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Abstract. Interval temporal logics take time intervals, instead ofdiinstants, as
their primitive temporal entities. One of the most studieéival temporal logics
is Halpern and Shoham’s modal logic of time intervals HS,ohassociates a
modal operator with each binary relation between interoeés a linear order (the
so-called Allen’s interval relations). A complete clagsifion of all HS fragments
with respect to their relative expressive power has beeentgcgiven for the
classes of all linear orders and of all dense linear ordens. dases of discrete
and finite linear orders turn out to be much more involvedhla paper, we make
a significant step towards solving the classification pnobdeer those classes of
linear orders. First, we illustrate various non-triviaimigoral properties that can
be expressed by HS fragments when interpreted over finitedeudete linear
orders; then, we provide a complete set of definabilitiesttier HS modalities
corresponding to the Allen’s relatiomseets later, begins finishes andduring,
as well as the ones corresponding to their inverse relatibhs only missing
cases are those of the relatiangrlapsandoverlapped by

1 Introduction

Interval reasoning naturally arises in various fields of pater science and artificial in-
telligence, ranging from hardware and real-time systerifigation to natural language
processing, from constraint satisfaction to planning,[d§324,25,27]. Interval tempo-
ral logics make it possible to reason about interval stmestwver linearly ordered do-
mains, where time intervals, rather than time instantsttargrimitive ontological en-

tities. The distinctive features of interval temporal logyturn out to be useful in various
application domains [8,13,23,24,27]. For instance, tHieyeaone to modetelic state-

ments that is, statements that express goals or accomplishpegts the statement:
‘The airplane flew from Venice to Toronto’ [23]. Moreover, efnwe restrict ourselves
to discrete linear orders, such as, for instai€ar Z, some interval temporal logics
are expressive enough to constrain the length of intertrals, allowing one to specify
safety properties involving quantitative conditions [2Bhis is the case, for instance,
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with the well-known ‘gas-burner’ example [27]. Temporagjics with interval-based
semantics have also been proposed as suitable formalisitiefspecification and ver-
ification of hardware [24] and of real-time systems [27].

The variety of binary relations between intervals in a line@ler was first studied
by Allen [4], who investigated their use in systems for timamagement and planning.
In [18], Halpern and Shoham introduced and systematical@fyaed the (full) logic of
Allen’s relations, called HS in this paper, that features orodality for each Allen rela-
tion. In particular, they showed that HS is highly undecidaiver most classes of linear
orders. This result motivated the search for (syntactic)ftd§ments offering a good
balance between expressiveness and decidability/coityp[€x7,11,12,14,20,22,23].
A comparative analysis of the expressive power of HS fragmisrfar from being triv-
ial, because some HS modalities are definable in terms ofgthard thus syntactically
different fragments may turn out to be equally expressiveredver, the definability of
a specific modality in terms of other ones depends, in genamahe class of linear or-
ders over which the logic is interpreted, and the classitioatf the relative expressive
power of HS fragments with respect to a given class of linedeis cannot be directly
transferred to another class. More precisely, while defiitigls do transfer from a class
C to all its proper sub-classes, there might be new definglitations that hold in
some sub-class @, but not inC itself. Conversely, undefinabilities do transfer from a
class to all its proper super-classes, but not vice versaimy a specific undefinability
result amounts to providing a counterexample based on etmlimear orders from the
considered class. As a matter of fact, different assumgt@nthe underlying linear
orders give rise, in general, to different sets of definaédi[2,15].

Contribution. Many classes of linear orders are of practical intereshyiting the class
of all (resp., dense, discrete, finite) linear orders, as asethe particular linear order
onR (resp.Q, Z, andN). A precise characterization of the expressive power dfigl|
fragments with respect to the class of all linear orders hatldf all dense linear orders
has been given in [15] and [2], respectively. The classificabf HS fragments over
the classes of discrete and finite linear orders presentsdeuof convoluted techni-
cal difficulties. In [14], which is an extended version of bh¢®] and [10], the authors
focus on strongly discrete linear orders, by charactegiaimd classifying aldlecidable
fragments of HS with respect to both complexity of the satisfity problem and rel-
ative expressive power. In this paper, we make a significapt ®wards a complete
classification of the expressiveness of di¢idableandundecidablgfragments of HS
over finite and discrete linear orders, and in doing so weidensbly extend the ex-
pressiveness results presented in [14]; in this respeastyibrth to observe that, when
considering all the HS fragments (thus not only the decielainies) the undefinabil-
ity results for the HS modalities presented in [14] must beegalized and extended.
This generalization presents a number of technical diffiesil which are targeted here.
Given the present contribution, the only missing piece efékpressiveness puzzle is
that of the definabilities for the modality correspondingtte Allen relationoverlaps
(those for the inverse relatimverlapped byvould immediately follow by symmetry).

Structure of the paper. In the next section, we introduce the logic HS. Then, in Sec-
tion 3, we introduce the notion of definability of a modalityan HS fragment, and we
present the main tool we use to prove our results. In orderdvige the reader with
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Fig. 1. Allen’s interval relations and the corresponding HS mdaksi

an idea of the expressive power of HS modalities, we alsetithiie some meaningful
temporal properties, like counting and boundedness ptiegewhich can be expressed
in HS fragments when interpreted over discrete linear ardBnen, as a warm-up, in
Section 4 we present a first, simple expressiveness regufirdviding the complete
set of definabilities for the HS modalitigst), (L), (A), and (L), corresponding to
Allen’s relationsmeetsand later, and their inversemet byandbefore respectively.
Section 5 contains our main technical result, that is, a detaset of definabilities for
the HS modalitie$D), (E), (B), (D), (E), and(B), corresponding to Allen’s relations
during, finishes andbegins and their inversesontains finished by andbegun byre-
spectively. The proofs of the results in this section arkeadifficult and much more
technically involved than the ones in Section 4. Therefaelimit ourselves to giving
an overview of the proofs, and we refer the interested remd@i for the details.

2 Preliminaries

LetD = (D, <) be a linearly ordered set. Anterval overD is an ordered paifa, b],
wherea,b € D anda < b. An interval is called goint intervalif a = b and astrict
intervalif a < b. In this paper, we assume thigict semanticsthat is, we exclude point
intervals and only consider strict intervals. The adoptibthe strict semantics, exclud-
ing point intervals, instead of theon-strict semantigavhich includes them, conforms
to the definition of interval adopted by Allen in [4]. If we dxde the identity relation,
there are 12 different relations between two strict intlriraa linear order, often called
Allen’s relations[4]: the six relationsk 4 (adjacent to) Ry, (later than),Rp (begins),
Rpg (ends),Rp (during), andRo (overlaps), depicted in Fig. 1, and their inverses, that
is, R = (Rx) !, foreachX € {A,L,B,E, D,0}.

We interpret interval structures as Kripke structureshvfitien’s relations play-
ing the role of the accessibility relations. Thus, we assteca modality(X) with
each Allen relationRx. For eachX € {A, L, B, E, D, O}, thetransposeof modal-
ity (X) is modality (X), corresponding to the inverse relatid#i- of Rx. Halpern
and Shoham'’s logic HS [18] is a multi-modal logic with forraalbuilt from a finite,
non-empty setdP of atomic propositions (also referred to as propositiotets), the
propositional connectiveg and—, and a modality for each Allen relation. With every
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subse{Rx,, ..., Rx,} of these relations, we associate the fragn&sX . . . X, of
HS, whose formulae are defined by the grammar=p | =¢ | o Vo | (X1)p | ... ]|
(X1)e, wherep € AP. The other propositional connectives and constants (&,g,
andT), as well as the dual modalities (e.f4]p = —(A)—y), can be derived in the
standard way. We define timeodal depthof a formula as the largest nesting of modal
operatorsin it. For a fragmef = X;X; . .. X and a modality X ), we write(X) € F

if X € {Xy,...,X}. Giventwo fragmentg; andF», we write F; C F»if (X) € Fy
implies (X)) € F», for every modality(X). Finally, for a fragmentF = X; X5 ... Xy
and a formulap, we write ¢ € F or, equivalently, we say that is an F-formula,
meaning thafp belongs to the language &.

The (strict) semantics of HS is given in termsioferval models\ = (I(D), V),
whereD is a linear order](D) is the set of all (strict) intervals ovéd, andV is a
valuation functior : AP — 21(®) which assigns to each atomic propositioa AP
the set of interval$/(p) on whichp holds. Thetruth of a formula on a given interval
[z, y] in an interval modelM is defined by structural induction on formulae as follows:

— M, [z,y] IF pifand only if [z,y] € V(p), for eachp € AP;
- M, [, y] IF =% if and only if it is not the case that/, [z, y] I ;
M, [z,y] IF ¢ Vo ifand only if M, [z, y] IF ¢ or M, [z, y] IF 9;
M, [z,y] IF (X )4 if and only if there exist$z’, y'] such thafz, y|Rx[z’,y'] and

M, [z, y'] IF 4, for each modality X).

Formulae of HS can be interpreted over a class of intervalaisagbuilt on a given
class of linear orders). Among others, we mention the fdtgwclasses of (interval
models built on important classes of) linear ordéijsthe class o#ll linear orderd.in;
(i) the class of (alldenseinear ordersDen, that is, those in which for every pair of
distinct points there exists at least one point in betweemtfe.g.Q andR); (iii) the
class of (all)discretelinear orderDis, that is, those in which every element, apart from
the greatest element, if it exists, has an immediate suocessd every element, other
than the least element, if it exists, has an immediate pesdec (e.gN, Z, andZ + Z);
(iv) the class of (allfinite linear ordersFin, that is, those having only finitely many
points. A formulap of HS isvalid over a clas€ of linear orders, denoted by; ¢, if it
is true on every interval in every interval model belongiag@'t Two formulaes and
areequivalentelative to the clas§ of linear orders, denoted ky=¢ v, if IF¢ ¢ <> 1.

3 Definability and expressivenesss

Definition 1 (Definability). A modality(X) of HS is definablein an HS fragmentF
relative to a clas<C of linear orders, denotedX) <ic F, if (X)p =¢ « for some
F-formulat over the atomic propositiop, for anyp € AP. Then, the equivalence
(X)p =c¢ v is called adefinability equatiorfor (X)) in F relative toC. We write
(X) A Fifitis not the case thatX) <¢ F.

As we have already noted, smaller classes of linear ordaesitrthe definabilities
holding for larger classes: #f; andC, are classes of linear orders such tatc Cs,
then all definabilities holding fat, are also valid foC;. However, more definabilities
can possibly hold fo€;. On the other hand, undefinability results &rhold also for
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Ca. In the rest of the paper, we omit the class of linear ordersniibis clear from
the context (e.g., we will simply writéX)p = ¢ and(X) < F for (X)p =¢ ¢ and
(X)) <c¢ F, respectively).

Itis known from [18] that, when the strict semantics is assdpall HS modalities
are definable in the fragment containing modalitid$, (B), and(FE), and their trans-
poses(A), (B), and (E), while in the non-strict semantics, the four modalitig?),
(E), (B), and(FE) suffice, as shown in [26]. Given two HS fragmefts and F,, we
say that7; is at least as expressive &5, denotedF; < F», if each operatotX) € 7,
is definable inF,, and thatF; is strictly less expressivihan F,, denotedF; < Fo, if
F1 = F» holds butF; < F; does not. The notions ekpressively equivalefragments
andexpressively incomparabfeagments can be defined likewise.

Definition 2 (Optimal definability). A definability(X') < F is optimalif (X') <4 7 for
each fragmenf”’ such thatF’ < F.

3.1 Prooftechniques to disprove definability

In order to show non-definability of a given modality in a eémtfragment, we use the
standard notion ofl-bisimulation[17,19,21], suitably adapted to our setting.

Definition 3. LetF be anHS-fragment. AnFy-bisimulation between two modéilé =
(I(D), V) and M’ = (I(D"), V') over a set of proposition lettetd P is a sequence of
N relationsZy, ..., Z; C I(D) x [(D') such that: (i) for every[z, y], [z',v']) € Zx,
with N > h > 1, M, [z,y] IF pifand only if M’ [2,y'] I+ p, for all p € AP (local
conditiony (i) for every ([x,y], [#',y']) € Zy, with N > h > 1, if [z, y|Rx[v, w] for
somefv, w] € I(D) and som&X) € F, then there existgv, w], [v', w']) € Z;_1 such
that ¢/, y'|Rx [v', w’] (forward condition) (iii) for every ([z, ], [z",y']) € Z, with
N > h > 1,if [2/,y|Rx [V, w'] for some[v’,w'] € I(D’) and somgX) € F, then
there existg[v, w], [v', w']) € Z,_;1 such thafz, y| Rx [v, w] (backward condition)

Given anFy-bisimulation, the truth ofF-formulae of modal depth at moat— 1 is
invariant for pairs of intervals belonging tg;, with N > h > 1 (see, e.g., [17]).
Thus, to prove that a modalityX) is not definable i, it suffices to provide, for every
natural numbeiV, a pair of models\/ andM’, and anFy-bisimulation between them
for which there exists a paiffx, y], [*',y']) € Zn such thatM, [x,y] IF (X)p and
M, [2',y'] IF =(X)p, for somep € AP (in this case, we say that tt#éy-bisimulation
violates(X)). To convince oneself that this is enough to ensure(tiatis not definable
by any F-formula of any modal depth, assume, towards a contradictimat¢ is an
F-formula of modal depth such that X )p = ¢. Since, for eachV, there is anFy-
bisimulation that violategX'), there exists, in particular, one such bisimulation for
N =n+ 1. Let([z,y], [/, v]) € Zn be the pair of intervals thatiolates(X), that

is, M, [z,y] IF (X)pand M’ [z',y'] IF =(X)p. Then, the truth value ab over [z, y]

(in M) and[z’,y’] (in M’) is the same, and this is in contradiction with the fact that
M, [z,y] F (X)pandM’, [z, y'] IF =(X)p. A result obtained following this argument
applies to all classes of linear orders that contain (ag #lements) both structures
on which M and M’ are based. Notice that, in some cases, it is convenient toedefi
Fn-bisimulations between a mod&l and itself.
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It is worth pointing out that the standard notion®fbisimulationcan be recovered
as a special case @y -bisimulation. Formally, atF-bisimulation can be thought of as
an Fy-bisimulation withN = 2 andZ; = Zs. In the following, as is customary, we
will treat F-bisimulations as relations instead of sequences of twaleglations: if the
sequences, 7 is anF-bisimulation, withZ; = Z, = Z, then we will simply refer to
it as to the relatior¥. It is important to notice that showing that two intervals eglated
by anF-bisimulation (i.e., they aré&-bisimilar) is stronger than showing that they are
related by a relatior¥ iy, which belongs to a sequenégy, ..., Z; corresponding to
an Fy-bisimulation (i.e., the intervals ar&y-bisimilar). Indeed, while in the latter
case we are only guaranteed invariancé&efformulae of modal depth at moat — 1,
in the former case the truth of-formulae of any (possibly unbounded) modal depth
is preserved. This means that undefinability results obthirsingF-bisimulations are
not restricted to the finitary logics we consider in this papet also apply to extensions
with infinite disjunctions and with fixed-point operators.

Since F-bisimulations are notationally easier to deal with tt¥&n-bisimulations,
it is in principle more convenient to use the former, rathantthe latter, when proving
an undefinability result. However, while in few cases (seetiBe 4) a proof based on
F-bisimulations is possible, this is not generally the chseause some modalities that
cannot be defined in fragments of HS can be expressed in ttimiitéary versions. In
those cases (see Section 5), we resort to a prooFyigbisimulations.

For a given modality X') and a given clas§ of linear orders, we shall identify
a set of definabilities fot.X'), and we shall prove itsoundnesshy shoving that each
definability equation is valid i@, and itscompletenes$y arguing that each definability
is optimal and that there are no other optimal definabilfieg X') in C. Completeness
is proved by computing all maximal fragmerfghat cannot defin€X) (in the attempt
of defining(X) in F, we can obviously use the set of known definabilities). Fahea
modality, such fragments are listed in the last column of RigDepending on the
number of known definabilities, such a task can be time-cmirsgiand error-prone, so
an automated procedure has been implemented to serve thespuf]. Then, for each
suchF and eachV € N, we provide arFFy-bisimulation that violateéX ). Notice that
all the classes of linear orders we consider are (left/yigitnmetric namely, if a class
C contains a linear ordép = (D, <), then it also contains (a linear order isomorphic
to) its dual linear ordeP? = (D, =), where~ is the inverse ok. This implies that the
definabilities for(L), (A), (B), and(B) can be immediately deduced (and shown to be
sound and optimal) from those fOE), (A), (E), and(E), respectively.

Fig. 2 depicts the complete sets of optimal definabilitielslimg in Dis andFin for
the modalities/L), (A), (D), (D), (E), and(E) (recall that those fo(L), (A), (B),
and(B) follow by symmetry). Section 4 and Section 5 are devoteddwipg complete-
ness of such sets. For all the modalities, bdif and (4), soundness is an immediate
consequence of the corresponding soundnekiirshown in [15]. For lack of space,
we omit the proofs of the soundness of the definabilities for and (A), which any-
way are quite straightforward. Finally, while it is knowofn [18] that(O) </ BE (resp.,
(O) <1 BE), it is still an open problem whether this is the only optirdafinability for

(O) (resp.,{0)) in Dis and inFin.
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Modalities| Equations DefinabilitiesfMaximal fragments not defining|it
_ BDOALBEDO
_ . = LBDOALBEDO
“po(p) := [E]L A (B)(E][E]L AME)(p Vv (B)p))
_ ALBOALBEDO
(D) (D)p = (B){(E)p (D) <BE ALEOALBEDO
_ — == = |ALBEDOALBO
(E) no definabilities ALBDOALBEDO
(E) no definabilities ALBEDOALBDO

Fig. 2. Optimal definabilities irDis andFin. The last column contains the maximal fragments not
defining the modality under consideration.

3.2 Expressing properties of a model irHS fragments

We give here a short account of meaningful temporal proggrsiuch as counting and
(un)boundedness ones, which can be expressed in HS fragmérn they are in-
terpreted over discrete linear orders. The outcomes of an@mnalysis are summarized
in Fig. 3 (other properties can obviously be expressed ateBa@ombinations of those
displayed). They demonstrate the expressiveness cdjpabdf HS modalities, which
are of interest by themselves. As an example, constraihi@deingth of intervals is a
desirable ability of any formalism for representing andsmang about temporal knowl-
edge over a discrete domain. In fact, most HS fragments havy chances to succeed
in practical applications, and thus it is definitely worthrgang out a taxonomic study
of their expressiveness. As we already pointed out, suchdy giresents various intri-
cacies. For instance, in some fragments, assuming theethserss of the linear order
suffices to constrain the length of intervals (this is theeoaith the fragmenE); other
fragments rely on additional assumptions (this is the casethe fragmenDO, which
requires the linear order to be right-unbounded). Thisg@xédence of how expressive-
ness results can be affected by the specific class of lindareunder consideration.
Counting properties. When the linear order is assumed to be discrete, some HS frag-
ments are powerful enough to constrain (to some extentetigthof an interval, that
is, the number of its points minus one. ket {<,<,=,>,>}. For everyk € N, we
definel..; as a (pre-interpreted) atomic proposition which is truer@lleand only those
intervals whose length is-related tok. Moreover, for a modality X ), we denote by
(X)*p the formula(X) ... (X)e, with k occurrences of X) beforeyp. Limiting our-
selves to a few examples, we highlight here the ability of s@fithe HS modalities to
exprese., for anyk. It is well known that the fragments andB can express..;,
for everyk and ~ (see, e.g., [18]). As an example, the formuld@®”* T and [E]* L
are equivalent td-., and/<y, respectively. The fragmeillt features limited counting
properties, as, for everl, (D)*T A [D]**! 1 is true over intervals whose length is
either2 - k + 1 or2 - (k + 1) (notice that, as a particular instan¢®]_L is true over
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Counting properties Right Unboundednessif)
Oy, = (E)*T (BYT, (AT
=, = (B)"'TA[E]*L *) (O)T, BT
ls2n = (D)*T &) (DT, (EYO)T
leary  =[DIFL (*%) [ONL)T
1281 =" O)T () [DKL)T
£>2Ak+1 ET <D>k<O>T
lo.(op1y = (D)*(O)T A[D]F! L

T: only on right-unbounded domaink;only on intervals longer than 1;
§: only on left-unbounded domain;only on intervals longer than 2.

Fig. 3. Expressiveness of HS modalities over discrete linear srder

intervals whose length is eithéror 2). In a sense, it is not able to discriminate the
parity of an interval. The counting capabilities of the fra@ntO are limited as well:

it allows one to discriminate betweemit intervals(intervals whose length is 1) and
non-unit intervalgwhich are longer than 1), provided that the underlyingdinerder

is right-unbounded, likéZ or N ((O) possesses the same capability, provided that the
underlying linear order is left-unbounded, likeor Z~). However, quite interestingly,
by pairing(D) and(O), or, symmetrically{ D) and(O), it is possible to express.y.

for every k and~ over right-unbounded linear order (left-unbounded lineaters if
(O) is replaced by0)): it suffices to first usé D) to narrow the length down tb or

k + 1, and thenO) (or (O)) to discriminate the parity.

(Un)boundedness properties.et us denote by, (resp.3;) a (pre-interpreted) atomic
proposition that is true over all and only the intervals thave a point to their right
(resp., left). Various combinations of HS operators carresgd,.. Once again, while
in some cases we need to assume only the discreteness ofdéeyimy linear order,
there are cases where the validity of the definability rediesdditional assumptions.
For example, to impose that the current interval has a poirthé right within the
fragmentO, we can us€O) T only on non-unit intervals (otherwis&)) has no effect).
Analogously, it is possible to expresg possibly under analogous assumptions.

4 The Easy Cases

In this section, we prove the completeness of the set of dghiias for the modalities

(L), (L), (A), and(A), thus strengthening a similar result presented in [14, Tdrad.].
Theorem 1. The sets of optimal definabilities fof.) and(A) (listed in Fig. 2), as well
as (by symmetry) those fof.) and (A), are complete for the class&8s andFin.

Proof. The results fokL) (and, symmetrically, fo(L)) immediately follows from [15],

as the completeness proof fat) presented there used a bisimulation between models
based on finite linear orders. Notice thét) < BE holds inDis andFin, as it does in

Lin. However, such a definability, which is optimalliin, is not optimal inDis andFin

(and thus it is not listed in Fig. 2), due to the fact thdy < BE (which is not a sound
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definability inLin) holds oveDis. As a pleasing consequence, we can extend Venema’s
result from [26] concerning the expressive completeneskefragmenBEBE in the
non-strict semantics to the strict one under the discregeassumption.

According to Fig. 2{A) is definable in terms dE, implying that the maximal frag-
ments not definingA) are, as shown in the last column of Fig LBDOALBEDO and
LBEDOALEDO. Thus, proving thatA) <1 BE is the only optimal definability amounts
to providing two bisimulations, namely dBDOALBEDO- and anLBEDOALEDO-
bisimulation that violat€ A). As for the first one, we consider two modéls and M,
both based on the finite linear ordgr, 1,2}. We setV (p) = {[1,2]}, V/(p) = 0, and
Z = {([0,1],1]0,1]), ([0,2],0,2])}. It is easy to verify thatZ is anLBDOALBEDO-
bisimulation that violategA), as M, [0,1] I+ (A)p and M’,[0,1] IF =(A)p. As for
the second one, models and valuations are defined as befreehtake nowZ =
{([0,1],]0,1])}. Once again, it is easy to see tiats anLBEDOALEDO-bisimulation
that violateg A), asM, [0, 1] IF (A)p andM’, [0, 1] IF =(A4)p. Since the result is based
on a finite linear order, it holds for bothis andFin. O

5 The hard cases

In this section, we provide the completeness result for theatities(D) and(D) (The-
orem 2), as well as fofE), (E), (B), and(B) (Theorem 3). Because of the technical
complexity of the proofs, we only provide proof sketche #glain the main ideas
behind them at a very intuitive level, and refer the intexdseader to [3] for the details.
In the following, we letN"¢ = {z e N |z > c}andZ<“={x € Z | = < —c},
for eachc > 0. Moreover,Nt andZ~ denote the set®~>" andZ<~9, respectively.
As a preliminary step, we introduce the notionegfuivalence up ta given threshold,
denoted by~{ , which is used in both proofs to “simulate density”, in a sefisat
will be made clear later on. It is a series of equivalencdiamia overZ up to a certain
threshold, which is given by the value of the suitably defitredshold functiory onh.

Definition 4 (~J ). For any given functiory : D — N, called threshold function

whereD can be any prefix oN ", thatis,D = {1,..., N} for someN € N, and for

everyh € D, we define the relation aéquivalence up tg(k), denoted~7, as follows.

For every pair of integersi,ny € Z, ny =~ no if and only if one of the following
holds: (i) n1 = na, (i) n1,n2 > g(h), or (i) ni,n2 < —g(h).

Theorem 2. The sets of optimal definabilities f¢D) and (D) (listed in Fig. 2) are
complete for the classé3is andFin.

In order to proof the above theorem, we proceed as followsoAting to Fig. 2,
(D) is definable in terms oBE; thus there are two maximal fragments not defining
it, namely, ALBOALBEDO and ALEOALBEDO. First, we observe that it is possible
to define(D) in infinitary extensions oAB or AE, using, respectively, the following
formulae of unbounded modal depths:

<D> = {VkGN(f_k A \/i<k71(<B>(£:i A <A>(£<k—l /\p))))a

Vien U=k AV o1 ((E) (=i A (A)(b<k—i A D))))s
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where length constraints of the forfn; and/.; can be expressed using eithé?)

or (E) (see Section 3.2). It immediately follows that there exigis\LBOALBEDO-
bisimulation (resp.ALEOALBEDO-bisimulation) that violate$D), and thus we have
to resort toALBOALBEDO y-bisimulations (resp.ALEOALBEDO y-bisimulations).
Besides, since the two fragmemsBOALBEDO andALEOALBEDO are symmetric,
that is, they are indistinguishable over symmetric clas$disear orders, providing an
ALBOALBEDO y-bisimulation that violategD) suffices to prove the result. In what
follows, we build such al\LBOALBEDO x-bisimulation.

To this end, we first define the functigh: {1,..., N} — Nasf(h) = h + 1.
Then, we consider a bijectiapfrom Z x N+ to Z<~* such that(x,y) < = — k for
each(z,y) € ZxN*, and wheré: = 2- f(N)+4. Itis not difficult to convince oneself
of the existence of such a function. Now, we define the funcfioZ — NT as:

gy+z—zaifz=¢(z,y) forsomez, y
(@) = k—2 otherwise
Notice that ifx = £(z, y), thenn(z) > k + 1 holds, becausg(z,y) = = < z — k and
g > 1. Thus, for eaclx, we haven(x) > k — 2.

Proposition 1. There exist two integersandx + 1 such that)(z) > n(xz + 1) + 3.

Letd(x,y) = y — x — n(x), for each intervalz, y] € I(Z). The following lemma
will be useful in the proof of Lemma 2.

Lemma 1. The following statements hold.

a) For each intervalz,y] and eachi € Z, with —f(N) — 1 < i < f(N) + 1, there
existz’ andz” such thatr — 2’ = |i| andé(a”, x) = i.

b) For each intervalz,y] and eachi € Z, with—f(N) — 1 < i < f(N) + 1, there
existsz’ < x such that (', y) = i.

We let M = (I(Z), V), where the valuatioV is as follows:[z,y] € V(p) <
d(z,y) > 0. Notice thatM is parametric inNV becausé:, used in the definitions of
andn, depends oV. Notice also that the length efintervals is at least — 2.

We introduce here a sequence of relatidhys, . .., Z;. In Lemma 2, we will show
that it is anALBOALBEDO y-bisimulation that violategD). To this end, it is conve-
nient to define the equivalence relatica% and=, for eachh € {1,..., N}, as

[z,y] =0 [w, 2] ifand onlyif y —z ~f 2 —w

[z,y] =} [w, 2] ifand only if §(z,y) 2£ §(w, z),
where~/ is an equivalence up t6(h). Intuitively, =" relates pairs of intervals whose
lengths coincide or are both larger thAfh); =% relates intervalgr, y] and[w, 2] such
thatd(z,y) = d(w, z) or min{o(z,y),d(w,z)} > f(h) or max{d(z,y),d(w,2)} <
— f(Rh). Everything is set for the definition of the sequence of fefet{ Z), } 1< <n-

Definition 5. For eachh € {1,..., N}, the hth componentZ,, of the sequence of
relationsZy, ..., Z; is defined as:
(@, y1 Znlw, 2] & [2,y] =} [w, 2] and [z, y] = [w, 2].

Since=" and=" are equivalence relations, so4g, for eachh.

Lemma 2. The sequence of relatioty, . . ., Z1 is anALBOALBEDO y-bisimulation
that violates(D).
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Proof (sketch)We first show thatZy, ..., Z; is an ALBOALBEDO y-bisimulation.
The local condition is trivially fulfilled, agxz, w]Z,[w, z] implies [z, w] =} [w, 2],
which, in turn, impliesé(z,y) > 0 if and only if §(w, z) > 0, and thusM, [z, y] I p
if and only if M, [w, z] I p. To prove that the forward and the backward conditions
are fulfilled as well, the intuitive idea is to show that, fach pair([z, y], [w, z]) of
Zy-related intervals and each modalit¥ ) featured by the fragmeWtL BOALBEDO,
the set of equivalence classes (with respect to the relation) reachable fronz, y]
using (X) is equal to the set of equivalence classes reachable [fxgn] using (X).
The more difficult cases are the one corresponding to the litieddA) and (E). To
cope with the former, it suffices to observe that from Lemmaé ttamediately follows
that every class of equivalence is reachable from any iatér{; 3], using the modality
(A). Similarly, Lemma 1b can be used to deal with the modaly.

To conclude the proof, considpr, y] = [0, k—3] and[w, z], wherez = w+n(w) —
1 andw is such that)(w) > n(w + 1) 4+ 3 (the existence of such is guaranteed by
Proposition 1). We show thélx, y], [w, 2]) € Zn, M, [z, y] IF ~(D)p, andM, [w, z] I-
(D)p. It is easy to see that both,y] = [w,2] and[z,y] =} [w,2] hold. Thus,
we have tha([z, y], [w, z]) € Zy. Moreover, sincey — z < k — 2, it is clear, from
the definition ofV, that none of its sub-interval satisfips(becausep-intervals are
long at least — 2), and thusM, [z, y] IF =(D)p holds. Contrarily]w, z] is such that
M, [w, z] IF (D)p because the intervab + 1, z —1] satisfiep. To see the latter, observe
thatd(w+1,z—1)=z—-1-w—-1-nw+1)=nw) —n(w+1)—-3>0. O

The above proof makes use of a model based.pand thus it proves the result
for the clasDis. The whole construction can be adapted to deal with the ¢lasas
well, by using a finite, “large enough” portion &f, and then by taking special care of
the intervals that are “close” to the borders. Moreover, byesving that D) and (D)
behave in a very similar way when interpreted over classd®ité linear orders, it is
possible to use the same idea to prove the result for the itpdal) as well.

Theorem 3. There are no definabilities fofE) and (E) (as shown in Fig. 2), as well
as for their transpose&B) and (B), in the classe®is andFin.

Proof (sketch)We only give the sketch of the proof for the operat¢ry and (E).
The result for{ B) and (B) follows from a symmetric argument. According to Fig. 2,
there are no definabilities fdiz) when the underlying structure is discrete, and there-
fore ALBDOALBEDO is the only maximal fragment not defining it. This is also true
on Lin andDen, but onDis andFin it is simply harder to prove. An indication of such
a difficulty comes from the analysis of the proofs presentefilb], where the den-
sity of the models involved plays a major role. Similarly teetcase of Theorem 2,
(E) is definable in an infinitary extension of the langudd® by the formula(E)p =
Vien(l=k ANV, ((B)({=; N (A)({=r—i A p))), Since, as stated in Section 3(Z)
can expresé_;, for everyk € N. Thus, there exists naLBDOALBEDO-bisimulation
that violates E'), and we need to find ahLBDOALBEDO y-bisimulation.

LetD be a finite domain, e.g., an arbitrarily large prefixXofe define a model/
based on it and aALBDOALBEDO x-bisimulation betweed/ and itself that violates
(E). GivenN € N, we make use of < N to refer to thehth component of theV-
bisimulation, also called in the following theth stepof the N-bisimulation. Building
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p1 Pip(h) Pt o=t a” +tfp(h) at—t4+1
P2 Pi-fp(M)+1 | o= | a4 | 0 | ot
—=o -9 b4 * . * * ® . | * 4
| | | | I I I I I I I
| 73_ | 73 | 73+ | I 1 I 2 I f (\h) I t f (h)+1 I : I
| [} | | I | | : | - I |
o " o5 h g h g ° A e A o o4 PC' o ° A e
| | | | | |
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| | | | | |

Fig. 4. A graphical account of thaLBDOALBEDO y-bisimulation that violategE).

the ALBDOALBEDO y-bisimulation relies on a very technical construction tisaws
us to “simulate density” over discrete models up to a cettaieshold. To this end, we
will use monotonically increasing threshold functions,iethare parametric ik and
which characterize a notion of “long interval”, relative dogenericsteph of the N-
bisimulation. Since such functions are monotonic, inter#aat are “long” at the step
h of the N-bisimulation always contain intervals that are still “gSrat the steph — 1,
despite being obviously shorter of the containing intervg will also use suitably de-
fined equivalences up to a threshold (given by the aforemmesdi threshold functions)
to recognize when two intervals are “long enough” to be itidggiishable by modal
formulae in the fragmemLBDOALBEDO whose modal depth is less tharn< N.
Now, we define the functiofi(h) = h+ 1, which will be used as threshold function,

and the functionfp(h) = Zle f(@). Notice that both functions are monotonically

2

increasing. Moreover, we lét= 2(fp(1) + N +4),a™ = % —1,anda” = —%.
Finally, we consider a partition db as in Fig. 5. Three subsets, from left to right,
are clearly identified? = {p;,...,p:}, R={z €D |p; <z <a"},andA = {x €
D|a” < <a"},wherewelep; = a~ —t and, for each < ¢, p; = p;»1 — 1. For
eachh, we define further partitions of the subsgt@and.A, as follows:
P, ={z|p <z <prm}
P=US Pl ={z|p—tpyt1 <= < pi}
Prn=A2 | Dpn) < T < Prepp(h)+1)
Al={zeD|a +(i—-1)-t<x<a +i-t},
Ay = U A
A= -AZ = U’tL':tff’p(h)+1 A
Ay = A\ (4, UAT) = Ul AL
Roughly speaking, we can say that stepping ffoni to /, the setsP, 73,’;1, Aj i
andA;+1 shrink, while the set®;,,, and.A,.1 expand. Now, lef/ be a model based
onD described as above. The valuatigrof M uses the functiol : A — P:
V(y) = p1+i ify=a" +4,foreachd <i<t
V(y—t)ifa™ +t<y<a',
V(p) = {[z,y] | y € Aimpliesz < V(y)}.
In order to define al\LBDOALBEDO y-bisimulation, we first define a sequengg,
..., Z1, which is common to both caség) and(E), and then we show how to adjust
it to obtain our results. To characterize the genétitcomponentZ;, of the sequence
Zn,..., 71 we make use of an equivalence relatiop, parameterized by, which is
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defined as follows. Let us denote by(resp.,w) thenth element of4; (resp., thenth
element of4;), thatis,» = a!, andw = a/,. Then, we have:

x = w or

. e ), W € Py 0Or
v =p wift i=jVzx,we Ay, and
z,w € Aan
d{m—n\/fp(h) <m,n<t— fp(h)+1.

We can now defingZ;, as follows: for each < h < N, ([z,y], [w,z2]) € Z, if and
onlyif: (@Q)x =, wandy =5, z,(b)y —x :£ z—w, (€)if z,w € P andy, z € A, then
V(y) —x ~ V(z) — w, and(d) if 2 € A" andy € A7 for somei, j € {1,...,t}, then
w € A* andz € A’ for somek, ¢ € {1,...,t} such thay —i ~ ¢ — k. As alast step,
we define a new sequence of relatidf, . .., ZF such thazl; U Zy, ..., ZF u Z;
is anALBDOALBEDO y-bisimulation (the proof is technically involved, so détaire
omitted—see [3] for a fully-detailed account). Considera@npa = a, such that
i = m = £, thatis,a is the£th point of the£th sub-group ofA. It holds thatV(a) =
pm = py. Now, foreachl <h < N, letZ = {([V(a) (N —h+1),d],[V(a)— (N~
h),a])}. Itis possible to see thatl, [V(a) — 1,a] I+ (EYp, M, [V(a),a] IF =(E)p, and
([V(a)-1,a],V(a),a]) € ZE. Thus,ZEUZy, ..., ZFUZ, is anALBDOALBEDO y-
bisimulation that violate$E').

To deal with the modalityE), a new sequencﬁﬁ, e ZlE can be defined, fol-

lowing a similar techniqug, sothaty U Zy, ..., Zlﬁ U Z; is anALBEDOALBDO y-
bisimulation that violate$E). Since the proof only uses a finite linear order, the result
holds for bothDis andFin. O

6 Conclusions

In this paper we studied the expressiveness of fragmentgeahterval temporal logic
HS interpreted over both discrete and finite linear ordergofplete classification

of all such fragments with respect to their relative expxespower has been recently
given for the classes of all linear orders and all dense tiaegers. The cases of discrete
and finite linear orders turn out to be much more involved. VWjoled a complete set

of definabilities for the modalities corresponding to théeAls relationameetslater,
begins finishes andduring, plus their transposes. We leave open the problem of iden-
tifying the complete set of definabilities for the modabktieorresponding to the Allen
relationoverlapsand to its inverseverlapped by
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