On the expressiveness of the interval logic of Allen's relations over finite and discrete linear orders

Dario Della Monica

ICE-TCS, School of Computer Science, Reykjavik University, Iceland

Joint work with L. Aceto, A. Ingólfsdóttir, A. Montanari, G.Sciavicco

JELIA 2014 Madeira, September 25th, 2014

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

Temporal logics: origins and application fields

- ► Temporal logics play a major role in computer science
 - automated system verification
- ► Temporal logics are (multi-)modal logics

set of worlds primitive temporal entity time points/instants

→*: finally

Temporal logics: origins and application fields

- ► Temporal logics play a major role in computer science
 - automated system verification
- Temporal logics are (multi-)modal logics

simplification

set of worlds primitive temporal entity time points/instants

→ : next →*: finally

A different approach: from points to intervals

worlds are intervals (time period — pairs of points)

set of worlds primitive temporal entity time intervals/periods

accessibility relations
all binary relations between pairs of
intervals

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

6 relations + their inverses = 12 Allen's relations

J. F. Allen

Maintaining knowledge about temporal intervals

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

interval relations give rise to modal operators

HS logic

◆□ト ◆圖ト ◆重ト ◆重ト

interval relations give rise to modal operators

HS logic

HS is undecidable over all significant classes of linear orders

J. Halpern and Y. Shoham

A propositional modal logic of time intervals

Journal of the ACM, volume 38(4), pages 935-962, 1991

interval relations give rise to modal operators

HS logic

HS is undecidable over all significant classes of linear orders

J. Halpern and Y. Shoham

A propositional modal logic of time intervals

Journal of the ACM, volume 38(4), pages 935-962, 1991

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle X \rangle \varphi$$

Syntax:

$$\langle \textbf{X} \rangle \in \{\langle \textbf{A} \rangle, \langle \textbf{L} \rangle, \langle \textbf{B} \rangle, \langle \textbf{E} \rangle, \langle \textbf{D} \rangle, \langle \textbf{O} \rangle, \langle \overline{\textbf{A}} \rangle, \langle \overline{\textbf{L}} \rangle, \langle \overline{\textbf{B}} \rangle, \langle \overline{\textbf{E}} \rangle, \langle \overline{\textbf{D}} \rangle, \langle \overline{\textbf{O}} \rangle \}$$

interval relations give rise to modal operators

HS logic

HS is undecidable over all significant classes of linear orders

J. Halpern and Y. Shoham

A propositional modal logic of time intervals

Journal of the ACM, volume 38(4), pages 935-962, 1991

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle X \rangle \varphi$$

 $\textbf{Syntax:} \qquad \langle \textbf{\textit{X}} \rangle \in \{\langle \textbf{\textit{A}} \rangle, \langle \textbf{\textit{L}} \rangle, \langle \textbf{\textit{B}} \rangle, \langle \textbf{\textit{E}} \rangle, \langle \textbf{\textit{D}} \rangle, \langle \textbf{\textit{O}} \rangle, \langle \textbf{\textit{A}} \rangle, \langle \overline{\textbf{\textit{L}}} \rangle, \langle \overline{\textbf{\textit{B}}} \rangle, \langle \overline{\textbf{\textit{E}}} \rangle, \langle \overline{\textbf{\textit{D}}} \rangle, \langle \overline{\textbf{\textit{O}}} \rangle\}$

$$\mathsf{M} = \langle \mathbb{I}(\mathbb{D}), V \rangle \ V : \mathbb{I}(\mathbb{D}) \mapsto 2^{\mathcal{AP}}$$

Models: V:

 \mathcal{AP} atomic propositions (over intervals)

Formal semantics of HS

- (B): $M, [d_0, d_1] \Vdash (B) \phi$ iff there exists d_2 such that $d_0 \leq d_2 < d_1$ and M, $[d_0, d_2] \Vdash \phi$.
- $\langle \overline{\mathsf{B}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{B}} \rangle \phi$ iff there exists d_2 such that $d_1 < d_2$ and M, $[d_0, d_2] \Vdash \phi$.

 $\langle \mathsf{B} \rangle \phi$:

 $\langle \overline{\mathsf{B}} \rangle \phi$:

D. Della Monica, Reykjavik University

Formal semantics of HS

- (B): $M, [d_0, d_1] \Vdash \langle B \rangle \phi$ iff there exists d_2 such that $d_0 \leq d_2 < d_1$ and M, $[d_0, d_2] \Vdash \phi$.
- $\langle \overline{B} \rangle$: $M, [d_0, d_1] \Vdash \langle \overline{B} \rangle \phi$ iff there exists d_2 such that $d_1 < d_2$ and M, $[d_0, d_2] \Vdash \phi$.
- $\langle \mathsf{E} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{E} \rangle \phi$ iff there exists d_2 such that $d_0 < d_2 \le d_1$ and M, $[d_2, d_1] \Vdash \phi$.
- $\langle \overline{\mathsf{E}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{E}} \rangle \phi$ iff there exists d_2 such that $d_2 < d_0$ and M, $[d_2, d_1] \Vdash \phi$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Formal semantics of HS

- (B): $M, [d_0, d_1] \Vdash (B) \phi$ iff there exists d_2 such that $d_0 \leq d_2 < d_1$ and M, $[d_0, d_2] \Vdash \phi$.
- $\langle \overline{B} \rangle$: $M, [d_0, d_1] \Vdash \langle \overline{B} \rangle \phi$ iff there exists d_2 such that $d_1 < d_2$ and M, $[d_0, d_2] \Vdash \phi$.
- $\langle \mathsf{E} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{E} \rangle \phi$ iff there exists d_2 such that $d_0 < d_2 \le d_1$ and M, $[d_2, d_1] \Vdash \phi$.
- $\langle \overline{\mathsf{E}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{E}} \rangle \phi$ iff there exists d_2 such that $d_2 < d_0$ and M, $[d_2, d_1] \Vdash \phi$.
- $\langle A \rangle$: M, $[d_0, d_1] \Vdash \langle A \rangle \phi$ iff there exists d_2 such that $d_1 < d_2$ and M, $[d_1, d_2] \Vdash \phi$.
- $\langle \overline{A} \rangle$: $M, [d_0, d_1] \Vdash \langle \overline{A} \rangle \phi$ iff there exists d_2 such that $d_2 < d_0$ and M, $[d_2, d_0] \Vdash \phi$.

Formal semantics of HS - contd'

- $\langle \mathsf{L} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{L} \rangle \phi$ iff there exists d_2, d_3 such that $d_1 < d_2 < d_3$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathsf{L}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{L}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_3 < d_0$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.

Formal semantics of HS - contd'

- $\langle \mathsf{L} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{L} \rangle \phi$ iff there exists d_2, d_3 such that $d_1 < d_2 < d_3$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathbb{L}} \rangle$: $\mathbf{M}, [d_0, d_1] \Vdash \langle \overline{\mathbb{L}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_3 < d_0$ and $\mathbf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle \mathsf{D} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{D} \rangle \phi$ iff there exists d_2, d_3 such that $d_0 < d_2 < d_3 < d_1$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathbb{D}} \rangle$: $\mathbf{M}, [d_0, d_1] \Vdash \langle \overline{\mathbb{D}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_0 < d_1 < d_3$ and $\mathbf{M}, [d_2, d_3] \Vdash \phi$.

Formal semantics of HS - contd'

- $\langle L \rangle$: $\mathbf{M}, [d_0, d_1] \Vdash \langle L \rangle \phi$ iff there exists d_2, d_3 such that $d_1 < d_2 < d_3$ and $\mathbf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathbb{L}} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{\mathbb{L}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_3 < d_0$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \mathsf{D} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{D} \rangle \phi$ iff there exists d_2, d_3 such that $d_0 < d_2 < d_3 < d_1$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathsf{D}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{D}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_0 < d_1 < d_3$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle O \rangle$: M, $[d_0, d_1] \Vdash \langle O \rangle \phi$ iff there exists d_2 , d_3 such that $d_0 < d_2 < d_1 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \overline{O} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{O} \rangle \phi$ iff there exists d_2 , d_3 such that $d_2 < d_0 < d_3 < d_1$ and M, $[d_2, d_3] \Vdash \phi$.

All modalities are definable in terms of $\langle B \rangle$, $\langle \overline{B} \rangle$, $\langle E \rangle$, $\langle \overline{E} \rangle$, $\langle A \rangle$, $\langle \overline{A} \rangle$

All modalities are definable in terms of $\langle B \rangle$, $\langle \overline{B} \rangle$, $\langle E \rangle$, $\langle \overline{E} \rangle$, $\langle A \rangle$, $\langle \overline{A} \rangle$

Defining the other interval modalities:

- ► Later: $\langle L \rangle \varphi \equiv \langle A \rangle \langle A \rangle \varphi$
- ▶ Before: $\langle \overline{\mathsf{L}} \rangle \varphi \equiv \langle \overline{\mathsf{A}} \rangle \langle \overline{\mathsf{A}} \rangle \varphi$

All modalities are definable in terms of $\langle B \rangle$, $\langle \overline{B} \rangle$, $\langle E \rangle$, $\langle \overline{E} \rangle$, $\langle A \rangle$, $\langle \overline{A} \rangle$

$$HS \equiv B\overline{B}E\overline{E}A\overline{A}$$

Defining the other interval modalities:

- ▶ Later: $\langle \mathsf{L} \rangle \varphi \equiv \langle \mathsf{A} \rangle \langle \mathsf{A} \rangle \varphi$
- ▶ Before: $\langle \overline{\mathsf{L}} \rangle \varphi \equiv \langle \overline{\mathsf{A}} \rangle \langle \overline{\mathsf{A}} \rangle \varphi$
- **During (strict sub-interval)**: $\langle D \rangle \varphi \equiv \langle B \rangle \langle E \rangle \varphi$ (≡ $\langle E \rangle \langle B \rangle \varphi$)
- ▶ Strict super-interval: $\langle \overline{\mathsf{D}} \rangle \varphi \equiv \langle \overline{\mathsf{B}} \rangle \langle \overline{\mathsf{E}} \rangle \varphi \ (\equiv \langle \overline{\mathsf{E}} \rangle \langle \overline{\mathsf{B}} \rangle \varphi)$

All modalities are definable in terms of $\langle B \rangle$, $\langle \overline{B} \rangle$, $\langle E \rangle$, $\langle \overline{E} \rangle$, $\langle A \rangle$, $\langle \overline{A} \rangle$

Defining the other interval modalities:

- ▶ Later: $\langle \mathsf{L} \rangle \varphi \equiv \langle \mathsf{A} \rangle \langle \mathsf{A} \rangle \varphi$
- ▶ Before: $\langle \overline{\mathsf{L}} \rangle \varphi \equiv \langle \overline{\mathsf{A}} \rangle \langle \overline{\mathsf{A}} \rangle \varphi$
- **During (strict sub-interval)**: $\langle D \rangle \varphi \equiv \langle B \rangle \langle E \rangle \varphi$ (≡ $\langle E \rangle \langle B \rangle \varphi$)
- ► Strict super-interval: $\langle \overline{\mathsf{D}} \rangle \varphi \equiv \langle \overline{\mathsf{B}} \rangle \langle \overline{\mathsf{E}} \rangle \varphi \ (\equiv \langle \overline{\mathsf{E}} \rangle \langle \overline{\mathsf{B}} \rangle \varphi)$
- ▶ Overlaps on the right: $\langle \mathsf{O} \rangle \varphi \equiv \langle \mathsf{E} \rangle \langle \overline{\mathsf{B}} \rangle \varphi$
- ▶ Overlaps on the left: $\langle \overline{O} \rangle \varphi \equiv \langle B \rangle \langle \overline{E} \rangle \varphi$

All modalities are definable in terms of $\langle B \rangle$, $\langle \overline{B} \rangle$, $\langle E \rangle$, $\langle \overline{E} \rangle$, $\langle A \rangle$, $\langle \overline{A} \rangle$

Defining the other interval modalities:

- ► Later: $\langle \mathsf{L} \rangle \varphi \equiv \langle \mathsf{A} \rangle \langle \mathsf{A} \rangle \varphi$
- ▶ Before: $\langle \overline{\mathsf{L}} \rangle \varphi \equiv \langle \overline{\mathsf{A}} \rangle \langle \overline{\mathsf{A}} \rangle \varphi$
- **During (strict sub-interval)**: $\langle D \rangle \varphi \equiv \langle B \rangle \langle E \rangle \varphi$ (≡ $\langle E \rangle \langle B \rangle \varphi$)
- ▶ Strict super-interval: $\langle \overline{\mathsf{D}} \rangle \varphi \equiv \langle \overline{\mathsf{B}} \rangle \langle \overline{\mathsf{E}} \rangle \varphi \ (\equiv \langle \overline{\mathsf{E}} \rangle \langle \overline{\mathsf{B}} \rangle \varphi)$
- ▶ Overlaps on the right: $\langle O \rangle \varphi \equiv \langle E \rangle \langle \overline{B} \rangle \varphi$
- ▶ Overlaps on the left: $\langle \overline{O} \rangle \varphi \equiv \langle B \rangle \langle \overline{E} \rangle \varphi$

In general, it is possible defining HS modalities in terms of others

D. Della Monica. Revkiavik University

The zoo of fragments of HS

- ▶ $2^{12} = 4096$ fragments of HS (syntactic)
- ightharpoonup only ~ 1000 expressively different fragments
- expressiveness classification wrt. several classes of interval structures
 - ► all, dense, discrete, finite, ???

The zoo of fragments of HS

- ▶ $2^{12} = 4096$ fragments of HS (syntactic)
- ▶ only ~ 1000 expressively different fragments
- expressiveness classification wrt. several classes of interval structures
 - ▶ all, dense, discrete, finite, ???

Classification over all linear orders/dense linear orders

L. Aceto, D. Della Monica, V. Goranko, A. Ingólfsdóttir, A. Montanari, and G. Sciavicco

A Complete Classification of the Expressiveness of Interval Logics of Allen's Relations: The General and the dense cases

ACTA Informatica, 2014 (to appear)

The zoo of fragments of HS

- ▶ $2^{12} = 4096$ fragments of HS (syntactic)
- ▶ only ~ 1000 expressively different fragments
- expressiveness classification wrt. several classes of interval structures
 - ▶ all, dense, discrete, finite, ???

Classification over all linear orders/dense linear orders

L. Aceto, D. Della Monica, V. Goranko, A. Ingólfsdóttir, A. Montanari, and G. Sciavicco

A Complete Classification of the Expressiveness of Interval Logics of Allen's Relations: The General and the dense cases

ACTA Informatica, 2014 (to appear)

In this paper:

- finite
- discrete

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

The expressiveness classification programme

Expressiveness classification programme: classify the fragments of HS with respect to their expressiveness, relative to classes of finite/discrete interval models.

Comparing expressive power of HS fragments

 L_1, L_2 HS-fragments

 L_1

 L_2

Comparing expressive power of HS fragments

 L_1, L_2 HS-fragments

$$L_1\ \{\prec,\equiv,\succ,\not\approx\}\ L_2$$

Comparing expressive power of HS fragments

 L_1, L_2 HS-fragments

$$L_1 \{ \prec, \equiv, \succ, \not\approx \} L_2$$

Truth-preserving translation

There exists a truth-preserving translation of L_1 into L_2 iff L_2 is at least as expressive as L_1 $(L_1 \leq L_2)$

Truth-preserving translation

There exists a truth-preserving translation of
$$L_1$$
 into L_2 iff L_2 is at least as expressive as L_1 $(L_1 \preceq L_2)$

Each modality
$$\langle X \rangle$$
 of L_1 is definable in L_2 (i.e., \exists a L_2 -formula φ s.t. $\langle X \rangle p \equiv \varphi$)

Example: $\langle L \rangle p \equiv \langle A \rangle \langle A \rangle p$

Truth-preserving translation

There exists a truth-preserving translation of
$$L_1$$
 into L_2 iff L_2 is at least as expressive as L_1 $(L_1 \preceq L_2)$

Each modality
$$\langle X \rangle$$
 of L_1 is definable in L_2 (i.e., \exists a L_2 -formula φ s.t. $\langle X \rangle p \equiv \varphi$)

Example: $\langle L \rangle p \equiv \langle A \rangle \langle A \rangle p$

 2^{12} fragments... $\frac{2^{12} \cdot (2^{12}-1)}{2}$ comparisons

Solution: To find a complete set of definabilities among modalities

Solution: To find a complete set of definabilities among modalities

Notation:

$$egin{array}{l} \mathsf{X_1X_2} \dots \mathsf{X_n} \\ = \\ \mathsf{HS}\text{-fragment with modalities} \\ \langle \mathsf{X_1} \rangle, \langle \mathsf{X_2} \rangle, \dots, \langle \mathsf{X_n} \rangle \end{array}$$

Solution: To find a complete set of definabilities among modalities

$$X_1X_2...X_n$$

Notation:

$$X_1X_2 \dots X_n$$
=
HS-fragment with modalities
 $\langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

$$Y$$
 $Y_1Y_2...Y_m$

Solution: To find a complete set of definabilities among modalities

Notation:

 $X_1X_2\dots X_n\\$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \ldots, \langle X_n \rangle$

$$X_1X_2...X_n$$

$$\overbrace{X_1 X_2 \dots X_n}^{\mathcal{X}} \quad \begin{array}{c} \{ \prec, \equiv, \succ, \not\approx \} \\ \hline \end{array} \quad \overbrace{Y_1 Y_2 \dots Y_m}^{\mathcal{Y}}$$

Solution:

To find a complete set of definabilities among modalities

Notation:

 $X_1X_2\dots X_n$

 $= \\ \mathsf{HS-fragment} \text{ with modalities} \\ \langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

$$\overbrace{X_1 X_2 \dots X_n}^{\mathcal{X}} \quad \underbrace{\{ \prec, \equiv, \succ, \not\approx \}}_{\substack{??}} \quad \underbrace{\mathcal{Y}}_{1 Y_2 \dots Y_m}$$

$$\langle X_1 \rangle \sqsubseteq Y_1 \dots Y_m$$
 ??

$$\langle X_n \rangle \sqsubseteq Y_1 \dots Y_m$$
 ??

4 - 1 4 - 4 - 1 4 - 1 4 - 1

Solution:

To find a complete set of definabilities among modalities

Notation:

$$X_1X_2 \dots X_n$$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \ldots, \langle X_n \rangle$

$$\begin{array}{ccc}
\mathcal{X} & \{ \prec, \equiv, \succ, \not\approx \} & \mathcal{Y} \\
\overbrace{X_1 X_2 \dots X_n} & ?? & \overbrace{Y_1 Y_2 \dots Y_m}
\end{array}$$

$$\langle X_1 \rangle \sqsubseteq Y_1 \dots Y_m \quad ??$$

$$\dots \quad ??$$

$$\langle X_n \rangle \sqsubseteq Y_1 \dots Y_m \quad ??$$

$$\overline{\mathcal{X} \preceq \mathcal{Y}} \quad \overline{??}$$

Solution:

To find a complete set of definabilities among modalities

Notation:

$$X_1X_2 \dots X_n$$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

$$\overbrace{X_1 X_2 \dots X_n}^{\mathcal{X}} \quad \begin{array}{c} \{ \prec, \equiv, \succ, \not \approx \} \\ \hline \end{array} \quad \overbrace{Y_1 Y_2 \dots Y_m}^{\mathcal{Y}}$$

Solution:

To find a complete set of definabilities among modalities

Notation:

$$X_1X_2\dots X_n$$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

$$\overbrace{X_1 X_2 \dots X_n}^{\mathcal{X}} \quad \{ \prec, \equiv, \succ, \not\approx \} \quad \underbrace{\mathcal{Y}}_{Y_1 Y_2 \dots Y_m}$$

Our approach - cont'd

$$\mathcal{Y} \preceq \mathcal{X}$$
?

$$\mathcal{X} \leq \mathcal{Y}$$
?

Our approach - cont'd

		$\mathcal{Y} \preceq \mathcal{X}$?	
		yes	no
$\mathcal{X} \preceq \mathcal{Y}$?	yes	$\mathcal{X}\equiv\mathcal{Y}$	$\mathcal{X} \prec \mathcal{Y}$
	no	$\mathcal{X}\succ\mathcal{Y}$	$\mathcal{X} ot \not\equiv \mathcal{Y}$

- $\langle L \rangle \sqsubseteq A \quad \langle L \rangle_p \equiv \langle A \rangle \langle A \rangle_p$
- $\langle \mathsf{D} \rangle \sqsubseteq \mathsf{BE} \langle \mathsf{D} \rangle_{p} \equiv \langle \mathsf{B} \rangle \langle \mathsf{E} \rangle_{p}$
- $\langle O \rangle \sqsubseteq \overline{B}E \quad \langle O \rangle_p \equiv \langle E \rangle \langle \overline{B} \rangle_p$

J. Halpern and Y. Shoham

A propositional modal logic of time intervals Journal of the ACM, 1991

- $\langle L \rangle \sqsubseteq A \qquad \langle L \rangle_P \equiv \langle A \rangle \langle A \rangle_P$
- $\langle D \rangle \sqsubseteq BE \langle D \rangle_p \equiv \langle B \rangle \langle E \rangle_p$
- $\langle O \rangle \sqsubseteq \overline{B}E \quad \langle O \rangle_p \equiv \langle E \rangle \langle \overline{B} \rangle_p$

- $\langle L \rangle \sqsubseteq A \qquad \langle L \rangle_P \equiv \langle A \rangle \langle A \rangle_P$
- $\langle \mathsf{D} \rangle \sqsubseteq \mathsf{BE} \ \langle \mathsf{D} \rangle_p \equiv \langle \mathsf{B} \rangle \langle \mathsf{E} \rangle_p$
- $\langle O \rangle \sqsubseteq \overline{B}E \quad \langle O \rangle_p \equiv \langle E \rangle \langle \overline{B} \rangle_p$
- $\langle L \rangle \sqsubseteq \overline{B}E \quad \langle L \rangle_p \equiv \langle \overline{B} \rangle [E] \langle \overline{B} \rangle \langle E \rangle_p$

- $\langle L \rangle \sqsubseteq A \qquad \langle L \rangle_P \equiv \langle A \rangle \langle A \rangle_P$
- $\langle \mathsf{D} \rangle \sqsubseteq \mathsf{BE} \ \langle \mathsf{D} \rangle_p \equiv \langle \mathsf{B} \rangle \langle \mathsf{E} \rangle_p$
- $\langle O \rangle \sqsubseteq \overline{B}E \quad \langle O \rangle_p \equiv \langle E \rangle \langle \overline{B} \rangle_p$
- $\langle L \rangle \sqsubseteq \overline{B}E \quad \langle L \rangle_p \equiv \langle \overline{B} \rangle [E] \langle \overline{B} \rangle \langle E \rangle_p$???

D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco Expressiveness of the Interval Logics of Allen's Relations on the Class of all Linear Orders: Complete Classification

IJCAI 2011

$$\langle L \rangle \sqsubseteq A \qquad \langle L \rangle_P \equiv \langle A \rangle \langle A \rangle_P$$

$$\langle \mathsf{D} \rangle \sqsubseteq \mathsf{BE} \langle \mathsf{D} \rangle_p \equiv \langle \mathsf{B} \rangle \langle \mathsf{E} \rangle_p$$

$$\langle O \rangle \sqsubseteq BE \langle O \rangle_p \equiv \langle E \rangle \langle \overline{B} \rangle_p$$

$$\langle \mathsf{A} \rangle \sqsubseteq \overline{\mathsf{B}} \mathsf{E} \quad \langle \mathsf{A} \rangle p \equiv \varphi(p) \lor \langle \mathsf{E} \rangle \varphi(p)^{\dagger}$$

 $^{{}^{\}dagger}\varphi(p) := [\mathsf{E}] \bot \wedge \langle \overline{\mathsf{B}} \rangle ([\mathsf{E}][\mathsf{E}] \bot \wedge \langle \mathsf{E} \rangle (p \vee \langle \overline{\mathsf{B}} \rangle p))$

$$\langle L \rangle \sqsubseteq A \qquad \langle L \rangle_P \equiv \langle A \rangle \langle A \rangle_P$$

$$\langle \mathsf{D} \rangle \sqsubseteq \mathsf{BE} \ \langle \mathsf{D} \rangle_p \equiv \langle \mathsf{B} \rangle \langle \mathsf{E} \rangle_p$$

$$\langle O \rangle \sqsubseteq BE \langle O \rangle_p \equiv \langle E \rangle \langle \overline{B} \rangle_p$$

$$\langle A \rangle \sqsubseteq \overline{B}E \quad \langle A \rangle_p \equiv \varphi(p) \lor \langle E \rangle \varphi(p)^{\dagger}$$
???

 $^{{}^{\}dagger}\varphi(p) := [\mathsf{E}] \bot \wedge \langle \overline{\mathsf{B}} \rangle ([\mathsf{E}][\mathsf{E}] \bot \wedge \langle \mathsf{E} \rangle (p \vee \langle \overline{\mathsf{B}} \rangle p))$

classes of discrete/finite linear orders (except for $\langle O \rangle$)

 $^{{}^{\}dagger}\varphi(p) := [\mathsf{E}]\bot \wedge \langle \overline{\mathsf{B}}\rangle([\mathsf{E}][\mathsf{E}]\bot \wedge \langle \mathsf{E}\rangle(p \vee \langle \overline{\mathsf{B}}\rangle p))$

 $\langle O \rangle \sqsubseteq ??? \langle O \rangle_p \equiv ???$

 $^{{}^{\}dagger}\varphi(p) := [\mathsf{E}]\bot \wedge \langle \overline{\mathsf{B}}\rangle([\mathsf{E}][\mathsf{E}]\bot \wedge \langle \mathsf{E}\rangle(p \vee \langle \overline{\mathsf{B}}\rangle p))$

$$\begin{array}{c|cccc} \langle L \rangle \sqsubseteq A & \langle L \rangle p \equiv \langle A \rangle \langle A \rangle p \\ \langle D \rangle \sqsubseteq BE & \langle D \rangle p \equiv \langle B \rangle \langle E \rangle p \\ \langle O \rangle \sqsubseteq \overline{B}E & \langle O \rangle p \equiv \langle E \rangle \langle \overline{B} \rangle p \\ \\ \langle L \rangle \sqsubseteq \overline{B}E & \langle L \rangle p \equiv \langle \overline{B} \rangle [E] \langle \overline{B} \rangle \langle E \rangle p \\ \\ \langle A \rangle \sqsubseteq \overline{B}E & \langle A \rangle p \equiv \varphi(p) \vee \langle E \rangle \varphi(p)^{\dagger} \\ \\ \langle O \rangle \sqsubseteq ??? & \langle O \rangle p \equiv ??? \\ \end{array} \right\} \begin{array}{c} \text{class of all linear orders} \\ \text{discrete/finite linear orders} \\ \text{(except for } \langle O \rangle) \\ \\ \langle O \rangle \sqsubseteq ??? & \langle O \rangle p \equiv ??? \end{array}$$

$${}^{\dagger}\varphi(p) := [\mathsf{E}]\bot \wedge \langle \overline{\mathsf{B}}\rangle([\mathsf{E}][\mathsf{E}]\bot \wedge \langle \mathsf{E}\rangle(p \vee \langle \overline{\mathsf{B}}\rangle p))$$

under investigation

Existence is easy...

Existence is easy...

a new land

Existence is easy...

a new land
a bearded lcelander

Existence is easy...

an Italian in Reykjavik

Existence is easy...

an Italian in Reykjavik

...non-existence is hard

aliens

Existence is easy...

an Italian in Reykjavik

Existence is easy...

an Italian in Reykjavik

Existence is easy...

Existence is easy...

Bisimulation between interval structures

 $Z \subseteq M_1 \times M_2$ is a bisimulations wrt the fragment $X_1 X_2 \dots X_n$ iff

- $Z\subseteq \textit{M}_1\times \textit{M}_2$ is a bisimulations wrt the fragment $X_1X_2\dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions, i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

- $Z\subseteq M_1\times M_2$ is a bisimulations wrt the fragment $X_1X_2\dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions, i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

- $Z\subseteq \textit{M}_1\times \textit{M}_2$ is a bisimulations wrt the fragment $X_1X_2\dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions, i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

$$(i_1,i_2)\in Z$$

- $Z\subseteq M_1\times M_2$ is a bisimulations wrt the fragment $X_1X_2\dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions, i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

$$(i_1,i_2) \in Z$$
$$(i_1,i_1') \in X$$

- $Z \subseteq M_1 \times M_2$ is a bisimulations wrt the fragment $X_1 X_2 \dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions, i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

$$(i_1, i_2) \in Z$$

 $(i_1, i'_1) \in X$ $\Rightarrow \exists i'_2 \text{ s.t.}$

- $Z\subseteq M_1\times M_2$ is a bisimulations wrt the fragment $X_1X_2\dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions, i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

$$(i_1, i_2) \in Z$$

 $(i_1, i'_1) \in X$ $\Rightarrow \exists i'_2 \text{ s.t. }$ $\left\{ \begin{array}{l} (i'_1, i'_2) \in Z \\ (i_2, i'_2) \in X \end{array} \right.$

Bisimulation between interval structures - cont'd

Theorem A bisimulation for \mathcal{L} preserves the truth of \mathcal{L} -formulae

[a,b] and [c,d] are bisimilar φ is a \mathcal{L} -formula

 φ is true in [a, b] iff φ is true in [c, d]

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of \mathcal{L}

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of ${\cal L}$

We must provide:

1. two models M_1 and M_2

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of \mathcal{L}

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z\subseteq M_1 imes M_2$ wrt fragment $\mathcal L$

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of $\mathcal L$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of $\mathcal L$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

By contradiction

If $\langle X \rangle$ is definable in terms of \mathcal{L} , then $\langle X \rangle p$ is

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of $\mathcal L$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

By contradiction

If $\langle X \rangle$ is definable in terms of \mathcal{L} , then $\langle X \rangle p$ is Truth of $\langle X \rangle p$ preserved by Z,

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of ${\cal L}$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

By contradiction

If $\langle X \rangle$ is definable in terms of \mathcal{L} , then $\langle X \rangle p$ is Truth of $\langle X \rangle p$ preserved by Z, but $\langle X \rangle p$ is true in i_1 (in M_1) and false in i_2 (in M_2)

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of $\mathcal L$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

By contradiction

If $\langle X \rangle$ is definable in terms of \mathcal{L} , then $\langle X \rangle p$ is Truth of $\langle X \rangle p$ preserved by Z, but $\langle X \rangle p$ is true in i_1 (in M_1) and false in i_2 (in M_2)

⇒ contradiction

An example: the operator $\langle D \rangle$

Semantics:

$$M, [a, b] \Vdash \langle D \rangle \varphi \stackrel{def}{\Leftrightarrow} \exists c, d \text{ such that } a < c < d < b \text{ and } M, [c, d] \Vdash \varphi$$

$$\begin{array}{c|c} & \langle D \rangle \varphi \\ \hline & \varphi \\ \hline \end{array}$$

An example: the operator $\langle D \rangle$

Semantics:

 $M, [a, b] \Vdash \langle D \rangle \varphi \stackrel{def}{\Leftrightarrow} \exists c, d \text{ such that } a < c < d < b \text{ and } M, [c, d] \Vdash \varphi$

$$\begin{array}{c|c} \langle D \rangle \varphi \\ \hline \varphi \\ \hline \end{array}$$

Operator $\langle D \rangle$ is definable in terms of BE

$$\langle D \rangle \varphi \equiv \langle B \rangle \langle E \rangle \varphi$$

An example: the operator $\langle D \rangle$

Semantics:

 $M, [a, b] \Vdash \langle D \rangle \varphi \overset{def}{\Leftrightarrow} \exists c, d \text{ such that } a < c < d < b \text{ and } M, [c, d] \Vdash \varphi$

$$\begin{array}{c|c} & \langle D \rangle \varphi \\ \hline & \varphi \\ \hline & \end{array}$$

Operator $\langle D \rangle$ is definable in terms of BE $\langle D \rangle \varphi \equiv \langle B \rangle \langle E \rangle \varphi$

$$\langle D \rangle \varphi \equiv \langle B \rangle \langle E \rangle \varphi$$

To prove that $\langle D \rangle$ is not definable in terms of any other fragment, we must prove that:

- 1) $\langle D \rangle$ is not definable in terms of ALBOALBEDO
- 2) $\langle D \rangle$ is not definable in terms of ALEOALBEDO

A bisimulation wrt fragment A but not D

Bisimulation wrt A ($\mathcal{AP} = \{p\}$):

 $ightharpoonup models: M_1 = \langle \mathbb{I}(\mathbb{N}), V_1 \rangle, M_2 = \langle \mathbb{I}(\mathbb{N}), V_2 \rangle$

A bisimulation wrt fragment A but not D

- ightharpoonup models: $M_1=\langle \mathbb{I}(\mathbb{N}), V_1
 angle$, $M_2=\langle \mathbb{I}(\mathbb{N}), V_2
 angle$
 - $V_1(p) = \{[1,2]\}$

A bisimulation wrt fragment A but not D

- lacksquare models: $M_1=\langle \mathbb{I}(\mathbb{N}), V_1
 angle$, $M_2=\langle \mathbb{I}(\mathbb{N}), V_2
 angle$
 - $V_1(p) = \{[1,2]\}$
 - $V_2(p) = \emptyset$

A bisimulation wrt fragment A but not D

- lacksquare models: $\mathit{M}_1 = \langle \mathbb{I}(\mathbb{N}), \mathit{V}_1 \rangle$, $\mathit{M}_2 = \langle \mathbb{I}(\mathbb{N}), \mathit{V}_2 \rangle$
 - $V_1(p) = \{[1,2]\}$
 - $V_2(p) = \emptyset$
- ▶ bisimulation relation Z: $([x,y],[w,z]) \in Z$ iff

A bisimulation wrt fragment A but not D

- ightharpoonup models: $\mathit{M}_1 = \langle \mathbb{I}(\mathbb{N}), \mathit{V}_1 \rangle$, $\mathit{M}_2 = \langle \mathbb{I}(\mathbb{N}), \mathit{V}_2 \rangle$
 - $V_1(p) = \{[1,2]\}$
 - $V_2(p) = \emptyset$
- ▶ bisimulation relation Z: $([x, y], [w, z]) \in Z$ iff

1.
$$[x, y] = [w, z] = [0, 3]$$

A bisimulation wrt fragment A but not D

- ightharpoonup models: $M_1 = \langle \mathbb{I}(\mathbb{N}), V_1 \rangle, M_2 = \langle \mathbb{I}(\mathbb{N}), V_2 \rangle$
 - $V_1(p) = \{[1,2]\}$
 - $V_2(p) = \emptyset$
- ▶ bisimulation relation Z: $([x, y], [w, z]) \in Z$ iff
 - 1. [x, y] = [w, z] = [0, 3]
 - 2. [x, y] = [w, z] and $x \ge 3$

A bisimulation wrt fragment A but not D

Bisimulation wrt A $(AP = \{p\})$:

- ightharpoonup models: $M_1=\langle \mathbb{I}(\mathbb{N}),V_1\rangle$, $M_2=\langle \mathbb{I}(\mathbb{N}),V_2\rangle$
 - $V_1(p) = \{[1,2]\}$
 - $V_2(p) = \emptyset$
- ▶ bisimulation relation Z: $([x, y], [w, z]) \in Z$ iff
 - 1. [x, y] = [w, z] = [0, 3]
 - 2. [x, y] = [w, z] and $x \ge 3$

$$M_1, [0,3] \Vdash \langle D \rangle p$$
 and $M_2, [0,3] \Vdash \neg \langle D \rangle p$

D. Della Monica, Reykjavik University

A bisimulation wrt fragment A but not D

- ightharpoonup models: $M_1 = \langle \mathbb{I}(\mathbb{N}), V_1 \rangle, M_2 = \langle \mathbb{I}(\mathbb{N}), V_2 \rangle$
 - $V_1(p) = \{[1,2]\}$
 - $V_2(p) = \emptyset$
- ▶ bisimulation relation Z: $([x, y], [w, z]) \in Z$ iff
 - 1. [x, y] = [w, z] = [0, 3]
 - 2. [x, y] = [w, z] and $x \ge 3$

$$M_1, [0,3] \Vdash \langle D \rangle p$$
 and $M_2, [0,3] \Vdash \neg \langle D \rangle p$

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

DONE:

class of all linear orders (1347 fragments)

 classes of dense linear orders (966 fragments) TIME 13]

DONE:

class of all linear orders (1347 fragments)

[IJCAI 11]

► classes of dense linear orders (966 fragments) [TIME 13]

ALMOST DONE:

- classes of finite linear orders
- classes of discrete linear orders

this paper]

DONE:

- class of all linear orders (1347 fragments)
- [IJCAI 11]
- ► classes of dense linear orders (966 fragments)

 [TIME 13]

ALMOST DONE:

- classes of finite linear orders
- classes of discrete linear orders

this paper]

MISSING PIECES:

 $ightharpoonup \langle O \rangle$ over finite/discrete linear orders — $\langle \overline{O} \rangle$ for free

DONE:

class of all linear orders (1347 fragments)

[IJCAI 11]

► classes of dense linear orders (966 fragments)

[TIME 13]

ALMOST DONE:

- classes of finite linear orders
- classes of discrete linear orders

this paper]

MISSING PIECES:

 $\blacktriangleright~\langle O \rangle$ over finite/discrete linear orders — $\langle \overline{O} \rangle$ for free

Bisimulation as a technique to disprove existence of definabilities

Expressiveness classification over natural numbers

The end

Thank you