bsi+1. Hence, [bsi , b

s
i+1] is above-connected to [bs+1

i , bs+1
i+1 ].

To prove that, for each 1 ≤ s, s′ ≤ v, ms = ms′ , it suffices to observe that, by (43),
the left endpoint of every u-interval [bsi , b

s
i+1], with s > 1 (that is, to the right of the first

Id-interval), is the right endpoint of an Up rel-interval. Such an Up rel-interval cannot
start before bs−1

0 (by the second and the third conjunct of (45)), at b s−1
0 (by (42) and by

the first conjunct of (45)), or after bs0 (by 46). The claim immediately follows.
Finally, since, by (41) any Up rel-interval (to the right of b) starts with a u-interval,

by the first conjunct of (44), we can conclude that no other interval [c, d], with c ≥ b,
satisfies Up rel. ��

Finally, we can force all color-matching conditions to be respected, by means of the
following set of formulae, where Tr (resp., Tl, Tt, Tb) is the subset of T containing all
and only those tiles whose right (resp., left, up, down) side is colored with $.

[G](u →
∨

tq∈T
tq ∧

∧

tq �=tq′
¬(tq ∧ tq′)) (48)

[G](
∨

tq∈T
tq → u) (49)

[G](u ∧ ¬�rId ∧ ¬�rπ →
∨

right(tq)=left(tq′ )

(tq ∧�rtq′)) (50)

[G](u ∧�rUp rel →
∨

up(tq)=down(tq′ )

(tq ∧�r(Up rel ∧�rtq′))) (51)

[G](�rId → �r

∨

tq∈Tl

tq) (52)

[G](((u ∧�rId) ∨ (u ∧�rπ)) →
∨

tq∈Tr

tq) (53)

∀x(�r(Id ∧�rP (x)) →

[G](u ∧ (�rP (x) ∨�r�rP (x)) →
∨

tq∈Tb

tq)) (54)

[G](u ∧ Final →
∨

tq∈Tt

tq) (55)

(48) ∧ . . . ∧ (55) (56)

put the tiles

tiles are only u

right-left constraint

up-down constraint

left side

right side

bottom side

top side

Theorem 16. Given a finite set of tile types T = {t1, . . . , tk} and a side color $, the
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formula
Φ := (35) ∧ (38) ∧ (47) ∧ (56)

is satisfiable in a finite linearly-ordered temporal domain if and only if T can tile a
finite rectangle R = {(x, y) | 1 ≤ x ≤ X and 1 ≤ y ≤ Y }, for some X,Y ∈ N, with
side color $.

Proof. (Only if:): Suppose that M, [a, b] � Φ, and let b10 < b11 < . . . < b1m = b20 <

. . . < b2m = . . . = bv−1
0 < . . . < bv−1

m = bv0 < . . . < bvm be the sequence of points
whose existence is guaranteed by Lemmas 14 and 15. We putX = m and Y = v. Then,
we define a function f : R → T , with R = {(x, y) | 1 ≤ x ≤ X and 1 ≤ y ≤ Y },
such that, for all s, r, with 0 ≤ s ≤ X − 1, 1 ≤ r ≤ Y , f(s+ 1, r) = tq if and only if
M, [brs, b

r
s+1] � tq. By exploiting Lemmas 13, 14, and 15, it can be easily shown that f

defines a correct tiling of R.
(If:) Let f : R → T be a correct tiling of the rectangle R = {(x, y) | 1 ≤ x ≤

X and 1 ≤ y ≤ Y } for some X and Y , and a given border color $. We show that
there exist a model M and an interval [a, b] such that M, [a, b] � Φ. Let D = D =

N |X·Y+1 (= {0, 1, . . . , X ·Y +1}), and let M be the RPNL+FO model built on these
two domains. We define an interpretation I such that M, [0, 1] � Φ (we tacitly assume
that all non-listed interpretations are false). First, to guarantee that (35) is satisfied, we
put

uI([i,i+1]) for all 1 ≤ i ≤ X · Y

Then, to satisfy the other conjuncts of Φ on [0, 1], we define the interpretation of the
remaining proposition letters and of the predicate symbol P as follows:

P I([i,j])(i) for all i, j > 0

IdI([i·X+1,(i+1)·X+1]) for all 0 ≤ i ≤ Y − 1

Up relI([i,i+X−1]) for all 2 ≤ i ≤ X · (Y − 1) + 1

FinalI([i,i+1]) for all X · (Y − 1) + 1 ≤ i ≤ X · Y

Finally, for each tq ∈ T, we put:

tq
I([i,i+1]) ⇔ f(s+ 1, r) = tq for all i = X · (r − 1) + s+ 1),

with 1 ≤ r ≤ Y and 0 ≤ s ≤ X − 1.

��

To adapt the proof to structures based on the linear order N, we need to force the u-
chain and the Id-chain to be finite. In the finite case, we can directly exploit the finiteness
of the linear order (intervals whose right endpoint is the last point of the domain are all
and only those intervals that satisfy the formula �rπ). In the case of N, we can use
a proposition letter Stop to label all and only those intervals starting at a given point
a of the linear order, and take a as the last point of the finite linear order (which can
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be detected by means of formulae of the form � rStop or, equivalently, �rStop). The
following formulae define the properties of Stop.

�r(¬π ∧�rStop) (57)

�r(�rStop → �rStop ∧ �r¬u ∧�r�r¬u ∧ �r(¬π → �r¬Stop)) (58)

Now, it suffices to substitute �rStop by �rπ in formulae (33), (36), (50), and (53).

Corollary17. The satisfiability problem for RPNL+FO with only one first-order vari-
able, interpreted over finite domains or the natural numbers, is undecidable.

It is worth pointing out that the above proof does not make any assumption on the se-
mantics being strict or non-strict, and thus the corollary holds in both cases. On the other
hand, the proof makes a massive use of the modal constant π (when the strict semantic
is assumed, the constant π can simply be interpreted as the constant ⊥) and its elimi-
nation does not seem to be trivial. Therefore, the satisfiability problem for RPNL+FO,
devoid of π, when the non-strict semantics is assumed, is still open.

8 Conclusions

Point-based temporal logics have been successfully exploited in various computer sci-
ence areas, ranging from well-established areas, like program specification and veri-
fication, knowledge representation and reasoning, and temporal databases, to emerg-
ing ones, like multi-agent systems and bioinformatics. We argue that interval temporal
logics are particularly well suited for a number of applications, including natural lan-
guage processing, constraint management, planning and synthesis of plan controllers,
and temporal data aggregation. Unfortunately, for a long time, undecidability or high
complexity of most of them has discouraged their extensive study in computer science.
The recent discovery of some quite expressive, yet decidable, interval temporal logics
will hopefully change the scenario in the years to come and give a boost to the search
for tractable fragments and their application in the above-mentioned domains.

PNL is one of the most significant examples of a genuine interval-based tempo-
ral logic which has been shown to be decidable. Decidability is preserved when PNL
is enriched with metric features that allow one to constrain the length of an interval
over natural numbers (Metric PNL). In this paper, we have shown that the extension
of (Metric) PNL with variables and binders over interval lengths is quite natural, but
yields undecidability, even in the case of very restricted fragments. Furthermore, we
have proved that another natural extension of propositional temporal logics, namely,
the one obtained by replacing proposition letters by first-order formulae, oversteps the
decidability barrier even in a very restricted case like that of monodic first-order formu-
lae interpreted over finite linear orders or natural numbers.

Since our main goal is to find more expressive, yet decidable, extensions of (Metric)
PNL, at a first glance, these results may appear interesting but discouraging, taking into
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account that we already know that the addition of any other independent modality from
Allen’s repository makes PNL undecidable over natural numbers. However, a careful
look at the undecidability proofs shows that there is still room for improvements. In
the undecidability proof for PNL+LB, the use of both modalities (future and past) turns
out to be essential for the reduction, and, in the undecidability proof for PNL+FO, one
modality suffices, but the modal constant π plays a crucial role in the reduction. Hence,
there are still interesting sub-fragments to be investigated to further refine the bound-
ary between decidable and undecidable variants and extensions of PNL. Moreover, in
order to recover decidability, it is worth considering the possibility of constraining the
interactions between the modal and first-order components of (R)PNL+FO by means
of suitable syntactic rules. It would also be interesting to investigate whether interval
logics can be shown to be decidable (via the application of Rabin’s theorem) when
interpreted in monadic second-order theories of suitable structures.

Finally, the problem of providing a sound and complete axiomatization of the con-
sidered logics deserves to be investigated as well. Such a problem is apparently quite
difficult for PNL and MPNL over natural numbers. In the case of PNL+LB and (R)PNL
+FO, thanks to the higher expressive power of the logics, it might be easier.
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