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Abstract

We compare the expressiveness of the fragments
of Halpern and Shoham’s interval logic (HS), i.e.,
of all interval logics with modal operators associ-
ated with Allen’s relations between intervals in lin-
ear orders. We establish a complete set of inter-
definability equations between these modal oper-
ators, and thus obtain a complete classification of
the family of212 fragments ofHS with respect to
their expressiveness. Using that result and a com-
puter program, we have found that there are 1347
expressively different such interval logics over the
class of all linear orders.

1 Introduction
Interval reasoning naturally arises in various fields of artificial
intelligence, such as theories of action and change, natural
language analysis and processing, and constraint satisfaction
problems. Interval temporal logics formalize reasoning about
interval structures over ordered domains, where time inter-
vals, rather than time instants, are the primitive ontological
entities. The variety of binary relations between intervals in
linear orders was first studied systematically by Allen[Allen,
1983], who explored their use in systems for time manage-
ment and planning. The modal logic featuring modal op-
erators corresponding to Allen’s interval relations was in-
troduced by Halpern and Shoham in[Halpern and Shoham,
1991]; we hereafter call that logicHS. Temporal logics with
interval-based semantics have also been proposed as a suit-
able formalism for the specification and verification of hard-
ware [Moszkowski, 1983] and of real-time systems[Zhou
and Hansen, 2004].

In [Halpern and Shoham, 1991], it was shown that the satis-
fiability problem forHS is undecidable in all natural classes
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of linear orders. For a long time, these sweeping undecid-
ability results have discouraged attempts for practical appli-
cations of interval logics. A renewed interest in the area has
recently been stimulated by the discovery of several interest-
ing decidable fragments ofHS [Bresolinet al., 2007a; 2007b;
2008; 2009; 2010; Montanariet al., 2010a; 2010b]. In that
context, and for the purpose of identifying expressive inter-
val logics for various intended applications, the comparative
analysis of the expressiveness of the variety of interval log-
ics is a major research problem in the area. In particular, the
important problem arises to analyze the mutual definabilities
among the modal operators of the logicHS and to classify
the fragments ofHS with respect to their expressiveness.

In the present paper we address and solve that problem,
by identifying a complete set of inter-definability formulae
among the modal operators ofHS and thus providing a com-
plete classification of all fragments ofHS with respect to their
expressiveness for thestrict semantics (excl. point intervals)
over the class of all linear orders. Using that result we have
found that there are exactly 1347 expressively different such
fragments out of212 = 4096 sets of modal operators inHS.

The choice of strict semantics, excluding point intervals,
instead of including them (non-strict semantics), conforms to
the definition of interval adopted by Allen in[Allen, 1983].
It has at least two strong motivations. First, a number of rep-
resentation paradoxes arise when the non-strict semanticsis
adopted, due to the presence of point intervals, as pointed out
in [Allen, 1983]. Second, when point intervals are included,
there seems to be no intuitive semantics for interval relations
that makes them both pairwise disjoint and jointly exhaustive.

The structure of the paper: after the preliminary Section
2, in Section 3 we state the main result of the paper, and we
prove that the proposed set of inter-definability equationsis
correct. The much more difficult proof of completeness is
given in Section 4. Section 5 provides an assessment of the
work done and it outlines future research directions.

2 Preliminaries

LetD = 〈D,<〉 be a linearly ordered set. AnintervaloverD
is an ordered pair[a, b], wherea, b ∈ D anda ≤ b. Intervals
of the type[a, a] are calledpoint intervals, while the others
are calledstrict intervals. There are 12 different non-trivial
relations (excluding the equality) between two strict intervals



〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

[a, b]RA[c, d] ⇔ b = c

[a, b]RL[c, d] ⇔ b < c

[a, b]RB [c, d] ⇔ a = c, d < b

[a, b]RE [c, d] ⇔ b = d, a < c

[a, b]RD[c, d] ⇔ a < c, d < b

[a, b]RO [c, d] ⇔ a < c < b < d

a b

c d

c d

c d

c d

c d

c d

Table 1: Allen’s interval relations and the correspondingHS
modalities.

in a linear order, often calledAllen’s relations[Allen, 1983]:
the six relations depicted in Table 1 and the inverse relations.

We treat interval structures as Kripke structures and Allen’s
relations as accessibility relations in them, thus associating a
modal operator〈X〉 with each Allen’s relationRX . For each
operator〈X〉, its transpose, denoted by〈X〉, corresponds to
the inverse relationRX of RX (that is,RX = (RX)−1).

Halpern and Shoham’s logicHS is a multi-modal logic
with formulae built over a setAP of propositional letters,
the propositional connectives∨ and¬, and a set of modal
operators associated with all Allen’s relations. With every
subset{RX1

, . . . , RXk
} of these relations, we associate the

fragmentX1X2 . . .Xk of HS, the formulae of which are de-
fined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ.

The other propositional connectives,∧ and→, and the dual
operators[X ] are defined as usual, e.g.,[X ]ϕ ≡ ¬〈X〉¬ϕ.

For a fragmentF = X1X2 . . .Xk and a modal operator
〈X〉, we write〈X〉 ∈ F if X ∈ {X1, . . . , Xk}. Given two
fragmentsF1 andF2, we writeF1 ⊆ F2 if 〈X〉 ∈ F1 implies
〈X〉 ∈ F2, for every modal operator〈X〉.

The semantics ofHS is given in terms ofinterval models
M = 〈I(D), V 〉, whereI(D) is the set of all (strict) intervals
overD. Thevaluation functionV : AP 7→ 2I(D) assigns to
everyp ∈ AP the set of intervalsV (p) on whichp holds.
Thetruth of a formula on a given interval[a, b] in an interval
modelM is defined by structural induction on formulae:
• M, [a, b] 
 p iff [a, b] ∈ V (p), for all p ∈ AP ;
• M, [a, b] 
 ¬ψ iff it is not the case thatM, [a, b] 
 ψ;
• M, [a, b] 
 ϕ ∨ ψ iff M, [a, b] 
 ϕ orM, [a, b] 
 ψ;
• M, [a, b] 
 〈X〉ψ iff there exists an interval[c, d] such

that [a, b]RX [c, d] andM, [c, d] 
 ψ, whereRX is any
of Allen’s relations.

A formulaφ of HS is valid, denoted|= φ, if it is true on
every interval in every interval model. Two formulaeφ andψ
areequivalent, denotedφ ≡ ψ, if |= φ↔ ψ.

Definition 2.1. A modal operator〈X〉 of HS is definablein
anHS-fragmentF , denoted〈X〉⊳ F , if 〈X〉p ≡ ψ for some
formulaψ = ψ(p) ∈ F , for any fixed propositional variable
p. In such a case, the equivalence〈X〉p ≡ ψ is called an
inter-definability equation for〈X〉 in F .

It is known from [Halpern and Shoham, 1991] that, in the
strict semantics, all modal operators inHS are definable in

the fragment containing the modalities〈A〉, 〈B〉, and〈E〉,
and their transposes〈A〉, 〈B〉, and〈E〉 (In the non-strict se-
mantics, the four modalities〈B〉, 〈E〉, 〈B〉, and〈E〉 suffice,
as shown in[Venema, 1990]).

In this paper, we compare and classify the expressiveness
of all fragments ofHS on the class of all interval structures
over linear orders. Formally, letF1 andF2 be any pair of
such fragments. We say that:
• F2 is at least as expressive asF1, denotedF1 � F2, if

every operator〈X〉 ∈ F1 is definable inF2.
• F1 is strictly less expressivethanF2, denotedF1 ≺ F2,

if F1 � F2 but notF2 � F1.
• F1 andF2 areequally expressive(or,expressively equiv-

alent), denotedF1 ≡ F2, if F1 � F2 andF2 � F1.
• F1 andF2 areexpressively incomparable, denotedF1 6≡
F2, if neitherF1 � F2 norF2 � F1.

In order to show non-definability of a given modal operator
in a given fragment, we use a standard technique in modal
logic, based on the notion ofbisimulationand the invariance
of modal formulae with respect to bisimulations (see, e.g.,
[Blackburnet al., 2002]). Let F be anHS-fragment. An
F -bisimulation between two interval modelsM = 〈I(D), V 〉
andM ′ = 〈I(D′), V ′〉 overAP is a relationZ ⊆ I(D)×I(D′)
satisfying the following properties:
• local condition: Z-related intervals satisfy the same

propositional letters overAP ;
• forward condition: if ([a, b], [a′, b′]) ∈ Z and
([a, b], [c, d]) ∈ RX for some〈X〉 ∈ F , then there
exists [c′, d′] such that([a′, b′], [c′, d′]) ∈ RX and
([c, d], [c′, d′]) ∈ Z;

• backward condition: likewise, but fromM ′ toM .
The important property of bisimulations used here is that
anyF -bisimulation preserves the truth ofall formulae inF .
Thus, in order to prove that an operator〈X〉 is not definable in
F , it suffices to construct a pair of interval modelsM andM ′

and aF -bisimulation between them, relating a pair of inter-
vals[a, b] ∈M and[a′, b′] ∈M ′, such thatM, [a, b] 
 〈X〉p,
whileM ′, [a′, b′] 6
 〈X〉p.

3 Comparing the expressiveness of the
fragments ofHS

In order to classify all fragments ofHS with respect to
their expressiveness, it suffices to identify all definabilities
of modal operators〈X〉 in fragmentsF , where〈X〉 /∈ F .

A definability 〈X〉 ⊳ F is optimal if 〈X〉 6⊳ F ′ for any
fragmentF ′ such thatF ′ ≺ F . A set of such definabilities is
optimal if it consists of optimal definabilities.

The main result of the paper is the following theorem.
Theorem 3.1. The set of inter-definability equations given in
Table 2 is sound, complete, and optimal.

Most of the equations in Table 2 are known from[Halpern
and Shoham, 1991], except the definability〈L〉⊳ BE and its
symmetric,〈L〉⊳ BE, which are new. We will first prove the
soundness of the given set of inter-definability equations.
Lemma 3.2. The set of inter-definability equations given in
Table 2 is sound.



〈L〉p ≡ 〈A〉〈A〉p 〈L〉⊳ A

〈L〉p ≡ 〈A〉〈A〉p 〈L〉⊳ A

〈O〉p ≡ 〈E〉〈B〉p 〈O〉⊳ BE

〈O〉p ≡ 〈B〉〈E〉p 〈O〉⊳ BE

〈D〉p ≡ 〈E〉〈B〉p 〈D〉⊳ BE

〈D〉p ≡ 〈E〉〈B〉p 〈D〉⊳ BE

〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p 〈L〉⊳ BE

〈L〉p ≡ 〈E〉[B]〈E〉〈B〉p 〈L〉⊳ BE

Table 2: The complete set of inter-definability equations

Proof. We only need to prove the soundness for the new inter-
definability equations〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p and its sym-
metric for 〈L〉. The proofs are analogous, so we only prove
the former. First, we prove the left-to-right direction. Sup-
pose thatM, [a, b] 
 〈L〉p for some modelM and interval
[a, b]. This means that there exists an interval[c, d] such that
b < c andM, [c, d] 
 p. We exhibit an interval[a, y], with
y > b such that, for everyx (strictly) in betweena andy,
the interval[x, y] is such that there exist two pointsy′ andx′

such thaty′ > y, x < x′ < y′, and[x′, y′] satisfiesp. Let y
be equal toc. The interval[a, c], which is started by[a, b], is
such that for any of its ending intervals, that is, for any inter-
val of the form[x, c], with a < x, we have thatx < c < d
andM, [c, d] 
 p. As for the other direction, we must show
that〈B〉[E]〈B〉〈E〉p implies〈L〉p. To this end, suppose that
M, [a, b] 
 〈B〉[E]〈B〉〈E〉p for a modelM and an interval
[a, b]. Then, there exists an interval[a, c], for somec > b,
such that[E]〈B〉〈E〉p is true on[a, c]. As a consequence, the
interval[b, c] must satisfy〈B〉〈E〉p, that means that there are
two pointsx andy such thaty > c, b < x < y, and[x, y]
satisfiesp. Sincex > b, thenM, [a, b] 
 〈L〉p.

Proving completeness is the hard task; optimality will be
established together with it. The completeness proof is orga-
nized as follows. For eachHS operator〈X〉, we show that
〈X〉 is not definable in any fragment ofHS that does not con-
tain as definable (according to Table 2) all operators of some
of the fragments in which〈X〉 is definable (according to Ta-
ble 2). More formally, for eachHS operator〈X〉, the proof
consists of the following steps:

1. using Table 2, find all fragmentsFi such that〈X〉⊳ Fi;
2. identify the listM1, . . . ,Mm of all ⊆-maximal frag-

ments ofHS that contain neither the operator〈X〉 nor
any of the fragmentsFi identified by the previous step;

3. for each fragmentMi, with i ∈ {1, . . . ,m}, provide a
bisimulation forMi which is not a bisimulation forX.

Details of the completeness proof will be provided in a se-
ries of lemmas (of increasing complexity) in the next section.

4 The completeness proof
In this section, we will prove that, for each modal operator
〈X〉 of HS, the set of inter-definability equations for〈X〉 in
Table 2 is complete for that operator, that is,〈X〉 is not de-
finable in any fragment ofHS that does not contain (as defin-
able) all operators of some of the fragments listed in Table 2
in which 〈X〉 is definable. Due to space limitations, we will

not prove in detail all the cases. A detailed proof can be found
in the extended technical report and it will appear in a future
journal version of the present paper.

4.1 Completeness for〈L〉 and 〈L〉

Lemma 4.1. The set of inter-definability equations for〈L〉
and〈L〉 given in Table 2 is complete.

Proof. According to Table 2,〈L〉 is definable in terms
of A and BE. Hence, the fragmentsBEDOALEDO and
BDOALBEDO are the only⊆-maximal ones not featuring
〈L〉 and containing neitherA norBE. To prove the thesis, it
suffices to exhibit a bisimulation for each one of these two
fragments that does not preserve the relation induced by〈L〉.
Thanks to Lemma 3.2,BEDOALEDO andBDOALBEDO are
expressively equivalent toBEOAED andBDOABE, respec-
tively. Thus, to all our purposes, we can simply refer to the
latter ones instead of the former ones.

As for the first fragment, letM1 = 〈I(N), V1〉 andM2 =
〈I(N), V2〉 be two models and letV1 and V2 be such that
V1(p) = {[2, 3]} andV2(p) = ∅, wherep is the only propo-
sitional letter of the language. Moreover, letZ be a re-
lation between (intervals of)M1 andM2 defined asZ =
{([0, 1], [0, 1])}. It can be easily shown thatZ is aBEOAED-
bisimulation. The local property is trivially satisfied, since all
Z-related intervals satisfy¬p. As for the forward and back-
ward conditions, it suffices to notice that, starting from the
interval[0, 1], it is not possible to reach any other interval us-
ing any of the modal operators of the fragment. At the same
time,Z does not preserve the relation induced by the modal-
ity 〈L〉. Indeed,([0, 1], [0, 1]) ∈ Z andM1, [0, 1] 
 〈L〉p,
butM2, [0, 1] 
 ¬〈L〉p. Therefore,〈L〉 is not definable in
BEDOALEDO.

As for the second fragment, letM1 = 〈I(Z−), V1〉 and
M2 = 〈I(Z−), V2〉 be two models based on the setZ− =
{. . . ,−2,−1}, and letV1 and V2 be such thatV1(p) =
{[−2,−1]} and V2(p) = ∅, wherep is the only proposi-
tional letter of the language. Moreover, letZ be a rela-
tion between (intervals of)M1 andM2 defined as follows:

([x, y], [w, z]) ∈ Z
def
⇔ [x, y] = [w, z] and[x, y] 6= [−2,−1].

We prove thatZ is aBDOABE-bisimulation. First, the lo-
cal property is trivially satisfied, since allZ-related intervals
satisfy¬p. Moreover, starting from any interval, the only
interval that satisfiesp, that is,[−2,−1], cannot be reached
using the set of modal operators featured by our fragment. At
the same time,Z does not preserve the relation induced by
〈L〉, as([−4,−3], [−4,−3]) ∈ Z andM1, [−4,−3] 
 〈L〉p,
butM2, [−4,−3] 
 ¬〈L〉p. Therefore,〈L〉 is not definable
in BDOALBEDO.

A completely symmetric argument can be applied for the
completeness proof of〈L〉.

4.2 Completeness for〈E〉, 〈E〉, 〈B〉, and 〈B〉

Lemma 4.2. The set of inter-definability equations for〈E〉,
〈E〉, 〈B〉, and〈B〉 given in Table 2 is complete.

Proof. According to Table 2, we will show that〈E〉 is not
definable in terms of the only⊆-maximal fragment not fea-



turing it, namely,ALBDOALBEDO. (The inverse modality
〈E〉 and the symmetric modalities〈B〉 and〈B〉 can be dealt
with using similar arguments.) Thanks to Lemma 3.2, it ac-
tually suffices to provide a bisimulation forABDOABE.

Let M1 = 〈I(R), V1〉 andM2 = 〈I(R), V2〉, wherep is
the only propositional letter of the language, the valuation

functionV1 : AP → 2I(R) is defined as:[x, y] ∈ V1(p)
def
⇔

x ∈ Q iff y ∈ Q, and the valuation functionV2 : AP → 2I(R)

as: [w, z] ∈ V2(p)
def
⇔ w ∈ Q iff z ∈ Q, and([0, 3], [w, z]) /∈

RE . Moreover, letZ be a relation between (intervals of)M1

andM2 defined as follows:([x, y], [w, z]) ∈ Z
def
⇔ [x, y] ∈

V1(p) iff [w, z] ∈ V2(p).
We show thatZ is anABDOABE-bisimulation between

M1 andM2. The satisfaction of the local condition immedi-
ately follows from the definition. The forward condition can
be checked as follows. LetQ = R\Q and let[x, y] and[w, z]
be twoZ-related intervals. For each modal operator〈X〉 of
the language, let us assume that[x, y]RX [x′, y′]. We have to
exhibit an interval[w′, z′] such that[x′, y′] and[w′, z′] areZ-
related, and[w, z] and [w′, z′] areRX -related. We proceed
case-by-case. Let〈X〉 = 〈A〉 (and thusy = x′). Suppose
that [x′, y′] ∈ V1(p) (resp.,[x′, y′] /∈ V1(p)). We can al-
ways find a pointz′ > z such that[z, z′] ∈ V2(p) (resp.,
[z, z′] /∈ V2(p)), independently fromz belonging toQ or Q
(since bothQ andQ are right-unbounded). This implies that
[x′, y′] and [z, z′] areZ-related. Since[w, z] and [z, z′] are
obviouslyRA-related, we have the thesis. If〈X〉 = 〈B〉, the
argument is similar to the previous one, but, in this case, the
density ofQ andQ is exploited. If〈X〉 = 〈D〉, it suffices
to choose two pointsw′ andz′ such thatw < w′ < z′ < z,
z′ 6= 3, w′ belongs toQ if and only if x′ does, andz′ be-
longs toQ if and only if y′ does. As in the previous case,
the existence of such points is guaranteed by the density ofQ

andQ. If 〈X〉 = 〈O〉, w′ andz′ are required to be such that
w < w′ < z < z′, and both density and right-unboundedness
of Q andQ must be exploited. The remaining cases as well as
the backward condition can be verified in a very similar way.
At the same time,Z does not preserve the relation induced by
〈E〉: we have that([0, 3], [0, 3]) ∈ Z, M1, [0, 3] 
 〈E〉p, but
M2, [0, 3] 
 ¬〈E〉p. Therefore,〈E〉 cannot be defined in the
fragmentALBDOALBEDO.

4.3 Completeness for〈A〉 and 〈A〉

In the proofs of Lemma 4.3 and Lemma 4.4, in order to get
the bisimulation we want, we need to exploit a well-known
property of the set of real numbersR: R (resp.,Q, Q) can
be partitioned into a countable number of pairwise disjoint
subsets, each one of which is dense inR. More formally,
there are countably many nonempty setsRi (resp.,Qi, Qi),
with i ∈ N, such that, for eachi ∈ N, Ri (resp.,Qi, Qi)
is dense inR, R =

⋃

i∈N
Ri (resp.,Q =

⋃

i∈N
Qi, Q =

⋃

i∈N
Qi), andRi ∩Rj = ∅, (resp.,Qi ∩Qj = ∅, Qi ∩Qj =

∅), for eachi, j ∈ N with i 6= j.

Lemma 4.3. The set of inter-definability equations for〈A〉
and〈A〉 given in Table 2 is complete.

Proof. According to Table 2, it suffices to show that〈A〉 is
not definable in the only⊆-maximal fragment not containing
it, namely,LBEDOALBEDO, which, by Lemma 3.2, turns
out to be equivalent toLBEABE.

LetM1 = 〈I(R), V1〉 andM2 = 〈I(R), V2〉 be two models
built on the only propositional letterp. In order to define
the valuation functionsV1 andV2, we take advantage of two
partitions of the setR, one forM1 and the other one forM2,
each of them consisting of exactly four sets that are dense in
R. Formally, forj = 1, 2 andi = 1, . . . , 4, letRi

j be dense in

R. Moreover, forj = 1, 2, letR =
⋃4

i=1 R
i
j andRi

j∩R
i′

j = ∅
for eachi, i′ ∈ {1, 2, 3, 4} with i 6= i′.

For j = 1, 2, we force points inR1
j (resp.,R2

j , R3
j , R4

j )
to behave in the same way with respect to the truth ofp/¬p
over the intervals they initiate and terminate by imposing the
following constraints:

∀x, y( if x ∈ R1
j , thenMj, [x, y] 
 ¬p);

∀x, y( if x ∈ R2
j , thenMj, [x, y] 
 ¬p);

∀x, y( if x ∈ R3
j , then(Mj, [x, y] 
 p iff y ∈ R1

j ∪ R3
j));

∀x, y( if x ∈ R4
j , then(Mj, [x, y] 
 p iff y ∈ R2

j ∪ R4
j)).

It can be easily shown that, from the given constraints, it im-
mediately follows that:

∀x, y( if y ∈ R1
j , then(Mj, [x, y] 
 p iff x ∈ R3

j));
∀x, y( if y ∈ R2

j , then(Mj, [x, y] 
 p iff x ∈ R4
j));

∀x, y( if y ∈ R3
j , then(Mj, [x, y] 
 p iff x ∈ R3

j));
∀x, y( if y ∈ R4

j , then(Mj, [x, y] 
 p iff x ∈ R4
j)).

The above constraints univocally induces the following defi-
nition of the valuation functionsVj(p) : AP → 2I(R):

[x, y] ∈ Vj(p)
def
⇔

{

(x ∈ R3
j ∧ y ∈ R1

j ∪ R3
j)

∨(x ∈ R4
j ∧ y ∈ R2

j ∪ R4
j).

Now, letZ be the relation between (intervals of)M1 and
M2 defined as follows. Two intervals[x, y] and[w, z] areZ-
related if and only if at least one of the following conditions
holds:

1. x ∈ R1
1 ∪R2

1 andw ∈ R1
2 ∪ R2

2;
2. x ∈ R3

1, w ∈ R3
2, and(y ∈ R1

1 ∪ R3
1 iff z ∈ R1

2 ∪R3
2);

3. x ∈ R3
1, w ∈ R4

2, and(y ∈ R1
1 ∪ R3

1 iff z ∈ R2
2 ∪R4

2);
4. x ∈ R4

1, w ∈ R3
2, and(y ∈ R2

1 ∪ R4
1 iff z ∈ R1

2 ∪R3
2);

5. x ∈ R4
1, w ∈ R4

2, and(y ∈ R2
1 ∪ R4

1 iff z ∈ R2
2 ∪R4

2).
We show that the relationZ is an LBEABE-bisimulation.
It can be easily checked that every pair([x, y], [w, z]) of
Z-related intervals is such that either[x, y] ∈ V1(p) and
[w, z] ∈ V2(p) or [x, y] 6∈ V1(p) and [w, z] 6∈ V2(p). In
order to verify the forward condition, let[x, y] and[w, z] be
two Z-related intervals. For each modal operator〈X〉 of the
language and each interval[x′, y′] such that[x, y]RX [x′, y′],
we have to exhibit an interval[w′, z′] such that[x′, y′] and
[w′, z′] areZ-related, and[w, z] and[w′, z′] areRX -related.
We proceed case-by-case. Let〈X〉 = 〈L〉. We must consider
five sub-cases depending on the setsx′ andy′ belong to: (i)
if x′ ∈ R1

1 ∪ R2
1, then for eachw′ ∈ R1

2 such thatw′ > z,
we have that, for everyz′ > w′, ([x′, y′], [w′, z′]) ∈ Z and
[w, z]RL[w

′, z′] (the existence ofw′ is guaranteed by right-
unboundedness ofR1

2); (ii) if x′ ∈ R3
1 andy′ ∈ R1

1∪R3
1, then



for eachw′, z′ such thatz < w′ < z′ andw′, z′ ∈ R3
2, we

have that([x′, y′], [w′, z′]) ∈ Z and [w, z]RL[w
′, z′] (right-

unboundedness ofR3
2); (iii) if x′ ∈ R3

1 andy′ ∈ R2
1∪R

4
1, then

for eachw′, z′ such thatz < w′ < z′, w′ ∈ R3
2, andz′ ∈ R4

2,
we have that([x′, y′], [w′, z′]) ∈ Z and [w, z]RL[w

′, z′]
(right-unboundedness ofR3

2 andR4
2); (iv) if x′ ∈ R4

1 and
y′ ∈ R1

1 ∪ R3
1, then for eachw′, z′ such thatz < w′ < z′,

w′ ∈ R4
2, andz′ ∈ R3

2, we have that([x′, y′], [w′, z′]) ∈ Z
and[w, z]RL[w

′, z′] (right-unboundednessofR3
2 andR4

2); (v)
if x′ ∈ R4

1 andy′ ∈ R2
1∪R

4
1, then for eachw′, z′ such thatz <

w′ < z′ andw′, z′ ∈ R4
2, we have that([x′, y′], [w′, z′]) ∈ Z

and [w, z]RL[w
′, z′] (right-unboundedness ofR4

2). Assume
now 〈X〉 = 〈B〉. If x ∈ R1

1 ∪ R2
1 andw ∈ R1

2 ∪ R2
2,

then for anyw < z′ < z, both ([x, y′], [w, z′]) ∈ Z and
[w, z]RB[w, z

′] hold. If x ∈ Ri
1 andw ∈ Ri

2, for some
i ∈ {3, 4}, andy′ ∈ Rk

1 , for somek ∈ {1, 2, 3, 4}, then
for any w < z′ < z such thatz′ ∈ Rk

2 , it holds that
([x, y′], [w, z′]) ∈ Z and [w, z]RB[w, z

′] (the existence of
z′ is guaranteed by density ofRk

2 in R). Finally, if x ∈ Ri
1

andw ∈ Ri′

2 for i, i′ ∈ {3, 4} with i 6= i′, then if y′ ∈
R1

1 ∪ R3
1 (resp.,y′ ∈ R2

1 ∪ R4
1) for anyw < z′ < z such

that z′ ∈ R2
2 ∪ R4

2 (resp.,z′ ∈ R1
2 ∪ R3

2), it holds that
([x, y′], [w, z′]) ∈ Z and[w, z]RB[w, z

′] (density ofR2
2 and

R4
2, resp.,R1

2 andR3
2, in R). The remaining cases can be

dealt with in a similar way. Let us consider now two inter-
vals [x, y] and [w, z] such thatx ∈ R1

1, w ∈ R1
2, y ∈ R3

1,
and z ∈ R1

2. By definition ofZ, [x, y] and [w, z] areZ-
related, and by definition ofV1 andV2, there existsy′ > y
such thatM1, [y, y

′] 
 p, but there is noz′ > z such that
M2, [z, z

′] 
 p. This allows us to conclude thatZ does not
preserve the relation induced by〈A〉, and thus〈A〉 is not de-
finable inLBEDOALBEDO.

A completely symmetric argument can be applied for the
completeness proof of〈A〉.

4.4 Completeness for〈D〉, 〈D〉, 〈O〉, and 〈O〉

To deal with the modalities〈D〉, 〈D〉, 〈O〉, and〈O〉, we pro-
ceed as follows. We first introduce the notion off -model,
that is, for any given functionf : R → Q, we define a model
Mf , calledf -model, whose valuation is based onf . Then,
for any given pair of functionsf1 andf2, we define a suitable
relationZf2

f1
between the modelsMf1 andMf2 (from now on,

we will simply writeZ when there is no ambiguity about the
involved models). Finally, we specify the requirements that
f1 andf2 must satisfy to makeZ the bisimulation we want
(these requirements vary from one modality to the other).

Lemma 4.4. The set of inter-definability equations for〈D〉,
〈D〉, 〈O〉, and〈O〉 given in Table 2 is complete.

Proof. We will detail the case of the modality〈D〉. The other
cases can be proved using similar arguments.

According to Table 2,〈D〉 is definable in terms ofBE. The
fragmentsALBOALBEDO andALEOALBEDO are thus the
only ⊆-maximal ones not featuring〈D〉 and not containing
BE. We should provide a bisimulation, not preserving the
relation induced by〈D〉, for each of these fragments, but,
thanks to the symmetry of the operators, it suffices to con-
sider only one of them, sayALBOALBEDO (by Lemma 3.2,

we have thatALBOALBEDO is expressively equivalent to
ABOABE). Given a functionf : R → Q, we define the
f -modelMf , over a language with one propositional letterp
only, as the pair〈I(R), Vf 〉, whereVf : I(R) → 2AP is de-

fined as follows:[x, y] ∈ Vf (p)
def
⇔ y ≥ f(x). For any given

pair of functionsf1 andf2 (from R to Q), the relationZ is
defined as follows:

([x, y], [w, z]) ∈ Z
def
⇔ x ≡ w, y ≡ z, and[x, y] ≡l [w, z],

whereu ≡ v
def
⇔ u ∈ Q iff v ∈ Q and[u, u′] ≡l [v, v

′]
def
⇔

u′ ∼ f1(u) andv′ ∼ f2(v), for ∼∈ {<,=, >}. Finally, the
following constraints are imposed onf (if we replace〈D〉 by
one of the other modalities, the constraints must be suitably
replaced as well): (i) for everyx ∈ R, f(x) > x, (ii) for every
x ∈ Q, bothf−1(x)∩Q andf−1(x)∩Q are left-unbounded
(notice that surjectivity off immediately follows), and (iii)
for everyx, y ∈ R, if x < y, then there existsu1 ∈ Q (resp.,
u2 ∈ Q) such thatx < u1 < y (resp.,x < u2 < y) and
y < f(u1) (resp.,y < f(u2)).

Now, we show that if bothf1 andf2 satisfy the above con-
ditions, thenZ is anABOABE-bisimulation betweenMf1

andMf2 . Let [x, y] and[w, z] be twoZ-related intervals. By
definition,y ∼ f1(x) andz ∼ f2(w) for some∼∈ {<,=,
>}. If ∼∈ {=, >}, then both[x, y] and[w, z] satisfyp; oth-
erwise, both of them satisfy¬p. The local condition is thus
satisfied. As for the forward condition, let[x, y] and[x′, y′] be
two intervals inMf1 and[w, z] an interval inMf2 . We have
to prove that if[x, y] and[w, z] areZ-related, then, for each
modal operator〈X〉 of ABOABE such that[x, y]RX [x′, y′],
there exists an interval[w′, z′] such that[x′, y′] and [w′, z′]
areZ-related and[w, z]RX [w′, z′]. Once more, we proceed
case-by-case. For the sake of brevity, we only detail the case
of 〈A〉. The other modalities can also be dealt with by exploit-
ing the requirements for the functionsf1 andf2 in a suitable
way. Let 〈X〉 = 〈A〉. By definition of 〈A〉, x′ = y and
we are forced to choosew′ = z. By y ≡ z, it immedi-
ately followsx′ ≡ w′. We must find a pointz′ > z such
thaty′ ≡ z′ and bothy′ ∼ f1(y) andz′ ∼ f2(z) for some
∼∈ {<,=, >}. Let us suppose thaty′ < f1(y). In such
a case, we choose a pointz′ such thatz < z′ < f2(z) and
y′ ≡ z′. The existence of such a point is guaranteed by condi-
tion (i) onf2 and by the density ofQ andQ in R. Otherwise,
if y′ = f1(y), we choosez′ = f2(z). By definition off1 and
f2 (the codomain off1 andf2 is Q), bothy′ andz′ belong
to Q and thusy′ ≡ z′. Finally, if y′ > f1(y), we choose
z′ > f2(z) such thaty′ ≡ z′. The existence of such a point is
guaranteed by right-unboundedness ofQ andQ. Satisfaction
of the backward condition for all modalities can be checked
in a similar way.

To complete the proof, we exhibit two functions that meet
the requirements we have imposed tof1 andf2, but do not
preserve the relation induced by〈D〉. Let P(Q) = {Qq |
q ∈ Q} andP(Q) = {Qq | q ∈ Q} be infinite and countable
partitions ofQ andQ, respectively, such that for everyq ∈ Q,
bothQq andQq are dense inR. For everyq ∈ Q, let Rq =

Qq ∪ Qq. We define a functiong : R → Q that maps every



real numberx to the indexq (a rational number) of the class
Rq it belongs to. Formally, for everyx ∈ R, g(x) = q, where
q ∈ Q is the unique rational number such thatx ∈ Rq. The
two functionsf1 : R → Q andf2 : R → Q are defined as
follows:

f1(x) =

{

g(x) if x < g(x), x 6= 1, andx 6= 0
2 if x = 1
⌈x+ 3⌉ otherwise

f2(x) =

{

g(x) if x < g(x) andx 6∈ [0, 3)
⌈x+ 3⌉ otherwise

It is not difficult to check that the above-defined functions
meet the requirements forf1 and f2, and thusZ is an
ABOABE-bisimulation. On the other hand,Z does not pre-
serve the relation induced by〈D〉. Consider the interval[0, 3]
in Mf1 and the interval[0, 3] in Mf2 . It is immediate to see
that these two intervals areZ-related. However,Mf1 , [0, 3] 

〈D〉p (asMf1 , [1, 2] 
 p), butMf2 , [0, 3] 
 ¬〈D〉p. This al-
lows us to conclude that〈D〉 is not definable in the fragment
ALBOALBEDO.

4.5 Harvest
The proof of Theorem 3.1 follows now immediately.

We have used the equations in Table 2 as the basis of a
simple program that identifies and counts all expressively dif-
ferent fragments ofHS with respect to the strict semantics.
Using that program, we have found that, under our assump-
tions (strict semantics, over the class of all linear orders) there
are exactly 1347 genuine, that is, expressively different,frag-
ments out of212 = 4096 different subsets ofHS-operators.

5 Conclusions
In this paper, we have obtained a sound, complete, and opti-
mal set of inter-definability equations among all modal oper-
ators inHS, thus providing a characterization of the relative
expressive power of all interval logics definable as fragments
of HS. Such a classification has a number of important appli-
cations. As an example, it allows one to properly identify the
(small) set ofHS fragments for which the decidability of the
satisfiability problem is still an open problem.

It should be emphasized that the set of inter-definability
equations listed in Table 2 and the resulting classification
do not apply if the non-strict semantics is considered. For
instance, if the non-strict semantics is assumed, then, as
shown in[Venema, 1990], 〈A〉 (resp.,〈A〉) can be defined
in BE (resp.,BE). Also, if the semantics is restricted to
specific classes of linear orders, the completeness of the set
of equations in Table 2 is no longer guaranteed. For in-
stance, in discrete linear orders,〈A〉 can be defined inBE:
〈A〉p ≡ ϕ(p) ∨ 〈E〉ϕ(p), whereϕ(p) is a shorthand for
[E]⊥∧ 〈B〉([E][E]⊥∧ 〈E〉(p ∨ 〈B〉p)); likewise,〈A〉 is de-
finable inBE. As another example, in dense linear orders,
〈L〉 can be defined inDO: 〈L〉p ≡ 〈O〉(〈O〉⊤ ∧ [O](〈O〉p ∨
〈D〉p∨〈D〉〈O〉p)); likewise,〈L〉 is definable inDO. (In view
of these inter-definabilities, Lemma 4.1 cannot be proved by
using bisimulation between models over the reals.)

The classification of the expressiveness ofHS fragments
with respect to the non-strict semantics, as well as over spe-
cific classes of linear orders, is currently under investigation
and will be reported in a forthcoming publication.
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