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Temporal logics: origins and application fields

» Temporal logics play a major role in computer science
» automated system verification

» Temporal logics are (multi-)modal logics
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primitive temporal entity
time points/instants
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A different approach: from points to intervals

» worlds are intervals (time period — pairs of points)
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accessibility relations
all binary relations between pairs of
intervals

set of worlds
primitive temporal entity
time intervals/periods
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Binary interval relations on linear orders

@ J. F. Allen
Maintaining knowledge about temporal intervals
Communications of the ACM, volume 26(11), pages 832-843, 1983
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Binary interval relations on linear orders

F———  Later
— After (right neighbour)

— Overlaps (to right)
—_— Ends
— During (subinterval)

| 3 Begins
|
|

6 relations + their inverses = 12 Allen’s relations

& J.F.Allen
Maintaining knowledge about temporal intervals
Communications of the ACM, volume 26(11), pages 832-843, 1983
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Halpern-Shoham's modal logic HS
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Halpern-Shoham's modal logic of interval relations

interval relations give rise to .
& HS logic
modal operators
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Halpern-Shoham's modal logic of interval relations

interval relations give rise to .
& HS logic
modal operators

HS is undecidable over all significant classes of linear orders

@ J. Halpern and Y. Shoham
A propositional modal logic of time intervals
Journal of the ACM, volume 38(4), pages 935-962, 1991
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Halpern-Shoham's modal logic of interval relations

interval relations give rise to .
& HS logic
modal operators

HS is undecidable over all significant classes of linear orders

@ J. Halpern and Y. Shoham
A propositional modal logic of time intervals
Journal of the ACM, volume 38(4), pages 935-962, 1991

:. \
Syntax:  (X) € {(A), (L), (B). (E), (D), (0), (A). (L), (B), (E), (D), (O)}
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Halpern-Shoham's modal logic of interval relations

interval relations give rise to .
& HS logic
modal operators

HS is undecidable over all significant classes of linear orders

ﬁ J. Halpern and Y. Shoham
A propositional modal logic of time intervals
Journal of the ACM, volume 38(4), pages 935-962, 1991

:. \
Syntax:  (X) € {(A), (L), (B). (E), (D), (0), (A). (L), (B), (E), (D), (O)}

Models: V : I(D) s 247
AP atomic propositions (over intervals)
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Formal semantics of HS

(B): M, [do, d1] I (B)¢ iff there exists d> such that dp < d> < di and
M, [do, d2] IF ¢.

(B): M, [do, d1] I- (B)¢ iff there exists d» such that di < d» and
M, [do, d2] IF ¢.

current interval: P
¢
(B)¢r —
(B)¢: f {
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Formal semantics of HS

(B): M, [do, d1] I (B)¢ iff there exists d> such that dp < d> < di and

M, [do, d2] IF ¢.
(B): M, [do, d1] IF (B)¢ iff there exists d> such that di < d> and
M, [do, d2] IF ¢.
(E): M, [do, di] IF (E)¢ iff there exists d> such that do < d> < di and
M, [d2, di] IF ¢.
(E): M, [do, di] IF (E)¢ iff there exists d> such that d> < do and
M, [do, di] IF ¢.
current interval: P
‘ ¢
(E)¢: —
(E)g: | {
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Formal semantics of HS - contd’

(L): M, [do, d1] IF (L)@ iff there exists da, d3 such that di < d> < d3 and
M, [d2, d5] IF ¢.

(L): M, [do, d1] IF (L)¢ iff there exists d>, ds such that d» < d5 < do and
M, [d2, d5] IF .

current interval: P
¢
(Lyg: —
(Ly¢p: +——
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Formal semantics of HS - contd’
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(D): M, [do, dh] IF (D)@ iff there exists d, d5 such that dy < d> < d3 < di and
M, [d2, ds] I ¢.
(D): M, [do, dh] I (D)¢ iff there exists da, ds such that d» < do < di < d3 and
M, [d2, d5] I .
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Definabilities among modalities

All modalities are definable in terms of (B), (B), (E), (E), (A), (A)

]
B
E—— B) | 1
HS = BBEEAA ‘ — &
| ~ () b——o
——- ()
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Definabilities among modalities

All modalities are definable in terms of (B), (B), (E), (E), (A), (A)

P
B) F——
E—— B) | i
HS = BBEEAA \ I —Q
’ (A) —ri
1 (A)

Defining the other interval modalities:
» Later: (L)p = (A)(A)yp
» Before: (L) = (A)(A)p
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Defining the other interval modalities:
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Definabilities among modalities

All modalities are definable in terms of (B), (B), (E), (E), (A), (A)
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Definabilities among modalities

All modalities are definable in terms of (B), (B), (E), (E), (A), (A)

P
(B) F——H
R —T=a
— A W
Defining the other interval modalities:

» Later: (L)p = (A)(A)yp
» Before: (L) = (A)(A)p
» During (strict sub-interval): (DYp = (B)(E)¢ (= (E)(B)yp)
» Strict super-interval: (D)o = (BY(E)p (= (E)(B)yp)
» Overlaps on the right: (O)¢ = (E)(B)y
» Overlaps on the left: (O)p = (B)(E)p

wn

[In general, it is possible defining HS modalities in terms of others}

Expressiveness of HS over finite and discrete structures D. Della Monica, Reykjavik University




The zoo of fragments of HS

» 212 = 4096 fragments of HS (syntactic)
» only ~ 1000 expressively different fragments
> expressiveness classification wrt. several classes of interval
structures
» all, dense, discrete, finite, 777
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The zoo of fragments of HS

» 212 = 4096 fragments of HS (syntactic)

» only ~ 1000 expressively different fragments
> expressiveness classification wrt. several classes of interval

structures
» all, dense, discrete, finite, 777

Classification over all linear orders/dense linear orders

@ L. Aceto, D. Della Monica, V. Goranko, A. Ingélfsdéttir, A. Montanari,
and G. Sciavicco
A Complete Classification of the Expressiveness of Interval Logics of
Allen's Relations: The General and the dense cases

ACTA Informatica, 2014 (to appear)
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In this paper:

> finite
» discrete

Ay af

Expressiveness of HS over finite and discrete structures D. Della Monica, Reykjavik University



Outline

Expressiveness of HS fragments over discrete/finite linear orders
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The expressiveness classification programme

Expressiveness classification programme: classify the fragments of
HS with respect to their expressiveness, relative to classes of
finite/discrete interval models.
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Comparing expressive power of HS fragments
Ly, Ly HS-fragments

Ly L,
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Comparing expressive power of HS fragments

Ly, Ly HS-fragments

Ll {_<7 =, >_7 Sé} L2
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Comparing expressive power of HS fragments

Ly, L, HS-fragments

Ll {_<7 =, >_7 7’%’} L2

does L; translate
into Ly?

> e

does L translate does L translate
into L17? into L17?

/g g\
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Truth-preserving translation

There exists a truth-preserving translation of Ly into Lp
iff
L, is at least as expressive as L;
(L1 = L)
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Truth-preserving translation

There exists a truth-preserving translation of Ly into Lp
iff
L, is at least as expressive as Ly
(L1 = L)

Each modality (X) of Ly is definable in L
(i.e., 3 a Lr-formula ¢ s.t. (X)p = )

Example: (L)p = (A)(A)p
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Truth-preserving translation

There exists a truth-preserving translation of Ly into Lp
iff
L, is at least as expressive as L;
(L1 = L)

Each modality (X) of Ly is definable in L
(i.e., 3 a Lr-formula ¢ s.t. (X)p = @)

Example: (L)p = (A)(A)p

212‘ 212_1 .
212 fragments... % comparisons
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Our approach

Solution:
To find a complete set

of definabilities among
modalities
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Our approach :
Notation:
Solution:

: X1Xz . . . Xn
To find a complete set 2

HS-fragment with modalities
(X1), (X2), ..., (Xn)

of definabilities among
modalities
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: X1Xz . . . Xn
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HS-fragment with modalities

of definabilities among

.. (X1), (X2),...,(Xn)
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Our approach

Notation:

Solution:
To find a complete set
of definabilities among
modalities

S - o

HS-fragment with modalities
(X1), (X2), ..., (Xn)
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Our approach
PP Notation:

Solution: e X
To find a complete set e

. HP™N HS-fragment with modalities
of definabilities among (X1), (X2}, ..., (Xn)

modalities

X {<7E7>7¢} y
—_— —_—
. 77 YiYo... Yy
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Our approach

Solution:
To find a complete set

of definabilities among

Notation:
Y o0 e

HS-fragment with modalities
(X1), (X2), ..., (Xn)

y
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Our approach

Notation:
Solution: X X
To find a complete set e
. EIEsE HS-fragment with modalities
of deflnabllltlle.s among <X1g>7 (X2), ., (Xn)
modalities
X {<7 E? >7 %} y
— —
X1 Xo. .. X, ?7? YiYo...Ym
<X]_> C Y]_ Ym 77 true
A VAN VAN
7?7 true false
A\ AN VAN
(Xa) TY1...Ym 77 true
X =<y 7?7 true false
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Our approach - cont'd
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Our approach - cont'd

X =<Y? vyes xX=Yy X =<y

no X=Y X£Y
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap
(D) CBE (D)p=(B)(E)p
(O) EBE (0)p=(E)(B)p

@ J. Halpern and Y. Shoham
A propositional modal logic of time intervals
Journal of the ACM, 1991
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap

(D) CBE (D)p=(B)(E)p

(O) EBE (0)p=(E)(B)p
77 77

By ad
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap
(D) EBE (D)p=(B)(E)p
(O) EBE (0)p=(E)(B)p
(

-
M
W
"

(L)p = (B)[EI(B)(E)p

B D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco

Expressiveness of the Interval Logics of Allen’s Relations on the Class of
all Linear Orders: Complete Classification

IJCAI 2011
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77 77
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap

<D> E EE <D>p£ <B><E>p class of all
(0O) EBE (0)p=(E)(B)p finear
(L) £ BE (L)p =(B)EIB)EPp

@ D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco
Expressiveness of the Interval Logics of Allen’s Relations on the Class of

all Linear Orders: Complete Classification
1JCAI 2011
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap

(D) CBE (D)p=(B)(E)p

(O) EBE (0)p=(E)(B)p

(L) EBE (Lp =®)EIB)E)p
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap

<D> E §E <D>PE<B><E>P class of all
(0) CTBE (0)p=(E)(B)p linear
(L) EBE (L)p =®IEIB)E)P

(A) CTBE (A)p=¢(p) v (E)e(p)’

fo(p) := [E1L A (B)([EI[E]L A (E)(p V (B)p))
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Complete sets of definabilities among modalities
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class of all
linear
orders

fo(p) := [EIL A (B)([EI[E]L A (E)(p V (B)p))
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap )
<D> E §E <D>pE<B><E>p class of all
(O) CBE (0)p=(E)(B)p fincar classe/sfof
orders discrete /finite
(L) CBE (Lp = B)EIB)Ep (excent for ()
(A) CBE (A)p=¢(p) v (E)o(p)’
7

fo(p) := [E1L A (B)([EI[E]L A (E)(p V (B)p))
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Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap )
<D> E §E <D>pE<B><E>p class of all
(O) CBE (0)p=(E)(B)p fincar classe/sfof
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(L) CBE (Lp = B)EIB)Ep (excent for ()
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7

(O) C 277 (0)p=777

fo(p) := [EIL A (B)([EI[E]L A (E)(p V (B)p))

Expressiveness of HS over finite and discrete structures D. Della Monica, Reykjavik University
o = - = =




Complete sets of definabilities among modalities

(L) A (Lp=(A)Ap )
<D> E §E <D>pE<B><E>p class of all
(O) CBE (0)p=(E)(B)p fincar classe/sfof

orders discrete/finite
(L) CBE (Lp = B)EIB)Ep (excent for ()
(A) CBE (A)p=¢(p)V (E)e(p)!

7

(0) C 72

©Op=1?
under investigation

fo(p) := [EIL A (B)([EI[E]L A (E)(p V (B)p))
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Proving non-existence

Existence is easy... ...non-existence is hard
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Bisimulation between interval structures
Z C My x My is a bisimulations wrt the fragment XX, ... X, iff
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Z C My x My is a bisimulations wrt the fragment XX, ... X, iff
1. Z-related intervals satisfy the same propositions, i.e.:

(i1, ) € Z = (p is true over iy < p is true over i)
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Bisimulation between interval structures

Z C My x My is a bisimulations wrt the fragment XX, ... X, iff
1. Z-related intervals satisfy the same propositions, i.e.:

(i1, ) € Z = (p is true over iy < p is true over i)

2. bisimulation relation “preserved” by modal operators, i.e., for
every modal operator (X):

i i
1 1
My —_ —_—
I
Mo —

Expressiveness of HS over finite and discrete structures D. Della Monica, Reykjavik University
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Z C My x My is a bisimulations wrt the fragment XX, ... X, iff
1. Z-related intervals satisfy the same propositions, i.e.:

(i1, ) € Z = (p is true over iy < p is true over i)

2. bisimulation relation “preserved” by modal operators, i.e., for

every modal operator (X):
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Z C My x My is a bisimulations wrt the fragment XX, ... X, iff
1. Z-related intervals satisfy the same propositions, i.e.:

(i1, ) € Z = (p is true over iy < p is true over i)

2. bisimulation relation “preserved” by modal operators, i.e., for
every modal operator (X):
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Bisimulation between interval structures

Z C My x My is a bisimulations wrt the fragment XX, ... X, iff
1. Z-related intervals satisfy the same propositions, i.e.:

(i1, ) € Z = (p is true over iy < p is true over i)

2. bisimulation relation “preserved” by modal operators, i.e., for

every modal operator (X):

(il, 12) cZ

./
(I']_’ I]/_) c X } = 3/2 s.t.

I
Ml P e —
4
7
1
,,,,,,,, Z,I',,,,,,,,,,,,,,,,
1
\ -
\ I2
M2 ‘}—T{

Expressiveness of HS over finite and discrete structures

D. Della Monica, Reykjavik University



Bisimulation between interval structures

Z C My x My is a bisimulations wrt the fragment XX, ... X, iff
1. Z-related intervals satisfy the same propositions, i.e.:

(i1, ) € Z = (p is true over iy < p is true over i)

2. bisimulation relation “preserved” by modal operators, i.e., for
every modal operator (X):

T -
(h,i1) e X (h,i5) € X
X
emmTTTTTTTTTE- -~
. !
h h
Ml /}—{ P
4 AY
1 \
1 \
ffffffff Zv a7
\‘ . i/ 1'
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M2 ‘}—.ﬁ{ }ﬁﬁ{‘
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Bisimulation between interval structures - cont'd

Theorem A bisimulation for £ preserves the truth of £-formulae

[a, b] and [c, d] are bisimilar
v is a L-formula

@ is true in [a, b] iff ¢ is true in [c, d]
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How to use bisimulations to disprove definability

Suppose that we want to prove:

(X) is not definable in terms of £
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Suppose that we want to prove:
(X) is not definable in terms of £

We must provide:
1. two models My and M>
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How to use bisimulations to disprove definability

Suppose that we want to prove:
(X) is not definable in terms of £

We must provide:
1. two models My and M>
2. a bisimulation Z C M; x M, wrt fragment £

3. two interval i1 € My and i € M5 such that

a. i; and iy are Z-related
b. My, i IF (X)p and Ma, ip IF =(X)p
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3. two interval i1 € My and i € M5 such that
a. i; and iy are Z-related
b. My, i IF (X)p and Ma, ip IF =(X)p

By contradiction
If (X) is definable in terms of £, then (X)p is
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2. a bisimulation Z C M; x M, wrt fragment £
3. two interval i1 € My and i € M5 such that
a. i; and iy are Z-related
b. My, i IF (X)p and Ma, ip IF =(X)p
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If (X) is definable in terms of £, then (X)p is
Truth of (X)p preserved by Z,
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How to use bisimulations to disprove definability

Suppose that we want to prove:
(X) is not definable in terms of £

We must provide:
1. two models My and M>

2. a bisimulation Z C M; x M, wrt fragment £
3. two interval i1 € My and i € M5 such that
a. i; and iy are Z-related
b. My, i IF (X)p and Ma, ip IF =(X)p
By contradiction
If (X) is definable in terms of £, then (X)p is
Truth of (X)p preserved by Z,
but (X)p is true in i1 (in Mp) and false in i» (in My)
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How to use bisimulations to disprove definability

Suppose that we want to prove:
(X) is not definable in terms of £

We must provide:
1. two models My and M>

2. a bisimulation Z C M; x M, wrt fragment £
3. two interval i1 € My and i € M5 such that
a. i; and iy are Z-related
b. My, i IF (X)p and Ma, ip IF =(X)p
By contradiction
If (X) is definable in terms of £, then (X)p is
Truth of (X)p preserved by Z,
but (X)p is true in i1 (in Mp) and false in i» (in My)

= contradiction
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An example: the operator (D)

Semantics:

M, [a,b] IF (D) % 3¢, d such that a < c < d < b and M. [c.d] IF

(D)
—

P
—
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Semantics:

M, [a,b] IF (D) % 3¢, d such that a < c < d < b and M. [c.d] IF

(D)
—

P
—

Operator (D) is definable in terms of BE (D)yp = (B)(E)p
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An example: the operator (D)

Semantics:

M, [a,b] IF (D) % 3¢, d such that a < c < d < b and M. [c.d] IF

(D)
—

P
—

Operator (D) is definable in terms of BE (D)yp = (B)(E)p

To prove that (D) is not definable in terms of any other fragment,
we must prove that:

1) (D) is not definable in terms of ALBOALBEDO
2) (D) is not definable in terms of ALEOALBEDO

Ay ad
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(D) is not definable in terms of A

A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
» models: Ml = <]I(N), V1>,M2 = <H(N), V2>
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> Va(p) = {1, 2]}
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(D) is not definable in terms of A

A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
» models: Ml ) V1>,M2 = <H(N), V2>

> V1(P)
> Va(p)

= (I(N
{[1,2]}
0
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(D) is not definable in terms of A

A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
» models: Ml = <]I(N), V1>,M2 = <H(N), V2>

> Vi(p) = {[1,2]}
> Va(p) =10

» bisimulation relation Z: ([x, y], [w, z]) € Z iff
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(D) is not definable in terms of A

A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
» models: Ml = <]I(N), V1>,M2 = <H(N), V2>

> Vi(p) = {[1,2]}
> Va(p) =10

» bisimulation relation Z: ([x, y], [w, z]) € Z iff
L [x,y] = [w,2] =[0,3]

Expressiveness of HS over finite and discrete structures D. Della Monica, Reykjavik University



(D) is not definable in terms of A

A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
» models: Ml = <]I(N), V1>,M2 = <H(N), V2>
> Va(p) = {[1,2]}
> Va(p) =10
» bisimulation relation Z: ([x, y], [w, z]) € Z iff
1. [x,y] =[w,z] =10,3]
2. [x,y]=[w,z] and x >3
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A bisimulation wrt fragment A but not D

Bisimulation wrt A (AP = {p}):
» models: Ml = <]I(N), V1>,M2 = <H(N), V2>

> Vi(p) = {[1,2]}
> Va(p) =10

» bisimulation relation Z: ([x, y], [w, z]) € Z iff

L [xy]=[w,z] =[0,3]
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> Vi(p) = {[1,2]}
> Va(p) =10

» bisimulation relation Z: ([x, y], [w, z]) € Z iff
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Expressiveness classification: results and TODOs

DONE:

‘ » class of all linear orders (1347 fragments) UCAI 11]

» classes of dense linear orders (966 fragments)
[TIME 13]
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Expressiveness classification: results and TODOs

DONE:
» class of all linear orders (1347 fragments)
‘ [lICAI 11]
» classes of dense linear orders (966 fragments)
[TIME 13]

ALMOST DONE:
» classes of finite linear orders _
[this paper]

> classes of discrete linear orders

MISSING PIECES:
‘ » (O) over finite/discrete linear orders — (O) for free

Bisimulation as a technique to disprove existence of definabilities
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Expressiveness classification over natural numbers

Complexity class:

2: Nom primitive recursive

3 EXPSPACE-complete

5: NP-complete
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The end

Thank you
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