Prompt Interval Temporal Logic

Dario Della Monica, Angelo Montanari, Aniello Murano, and Pietro Sala

JELIA 2016 Larnaca, Cyprus, 11/11

э

(日)

Outline

Introduction

The logic PROMPT-PNL

(Interval) Temporal Logic and PNL PROMPT-PNL

Undecidability

Recovering decidability

Conclusions and future work

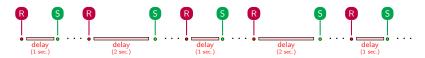
э

Prompt Interval Temporal Logic

Outline

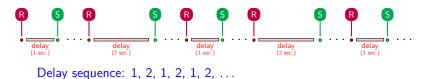
Introduction

(Interval) Temporal Logic and PNL


э

Prompt Interval Temporal Logic

Intuition: to bound the delay with which a request is satisfied


Intuition: to bound the delay with which a request is satisfied

▶ the bound is constant ...

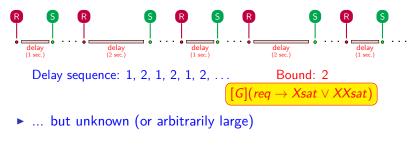
Intuition: to bound the delay with which a request is satisfied

the bound is constant ...

3

Intuition: to bound the delay with which a request is satisfied

- $\begin{array}{c|c} R & S & R & S$
- ▶ the bound is constant ...



э

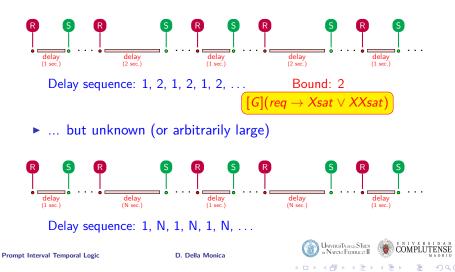
• □ ▶ < □ ▶ < □ ▶ < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ <

Intuition: to bound the delay with which a request is satisfied

▶ the bound is constant ...

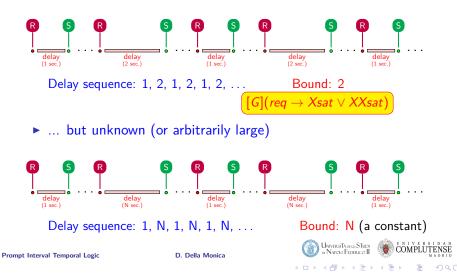
UNIVER

-


UNIVERSITÀ DEGLI STUDI ON NARCHI FEDERACO II

イロト イヨト イヨト イ

Prompt Interval Temporal Logic


Intuition: to bound the delay with which a request is satisfied

▶ the bound is constant ...

Intuition: to bound the delay with which a request is satisfied

▶ the bound is constant ...

What is not prompt

Delay sequence: 1, 2, 3, 4, 5, ...

э

(日)

What is not prompt

Delay sequence: 1, 2, 3, 4, 5, ...

Bound: ∞ (unbounded)

イロト イヨト イヨト イヨ

Prompt extensions of temporal logic

PLTL [Alur-Etessami-La Torre-Peled, 2001]

PROMPT-LTL [Kupferman-Piterman-Vardi, 2009]

э

(日)

Outline

The logic PROMPT-PNL

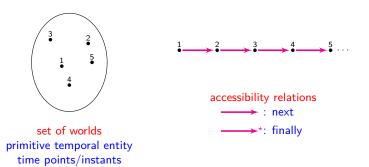
(Interval) Temporal Logic and PNL PROMPT-PNL

э

Prompt Interval Temporal Logic

Outline

The logic PROMPT-PNL (Interval) Temporal Logic and PNL

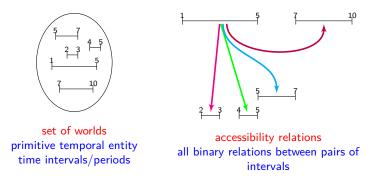


э

Prompt Interval Temporal Logic

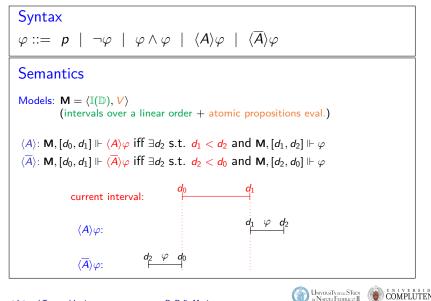
Temporal logics

Temporal logics are (multi-)modal logics simplification



э

(日)


A different approach: from points to intervals

worlds are intervals (time period — pairs of points)

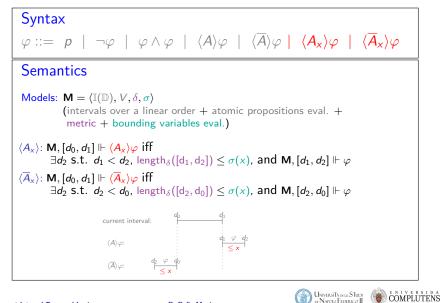
The logic PNL

Prompt Interval Temporal Logic

D. Della Monica

Outline

The logic PROMPT-PNL


PROMPT-PNL

э

Prompt Interval Temporal Logic

The logic PROMPT-PNL

Prompt Interval Temporal Logic

D. Della Monica

The satisfiability problem for PROMPT-PNL

Input: ► a PROMPT-PNL formula φ

Question: Are there

- a model $\mathbf{M} = \langle \mathbb{I}(\mathbb{D}), V, \delta, \sigma \rangle$ and
- ▶ an interval $[a, b] \in \mathbb{I}(\mathbb{D})$

that satisfy φ (i.e., **M**, $[a, b] \Vdash \varphi$)

Outline

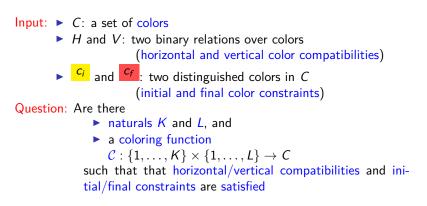
(Interval) Temporal Logic and PNL

Undecidability

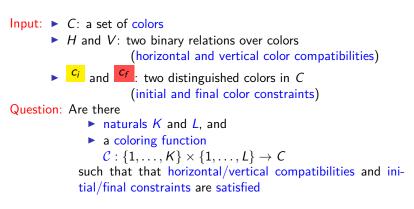
э

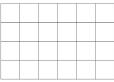
Prompt Interval Temporal Logic

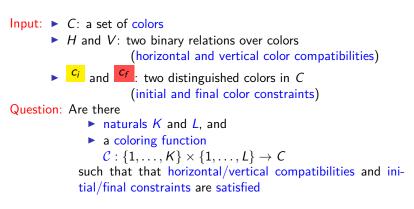
Undecidability of PROMPT-PNL

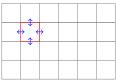

Theorem

The satisfiability problem for PROMPT-PNL is undecidable


Proof

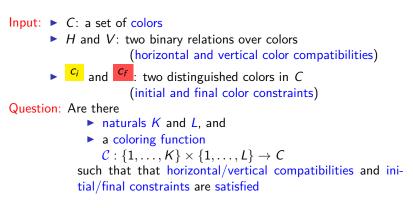

By reduction from the Finite Coloring Problem (aka. Finite Tiling Problem)

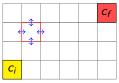



D. Della Monica

э

・ロット (雪) ・ (目) ・ (日)





D. Della Monica

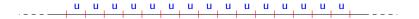
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

COMPLUTE

э

UNIVERSITÀ DECLI STUDI

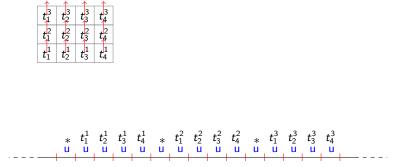
・ロット (雪) (中) (日)


æ

・ロト ・四ト ・ヨト ・ヨト

Prompt Interval Temporal Logic

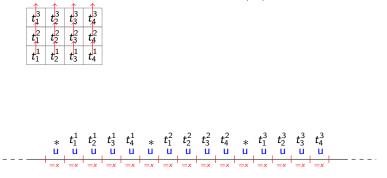
every u-interval "meets" a small u-interval $\mathbf{u} \to \langle A_x \rangle \mathbf{u}$



Prompt Interval Temporal Logic

D. Della Monica

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣



D. Della Monica

э

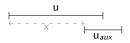
<ロト <回ト < 注ト < 注ト

it is easy to give a length upper bound $\langle A_x \rangle \mathbf{u}$

Prompt Interval Temporal Logic

D. Della Monica

э

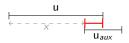

(日)

lower bound is trickier:

1 there is u_{aux}-interval starting at distance x from beginning of u-interval

 $\langle A\rangle u \rightarrow [A_x] \langle A\rangle u_{\textit{aux}}$

・ロト ・ 一下・ ・ ヨト・

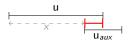

÷.

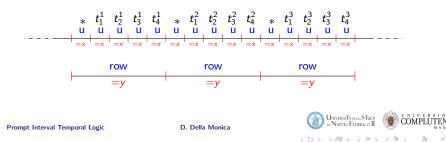
ţ	3 1	ţ	3 2	t	3 3	t	3 4
t	2 1	ţ	2 2	t	2 3	t	2 4
t	1 1	t	1 2	t	1 3	t	1 4

lower bound is trickier:

2 no small interval "meets" a u-interval while starting with a u_{aux}-interval

 $[G_{x}]\neg(\langle A\rangle \mathsf{u} \wedge \langle \overline{A}\rangle \langle A\rangle \mathsf{u}_{aux})$


(日)


ţ	3 1	ţ	3 2	t	3 3	t	3 4
t	2 1	ţ	2 2	t	2 3	t	2 4
t	1 1	t	1 2	t	1 3	t	1 4

lower bound is trickier:

2 no small interval "meets" a u-interval while starting with a u_{aux}-interval

 $[G_{x}]\neg(\langle A\rangle u \wedge \langle \overline{A}\rangle \langle A\rangle u_{aux})$

SAT is undecidable for PROMPT-PNL

Theorem.

The satisfiability problem for the future fragment of PROMPT-PNL is undecidable

Outline

Introduction

The logic PROMPT–PNL (Interval) Temporal Logic and PNL

Undecidability

Recovering decidability

Conclusions and future work

Prompt Interval Temporal Logic

D. Della Monica

The culprit for undecidability

- using bound x both in existential and universal modalities
- this gives the ability of expressing lower and upper bound for the length of intervals
- thus we can define special chains of intervals
- ... and we can use such special chains as a ruler to suitably encode vertical color compatibility relation

The culprit for undecidability

using bound x both in existential and universal modalities

- this gives the ability of expressing lower and upper bound for the length of intervals
- thus we can define special chains of intervals
- In and we can use such special chains as a ruler to suitably encode vertical color compatibility relation

- 1. Remove the culprit for undecidability: get $PROMPT^{\underline{d}}PNL$
 - ▶ split X into two sets X_{\Diamond} (existential modalities) and X_{\Box} (universal modalities)

- 1. Remove the culprit for undecidability: get $PROMPT^{\underline{d}}PNL$
 - split X into two sets X_◊ (existential modalities) and X_□ (universal modalities)
- 2. Realize that now prompt modalities are monotone
 - ► if $\langle A_x \rangle \varphi$ is true when x evaluates to k then $\langle A_x \rangle \varphi$ is true when x evaluates to k' > k

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 1. Remove the culprit for undecidability: get PROMPT^dPNL
 - ▶ split X into two sets X_{\Diamond} (existential modalities) and X_{\Box} (universal modalities)
- 2. Realize that *now* prompt modalities are monotone
 - if $\langle A_x \rangle \varphi$ is true when x evaluates to k $\langle A_x \rangle \varphi$ is true when x evaluates to k' > kthen
- 3. Realize that *now* one can reduces to the 2-variable case
 - $\land X_{\Diamond} = x, X_{\Box} = y$ thanks to monotonicity

- 1. Remove the culprit for undecidability: get $PROMPT^{\underline{d}}PNL$
 - split X into two sets X_◊ (existential modalities) and X_□ (universal modalities)
- 2. Realize that now prompt modalities are monotone
 - ► if $\langle A_x \rangle \varphi$ is true when x evaluates to k then $\langle A_x \rangle \varphi$ is true when x evaluates to k' > k
- 3. Realize that now one can reduces to the 2-variable case
 - $X_{\Diamond} = x, X_{\Box} = y$ thanks to monotonicity
- 4. Solve finite satisfiability (look for finite domains)
 - trivially reduce to satisfiability for PNL (non-prompt)

thanks to monotonicity

・ ロ ト ・ 御 ト ・ ヨ ト ・ 日 ト

- 1. Remove the culprit for undecidability: get $PROMPT^{\underline{d}}PNL$
 - split X into two sets X_◊ (existential modalities) and X_□ (universal modalities)
- 2. Realize that now prompt modalities are monotone
 - ► if $\langle A_x \rangle \varphi$ is true when x evaluates to k then $\langle A_x \rangle \varphi$ is true when x evaluates to k' > k
- 3. Realize that now one can reduces to the 2-variable case
 - $X_{\Diamond} = x, X_{\Box} = y$ thanks to monotonicity
- 4. Solve finite satisfiability (look for finite domains)
 - trivially reduce to satisfiability for PNL (non-prompt)

thanks to monotonicity

UNIVERSITÀ DECLI STUDI

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

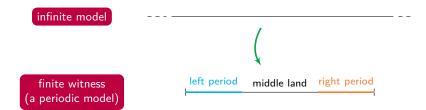
COMPLIE

э

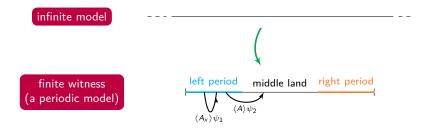
5. Solve infinite satisfiability

Proof via small model theorem

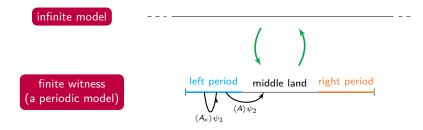
infinite model


finite witness (a periodic model)

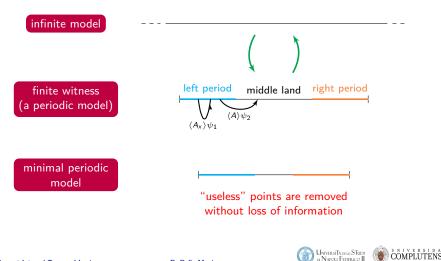
э


・ロト ・ 同ト ・ ヨト ・ ヨト

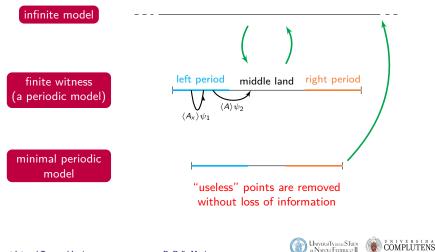
Proof via small model theorem



Proof via small model theorem



Proof via small model theorem



Proof via small model theorem

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Proof via small model theorem

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

SAT is decidable for $PROMPT^{\underline{d}}PNL$

Theorem.

The satisfiability problem for $PROMPT^{d}PNL$ is decidable (NEXPTIME-complete)

Outline

(Interval) Temporal Logic and PNL

Conclusions and future work

э

Prompt Interval Temporal Logic

D. Della Monica

Conclusions and future work

Conclusions

two prompt extensions of Interval Temporal Logic PNL

- ► full logic PROMPT-PNL is undecidable
- its syntactic restriction $PROMPT^{\underline{d}}PNL$ is decidable

(NEXPTIME-complete)

Conclusions and future work

Conclusions

two prompt extensions of Interval Temporal Logic PNL

- full logic PROMPT-PNL is undecidable
- its syntactic restriction $PROMPT^{\underline{d}}PNL$ is decidable

(NEXPTIME-complete)

Future work

- which is the minimum number of variables to make PROMPT-PNL undecidable
 - the unrestricted two variable fragment might be expressive and decidable
- parametric extensions of PNL
 - e.g., allowing both upper and lower bound
- ► comparison between PROMPT-PNL and metric PNL

Thank you!

æ