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Abstract. Interval temporal logics take time intervals, instead of time instants, as
their primitive temporal entities. One of the most studied interval temporal logics
is Halpern and Shoham’s modal logic of time intervals HS, which associates a
modal operator with each binary relation between intervalsover a linear order (the
so-called Allen’s interval relations). A complete classification of all HS fragments
with respect to their relative expressive power has been recently given for the
classes of all linear orders and of all dense linear orders. The cases of discrete
and finite linear orders turn out to be much more involved. In this paper, we make
a significant step towards solving the classification problem over those classes of
linear orders. First, we illustrate various non-trivial temporal properties that can
be expressed by HS fragments when interpreted over finite anddiscrete linear
orders; then, we provide a complete set of definabilities forthe HS modalities
corresponding to the Allen’s relationsmeets, later, begins, finishes, andduring,
as well as the ones corresponding to their inverse relations. The only missing
cases are those of the relationsoverlapsandoverlapped by.

1 Introduction

Interval reasoning naturally arises in various fields of computer science and artificial in-
telligence, ranging from hardware and real-time system verification to natural language
processing, from constraint satisfaction to planning [4,5,16,24,25,27]. Interval tempo-
ral logics make it possible to reason about interval structures over linearly ordered do-
mains, where time intervals, rather than time instants, arethe primitive ontological en-
tities. The distinctive features of interval temporal logics turn out to be useful in various
application domains [8,13,23,24,27]. For instance, they allow one to modeltelic state-
ments, that is, statements that express goals or accomplishments, e.g., the statement:
‘The airplane flew from Venice to Toronto’ [23]. Moreover, when we restrict ourselves
to discrete linear orders, such as, for instance,N or Z, some interval temporal logics
are expressive enough to constrain the length of intervals,thus allowing one to specify
safety properties involving quantitative conditions [23]. This is the case, for instance,
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with the well-known ‘gas-burner’ example [27]. Temporal logics with interval-based
semantics have also been proposed as suitable formalisms for the specification and ver-
ification of hardware [24] and of real-time systems [27].

The variety of binary relations between intervals in a linear order was first studied
by Allen [4], who investigated their use in systems for time management and planning.
In [18], Halpern and Shoham introduced and systematically analyzed the (full) logic of
Allen’s relations, called HS in this paper, that features one modality for each Allen rela-
tion. In particular, they showed that HS is highly undecidable over most classes of linear
orders. This result motivated the search for (syntactic) HSfragments offering a good
balance between expressiveness and decidability/complexity [6,7,11,12,14,20,22,23].
A comparative analysis of the expressive power of HS fragments is far from being triv-
ial, because some HS modalities are definable in terms of others, and thus syntactically
different fragments may turn out to be equally expressive. Moreover, the definability of
a specific modality in terms of other ones depends, in general, on the class of linear or-
ders over which the logic is interpreted, and the classification of the relative expressive
power of HS fragments with respect to a given class of linear orders cannot be directly
transferred to another class. More precisely, while definabilities do transfer from a class
C to all its proper sub-classes, there might be new definability relations that hold in
some sub-class ofC, but not inC itself. Conversely, undefinabilities do transfer from a
class to all its proper super-classes, but not vice versa. Proving a specific undefinability
result amounts to providing a counterexample based on concrete linear orders from the
considered class. As a matter of fact, different assumptions on the underlying linear
orders give rise, in general, to different sets of definabilities [2,15].

Contribution. Many classes of linear orders are of practical interest, including the class
of all (resp., dense, discrete, finite) linear orders, as well as the particular linear order
onR (resp.,Q, Z, andN). A precise characterization of the expressive power of allHS
fragments with respect to the class of all linear orders and that of all dense linear orders
has been given in [15] and [2], respectively. The classification of HS fragments over
the classes of discrete and finite linear orders presents a number of convoluted techni-
cal difficulties. In [14], which is an extended version of both [9] and [10], the authors
focus on strongly discrete linear orders, by characterizing and classifying alldecidable
fragments of HS with respect to both complexity of the satisfiability problem and rel-
ative expressive power. In this paper, we make a significant step towards a complete
classification of the expressiveness of all (decidableandundecidable) fragments of HS
over finite and discrete linear orders, and in doing so we considerably extend the ex-
pressiveness results presented in [14]; in this respect, itis worth to observe that, when
considering all the HS fragments (thus not only the decidable ones) the undefinabil-
ity results for the HS modalities presented in [14] must be generalized and extended.
This generalization presents a number of technical difficulties, which are targeted here.
Given the present contribution, the only missing piece of the expressiveness puzzle is
that of the definabilities for the modality corresponding tothe Allen relationoverlaps
(those for the inverse relationoverlapped bywould immediately follow by symmetry).

Structure of the paper. In the next section, we introduce the logic HS. Then, in Sec-
tion 3, we introduce the notion of definability of a modality in an HS fragment, and we
present the main tool we use to prove our results. In order to provide the reader with
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HSmodalities

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

Allen’s relations

[x, y]RA[x
′, y′] ⇔ y = x′

[x, y]RL[x
′, y′] ⇔ y < x′

[x, y]RB [x′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x
′, y′] ⇔ y = y′, x < x′

[x, y]RD[x′, y′] ⇔ x < x′, y′ < y

[x, y]RO [x′, y′] ⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Fig. 1. Allen’s interval relations and the corresponding HS modalities.

an idea of the expressive power of HS modalities, we also illustrate some meaningful
temporal properties, like counting and boundedness properties, which can be expressed
in HS fragments when interpreted over discrete linear orders. Then, as a warm-up, in
Section 4 we present a first, simple expressiveness result, by providing the complete
set of definabilities for the HS modalities〈A〉, 〈L〉, 〈A〉, and〈L〉, corresponding to
Allen’s relationsmeetsand later, and their inversesmet byandbefore, respectively.
Section 5 contains our main technical result, that is, a complete set of definabilities for
the HS modalities〈D〉, 〈E〉, 〈B〉, 〈D〉, 〈E〉, and〈B〉, corresponding to Allen’s relations
during, finishes, andbegins, and their inversescontains, finished by, andbegun by, re-
spectively. The proofs of the results in this section are rather difficult and much more
technically involved than the ones in Section 4. Therefore,we limit ourselves to giving
an overview of the proofs, and we refer the interested readerto [3] for the details.

2 Preliminaries

Let D = 〈D,<〉 be a linearly ordered set. Aninterval overD is an ordered pair[a, b],
wherea, b ∈ D anda ≤ b. An interval is called apoint intervalif a = b and astrict
interval if a < b. In this paper, we assume thestrict semantics, that is, we exclude point
intervals and only consider strict intervals. The adoptionof the strict semantics, exclud-
ing point intervals, instead of thenon-strict semantics, which includes them, conforms
to the definition of interval adopted by Allen in [4]. If we exclude the identity relation,
there are 12 different relations between two strict intervals in a linear order, often called
Allen’s relations[4]: the six relationsRA (adjacent to),RL (later than),RB (begins),
RE (ends),RD (during), andRO (overlaps), depicted in Fig. 1, and their inverses, that
is,RX = (RX)−1, for eachX ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations play-
ing the role of the accessibility relations. Thus, we associate a modality〈X〉 with
each Allen relationRX . For eachX ∈ {A,L,B,E,D,O}, the transposeof modal-
ity 〈X〉 is modality 〈X〉, corresponding to the inverse relationRX of RX . Halpern
and Shoham’s logic HS [18] is a multi-modal logic with formulae built from a finite,
non-empty setAP of atomic propositions (also referred to as proposition letters), the
propositional connectives∨ and¬, and a modality for each Allen relation. With every
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subset{RX1 , . . . , RXk
} of these relations, we associate the fragmentX1X2 . . .Xk of

HS, whose formulae are defined by the grammar:ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . |
〈Xk〉ϕ, wherep ∈ AP . The other propositional connectives and constants (e.g.,∧, →,
and⊤), as well as the dual modalities (e.g.,[A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in the
standard way. We define themodal depthof a formula as the largest nesting of modal
operators in it. For a fragmentF = X1X2 . . .Xk and a modality〈X〉, we write〈X〉 ∈ F
if X ∈ {X1, . . . , Xk}. Given two fragmentsF1 andF2, we writeF1 ⊆ F2 if 〈X〉 ∈ F1

implies 〈X〉 ∈ F2, for every modality〈X〉. Finally, for a fragmentF = X1X2 . . .Xk

and a formulaϕ, we writeϕ ∈ F or, equivalently, we say thatϕ is anF -formula,
meaning thatϕ belongs to the language ofF .

The (strict) semantics of HS is given in terms ofinterval modelsM = 〈I(D), V 〉,
whereD is a linear order,I(D) is the set of all (strict) intervals overD, andV is a
valuation functionV : AP 7→ 2I(D), which assigns to each atomic propositionp ∈ AP
the set of intervalsV (p) on whichp holds. Thetruth of a formula on a given interval
[x, y] in an interval modelM is defined by structural induction on formulae as follows:

– M, [x, y] 
 p if and only if [x, y] ∈ V (p), for eachp ∈ AP ;
– M, [x, y] 
 ¬ψ if and only if it is not the case thatM, [x, y] 
 ψ;
– M, [x, y] 
 ϕ ∨ ψ if and only ifM, [x, y] 
 ϕ orM, [x, y] 
 ψ;
– M, [x, y] 
 〈X〉ψ if and only if there exists[x′, y′] such that[x, y]RX [x′, y′] and
M, [x′, y′] 
 ψ, for each modality〈X〉.
Formulae of HS can be interpreted over a class of interval models (built on a given

class of linear orders). Among others, we mention the following classes of (interval
models built on important classes of) linear orders:(i) the class ofall linear ordersLin;
(ii) the class of (all)denselinear ordersDen, that is, those in which for every pair of
distinct points there exists at least one point in between them (e.g.,Q andR); (iii) the
class of (all)discretelinear ordersDis, that is, those in which every element, apart from
the greatest element, if it exists, has an immediate successor, and every element, other
than the least element, if it exists, has an immediate predecessor (e.g.,N,Z, andZ+Z);
(iv) the class of (all)finite linear ordersFin, that is, those having only finitely many
points. A formulaφ of HS isvalid over a classC of linear orders, denoted by
C φ, if it
is true on every interval in every interval model belonging to C. Two formulaeφ andψ
areequivalentrelative to the classC of linear orders, denoted byφ ≡C ψ, if 
C φ↔ ψ.

3 Definability and expressivenesss

Definition 1 (Definability). A modality〈X〉 of HS is definablein an HS fragmentF
relative to a classC of linear orders, denoted〈X〉 ✁C F , if 〈X〉p ≡C ψ for some
F -formulaψ over the atomic propositionp, for anyp ∈ AP . Then, the equivalence
〈X〉p ≡C ψ is called adefinability equationfor 〈X〉 in F relative to C. We write
〈X〉 6✁ CF if it is not the case that〈X〉✁C F .

As we have already noted, smaller classes of linear orders inherit the definabilities
holding for larger classes: ifC1 andC2 are classes of linear orders such thatC1 ⊂ C2,
then all definabilities holding forC2 are also valid forC1. However, more definabilities
can possibly hold forC1. On the other hand, undefinability results forC1 hold also for
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C2. In the rest of the paper, we omit the class of linear orders when it is clear from
the context (e.g., we will simply write〈X〉p ≡ ψ and〈X〉 ✁ F for 〈X〉p ≡C ψ and
〈X〉✁C F , respectively).

It is known from [18] that, when the strict semantics is assumed, all HS modalities
are definable in the fragment containing modalities〈A〉, 〈B〉, and〈E〉, and their trans-
poses〈A〉, 〈B〉, and〈E〉, while in the non-strict semantics, the four modalities〈B〉,
〈E〉, 〈B〉, and〈E〉 suffice, as shown in [26]. Given two HS fragmentsF1 andF2, we
say thatF2 is at least as expressive asF1, denotedF1 � F2, if each operator〈X〉 ∈ F1

is definable inF2, and thatF1 is strictly less expressivethanF2, denotedF1 ≺ F2, if
F1 � F2 holds butF2 � F1 does not. The notions ofexpressively equivalentfragments
andexpressively incomparablefragments can be defined likewise.

Definition 2 (Optimal definability). A definability〈X〉✁F is optimalif 〈X〉 6✁F ′ for
each fragmentF ′ such thatF ′ ≺ F .

3.1 Proof techniques to disprove definability

In order to show non-definability of a given modality in a certain fragment, we use the
standard notion ofN-bisimulation[17,19,21], suitably adapted to our setting.

Definition 3. LetF be anHS-fragment. AnFN -bisimulation between two modelsM =
〈I(D), V 〉 andM ′ = 〈I(D′), V ′〉 over a set of proposition lettersAP is a sequence of
N relationsZN , . . . , Z1 ⊆ I(D) × I(D′) such that: (i) for every([x, y], [x′, y′]) ∈ Zh,
with N ≥ h ≥ 1, M, [x, y] 
 p if and only ifM ′, [x′, y′] 
 p, for all p ∈ AP (local
condition); (ii) for every ([x, y], [x′, y′]) ∈ Zh, withN ≥ h > 1, if [x, y]RX [v, w] for
some[v, w] ∈ I(D) and some〈X〉 ∈ F , then there exists([v, w], [v′, w′]) ∈ Zh−1 such
that [x′, y′]RX [v′, w′] (forward condition); (iii) for every ([x, y], [x′, y′]) ∈ Zh, with
N ≥ h > 1, if [x′, y′]RX [v′, w′] for some[v′, w′] ∈ I(D′) and some〈X〉 ∈ F , then
there exists([v, w], [v′, w′]) ∈ Zh−1 such that[x, y]RX [v, w] (backward condition).

Given anFN -bisimulation, the truth ofF -formulae of modal depth at mosth − 1 is
invariant for pairs of intervals belonging toZh, with N ≥ h ≥ 1 (see, e.g., [17]).
Thus, to prove that a modality〈X〉 is not definable inF , it suffices to provide, for every
natural numberN , a pair of modelsM andM ′, and anFN -bisimulation between them
for which there exists a pair([x, y], [x′, y′]) ∈ ZN such thatM, [x, y] 
 〈X〉p and
M ′, [x′, y′] 
 ¬〈X〉p, for somep ∈ AP (in this case, we say that theFN -bisimulation
violates〈X〉). To convince oneself that this is enough to ensure that〈X〉 is not definable
by anyF -formula of any modal depth, assume, towards a contradiction, thatφ is an
F -formula of modal depthn such that〈X〉p ≡ φ. Since, for eachN , there is anFN -
bisimulation that violates〈X〉, there exists, in particular, one such bisimulation for
N = n + 1. Let ([x, y], [x′, y′]) ∈ ZN be the pair of intervals thatviolates〈X〉, that
is,M, [x, y] 
 〈X〉p andM ′, [x′, y′] 
 ¬〈X〉p. Then, the truth value ofφ over [x, y]
(in M ) and [x′, y′] (in M ′) is the same, and this is in contradiction with the fact that
M, [x, y] 
 〈X〉p andM ′, [x′, y′] 
 ¬〈X〉p. A result obtained following this argument
applies to all classes of linear orders that contain (as their elements) both structures
on whichM andM ′ are based. Notice that, in some cases, it is convenient to define
FN -bisimulations between a modelM and itself.



6 L. Aceto, D. Della Monica, A. Ingólfsdóttir, A. Montanari, G. Sciavicco

It is worth pointing out that the standard notion ofF -bisimulationcan be recovered
as a special case ofFN -bisimulation. Formally, anF -bisimulation can be thought of as
anFN -bisimulation withN = 2 andZ1 = Z2. In the following, as is customary, we
will treatF -bisimulations as relations instead of sequences of two equal relations: if the
sequenceZ2, Z1 is anF -bisimulation, withZ1 = Z2 = Z, then we will simply refer to
it as to the relationZ. It is important to notice that showing that two intervals are related
by anF -bisimulation (i.e., they areF -bisimilar) is stronger than showing that they are
related by a relationZN , which belongs to a sequenceZN , . . . , Z1 corresponding to
an FN -bisimulation (i.e., the intervals areFN -bisimilar). Indeed, while in the latter
case we are only guaranteed invariance ofF -formulae of modal depth at mostN − 1,
in the former case the truth ofF -formulae of any (possibly unbounded) modal depth
is preserved. This means that undefinability results obtained usingF -bisimulations are
not restricted to the finitary logics we consider in this paper, but also apply to extensions
with infinite disjunctions and with fixed-point operators.

SinceF -bisimulations are notationally easier to deal with thanFN -bisimulations,
it is in principle more convenient to use the former, rather than the latter, when proving
an undefinability result. However, while in few cases (see Section 4) a proof based on
F -bisimulations is possible, this is not generally the case,because some modalities that
cannot be defined in fragments of HS can be expressed in their infinitary versions. In
those cases (see Section 5), we resort to a proof viaFN -bisimulations.

For a given modality〈X〉 and a given classC of linear orders, we shall identify
a set of definabilities for〈X〉, and we shall prove itssoundness, by shoving that each
definability equation is valid inC, and itscompleteness, by arguing that each definability
is optimal and that there are no other optimal definabilitiesfor 〈X〉 in C. Completeness
is proved by computing all maximal fragmentsF that cannot define〈X〉 (in the attempt
of defining〈X〉 in F , we can obviously use the set of known definabilities). For each
modality, such fragments are listed in the last column of Fig. 2. Depending on the
number of known definabilities, such a task can be time-consuming and error-prone, so
an automated procedure has been implemented to serve the purpose [1]. Then, for each
suchF and eachN ∈ N, we provide anFN -bisimulation that violates〈X〉. Notice that
all the classes of linear orders we consider are (left/right) symmetric, namely, if a class
C contains a linear orderD = 〈D,≺〉, then it also contains (a linear order isomorphic
to) its dual linear orderDd = 〈D,≻〉, where≻ is the inverse of≺. This implies that the
definabilities for〈L〉, 〈A〉, 〈B〉, and〈B〉 can be immediately deduced (and shown to be
sound and optimal) from those for〈L〉, 〈A〉, 〈E〉, and〈E〉, respectively.

Fig. 2 depicts the complete sets of optimal definabilities holding in Dis andFin for
the modalities〈L〉, 〈A〉, 〈D〉, 〈D〉, 〈E〉, and〈E〉 (recall that those for〈L〉, 〈A〉, 〈B〉,
and〈B〉 follow by symmetry). Section 4 and Section 5 are devoted to proving complete-
ness of such sets. For all the modalities, but〈A〉 and〈A〉, soundness is an immediate
consequence of the corresponding soundness inLin, shown in [15]. For lack of space,
we omit the proofs of the soundness of the definabilities for〈A〉 and〈A〉, which any-
way are quite straightforward. Finally, while it is known from [18] that〈O〉✁BE (resp.,
〈O〉 ✁ BE), it is still an open problem whether this is the only optimaldefinability for
〈O〉 (resp.,〈O〉) in Dis and inFin.
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Modalities Equations Definabilities Maximal fragments not defining it

〈L〉 〈L〉p ≡ 〈A〉〈A〉p 〈L〉✁ A
BDOALBEDO

BEDOALEDO

〈A〉
〈A〉p ≡ ϕ(p) ∨ 〈E〉ϕ(p)∗ 〈A〉✁ BE

LBDOALBEDO

LBEDOALEDO
∗ϕ(p) := [E]⊥ ∧ 〈B〉([E][E]⊥ ∧〈E〉(p ∨ 〈B〉p))

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉✁ BE
ALBOALBEDO

ALEOALBEDO

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉✁ BE
ALBEDOALBO

ALBEDOALEO

〈E〉 no definabilities ALBDOALBEDO

〈E〉 no definabilities ALBEDOALBDO

Fig. 2.Optimal definabilities inDis andFin. The last column contains the maximal fragments not
defining the modality under consideration.

3.2 Expressing properties of a model inHS fragments

We give here a short account of meaningful temporal properties, such as counting and
(un)boundedness ones, which can be expressed in HS fragments, when they are in-
terpreted over discrete linear orders. The outcomes of suchan analysis are summarized
in Fig. 3 (other properties can obviously be expressed as Boolean combinations of those
displayed). They demonstrate the expressiveness capabilities of HS modalities, which
are of interest by themselves. As an example, constraining the length of intervals is a
desirable ability of any formalism for representing and reasoning about temporal knowl-
edge over a discrete domain. In fact, most HS fragments have many chances to succeed
in practical applications, and thus it is definitely worth carrying out a taxonomic study
of their expressiveness. As we already pointed out, such a study presents various intri-
cacies. For instance, in some fragments, assuming the discreteness of the linear order
suffices to constrain the length of intervals (this is the case with the fragmentE); other
fragments rely on additional assumptions (this is the case with the fragmentDO, which
requires the linear order to be right-unbounded).This gives evidence of how expressive-
ness results can be affected by the specific class of linear orders under consideration.
Counting properties. When the linear order is assumed to be discrete, some HS frag-
ments are powerful enough to constrain (to some extent) thelengthof an interval, that
is, the number of its points minus one. Let∼∈ {<,≤,=,≥, >}. For everyk ∈ N, we
defineℓ∼k as a (pre-interpreted) atomic proposition which is true over all and only those
intervals whose length is∼-related tok. Moreover, for a modality〈X〉, we denote by
〈X〉kϕ the formula〈X〉 . . . 〈X〉ϕ, with k occurrences of〈X〉 beforeϕ. Limiting our-
selves to a few examples, we highlight here the ability of some of the HS modalities to
expressℓ∼k, for anyk. It is well known that the fragmentsE andB can expressℓ∼k,
for everyk and∼ (see, e.g., [18]). As an example, the formulae〈E〉k⊤ and [E]k⊥
are equivalent toℓ>k andℓ≤k, respectively. The fragmentD features limited counting
properties, as, for everyk, 〈D〉k⊤ ∧ [D]k+1⊥ is true over intervals whose length is
either2 · k + 1 or 2 · (k + 1) (notice that, as a particular instance,[D]⊥ is true over
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Counting properties Right Unboundedness (∃r)

ℓ>k ≡ 〈E〉k⊤ 〈B〉⊤, 〈A〉⊤

ℓ=k ≡ 〈E〉k−1⊤∧ [E]k⊥ (‡) 〈O〉⊤, [B]〈L〉⊤

ℓ>2·k ≡ 〈D〉k⊤ (§) 〈D〉⊤, 〈E〉〈O〉⊤

ℓ≤2·k ≡ [D]k⊥ (‡,§) [O]〈L〉⊤

ℓ>1 ≡† 〈O〉⊤ (♭) [D]〈L〉⊤
ℓ>2·k+1 ≡† 〈D〉k〈O〉⊤

ℓ=2·(k+1) ≡
† 〈D〉k〈O〉⊤ ∧ [D]k+1⊥

†: only on right-unbounded domains;‡: only on intervals longer than 1;
§: only on left-unbounded domains;♭: only on intervals longer than 2.

Fig. 3.Expressiveness of HS modalities over discrete linear orders.

intervals whose length is either1 or 2). In a sense, it is not able to discriminate the
parity of an interval. The counting capabilities of the fragmentO are limited as well:
it allows one to discriminate betweenunit intervals(intervals whose length is 1) and
non-unit intervals(which are longer than 1), provided that the underlying linear order
is right-unbounded, likeZ or N (〈O〉 possesses the same capability, provided that the
underlying linear order is left-unbounded, likeZ or Z−). However, quite interestingly,
by pairing〈D〉 and〈O〉, or, symmetrically,〈D〉 and〈O〉, it is possible to expressℓ∼k

for everyk and∼ over right-unbounded linear order (left-unbounded linearorders if
〈O〉 is replaced by〈O〉): it suffices to first use〈D〉 to narrow the length down tok or
k + 1, and then〈O〉 (or 〈O〉) to discriminate the parity.
(Un)boundedness properties.Let us denote by∃r (resp.,∃l) a (pre-interpreted) atomic
proposition that is true over all and only the intervals thathave a point to their right
(resp., left). Various combinations of HS operators can express∃r. Once again, while
in some cases we need to assume only the discreteness of the underlying linear order,
there are cases where the validity of the definability relieson additional assumptions.
For example, to impose that the current interval has a point to the right within the
fragmentO, we can use〈O〉⊤ only on non-unit intervals (otherwise,〈O〉 has no effect).
Analogously, it is possible to express∃l, possibly under analogous assumptions.

4 The Easy Cases

In this section, we prove the completeness of the set of definabilities for the modalities
〈L〉, 〈L〉, 〈A〉, and〈A〉, thus strengthening a similar result presented in [14, Theorem 1].

Theorem 1. The sets of optimal definabilities for〈L〉 and〈A〉 (listed in Fig. 2), as well
as (by symmetry) those for〈L〉 and〈A〉, are complete for the classesDis andFin.

Proof. The results for〈L〉 (and, symmetrically, for〈L〉) immediately follows from [15],
as the completeness proof for〈L〉 presented there used a bisimulation between models
based on finite linear orders. Notice that〈L〉 ✁ BE holds inDis andFin, as it does in
Lin. However, such a definability, which is optimal inLin, is not optimal inDis andFin
(and thus it is not listed in Fig. 2), due to the fact that〈A〉 ✁ BE (which is not a sound
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definability inLin) holds overDis. As a pleasing consequence, we can extend Venema’s
result from [26] concerning the expressive completeness ofthe fragmentBEBE in the
non-strict semantics to the strict one under the discreteness assumption.

According to Fig. 2,〈A〉 is definable in terms ofBE, implying that the maximal frag-
ments not defining〈A〉 are, as shown in the last column of Fig. 2,LBDOALBEDO and
LBEDOALEDO. Thus, proving that〈A〉✁BE is the only optimal definability amounts
to providing two bisimulations, namely anLBDOALBEDO- and anLBEDOALEDO-
bisimulation that violate〈A〉. As for the first one, we consider two modelsM andM ′,
both based on the finite linear order{0, 1, 2}. We setV (p) = {[1, 2]}, V ′(p) = ∅, and
Z = {([0, 1], [0, 1]), ([0, 2], [0, 2])}. It is easy to verify thatZ is anLBDOALBEDO-
bisimulation that violates〈A〉, asM, [0, 1] 
 〈A〉p andM ′, [0, 1] 
 ¬〈A〉p. As for
the second one, models and valuations are defined as before, but we take nowZ =
{([0, 1], [0, 1])}. Once again, it is easy to see thatZ is anLBEDOALEDO-bisimulation
that violates〈A〉, asM, [0, 1] 
 〈A〉p andM ′, [0, 1] 
 ¬〈A〉p. Since the result is based
on a finite linear order, it holds for bothDis andFin. ⊓⊔

5 The hard cases

In this section, we provide the completeness result for the modalities〈D〉 and〈D〉 (The-
orem 2), as well as for〈E〉, 〈E〉, 〈B〉, and〈B〉 (Theorem 3). Because of the technical
complexity of the proofs, we only provide proof sketches that explain the main ideas
behind them at a very intuitive level, and refer the interested reader to [3] for the details.

In the following, we letN>c = {x ∈ N | x > c} andZ<−c = {x ∈ Z | x < −c},
for eachc ≥ 0. Moreover,N+ andZ− denote the setsN>0 andZ<−0, respectively.
As a preliminary step, we introduce the notion ofequivalence up toa given threshold,
denoted by≃g

h , which is used in both proofs to “simulate density”, in a sense that
will be made clear later on. It is a series of equivalence relations overZ up to a certain
threshold, which is given by the value of the suitably definedthreshold functiong onh.

Definition 4 (≃g
h ). For any given functiong : D → N, called threshold function,

whereD can be any prefix ofN+, that is,D = {1, . . . , N} for someN ∈ N, and for
everyh ∈ D, we define the relation ofequivalence up tog(h), denoted≃g

h, as follows.
For every pair of integersn1, n2 ∈ Z, n1 ≃g

h n2 if and only if one of the following
holds: (i)n1 = n2, (ii) n1, n2 > g(h), or (iii) n1, n2 < −g(h).

Theorem 2. The sets of optimal definabilities for〈D〉 and 〈D〉 (listed in Fig. 2) are
complete for the classesDis andFin.

In order to proof the above theorem, we proceed as follows. According to Fig. 2,
〈D〉 is definable in terms ofBE; thus there are two maximal fragments not defining
it, namely,ALBOALBEDO andALEOALBEDO. First, we observe that it is possible
to define〈D〉 in infinitary extensions ofAB or AE, using, respectively, the following
formulae of unbounded modal depths:

〈D〉p ≡

{∨

k∈N
(ℓ=k ∧

∨

i<k−1(〈B〉(ℓ=i ∧ 〈A〉(ℓ<k−i ∧ p)))),
∨

k∈N
(ℓ=k ∧

∨

i<k−1(〈E〉(ℓ=i ∧ 〈A〉(ℓ<k−i ∧ p)))),
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where length constraints of the formℓ=k andℓ<k can be expressed using either〈B〉
or 〈E〉 (see Section 3.2). It immediately follows that there existsnoALBOALBEDO-
bisimulation (resp.,ALEOALBEDO-bisimulation) that violates〈D〉, and thus we have
to resort toALBOALBEDON -bisimulations (resp.,ALEOALBEDON -bisimulations).
Besides, since the two fragmentsALBOALBEDO andALEOALBEDO are symmetric,
that is, they are indistinguishable over symmetric classesof linear orders, providing an
ALBOALBEDON -bisimulation that violates〈D〉 suffices to prove the result. In what
follows, we build such anALBOALBEDON -bisimulation.

To this end, we first define the functionf : {1, . . . , N} → N asf(h) = h + 1.
Then, we consider a bijectionξ from Z × N+ to Z<−k such thatξ(x, y) ≤ x − k for
each(x, y) ∈ Z×N+, and wherek = 2 ·f(N)+4. It is not difficult to convince oneself
of the existence of such a function. Now, we define the function η : Z → N+ as:

η(x) =

{

ȳ + x̄− x if x = ξ(x̄, ȳ) for somex̄, ȳ
k − 2 otherwise

Notice that ifx = ξ(x̄, ȳ), thenη(x) ≥ k + 1 holds, becauseξ(x̄, ȳ) = x ≤ x̄− k and
ȳ ≥ 1. Thus, for eachx, we haveη(x) ≥ k − 2.

Proposition 1. There exist two integersx andx+ 1 such thatη(x) ≥ η(x + 1) + 3.

Let δ(x, y) = y − x − η(x), for each interval[x, y] ∈ I(Z). The following lemma
will be useful in the proof of Lemma 2.

Lemma 1. The following statements hold.
a) For each interval[x, y] and eachi ∈ Z, with −f(N)− 1 ≤ i ≤ f(N) + 1, there

existx′ andx′′ such thatx− x′ = |i| andδ(x′′, x) = i.
b) For each interval[x, y] and eachi ∈ Z, with −f(N)− 1 ≤ i ≤ f(N) + 1, there

existsx′ < x such thatδ(x′, y) = i.

We letM = 〈I(Z), V 〉, where the valuationV is as follows:[x, y] ∈ V (p) ⇔
δ(x, y) ≥ 0. Notice thatM is parametric inN becausek, used in the definitions ofξ
andη, depends onN . Notice also that the length ofp-intervals is at leastk − 2.

We introduce here a sequence of relationsZN , . . . , Z1. In Lemma 2, we will show
that it is anALBOALBEDON -bisimulation that violates〈D〉. To this end, it is conve-
nient to define the equivalence relations≡h

ℓ and≡h
δ , for eachh ∈ {1, . . . , N}, as

[x, y] ≡h
ℓ [w, z] if and only if y − x ≃f

h z − w

[x, y] ≡h
δ [w, z] if and only if δ(x, y) ≃f

h δ(w, z),

where≃f
h is an equivalence up tof(h). Intuitively,≡h

ℓ relates pairs of intervals whose
lengths coincide or are both larger thanf(h); ≡h

δ relates intervals[x, y] and[w, z] such
that δ(x, y) = δ(w, z) or min{δ(x, y), δ(w, z)} > f(h) or max{δ(x, y), δ(w, z)} <
−f(h). Everything is set for the definition of the sequence of relations{Zh}1≤h≤N .

Definition 5. For eachh ∈ {1, . . . , N}, the hth componentZh of the sequence of
relationsZN , . . . , Z1 is defined as:

[x, y]Zh[w, z] ⇔ [x, y] ≡h
ℓ [w, z] and[x, y] ≡h

δ [w, z].

Since≡h
ℓ and≡h

δ are equivalence relations, so isZh, for eachh.

Lemma 2. The sequence of relationsZN , . . . , Z1 is anALBOALBEDON -bisimulation
that violates〈D〉.
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Proof (sketch).We first show thatZN , . . . , Z1 is anALBOALBEDON -bisimulation.
The local condition is trivially fulfilled, as[x,w]Zh[w, z] implies [x,w] ≡h

δ [w, z],
which, in turn, impliesδ(x, y) ≥ 0 if and only if δ(w, z) ≥ 0, and thusM, [x, y] 
 p

if and only if M, [w, z] 
 p. To prove that the forward and the backward conditions
are fulfilled as well, the intuitive idea is to show that, for each pair([x, y], [w, z]) of
Zh-related intervals and each modality〈X〉 featured by the fragmentALBOALBEDO,
the set of equivalence classes (with respect to the relationZh−1) reachable from[x, y]
using〈X〉 is equal to the set of equivalence classes reachable from[w, z] using〈X〉.
The more difficult cases are the one corresponding to the modalities 〈A〉 and〈E〉. To
cope with the former, it suffices to observe that from Lemma 1ait immediately follows
that every class of equivalence is reachable from any interval [x′, y′], using the modality
〈A〉. Similarly, Lemma 1b can be used to deal with the modality〈E〉.

To conclude the proof, consider[x, y] = [0, k−3] and[w, z], wherez = w+η(w)−
1 andw is such thatη(w) ≥ η(w + 1) + 3 (the existence of suchw is guaranteed by
Proposition 1). We show that([x, y], [w, z]) ∈ ZN ,M, [x, y] 
 ¬〈D〉p, andM, [w, z] 

〈D〉p. It is easy to see that both[x, y] ≡h

δ [w, z] and [x, y] ≡h
ℓ [w, z] hold. Thus,

we have that([x, y], [w, z]) ∈ ZN . Moreover, sincey − x < k − 2, it is clear, from
the definition ofV , that none of its sub-interval satisfiesp (becausep-intervals are
long at leastk − 2), and thusM, [x, y] 
 ¬〈D〉p holds. Contrarily,[w, z] is such that
M, [w, z] 
 〈D〉p because the interval[w+1, z−1] satisfiesp. To see the latter, observe
thatδ(w + 1, z − 1) = z − 1− w − 1− η(w + 1) = η(w) − η(w + 1)− 3 ≥ 0. ⊓⊔

The above proof makes use of a model based onZ, and thus it proves the result
for the classDis. The whole construction can be adapted to deal with the classFin as
well, by using a finite, “large enough” portion ofZ, and then by taking special care of
the intervals that are “close” to the borders. Moreover, by observing that〈D〉 and〈D〉
behave in a very similar way when interpreted over classes offinite linear orders, it is
possible to use the same idea to prove the result for the modality 〈D〉 as well.

Theorem 3. There are no definabilities for〈E〉 and〈E〉 (as shown in Fig. 2), as well
as for their transposes〈B〉 and〈B〉, in the classesDis andFin.

Proof (sketch).We only give the sketch of the proof for the operators〈E〉 and 〈E〉.
The result for〈B〉 and〈B〉 follows from a symmetric argument. According to Fig. 2,
there are no definabilities for〈E〉 when the underlying structure is discrete, and there-
foreALBDOALBEDO is the only maximal fragment not defining it. This is also true
onLin andDen, but onDis andFin it is simply harder to prove. An indication of such
a difficulty comes from the analysis of the proofs presented in [15], where the den-
sity of the models involved plays a major role. Similarly to the case of Theorem 2,
〈E〉 is definable in an infinitary extension of the languageAB by the formula〈E〉p ≡
∨

k∈N
(ℓ=k ∧

∨

i<k(〈B〉(ℓ=i ∧ 〈A〉(ℓ=k−i ∧ p))), since, as stated in Section 3.2,〈B〉

can expressℓ=k, for everyk ∈ N. Thus, there exists noALBDOALBEDO-bisimulation
that violates〈E〉, and we need to find anALBDOALBEDON -bisimulation.

LetD be a finite domain, e.g., an arbitrarily large prefix ofN. We define a modelM
based on it and anALBDOALBEDON -bisimulation betweenM and itself that violates
〈E〉. GivenN ∈ N, we make use ofh ≤ N to refer to thehth component of theN -
bisimulation, also called in the following thehth stepof theN -bisimulation. Building
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Fig. 4. A graphical account of theALBDOALBEDON -bisimulation that violates〈E〉.

theALBDOALBEDON -bisimulation relies on a very technical construction thatallows
us to “simulate density” over discrete models up to a certainthreshold. To this end, we
will use monotonically increasing threshold functions, which are parametric inh and
which characterize a notion of “long interval”, relative toa genericsteph of theN -
bisimulation. Since such functions are monotonic, intervals that are “long” at the step
h of theN -bisimulation always contain intervals that are still “long” at the steph− 1,
despite being obviously shorter of the containing interval. We will also use suitably de-
fined equivalences up to a threshold (given by the aforementioned threshold functions)
to recognize when two intervals are “long enough” to be indistinguishable by modal
formulae in the fragmentALBDOALBEDO whose modal depth is less thanh ≤ N .

Now, we define the functionf(h) = h+1, which will be used as threshold function,
and the functionfP(h) =

∑h
i=1 f(i). Notice that both functions are monotonically

increasing. Moreover, we lett = 2(fP(1) +N + 4), a+ = t2

2 − 1, anda− = − t2

2 .
Finally, we consider a partition ofD as in Fig. 5. Three subsets, from left to right,

are clearly identified:P = {p1, . . . , pt}, R = {x ∈ D | pt < x < a−}, andA = {x ∈
D | a− ≤ x ≤ a+}, where we letpt = a− − t and, for eachi < t, pi = pi+1 − 1. For
eachh, we define further partitions of the subsetsP andA, as follows:

P =
⋃







P−
h = {x | p1 ≤ x ≤ pfP(h)}

P+
h = {x | pt−fP (h)+1 ≤ x ≤ pt}

Ph = {x | pfP (h) < x < pt−fP (h)+1},

Ai = {x ∈ D | a− + (i− 1) · t ≤ x < a− + i · t},

A =
⋃











A−
h =

⋃fP(h)
i=1 Ai

A+
h =

⋃t

i=t−fP (h)+1A
i

Ah = A \ (A−
h ∪ A+

h ) =
⋃t−fP(h)

i=fP (h)+1A
i.

Roughly speaking, we can say that stepping fromh+1 toh, the setsP−
h+1,P+

h+1,A−
h+1,

andA+
h+1 shrink, while the setsPh+1 andAh+1 expand. Now, letM be a model based

onD described as above. The valuationV of M uses the functionV : A → P :

V(y) =

{

p1 + i if y = a− + i, for each0 ≤ i < t

V(y − t) if a− + t ≤ y ≤ a+,

V (p) = {[x, y] | y ∈ A impliesx ≤ V(y)}.

In order to define anALBDOALBEDON -bisimulation, we first define a sequenceZN ,
. . . , Z1, which is common to both cases〈E〉 and〈E〉, and then we show how to adjust
it to obtain our results. To characterize the generichth componentZh of the sequence
ZN , . . . , Z1 we make use of an equivalence relation≡h, parameterized byh, which is
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defined as follows. Let us denote byx (resp.,w) thenth element ofAi (resp., themth
element ofAj), that is,x = ain andw = ajm. Then, we have:

x ≡h w iff















x = w or
x,w ∈ Ph or

x,w ∈ A and

{

i = j ∨ x,w ∈ Ah, and
m = n ∨ fP(h) < m,n < t− fP(h) + 1.

We can now defineZh as follows: for each1 ≤ h ≤ N , ([x, y], [w, z]) ∈ Zh if and
only if: (a)x ≡h w andy ≡h z, (b) y−x ≃f

h z−w, (c) if x,w ∈ P andy, z ∈ A, then
V(y)− x ≃f

h V(z)− w, and(d) if x ∈ Ai andy ∈ Aj for somei, j ∈ {1, . . . , t}, then
w ∈ Ak andz ∈ Aℓ for somek, ℓ ∈ {1, . . . , t} such thatj− i ≃f

h ℓ− k. As a last step,
we define a new sequence of relationsZE

N , . . . , Z
E
1 such thatZE

N ∪ ZN , . . . , Z
E
1 ∪ Z1

is anALBDOALBEDON -bisimulation (the proof is technically involved, so details are
omitted—see [3] for a fully-detailed account). Consider a point a = aim such that
i = m = t

2 , that is,a is the t
2 th point of the t

2 th sub-group ofA. It holds thatV(a) =
pm = p t

2
. Now, for each1 ≤ h ≤ N , letZE

h = {([V(a)−(N−h+1), a], [V(a)−(N−

h), a])}. It is possible to see thatM, [V(a)− 1, a] 
 〈E〉p,M, [V(a), a] 
 ¬〈E〉p, and
([V(a)−1, a], [V(a), a]) ∈ ZE

N . Thus,ZE
N∪ZN , . . . , Z

E
1 ∪Z1 is anALBDOALBEDON -

bisimulation that violates〈E〉.

To deal with the modality〈E〉, a new sequenceZE
N , . . . , Z

E
1 can be defined, fol-

lowing a similar technique, so thatZE
N ∪ ZN , . . . , Z

E
1 ∪ Z1 is anALBEDOALBDON -

bisimulation that violates〈E〉. Since the proof only uses a finite linear order, the result
holds for bothDis andFin. ⊓⊔

6 Conclusions

In this paper we studied the expressiveness of fragments of the interval temporal logic
HS interpreted over both discrete and finite linear orders. Acomplete classification
of all such fragments with respect to their relative expressive power has been recently
given for the classes of all linear orders and all dense linear orders. The cases of discrete
and finite linear orders turn out to be much more involved. We provided a complete set
of definabilities for the modalities corresponding to the Allen’s relationsmeets, later,
begins, finishes, andduring, plus their transposes. We leave open the problem of iden-
tifying the complete set of definabilities for the modalities corresponding to the Allen
relationoverlapsand to its inverseoverlapped by.
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