
Bounded Timed Propositional Temporal Logic with Past
Captures Timeline-based Planning with Bounded Constraints

Dario Della Monica* Nicola Gigante† Angelo Montanari‡ Pietro Sala§ Guido Sciavicco¶

* Universidad Complutense de Madrid, Spain * Università di Napoli, Italy
†‡ Università di Udine, Italy § Università di Verona, Italy ¶ Università di Ferrara, Italy

* dario.dellamonica@unina.it † gigante.nicola@spes.uniud.it
‡ angelo.montanari@uniud.it § pietro.sala@univr.it ¶ scvgdu@unife.it

Abstract
Within the timeline-based framework, planning
problems are modeled as sets of independent,
but interacting, components whose behavior over
time is described by a set of temporal constraints.
Timeline-based planning is being used successfully
in a number of complex tasks, but its theoretical
properties are not so well studied. In particular,
while it is known that Linear Temporal Logic (LTL)
can capture classical action-based planning, a sim-
ilar logical characterization was not available for
timeline-based planning formalisms. This paper
shows that timeline-based planning with bounded
temporal constraints can be captured by a bounded
version of Timed Propositional Temporal Logic,
augmented with past operators, which is an exten-
sion of LTL originally designed for the verification
of real-time systems. As a byproduct, we get that
the proposed logic is expressive enough to capture
temporal action-based planning problems.

1 Introduction
Most of the languages used to describe automated plan-
ning problems, as, for instance, PDDL [Fox and Long, 2003;
Gerevini et al., 2009], follow an action-based paradigm, fo-
cusing on which actions can be performed by an executor
in order to achieve its goal. On the other hand, in timeline-
based planning, problems are described as a set of indepen-
dent, but interacting, components, whose behavior over time
(the timelines) is governed by a set of temporal constraints.
This more declarative approach turns out to be useful in de-
scribing and reasoning about problems dealing with a high
number of interacting components. Moreover, the concept
of flexible timeline allows one to represent uncertainty in the
duration of tasks, as well as uncontrollable components mod-
eling the behavior of the surrounding environment. Since its
introduction at NASA in the context of planning of space op-
erations [Muscettola, 1994], the timeline-based approach has

This work was partially supported by the Italian ¡NδA

Σ

GNCS
project Logics and Automata for Interval Model Checking. In addi-
tion, Dario Della Monica acknowledges the financial support from a
Marie Curie ¡NδA

Σ

-COFUND-2012 Outgoing Fellowship.

been adopted by a number of planning systems, like EUROPA
[Barreiro et al., 2012], ASPEN [Chien et al., 2000] and APSI-
TRF [Cesta et al., 2009], and successfully employed in a va-
riety of complex tasks and missions [Jónsson et al., 2000;
Cesta et al., 2007; Cesta et al., 2010].

Action-based planning has been extensively studied from
a theoretical point of view. Classical planning is known to
be PSPACE-complete [Bylander, 1994], while temporal plan-
ning, which extends the classical one with explicit durations
for actions, is EXPSPACE-complete [Rintanen, 2007]. Logi-
cal characterizations of action-based planning have been pro-
vided in [Cialdea Mayer et al., 2007; Cimatti et al., 2017], en-
coding the problem into Linear Temporal Logic (LTL) [Pnueli,
1977] or its variations.

Little is known about the theoretical properties of timeline-
based planning problems. In particular, a complete picture
of computational complexity and expressiveness of timeline-
based planning languages is missing. A formalization of the
problem, including flexible timelines and uncontrollable com-
ponents, can be found in [Cimatti et al., 2013; Cialdea Mayer
et al., 2014; Cialdea Mayer et al., 2016]. In [Gigante et
al., 2016], Gigante et al. isolated a fragment of non-flexible
timeline-based planning, which forbids the use of unbounded
interval relations and is expressive enough to capture tempo-
ral action-based planning, and proved that it is EXPSPACE-
complete. A logical characterization of timeline-based plan-
ning is missing. Besides being a very natural question by
itself, it would allow one to approach the problem of the con-
trollability of problems with uncontrollable components in
terms of logical synthesis [Schewe and Tian, 2011].

Timed Propositional Temporal Logic (TPTL) is an exten-
sion of LTL aimed at the verification of reactive systems with
real-time constraints [Alur and Henzinger, 1994]. It extends
LTL with a freeze quantifier that allows one to give a name to
the timestamp of a given state, and then to employ it in tim-
ing constraints. The satisfiability checking problem for TPTL
is EXPSPACE-complete, which makes it a good candidate for
capturing timeline-based planning; unfortunately, it lacks the
necessary past operators, and the extension of TPTL with past
(TPTL+P) is non-elementary [Alur and Henzinger, 1993].

In this paper, we give a logical characterization of the frag-
ment of non-flexible timeline-based planning studied in [Gi-
gante et al., 2016], by showing that it can be naturally cap-
tured by a guarded fragment of TPTL+P which imposes an

exponential upper bound to the scope of temporal operators
when applied to formulae with free variables. We show that
this restriction is enough to keep the satisfiability checking
problem for the resulting logic EXPSPACE-complete. By ex-
ploiting the expressiveness result of [Gigante et al., 2016], the
result directly transfers to temporal action-based planning.

The rest of the paper is organized as follows. In Sect. 2,
we introduce the timeline-based planning problem. Then, in
Sect. 3 we show that the considered fragment of TPTL with
past is sufficient to capture it. Next, in Sect. 4 we determine
the complexity of the logic. We conclude the paper by dis-
cussing future developments.

2 Timeline-based Planning
This section introduces notation and terminology of timeline-
based planning, mostly borrowed from [Gigante et al., 2016]
and extensively discussed in [Cialdea Mayer et al., 2016].
Definition 1 (State variable). A state variable x is a triple
(Vx, Tx, Dx), where:
• Vx is the finite domain of the variable x;
• Tx : Vx → 2Vx is the value transition function, which

maps each value v ∈ Vx to the set of values that x can
take immediately after v;
• Dx : Vx → N × N is a function that maps each v ∈ Vx

to a pair (dmin, dmax), with dmin ≤ dmax, where dmin
and dmax are respectively the minimum and maximum
duration of an interval over which x takes value v.

Which value is taken by a state variable over a specified
time interval is described by means of tokens.
Definition 2 (Token). A token for x is a tuple τ = (x, v, d),
where x = (Vx, Tx, Dx) is a state variable, v ∈ Vx, and
d ∈ N is the duration of the token, with dmin ≤ d ≤ dmax,
and Dx(v) = (dmin, dmax).

The time-varying behavior of a state variable is represented
by means of a finite sequence of tokens, called a timeline.
Definition 3 (Timeline). A timeline for a state variable x =
(Vx, Tx, Dx) is a non-empty finite sequence T = 〈τ1, . . . , τk〉
of tokens for x, where vi+1 ∈ Tx(vi) for i ∈ {1, . . . , k − 1}.

Notice that the values of x in two consecutive tokens do
not need to be different. A time interval can be associated
with any token τi = (x, vi, di) in a timeline T = 〈τ1, . . . , τk〉
by means of the functions start_time(τi) =

∑i−1
j=1 dj and

end_time(τi) = start_time(τi) + di. The end time of the last
token of a timeline is called the horizon of the timeline. In the
following, when there is no ambiguity, we will interchange-
ably refer to a token and to the associated time interval.

The behavior of state variables is constrained by a set of
synchronization rules, which relate tokens, possibly belong-
ing to different timelines, through temporal relations among
intervals or among intervals and time points. To express
these temporal constraints, we adopt the compact notation
proposed in [Gigante et al., 2016]. Let Σ = {a, b, c, . . .}
be a set of token names used to refer to tokens.
Definition 4 (Atoms). An atom is either a clause of the form
a ≤e1,e2[l,u] b (interval), or of the form a ≤e1[l,u] t or a ≥e1[l,u] t

(time-point), where a, b ∈ Σ, l, u, t ∈ N, and e1, e2 are either
start_time or end_time, respectively s and e for short.

As an example, the atom a ≤s,e
[l,u] b constrains the token a

to start before the end of b, and the distance between the two
related endpoints to be between l and u.

Definition 5 (Synchronization rules). Let SV be a set of state
variables. An existential statement is a statement of the form:

∃a1[x1 = v1] . . . an[xn = vn] . C

where C ≡ ρ0 ∧ . . . ∧ ρm is a conjunction of atoms, xi ∈
SV , ai ∈ Σ, and vi ∈ Vxi

for each i ∈ {1, . . . , n}. The
clauses ai[xi = vi] are called quantifiers. A token name used
in C, but not occurring in any quantifier, is said to be free.
A synchronization rule R is a clause in one of the following
forms:

a0[x0 = v0] −→ E1 ∨ E2 ∨ . . . ∨ Ek
> −→ E1 ∨ E2 ∨ . . . ∨ Ek

where a0 ∈ Σ, x0 ∈ SV , v0 ∈ Vx0 , and E1, . . . , Ek are
existential statements where only a0 may appear free. In rules
of the first form, the quantifier a0[x0 = v0] is called trigger.
Rules of the second form are said to be trigger-less.

Intuitively, the trigger is a universal quantifier, which says
that for all the tokens a0, where the variable x0 takes the value
v0, at least one of the existential statements Ei must be true.
The existential statements in turn assert the existence of to-
kens a1, . . . , an, where the respective state variables take the
specified values, that satisfy the temporal constraints given
by C. Trigger-less rules simply assert the satisfaction of the
existential statements.

Definition 6 (Semantics of atoms). Given a set of tokens Γ
and a function λ : Σ → Γ that assigns a token to each token
name, an interval atom a ≤e1,e2l,u b is satisfied by λ if l ≤
e2(λ(b)) − e1(λ(a)) ≤ u. A time-point atom of the form
a ≤e[l,u] t or a ≥e[l,u] t is satisfied by λ if, respectively, l ≤
t− e(λ(a)) ≤ u or l ≤ e(λ(a))− t ≤ u.

Definition 7 (Semantics of synchronization rules). Given a
set of tokens Γ and a function λ : Σ → Γ, a quantifier
a[x = v] is satisfied by λ if λ(a) = (xa, va, da), with xa = x
and va = v. An existential statement E , with conjunct clause
C, is satisfied by λ if all the quantifiers of E and all the atoms
in C are satisfied by λ. A synchronization rule R of the form
a0[x0 = v0] −→ E1 ∨ E2 ∨ . . . ∨ Ek is satisfied by Γ if,
for every token τ = (xτ , vτ , dτ) ∈ Γ where xτ = x0 and
vτ = v0, there is an existential statement Ei and a mapping
λ : Σ→ Γ such that λ(a0) = τ and λ satisfies Ei.

A timeline-based planning domain is specified by a set of
state variables and a set of synchronization rules representing
their admissible behaviors. Trigger-less rules can be used to
express initial conditions, domain invariants, and the goals of
the problem.

Definition 8 (Planning problem). A timeline-based planning
problem is a pair P = (SV, S), where SV is a set of state
variables and S is a set of synchronization rules involving
variables in SV . A solution plan for P is a set of timelines

π = {T1, . . . ,Tn}, one for each xi ∈ SV , such that all the
synchronization rules in S are satisfied by the set Γ of all the
tokens involved in π, that is, Γ = {τ | τ ∈ Ti, 1 ≤ i ≤ n}.

Some useful relations can be defined. As an example, a
bounded version of the thirteen Allen’s ordering relations be-
tween pairs of intervals [Allen, 1983] can be defined in terms
of the basic interval atoms of Definition 4. For instance, the
equality and the contains interval relations between a and b
can be defined as, respectively, a ≤s,s

[0,0] b ∧ a ≤
e,e
[0,0] b and

a ≤s,s
[l1,u1] b ∧ b ≤

e,e
[l2,u2] a for some bounds l1, l2, u1, u2 ∈ N.

3 Bounded TPTL with Past Captures
Timeline-based Planning

This section introduces TPTLB+P, a variant of Timed Propo-
sitional Temporal Logic (TPTL), and shows how to reduce the
timeline-based planning problem to the satisfiability problem
of TPTLB+P formulae. TPTL is an extension of LTL originally
introduced in the area of formal verification to model proper-
ties of real-time systems [Alur and Henzinger, 1994], whose
satisfiability checking problem is EXPSPACE-complete. In
its original definition, the logic only supports future tempo-
ral operators, because the addition of past modalities makes
the complexity of the problem for the resulting logic TPTL+P
non-elementary [Alur and Henzinger, 1993].

As a matter of fact, the possibility of referring to the past
is useful to compactly encode timeline-based planning prob-
lems. For this reason, in this paper we introduce TPTLB+P,
a guarded fragment of TPTL+P that features past modali-
ties, but restricts the scope of both future and past modal-
ities. TPTLB+P turns out to be expressive enough to cap-
ture timeline-based planning problems, without increasing
the computational complexity of the satisfiability checking
problem, which stays EXPSPACE-complete.

Let AP be a set of proposition letters and V be a set of
variables. A TPTLB+P formula φ over AP and V is recur-
sively defined as follows:

φ := p | ¬φ1 | φ1 ∨ φ2 | x.φ1 | x ≤ y + c | x ≤ c
| Xwφ1 | φ1 Uw φ2 | Ywφ1 | φ1 Sw φ2

where p ∈ AP , φ1, φ2 are TPTLB+P formulae, x, y ∈ V , c ∈
Z, w ∈ N ∪ {+∞}, and in any formula of the forms Xwφ1,
Ywφ1, φ1 Uw φ2, and φ1 Sw φ2, if w = +∞, then φ1, φ2 are
closed formulae (a formula ψ is closed if any occurrence of a
variable x is inside a subformula of the form x.φ). Formulae
of the form x.φ are called freeze quantifications, while those
of the forms x ≤ y+c and x ≤ c are called timing constraints.
A missing w subscript stands for w = +∞. Standard logical
and temporal shortcuts are used, such as > for p ∨ ¬p, for
some p ∈ AP , ⊥ for ¬>, φ1 ∧φ2 for ¬(¬φ1 ∨ ¬φ2), Fφ for
>U φ, Gφ for ¬F¬φ, and Pφ for >S φ, as well as constraint
shortcuts, such as, e.g., x ≤ y for x ≤ y + 0, x > y for
¬(x ≤ y), and x = y for ¬(x < y) ∧ ¬(y < x).

TPTLB+P formulae are interpreted over timed state se-
quences, i.e., structures ρ = (σ, τ), where σ = 〈σ0, σ1, . . .〉
is an infinite sequence of states σi ∈ 2AP , with i ≥ 0, and
τ = 〈τ0, τ1, . . .〉 is an infinite sequence of timestamps τi ∈ N,
with i ≥ 0, such that (i) τi+1 ≥ τi (monotonicity) and (ii) for
all t ∈ N, there is some i ≥ 0 such that τi ≥ t (progress).

Formally, the semantics of TPTLB+P is defined as follows.
An environment is a function ξ : V → N that interprets a
given variable as a timestamp. A timed state sequence ρ =
(σ, τ) satisfies a TPTLB+P formula φ at position i ≥ 0, under
the environment ξ, written ρi |=ξ φ, if and only if:

• ρi |=ξ p iff p ∈ σi;
• ρi |=ξ φ1 ∨ φ2 iff either ρi |=ξ φ1 or ρi |=ξ φ2;
• ρi |=ξ ¬φ1 iff ρi 6|=ξ φ1;
• ρi |=ξ x ≤ y + c iff ξ(x) ≤ ξ(y) + c;
• ρi |=ξ x ≤ c iff ξ(x) ≤ c;
• ρi |=ξ x.φ1 iff ρi |=ξ′ φ1 where ξ′ = ξ[x← τi];
• ρi |=ξ Xwφ1 iff τi+1 ≤ τi + w and ρi+1 |=ξ φ1;
• ρi |=ξ φ1 Uw φ2 iff there exists j ≥ i such that:

(i) τj ≤ τi + w, (ii) ρj |=ξ φ2,
and (iii) ρk |=ξ φ1 for all k such
that i ≤ k < j;

• ρi |=ξ Ywφ1 iff i > 0, τi ≤ τi−1 + w, and
ρi−1 |=ξ φ1;

• ρi |=ξ φ1 Sw φ2 iff there exists j ≤ i such that:
(i) τi ≤ τj + w, (ii) ρj |=ξ φ2,
and (iii) ρk |=ξ φ1 for all k such
that j < k ≤ i;

where ξ′ = ξ[x ← τi] is the environment that agrees with ξ
on each variable but x, where ξ′(x) = τi.

A closed formula φ is said to be satisfied by a timed state
sequence ρ, written ρ |= φ, if ρ0 |=ξ φ for any ξ.

The logic TPTLB+P, as well as the original TPTL, is an ex-
tension of standard LTL with the addition of the freeze quan-
tifier x.φ, which allows one to give a name to the timestamp
of the current state. Then, timing constraints can refer back
to two states, e.g., named x and y, comparing their times-
tamps. Thus, TPTL is a sort of metric extension of LTL, com-
bined with some features typical of hybrid logics, but in a
way that retains decidability and (relatively) low complexity.
Here, in addition, we allow the use of past modalities yes-
terday and since. Adding them naïvely to TPTL would cause
the complexity of the satisfiability problem to become non-
elementary [Alur and Henzinger, 1993]. Here, we restrict all
temporal modalities (including future ones) to look only as
far as w time steps from the current state. An infinite bound
w = +∞ is allowed only if the argument formula is closed.
This implies that in any timing constraint x ≤ y + c, the
timestamps x and y can be distant, at most, an amount of
time that is exponential in the size of the formula. Note that
TPTLB+P is still an extension of LTL (standard LTL operators
are obtained from bounded ones by always using w = +∞),
and the bounded operators are expressible in the full TPTL+P
by replacing, for instance, a formula Xwφ, with w 6= +∞, by
x.Xy.(y ≤ x+w ∧ φ). TPTLB+P is thus a guarded fragment
of full TPTL+P.

Intuitively, the syntactic restriction imposed in TPTLB+P
occurs naturally in the specification of timeline-based prob-
lems as defined in Sect. 2. As an example, consider the rule:

a[x0 = v0] −→ ∃b[x1 = v1]c[· · ·]d[· · ·]e[· · ·] .
a ≤s,s

l,u b ∧ b ≤
s,s
l′,u′ c ∧ d ≤s,s

l′′,u′′ e.

The involved token names can be partitioned into two com-
ponents, namely, {a, b, c} and {d, e}, such that in both of
them each element is related to the others. Since each atom
provides an upper bound on the distance of the correspond-
ing token endpoints, they can span an amount of time that
is bounded by the sum of all the coefficients involved in the
atoms of the component.

Definition 9. Let P = (SV, S) be a timeline-based planning
problem, R ∈ S be a synchronization rule, and E be an exis-
tential statement of R. Let ΣE be the subset of token names
used in E and GE = (ΣE , E) be an undirected graph such
that (a, b) ∈ E iff E contains an atom a ≤e1,e2l,u b. A com-
ponent Γ of E is a maximal subset of ΣE whose elements are
vertices of a connected component of GE .

Definition 10. Let P = (SV, S) be a timeline-based plan-
ning problem. The window of the problem WP is the product
of all the non-zero coefficients appearing in the problem as
duration bounds of tokens (Dx function of any variable x) or
as bounds of atoms of any synchronization rules.

Intuitively, WP is a very weak, but correct, upper bound
on how far away a component of an existential statement can
look from any of its elements. In [Gigante et al., 2016],
this observation led to a doubly exponential upper bound
to the size of the solution, which was exploited to devise
an exponential-space decision procedure. Here, it allows us
to provide a TPTLB+P encoding of timeline-based planning
problems: each token required by an existential statement is
identified by a combination of bounded temporal operators
and suitable timing constraints. While a single component
can be confined into its exponential-size window, different
components can be located arbitrarily far away from each
other. For this reason, in [Gigante et al., 2016] we restricted
the result to rules with only a single component. Here, we can
relax this restriction thanks to the unbounded temporal oper-
ators of TPTLB+P: since components are unrelated to each
other, they can be described by closed formulae. In what fol-
lows, w.l.o.g., we will assume that the names used in each
rule of a timeline-based planning problem are unique.

Thus, if P = (SV, S) is a timeline-based planning prob-
lem, the equivalent TPTLB+P formula φP is made as follows:

φP ≡ φ0 ∧
∧
x∈SV

φx ∧
∧
R∈S

φR

where φ0 ≡ t.(t = 0) states that time starts at timestamp
zero, φx encodes the basic facts about each state variable
x ∈ SV , and φR encodes the semantics of synchronization
rules R ∈ S. For each state variable x ∈ SV , the formula
uses two sets of proposition letters: for each value v ∈ Vx, a
proposition letter sxv , to mark the start of a token for the vari-
able x where x = v, and a proposition letter ⊥x to mark the
end of the timeline for x. A shortcut formula sx ≡

∨
v∈Vx

sxv
will be used to assert the start of a token for x of any value.

Now, the formula φx that encodes the behavior of a vari-
able x = (Vx, Tx, Dx) ∈ SV is the conjunction of a few
axioms, including the following: (1) at most one token starts
at a given state, (2) the timeline eventually ends, and (3) ei-
ther a token starts at t = 0 or it is preceded by another one.

These three statements are encoded as follows:∧
v∈Vx

G
(
sxv −→ ¬

∨v′∈Vx

v′ 6=v
sxv′
)

(1)

F⊥x ∧ G
(
⊥x −→ G¬sx

)
(2)

G(sx ∧ t.(t 6= 0) −→ YWP
PWP

sx). (3)

Then, φx has to state that after the start of each token, the end
must happen within the bounds required by the Dx function
and the following token (if any) must respect the Tx function:

Gts.
(
sxv −→ FWP

te.(ε
x
v(ts) ∧

te ≥ ts + dvmin ∧ te ≤ ts + dvmax)
))

where Dx(v) = (dvmin, d
v
max) and, for all v, x, and t, εxv(t)

is the following formula:

εxv(t) ≡
(
⊥x ∨

(∨
v′∈Tx(v)

sxv′
))
∧ YWP

(
¬sx SWP

t′.(t = t′)
)

which is true if the state at timestamp twas the start of a token
for x = v, and the current state is the end of that token.

Note that the end of a token is represented by the start of
the following one (or by⊥x), and an empty token is described
by two symbols sx labeling states with the same timestamp.

The last part of φP describes the synchronization rules.
Consider the synchronization ruleR ≡ a0[x = v0] −→ E1 ∨
. . . ∨ Ek. The formula φR that encodesR has the form:

φR ≡ G

start of a0︷ ︸︸ ︷
tsa0
.
(
sxv0
−→

end of a0︷ ︸︸ ︷
FWP

tea0
.
(
εxv0

(tsa0
)∧

k∨
i=1

φEi
))

where the formula φEi encodes the existential statement Ei,
as shown in the following.

Let Γ be a component of a given existential statement E
and let a1[x1 = v1], . . . , ak[xk = vk] be the quantifiers used
in E to introduce the names in Γ. Then, the formula encoding
Γ is the following one:

φΓ ≡

start of a1︷ ︸︸ ︷
∃WP

tsa1
.
(
sx1
v1
∧

end of a1︷ ︸︸ ︷
FWP

tea1
.
(
εx1
v1

(tsa1
)∧(· · ·︸ ︷︷ ︸

for all ai ∈ Γ

.ψΓ) · · ·
))

where ∃wφ ≡ FwPwφ and ψΓ encodes the atoms of the com-
ponent through the conjunction of suitable timing constraints.
In φΓ, all the starting and ending endpoints of each token in-
volved in the component are quantified, and their timestamps
assigned to variables, respectively tsai and teai for the start and
end of the token ai. Thus, in ψΓ, the atoms can be encoded
directly. As an example, an atom a1 ≤s,e

[3,7] a2 can be encoded
as (tea2

≥ tsa1
+ 3) ∧ (tea2

≤ tsa1
+ 7).

Thus, let {Γ1, . . . ,Γm} be the components of the existen-
tial statement E . At most one of these components, say Γi,
contains the name a0 used in the trigger, while the others are
independent from it. Thus, the formula φE that encodes E has
the following form:

φE ≡ φΓi ∧
∧

j 6=i
FPφΓj

Note that since all the components other than Γi do not men-
tion the trigger, formulae Γj (for j 6= i) do not have free vari-
ables, as all the needed time points are quantified inside, and
thus they are allowed to occur inside the unbounded eventu-
ally and past operators. Also note that the only free variables
in any φE are tsa0

and tea0
, i.e., those referring to the trigger.

A trigger-less rule is only determined by the satisfaction of
its existential statements. Thus, the formula φR′ for a rule
R′ ≡ > −→ E ′1 ∨ . . . ∨ E ′k is simply φR′ ≡ F

∨k
i=1(φE′i);

sinceR′ has no free variables, it is syntactically well-formed.
It can be verified that φP correctly encodes the problem P ,
and that a solution plan can be effectively extracted from a
model of φP .
Theorem 1. Given a timeline-based planning problem P
with bounded constraints, there exists a solution plan for P if
and only if the TPTLB+P formula φP is satisfiable.

Moreover, it is easy to see that the size of φP is polynomial
in the size of P . Note that enumerating all the possible values
of a variable, e.g., in sx, is permitted, since |Vx| ∈ O(|P |), as
the values are already enumerated extensionally in the input
representation of P to specify the Tx and Dx functions.

4 Complexity of TPTLB+P
We now show that, given a closed TPTLB+P formula φ, decid-
ing whether φ has a model is EXPSPACE-complete. Hardness
comes from the encoding shown in Sect. 3, and the complex-
ity result from [Gigante et al., 2016], thus here we only pro-
vide an exponential-space decision procedure. We start with
some notation. Let n = |φ| be the length of φ, and m be
the number of temporal modalities of φ with a finite bound,
with {w1, . . . , wm} the set of all such finite bounds. Among
those, let w0 = max{wi | 1 ≤ i ≤ m} be the maximum one,
and let W = w0 · (m + 1). Similarly, let ∆ =

∏
i |ci| for

all the finite and non-zero coefficients ci appearing in timing
constraints of the formula, e.g., in x ≤ y+ c. Note that, since
coefficients are succinctly encoded, the size of both ∆ andW
is exponential in n.

W.l.o.g., hereafter we restrict ourselves to formulae with-
out absolute timing constraints of the type x ≤ c. To show
that the problem can be solved in exponential space, we out-
line a tableau-based decision procedure based on the tableau
for TPTL outlined in Alur and Henzinger [1994], which in
turn exploits ideas very similar to those of classic tableau
systems for LTL [Manna and Pnueli, 1995; Lichtenstein and
Pnueli, 2000]: a graph is built, where each node represents a
possible state of a model, and then a model is searched among
the infinite paths of this graph. In contrast to the usual LTL
tableaux, however, a tableau for TPTL and TPTLB+P has also
to keep track, in addition to the truth assignment of any given
node, of how much time has to pass between two different
states, and handle the freeze quantifications accordingly. The
key ingredient is the following.
Definition 11. Consider a TPTLB+P formula x.ψ and δ ∈ Z.
Then, the formula x.ψδ is obtained from x.ψ in two steps:

1. one first replaces all the subformulae of the forms x ≤
y + c and y ≤ x + c by, respectively, x ≤ y + (c + δ)
and y ≤ x+ (c− δ);

2. then, all the subformulae of the forms x ≤ y + c and
y ≤ x+ c are replaced by > (resp., ⊥) if c > W (resp.,
c < −W).

Intuitively, x.ψδ is a time-shifted version of x.ψ where x is
mapped to x − δ, in such a way that x.ψδ holds at time τ if
and only if ψ holds at τ − δ.

As in classic tableaux, the nodes are sets of formulae drawn
from the closure set of φ, which contains all the formulae
needed to assess the truth of φ over a model.
Definition 12. Given a closed TPTLB+P formula φ of the
form x.φ′, the closure of φ is the smallest set of formulae
C(φ) containing x.φ′ such that:
• if x.(ψ1 ∨ ψ2) ∈ C(φ), then {x.ψ1, x.ψ2} ⊆ C(φ),
• if x.Xwψ ∈ C(φ), then {x.ψδ | δ ∈ N} ⊆ C(φ),
• if x.Ywψ ∈ C(φ), then {x.ψ−δ | δ ∈ N} ⊆ C(φ),
• if x.(ψ1 Uw ψ2) ∈ C(φ), then x.ψ1, x.ψ2, and
x.Xw(ψ1 Uw−δ ψ2), for all δ ≤ w, belong to C(φ),
• if x.(ψ1 Sw ψ2) ∈ C(φ), then x.ψ1, x.ψ2, and
x.Yw(ψ1 Sw−δ ψ2), for all δ ≤ w, belong to C(φ),
• if x.z.ψ ∈ C(φ), then x.ψ[z/x] ∈ C(φ),

where w− δ = w if w = +∞ and ψ[z/x] is obtained from ψ
by replacing every free occurrence of z with x.

Note that, w.l.o.g., we can restrict our attention to formu-
lae φ of the form x.φ′ and observe that C(φ) only contains
closed formulae of the form z.ψ, for some variable z. As one
may see, the definition of the closure of φ is very similar to
that given for TPTL by Alur and Henzinger [1994], but it dif-
fers in the handling of the bounds in the temporal operators
Uw and Sw, which are decremented by the suitable amount at
each expansion. Another crucial difference is the definition
of x.ψδ (Definition 11), which has to deal with shifts in both
directions. Note that the closure of x.Xwψ (resp., x.Ywψ)
seems to generate an infinite number of formulae x.ψδ , for all
δ ∈ N, but this is not the case. In the case of TPTL, one may
assume that in a closed formula of the form x.ψ, any other
variable y that occurs in ψ is instantiated only at a timestamp
later than x. This fact ensures that the closure set remains fi-
nite, since, for instance, any formula of the form x ≤ y+c can
be replaced by > for any c. Here, however, since ψ may use
past operators, this argument does not work, and the closure
set is at risk of becoming infinite. Nevertheless, we ensure its
finiteness by replacing with > or ⊥ any formula x ≤ y + c
where c goes respectively above W or below −W . This re-
placement is sound thanks to the restriction that unbounded
temporal operators may only be used with closed formulae,
which guarantees that the value of any x and y used in a tim-
ing constraint can only differ as much as W . In addition, we
can bound the size of the closure set which, as in the TPTL
case, is exponential in the size of the formula. Thus, the fol-
lowing two results can be proved.
Lemma 1. Let ρ = (σ, τ) be a timed state sequence and ξ be
an environment. Consider a position i ≥ 0 and δ ∈ Z such
that δ ≤ τi. Then, for any formula x.ψ ∈ C(φ):

ρi |=ξ x.ψ
δ iff ρi |=ξ′ ψ,

where ξ′ = ξ[x← τi − δ].

Lemma 2. Let φ be a TPTLB+P formula. Then,

|C(φ)| ∈ O(n ·W ·∆).

We now show how the tableau for φ is built. To this end,
let C∗(φ) = C(φ) ∪ {Prevδ | 0 ≤ δ ≤ ∆} ∪ {Succγ | 0 ≤
γ ≤ ∆} be an extension of the closure set of φ with fresh
proposition letters Prevδ and Succγ , which keep track of the
time between the current state and, respectively, the previous
and the next one. Note that we consider only time steps up to
∆, since, as the TPTL case, we can restrict ourselves to timed
state sequences where τi − τi−1 < ∆ for all i > 0.
Definition 13 (Atoms for φ). An atom for φ is a maximal
subset Φ of C∗(φ) such that:
• Prevδ ∈ Φ and Succγ ∈ Φ for exactly one δ and ex-

actly one γ between 0 and ∆. Such δ and γ will be
denoted respectively as δΦ and γΦ, and, for i ≤ j, we
let δΦi,Φj =

∑
i<k≤j δΦk

.

• x.(x ≤ x+ c) ∈ Φ iff c ≥ 0,
• x.z.ψ ∈ Φ iff x.ψ[z/x] ∈ Φ,
• x.¬φ ∈ Φ iff x.φ 6∈ Φ,
• x.(φ1 ∨ φ2) ∈ Φ iff either x.φ1 ∈ Φ or x.φ2 ∈ Φ,
• x.(φ1 Uw φ2) ∈ Φ iff either x.φ2 ∈ Φ or both x.φ1 ∈ Φ

and x.Xw(φ1 Uw−γΦ
φ2) ∈ Φ,

• x.(φ1 Sw φ2) ∈ Φ iff either x.φ2 ∈ Φ or both x.φ1 ∈ Φ
and x.Yw(φ1 Sw−δΦ φ2) ∈ Φ.

Definition 14 (Tableau for φ). The tableau for φ is a graph
where the nodes are all the possible atoms for φ and there is
an edge between Φ and Ψ iff the following conditions hold:

1. γΦ = δΨ;
2. z.Xwψ ∈ Φ iff γΦ ≤ w and z.ψγΦ ∈ Ψ;
3. z.Ywψ ∈ Ψ iff δΨ ≤ w and z.ψ−δΨ ∈ Φ.
Conditions 2 and 3 above handle the temporal operators to-

morrow and yesterday, by ensuring that whenever there is an
edge between two atoms, the formulae requested by temporal
operators in the two atoms are present. Intuitively, this is also
the point where the tableau handles the binding of variables
without explicitly keeping track of any environment, by push-
ing the freeze quantification to the next state while shifting the
formula to preserve the semantics, thanks to Lemma 1. Then,
as in the tableaux for LTL and TPTL, the search for a model
for φ is reduced to the search for a particular infinite path.
Definition 15. Given the tableau for φ, a φ-path is an infinite
path Φ = 〈Φ0,Φ1, . . .〉 of atoms from the tableau such that:

1. φ ∈ Φ0,
2. No formulae of the form x.Ywψ belong to Φ0,
3. δΦi

> 0 for infinitely many i ≥ 0,
4. for all i ≥ 0 and all x.(φ1 Uw φ2) ∈ Φi, there is k ≥ i

such that δΦi,Φk
≤ w, and both x.φ

δΦi,Φk
2 ∈ Φk and

x.φ
δΦi,Φj

1 ∈ Φj for all j with i ≤ j < k, and
5. for all i ≥ 0 and all x.(φ1 Sw φ2) ∈ Φi, there is k ≤ i

such that δΦk,Φi
≤ w, and both x.φ

δΦk,Φi

2 ∈ Φk and

x.φ
δΦj ,Φi

1 ∈ Φj for all j with k < j ≤ i.

Intuitively, a φ-path contains all the necessary pieces of in-
formation to build a model for the formula. Each atom corre-
sponds to a state of the model, and its elements are the formu-
lae (in particular, the proposition letters) that will be true in
that state. The timestamps of each state can be derived from
δΦ0

+ δΦ0,Φi
for each i. Vice versa, given a model we can

build a φ-path by simply listing in each atom all the formulae
from the closure set that are true in each state. In verifying
these claims, both directions of Lemma 1 play a crucial role,
and conditions 4 and 5 of Definition 15 ensure its applicabil-
ity. The decision of the satisfiability of φ can thus be reduced
to the search for a φ-path into the tableau (see Lemma 3).
Lemma 3 (Correctness and Completeness). A TPTLB+P for-
mula φ is satisfiable if and only if its tableau has a φ-path.

The search for a φ-path is non-trivial since there might be
an infinite number of them. However, as in the TPTL case, we
can restrict the search to periodic φ-paths of bounded length.
Lemma 4. Let φ be a TPTLB+P formula and let m be the
number of nodes of the tableau for φ. If the tableau con-
tains a φ-path, then it contains a periodic φ-path of the form
Φ0Φ1 . . .Φi(Φi+1 . . .Φl)

ω , for i, l ∈ O(m · n ·W ·∆).
Observe that the number m of nodes in the tableau is

at most 2|C(φ)|, that is, doubly exponential in the size of
the formula, by Lemma 2. Looking for a doubly exponen-
tially long φ-path can be done without constructing the whole
graph, in singly exponential space as in other LTL and TPTL
tableau systems [Manna and Pnueli, 1995; Alur and Hen-
zinger, 1994].
Theorem 2. Given a TPTLB+P formula φ, the problem of
deciding whether φ is satisfiable is EXPSPACE-complete.

5 Conclusions
The present paper provides a logical characterization of the
fragment of non-flexible timeline-based planning studied in
[Gigante et al., 2016], showing that it can be captured by
TPTLB+P, a particular guarded fragment of TPTL augmented
with past modalities. Thanks to the encoding shown in [Gi-
gante et al., 2016], the result directly transfers to action-
based temporal planning, which thus can also be captured
by TPTLB+P (a different logical characterization of temporal
planning has been recently given in terms of LTLRA in [Cimatti
et al., 2017]). The proposed logic has been shown to be
EXPSPACE-complete by adapting the original tableau-based
decision procedure for TPTL. The encoding of timeline-based
planning problems into TPTLB+P provided in Sect. 3 turned
out to be very natural, and shows how unbounded interval
relations affect the expressive power of the formalisms. In
usual settings (see e.g., [Cialdea Mayer et al., 2016]), where
timeline-based planning problems are given with a bound on
the solution horizon, allowing for unbounded interval rela-
tions do not increase the expressive power (action-based tem-
poral planning cannot be captured in those settings). On the
contrary, enriching our setting with unbounded interval rela-
tions would result in increased expressive power, as we do not
impose bounds on the horizon. Unfortunately, a naïve adap-
tation of our encoding into TPTLB+P is feasible but results
in exponentially-sized formulae. The problem of finding a
polynomial encoding is under investigation.

References
[Allen, 1983] J. F. Allen. Maintaining Knowledge about

Temporal Intervals. Communications of the ACM,
26(11):832–843, 1983.

[Alur and Henzinger, 1993] R. Alur and T. A. Henzinger.
Real-Time Logics: Complexity and Expressiveness. In-
formation and Computation, 104(1):35–77, 1993.

[Alur and Henzinger, 1994] R. Alur and T. A. Henzinger. A
Really Temporal Logic. Journal of the ACM, 41(1):181–
204, 1994.

[Barreiro et al., 2012] J. Barreiro, M. Boyce, M. Do,
J. Frank, M. Iatauro, T. Kichkaylo, P. Morris, J. Ong,
E. Remolina, T. Smith, and D. Smith. EUROPA: A Plat-
form for AI Planning, Scheduling, Constraint Program-
ming, and Optimization. In Proc. of the 4th International
Competition on Knowledge Engineering for Planning and
Scheduling, 2012.

[Bylander, 1994] T. Bylander. The Computational Complex-
ity of Propositional STRIPS Planning. Artificial Intelli-
gence, 69(1-2):165–204, 1994.

[Cesta et al., 2007] A. Cesta, G. Cortellessa, S. Fratini,
A. Oddi, and N. Policella. An Innovative Product for
Space Mission Planning: An A Posteriori Evaluation. In
Proc. of the 17th International Conference on Automated
Planning and Scheduling, pages 57–64, 2007.

[Cesta et al., 2009] A. Cesta, G. Cortellessa, S. Fratini, and
A. Oddi. Developing an End-to-End Planning Application
from a Timeline Representation Framework. In Proc. of
the 21st Conference on Innovative Applications of Artifi-
cial Intelligence (IAAI-09), pages 66–71, 2009.

[Cesta et al., 2010] Amedeo Cesta, Alberto Finzi, Simone
Fratini, Andrea Orlandini, and Enrico Tronci. Valida-
tion and Verification Issues in a Timeline-based Planning
System. Knowledge Engineering Review, 25(3):299–318,
2010.

[Chien et al., 2000] S. Chien, G. Rabideau, R. Knight,
R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith,
F. Fisher, T. Barrett, G. Stebbins, and D. Tran. ASPEN
- Automated Planning and Scheduling for Space Mission
Operations. In Proc. of the 8th International Conference
on Space Operations, 2000.

[Cialdea Mayer et al., 2007] M. Cialdea Mayer, C. Limon-
gelli, A. Orlandini, and V. Poggioni. Linear Tempo-
ral Logic as an Executable Semantics for Planning Lan-
guages. Journal of Logic, Language and Information,
16(1):63–89, 2007.

[Cialdea Mayer et al., 2014] M. Cialdea Mayer, A. Orlan-
dini, and A. Ubrico. A Formal Account of Planning with
Flexible Timelines. In Proc. of the 21st International Sym-
posium on Temporal Representation and Reasoning, pages
37–46, 2014.

[Cialdea Mayer et al., 2016] M. Cialdea Mayer, A. Orlan-
dini, and A. Umbrico. Planning and Execution with Flexi-
ble Timelines: a Formal Account. Acta Informatica, 53(6-
8):649–680, 2016.

[Cimatti et al., 2013] A. Cimatti, A. Micheli, and M. Roveri.
Timelines with Temporal Uncertainty. In Proc. the 27th

AAAI Conference on Artificial Intelligence, 2013.
[Cimatti et al., 2017] A. Cimatti, A. Micheli, and M. Roveri.

Validating Domains and Plans for Temporal Planning via
Encoding into Infinite-State Linear Temporal Logic. In
Proc. of the 31st AAAI Conference on Artificial Intelli-
gence, pages 3547–3554, 2017.

[Fox and Long, 2003] M. Fox and D. Long. PDDL2.1: An
Extension to PDDL for Expressing Temporal Planning
Domains. Journal of Artificial Intelligence Research,
20:61–124, 2003.

[Gerevini et al., 2009] A. Gerevini, P. Haslum, D. Long,
A. Saetti, and Y. Dimopoulos. Deterministic Planning in
the Fifth International Planning Competition: PDDL3 and
Experimental Evaluation of the Planners. Artificial Intelli-
gence, 173(5-6):619–668, 2009.

[Gigante et al., 2016] N. Gigante, A. Montanari, M. Cialdea
Mayer, and A. Orlandini. Timelines are Expressive
Enough to Capture Action-based Temporal Planning. In
Proc. of the 23rd International Symposium on Temporal
Representation and Reasoning, pages 100–109, 2016.

[Jónsson et al., 2000] A. K. Jónsson, P. H. Morris,
N. Muscettola, K. Rajan, and B. D. Smith. Planning
in Interplanetary Space: Theory and Practice. In Proc.
of 5th International Conference on Artificial Intelligence
Planning and Scheduling, pages 177–186, 2000.

[Lichtenstein and Pnueli, 2000] O. Lichtenstein and
A. Pnueli. Propositional Temporal Logics: Decid-
ability and Completeness. Logic Journal of the IGPL,
8(1):55–85, 2000.

[Manna and Pnueli, 1995] Z. Manna and A. Pnueli. Tempo-
ral Verification of Reactive Systems - Safety. Springer,
1995.

[Muscettola, 1994] N. Muscettola. HSTS: Integrating Plan-
ning and Scheduling. In Monte Zweben and Mark S. Fox,
editors, Intelligent Scheduling, chapter 6, pages 169–212.
Morgan Kaufmann, 1994.

[Pnueli, 1977] A. Pnueli. The Temporal Logic of Programs.
In Proc. of the 18th Annual Symposium on Foundations of
Computer Science, pages 46–57. IEEE Computer Society,
1977.

[Rintanen, 2007] J. Rintanen. Complexity of Concurrent
Temporal Planning. In Proc. of the 17th International
Conference on Automated Planning and Scheduling, pages
280–287, 2007.

[Schewe and Tian, 2011] S. Schewe and C. Tian. Synthesis-
ing Classic and Interval Temporal Logic. In 18th Interna-
tional Symposium on Temporal Representation and Rea-
soning, TIME 2011, pages 64–71. IEEE, 2011.

	Introduction
	Timeline-based Planning
	Bounded TPTL with Past Captures Timeline-based Planning
	Complexity of TPTLB+P
	Conclusions

