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Abstract of linear orders. For a long time, these sweeping undecid-
) ability results have discouraged attempts for practicaliap
We compare the expressiveness of the fragments  cations of interval logics. A renewed interest in the ares ha

of Halpern and Shoham’s interval logiEl$), i.e., recently been stimulated by the discovery of several istere
of all interval logics with modal operators associ- ing decidable fragments &fS [Bresolinet al., 2007a; 2007b;
ated with Allen’s relations between intervals in lin- 2008; 2009; 2010; Montanaeit al., 2010a; 2010b In that

ear orders. We establish a complete set of inter-  context, and for the purpose of identifying expressiverinte
definability equations between these modal oper-  yja] |ogics for various intended applications, the compeeat
ators, and thus obtain a complete classification of  analysis of the expressiveness of the variety of intervgd lo
the family of2'* fragments oHS with respect to ics is a major research problem in the area. In particular, th
their expressiveness. Using that result and a com-  jmportant problem arises to analyze the mutual definadsliti
puter program, we have found that there are 1347 among the modal operators of the logiS and to classify
expressively different such interval logics over the  the fragments oHS with respect to their expressiveness.
class of all linear orders. In the present paper we address and solve that problem,
by identifying a complete set of inter-definability formala
. among the modal operatorsidt and thus providing a com-
1 Introduction plete classification of all fragments | with respect to their
Interval reasoning naturally arises in various fields dfiaral expressiveness for therict semantics (excl. point intervals)
intelligence, such as theories of action and change, Haturaver the class of all linear orders. Using that result we have
language analysis and processing, and constraint saiisfac found that there are exactly 1347 expressively differenhsu
problems. Interval temporal logics formalize reasoninguib  fragments out 02'? = 4096 sets of modal operators HS.
interval structures over ordered domains, where time-nter The choice of strict semantics, excluding point intervals,
vals, rather than time instants, are the primitive ontalabi instead of including them (non-strict semantics), confetm
entities. The variety of binary relations between intesval  the definition of interval adopted by Allen {illen, 1983.
linear orders was first studied systematically by All&tien, It has at least two strong motivations. First, a number of rep
1983, who explored their use in systems for time managetesentation paradoxes arise when the non-strict semasitics
ment and planning. The modal logic featuring modal op-adopted, due to the presence of point intervals, as pointed o
erators corresponding to Allen’s interval relations was in in [Allen, 1983. Second, when point intervals are included,
troduced by Halpern and Shohamlidalpern and Shoham, there seems to be no intuitive semantics for interval rerteti
1991]; we hereafter call that logiElS. Temporal logics with  that makes them both pairwise disjoint and jointly exhaesti
interval-based semantics have also been proposed as a suit-The structure of the paper: after the preliminary Section
able formalism for the specification and verification of hard 2, in Section 3 we state the main result of the paper, and we
ware [Moszkowski, 198Band of real-time systemiZhou  prove that the proposed set of inter-definability equatisns
and Hansen, 2004 correct. The much more difficult proof of completeness is
In[Halpern and Shoham, 19R1t was shown that the satis- given in Section 4. Section 5 provides an assessment of the
fiability problem forHS is undecidable in all natural classes work done and it outlines future research directions.

*We would like to acknowledge the Spanish proj&ti2009- .. .
14372-C03-01(G. Sciavicco), thedYLOCOREproject, funded by 2 Preliminaries
the Danish Natural Science Research Council (V. Goranke)ltal- . .
ian PRIN projectinnovative and multi-disciplinary approaches for L€t = (D, <) be a linearly ordered set. AntervaloverD
constraint and preference reasonirfg. Della Monica, A. Mon- IS an ordered paifu, b], wherea, b € D anda < b. Intervals
tanari), and the Spanish/South-African Projet$2008-0006(V.  Of the type[a, a] are calledpoint intervals while the others
Goranko, G. Sciavicco). are calledstrict intervals There are 12 different non-trivial
fCurrently affiliated with University of Salerno, Italy. relations (excluding the equality) between two strict inéds



—_
(A) | [a,b]Ralc,d] & b=c ! I*T* J
(L) | [a,b]RL[c,d] &b < ¢ | \
B) | [whRsle.d wa=cd<b | 1
(E) | a,b|Relc,d] & b=d,a < c : CJ
(D) | la,b]Rplc,d] < a<c,d<b E c}_{d E
(©) | [alRole.dl @ a<c<b<d| | %d

Table 1: Allen’s interval relations and the corresponditf§)
modalities.

in a linear order, often calledllen’s relations[Allen, 1983:
the six relations depicted in Table 1 and the inverse reiatio

We treat interval structures as Kripke structures and Adlen
relations as accessibility relations in them, thus astioga
modal operato{X') with each Allen’s relatior? x . For each
operator(X), its transposedenoted by X), corresponds to
the inverse relatiol+ of Ry (thatis, R+ = (Rx)™1).

Halpern and Shoham’s logieS is a multi-modal logic
with formulae built over a sed’P of propositional letters,
the propositional connectives and —, and a set of modal
operators associated with all Allen’s relations. With gver
subset{ Ry, , ..
fragmentX; X, ... X of HS, the formulae of which are de-
fined by the grammar:

pu=ploeleVve [ (Xie|... | (Xi)e.
The other propositional connective’s,and—, and the dual
operator§X| are defined as usual, e.gX ] = —~(X)—p.

For a fragmentF = X;X,...Xx and a modal operator
(X), wewrite(X) € Fif X € {Xy,...,Xx}. Given two
fragmentsF; andF,, we writeF; C F» if (X) € F; implies
(X)) € Fs, for every modal operatdrX ).

The semantics dfiS is given in terms ofnterval models
M = (I(D), V), wherel(D) is the set of all (strict) intervals
overD. Thevaluation functionV : AP — 2!(P) assigns to
everyp € AP the set of intervald/(p) on whichp holds.
Thetruth of a formula on a given intervéak, b] in an interval
model )M is defined by structural induction on formulae:

o M, [a,b] I piff [a,b] € V(p), forallp € AP;

e M,|a,b] I - iffitis not the case thabd/, [a, b] IF ¢;

o M, [a,b] Ik oV iff M, [a,b] ke orM,[a,b] IF;

e M, [a,b] IF (X)) iff there exists an intervdk, d] such
that[a, b]Rx[c,d] and M, [c,d] I+ ¢, whereRx is any
of Allen’s relations.

A formula ¢ of HS is valid, denoted= ¢, if it is true on
every interval in every interval model. Two formula@ndqy
areequivalentdenoted) = ¢, if = ¢ <> .

Definition 2.1. A modal operatofX) of HS is definablein
anHS-fragmentF, denoted X) < F, if (X)p = ¢ for some
formulay = ¥ (p) € F, for any fixed propositional variable
p. In such a case, the equivalenE)p = ¢ is called an
inter-definability equation fo{X) in F.

It is known from [Halpern and Shoham, 19pthat, in the
strict semantics, all modal operatorshts are definable in

., Rx, } of these relations, we associate the

the fragment containing the modalitiéd), (B), and (E),

and their transposesl), (B), and(E) (In the non-strict se-
mantics, the four modalitie§B), (E), (B), and(E) suffice,

as shown ifVenema, 199]).

In this paper, we compare and classify the expressiveness
of all fragments oHS on the class of all interval structures
over linear orders. Formally, lef; and 7, be any pair of
such fragments. We say that:

e F5 is at least as expressive &5, denotedF; < Fo, if

every operatotX) € F; is definable inF,.

e Fj isstrictly less expressivihan F,, denotedF; < Fo,

if 1 = Fa butnotFs < Fi.

e F; andF; areequally expressiveor, expressively equiv-

alenf), denotedr; = Fo, if 71 = F> andFy < Fi.

e Fj and.F, areexpressively incomparahldenotedF; #

Fo, if neither 7y < F5 nor Fy < Fi.

In order to show non-definability of a given modal operator
in a given fragment, we use a standard technigue in modal
logic, based on the notion @fisimulationand the invariance
of modal formulae with respect to bisimulations (see, e.g.,
[Blackburnet al, 2004). Let F be anHS-fragment. An
F-bisimulation between two interval modél$ = (I(D), V)
andM’ = (I(D'), V') overAP is arelationZ C I(D)xI(D’)
satisfying the following properties:

e local condition Z-related intervals satisfy the same

propositional letters ovedP;

e forward condition if ([a,b],[d’,0']) € Z and
([a,b],[c,d]) € Rx for some(X) € F, then there
exists [¢/,d’] such that([a’,b'],[¢/,d]) € Rx and
([e,d], [¢, d]) € Z;

e backward conditionlikewise, but fromM’ to M.

The important property of bisimulations used here is that
any F-bisimulation preserves the truth ali formulae inF.
Thus, in order to prove that an operatdf) is not definable in

F, it suffices to construct a pair of interval modaisand M’

and aF-bisimulation between them, relating a pair of inter-
vals[a,b] € M and[a’, V'] € M’, such that\/, [a,b] IF (X)p,
while M’ [a/, V'] I {(X)p.

3 Comparing the expressiveness of the
fragments of HS

In order to classify all fragments dflS with respect to
their expressiveness, it suffices to identify all defindilfi
of modal operatoréX) in fragmentsF, where(X) ¢ F.

A definability (X) <« F is optimalif (X) < F’ for any
fragmentF’ such that?’ < F. A set of such definabilities is
optimal if it consists of optimal definabilities.

The main result of the paper is the following theorem.
Theorem 3.1. The set of inter-definability equations given in
Table 2 is sound, complete, and optimal.

Most of the equations in Table 2 are known th[)HaIpern
and Shoham, 1991lexcept the definabilityL) < BE and its
symmetric,(L) <t BE, which are new. We will first prove the
soundness of the given set of inter-definability equations.
Lemma 3.2. The set of inter-definability equations given in
Table 2 is sound.



L)p ={A)(A)p L)<A not prove in detail all the cases. A detailed proof can bedoun
(L)p = (A)(4) (L)< A in detail all th detailed proof can bedo
(L)p = (A)(A)p (L)y<A in the extended technical report and it will appear in a feitur
(O)p = (E)(B)p (O)<1 BE journal version of the present paper.

(O)p = (B)(E)p (O)< BE -

(D)p = (E)(B)p (D)< BE 4.1 Completeness foKL) and (L)

(D)p = (E)(B)p (D)< BE Lemma 4.1. The set of inter-definability equations fF)
(L)p = (B)[EI(B)(E)p (L)< BE and(L) given in Table 2 is complete.

(L)p = (E)[BI(E)(B)p (L)< BE Proof. According to Table 2,(L) is definable in terms

of A and BE. Hence, the fragmentBEDOALEDO and
BDOALBEDO are the onlyC-maximal ones not featuring

~ (L) and containing neithek nor BE. To prove the thesis, it
Proof. We only need to prove the soundness for the new intersyffices to exhibit a bisimulation for each one of these two
definability equationgL)p = (B)[E](B)(E)p and its sym-  fragments that does not preserve the relation inducedby

Table 2: The complete set of inter-definability equations

metric for (L). The proofs are analogous, so we only proveThanks to Lemma 3. BEDOALEDO andBDOALBEDO are
the former. First, we prove the |ef’[-t0-rlght dlreCUOn. FSU expressi\/e|y equiva]ent tBEom and BDOE, respec-
pose thatM, [a,b] |- (L)p for some model/ and interval tively. Thus, to all our purposes, we can simply refer to the
[a, b]. This means that there exists an interivali] such that |atter ones instead of the former ones.
b < candM, [c,d] I- p. We exhibit an intervala, y], with As for the first fragment, led/; = (I(N),V;) and My =
y > b such that, for every (strictly) in betweeru andy,  (I(N), ;) be two models and le¥; and V, be such that
the intervalz, y] is such that there exist two poingsandz’ v, (p) = {[2, 3]} andVx(p) = 0, wherep is the only propo-
such thaty’ > y, z < 2’ <y, and[z’, y'] satisfiesp. Lety  sitional letter of the language. Moreover, 1Bt be a re-
be equal ta:. The intervala, c|, which is started bya, b], s |ation between (intervals of)/; and M, defined asZ =
such that for any of its ending intervals, that is, for angimt  ((]o, 1], [0, 1])}. It can be easily shown that is aBEOAED-
val of the form[z, ], with a < z, we have that: < ¢ < d  pjsimulation. The local property is trivially satisfiednse all
andMM, [c,d] I p. As for the other direction, we must show 7_related intervals satisfyp. As for the forward and back-
that (B)[E](B)(E)p implies (L)p. To this end, suppose that ward conditions, it suffices to notice that, starting frore th
M, [a,b] IF (B)[E](B)(E)p for a modelM and an interval interval[0, 1], it is not possible to reach any other interval us-
[a,b]. Then, there exists an intervgl, c|, for somec > b, ing any of the modal operators of the fragment. At the same
such tha{ E](B)(E)p is true on[a, c|. As a consequence, the _time, Z does not preserve the relation induced by the modal-
interval [b, ] must satisfy(B) (E)p, that means that there are ity (L). Indeed,([0, 1], [0,1]) € Z and M, [0,1] I (L)p,
two pointsz andy such thaty > ¢, b < = < y, and[z,y]  PUt M2, [0,1] I =(L)p. Therefore,(L) is not definable in
satisfiegp. Sincexr > b, thenM, [a, b] I+ (L)p. 0  BEDOALEDO.
As for the second fragment, lét/; = (I(Z~),V;) and

Proving completeness is the hard task; optimality will beA, = (I(Z~), V2) be two models based on the s&t =
established together with it. The completeness proofia-org {..., -2 —1}, and letV; and V, be such thatV;(p) =
nized as follows. For eacHS operator(X), we show that {[—2, —1]} and V»(p) = @, wherep is the only proposi-
(X)) is not definable in any fragment BiS that does not con-  tional letter of the language. Moreover, &t be a rela-
tain as definable (according)to Table 2) all operators of soméon between (intervals of)/; and M, defined as follows:
of the fragments in whiclX') is definable (according to Ta- de _ 5
ble 2). More formally, for eaciS operator(X), the proof \%x’y]’ [w’ZL) < Z & [x’y];[lgiz.] ar}d[fz:,y] 7&. [ 2,h 1}'
consists of the following steps: e prove thatZ is a BDOABE-bisimulation. First, the lo-

1. using Table 2, find all fragmens such that X) <1 F; cal property is trivially satisfied, since ali-related intervals

2: identify the Iiét/\/ll M. of all C-maximal fraa- §at|sfy —p. Moreover, starting from any interval, the only
ments ofHS that contain ngither the operatak) nor interval that satisfiep, that is,[—-2, —1], cannot be reached
any of the fragment&; identified by the previous step: using the set of modal operators featured by (_)urf_ragment. At

3. for each fragment,, with i € {1....,m}, provide a the same timeZ does not preserve the relation induced by
bisimulation forAM; which is not a bisimulation foX. E)LE,J\ZS([:? :g],l[k_éh 23]) gl'hZ ar;dMl,L[—_zL, _?;] (;F f<L>g’|

Details of the completeness proof will be provided in a se-, ut My, [4, —3] I ~{L)p. Therefore{L) is not definable

ries of lemmas (of increasing complexity) in the next sectio " BDOALBEDO. . .
A completely symmetric argument can be applied for the

4 The completeness proof completeness proof af.). H

In this section, we will prove that, for each modal operator4.2 Completeness fo(E), (E), (B), and (B)

(X) of HS, the set of inter-definability equations f@K') in  Lemma 4.2. The set of inter-definability equations f6E),

Table 2 is complete for that operator, that () is notde- %) (py, and(B) given in Table 2 is complete.
finable in any fragment dflS that does not contain (as defin- ’ '

able) all operators of some of the fragments listed in Table 2Proof. According to Table 2, we will show thatF) is not
in which (X) is definable. Due to space limitations, we will definable in terms of the onlgZ-maximal fragment not fea-



turing it, namely, ALBDOALBEDO. (The inverse modality
(E) and the symmetric modaliti€s3) and(B) can be dealt

Proof. According to Table 2, it suffices to show th@) is
not definable in the only_-maximal fragment not containing

with using similar arguments.) Thanks to Lemma 3.2, it ac-it, namely, LBEDOALBEDO, which, by Lemma 3.2, turns

tually suffices to provide a bisimulation fé&édBDOABE.
Let M7 = (I(R),V4) and My = (I(R), V), wherep is

out to be equivalent ttBEABE.
Let M; = (I(R), V1) and M, = (I(R), V2) be two models

the only propositional letter of the language, the valuatio built on the only propositional lettes. In order to define

functionVi : AP — 2'® s defined asiz,y] € Vi(p) &
z € Qiff y € Q, and the valuation functiov, : AP — 21(®)

the valuation function¥; andVs, we take advantage of two
partitions of the selR, one forA/; and the other one fat/,,

each of them consisting of exactly four sets that are dense in
R. Formally, forj = 1,2 andi = 1,...,4, letR} be dense in

R. Moreover, forj = 1,2, letR = [ JI_, R: andR:NRY =

for eachi,i’ € {1,2,3,4} with i # 7'

as:[w, z] € Va(p) Ywe Qiff z € Q, and([0, 3], [w, 2]) ¢
Rg. Moreover, letZ be a relation between (intervals aff;

and M, defined as follows{[z, 3], [w, 2]) € Z b=y [z,y] €
Vi(p) iff [w, 2] € V2.(P)- . . Forj = 1,2, we force points inR} (resp.,R?, R?, R})
We show thatZ is an ABDOABE-bisimulation between to behave in the same way with respect to the trutb/efp

M, andM,. The satisfaction of the local condition immedi- gyer the intervals they initiate and terminate by imposime t
ately follows from the definition. The forward condition can fg|iowing constraints:

be checked as follows. L& = R\ Q and let[z, y] and[w, 2]
be two Z-related intervals. For each modal operatar) of
the language, let us assume thaty|Rx [z, y']. We have to
exhibit an intervalw’, 2’| such thafz’, /] and[w’, z'] areZ-
related, andw, z] and[w’, z’] are Rx-related. We proceed
case-by-case. LetX) = (A) (and thusy = z’). Suppose
that [z/,y'] € Vi(p) (resp.,[2',y'] ¢ Vi(p)). We can al-
ways find a point:’ > z such that[z,z'] € Va(p) (resp.,

Vo, y(if z € R, thenM;, [z, y] |- —p);
Va,y(if z € R%-, thenM;, [z, y] IF —p);
Va,y(if 2 € R}, then(Mj, [x,y] I piff y € R}
Va, y(if o € RE, then(Mj, [z,9] I piff y € R?

J

URY));
URY)).

It can be easily shown that, from the given constraints, it im
mediately follows that:

[2,2'] ¢ Va(p)), independently from: belonging toQ or Q Va,y(if y € R}, then(M;, [z,y] IF piff z € RY));
(since bothQ andQ are right-unbounded). This implies that Va,y(if y € R?, then(M;, [z,y] IF piff z € RY));
[«',y'] and|[z, /| are Z-related. Sincéw, z] and |z, z'] are Vo, y(ify € Ré, then(M;, [z,y] IF piff z € Ré));
obviously R 4-related, we have the thesis.([KX) = (B), the va,y(ify e R?? then(M;, [z, y] IF piff z € R;*)).

argument is similar to the previous one, but, in this case, th
density ofQ andQ is exploited. If(X) = (D), it suffices

to choose two pointa’ andz’ such thatw < v’ < 2’ < z,

z' # 3, w' belongs toQ if and only if 2’ does, and:’ be- 3 1 3
longs toQ if and only if 4/ does. As in the previous case, [z,y] € V}(p) b=y { (z ngi\ ve RfR;J RfRL

the existence of such points is guaranteed by the densfy of V(z €Rj Ay € RFUR;).

andQ. If (X) = (0), v’ andz’ are required to be such that  Now, let Z be the relation between (intervals dfj; and
w < w' < z < Z', and both density and right-unboundednessi/; defined as follows. Two intervals, y] and[w, 2| are Z-
of Q andQ must be exploited. The remaining cases as well agelated if and only if at least one of the following conditgon
the backward condition can be verified in a very similar way.holds:

The above constraints univocally induces the following-defi
nition of the valuation function® (p) : AP — 2!(®):

At the same timeZ does not preserve the relation induced by 1.
(E): we have that|0, 3], [0,3]) € Z, M1, [0,3] I (E)p, but 2.
M, [0, 3] IF =(E)p. Therefore{E) cannot be defined inthe 3.

fragmentALBDOALBEDO. O g-

We

r € R} UR? andw € R} UR3;

r € R}, w € RS, and(y € R} UR} iff 2 € R URS);
r € R}, w GRE, and(y € R} URY iff 2 eRguIR{%);
r € Rf, w e R3, and(y € R? URTIff 2 € R UR3);
r € R}, w € R}, and(y € R UR] iff 2 € R3UR]).
show that the relatio is an LBEABE-bisimulation.

4.3 Completeness foKA) and (A)

In the proofs of Lemma 4.3 and Lemma 4.4, in order to ge
the bisimulation we want, we need to exploit a well-known

property_of the_ set of real numbeRs R (resp.,Q, @) can

subsets, each one of which is denseRin More formally,
there are countably many nonempty sits(resp.,Q;, Q,),
with i € N, such that, for each € N, R; (resp.,Q;, Q;)
is dense IR, R = {J,.yR; (resp.,Q = U;eny Qi Q
Uien @), andR; NR; =0, (resp.Q; NQ; =0, Q; NQ;
0), for eachi, j € N with i # j.

Lemma 4.3. The set of inter-definability equations foA)

and(A) given in Table 2 is complete.

Jt can be easily checked that every péje, y], [w, z]) of
Z-related intervals is such that eithpr,y] € Vi(p) and
[w,2] € Va(p) of [a,y] & Vi(p) and[w, 2] & Va(p). In
order to verify the forward condition, Ik, y] and[w, z] be
Ytwo Z-related intervals. For each modal operatdn of the
language and each internvat, y'] such thafz, y|Rx [z, v/],
we have to exhibit an intervdly’, 2’| such thatlz’,y’] and
[w', 2] are Z-related, andw, z] and[w’, z’] are Rx-related.
We proceed case-by-case. L&f) = (L). We must consider
five sub-cases depending on the sétandy’ belong to: (i)
if 2/ € R} UR?, then for eachv’ € R} such thaw' > z,
we have that, for every’ > /', ([«/,y], [v’,2']) € Z and
[w, z]RL[w', 2'] (the existence ofv’ is guaranteed by right-
unboundedness &); (i) if 2’ € R andy’ € R1UR?, then



for eachw’, 2’ such that: < w’ < 2’ andw’, 2’ € R3, we
have that([2/, y'], [w’, 2']) € Z and[w, z]Rp[w’, '] (right-
unboundedness &3); (iii) if 2’ € R} andy’ € R2UR, then
for eachw/’, 2’ such that < w’ < 2/, w' € R3, andz’ € R3,
we have that([z/,y'],[w',2']) € Z and [w, Z]RL[w 2]
(rlght unboundedness di?{3 andR 3); (iv) if 2/ € R4 and
y' € R UR3, then for eachu’ 2/ such that: < w' < 2/,
w' € R‘*, and-’ € R, we have that[z', y'], [w', 2']) € 7
and[w, z] Rz [w’, '] (right-unboundedness &; andR3); (V)
if 2 € R andy’ € RZUR{, then foreachy’, 2’ such that <
w' < 2/ andw’, 2’ € R}, we have that[2',y], [w', 2]) € Z
and [w, z] Ry [w', 2] (right-unboundedness @3). Assume
now (X) = (B). If z € RI UR? andw € R} U R3,
then for anyw < 2’ < z, both ([z,y'], [w,?']) € Z and
[w, 2] Rp[w, '] hold. If + € R andw € RY, for some
i € {3,4}, andy’ € Rk, for somek € {1,2,3,4}, then
foranyw < 2/ < 2z such thatz’ € R, it holds that
([, '], [w,2']) € Z and|w, z]Rp|w, 2] (the existence of
2’ is guaranteed by density &% in R). Finally, if » € R?
andw € R fori,i’ € {3,4} with i # #/, then ify’ <
RI UR? (resp.,y’ € R? U IR‘*) foranyw < 2’ < z such
that 2/ € R2 UR} (resp .2 € Ry URY), it holds that
([z,y'], [w, 2']) € Z and [w, 2] Rp[w, z] (density ofR3 and
R3, resp.,R} andR3, in R). The remaining cases can be
dealt with in a similar way. Let us consider now two inter-
vals [x,y] and [w, 2] such thatr € R}, w € Ri, y € R},
andz € Ri. By definition of Z, [z,y] and [w, 2] are Z-
related, and by definition of; andV5, there existg/ > y
such thatM;, [y, y'] I+ p, but there is ne:’ > z such that
Ma, [z, 2] IF p. This allows us to conclude that does not
preserve the relation induced ), and thus A) is not de-
finable inLBEDOALBEDO.

we have thatALBOALBEDO is expressively equivalent to
ABOABE). Given a functionf : R — Q, we define the
f-model)M ¢, over a language with one propositional letter
only, as the paiI(R), V), whereV; : ]I(R) — 247 is de-

fined as follows{z, y] € Vy(p 4 y > f(x). For any given
pair of functionsf; and f» (from R to @) the relationZ is
defined as follows:

([, 9], [w, 2]) € Z Y =w, y = z,and[z, y] = [w, 2],

whereu = v v € Qiff v € Qandlu,v'] = [v,v'] =4

uw' ~ fi(u) andv’ ~ fo(v), for ~e {<,=,>}. Finally, the
following constraints are imposed gi(if we replace(D) by
one of the other modalities, the constraints must be syitabl
replaced as well): (i) for every € R, f(x) > =z, (ii) for every

r € Q,bothf~1(z)NQandf~!(z) N Q are left-unbounded
(notice that surjectivity off immediately follows), and (iii)
for everyz,y € R, if z < y, then there exists; € Q (resp.,

uy € Q) such thatr < u; < y (resp.,r < up < y) and

y < f(u1) (resp.y < f(u2)).

Now, we show that if bottf; and f, satisfy the above con-
ditions, thenZ is an ABOABE-bisimulation between\/;,
andMjy,. Let[z,y] and[w, z] be twoZ-related intervals. By
definition,y ~ fi(z) andz ~ fa(w) for some~e {<,=,
>}. If ~e {=,>}, then bothz, y] and[w, 2] satisfyp; oth-
erwise, both of them satisfyip. The local condition is thus
satisfied. As for the forward condition, lgt, y] and[2’, y'] be
two intervals inMy, and|w, z] an interval inMy,. We have
to prove that if[z, y] and[w, z] are Z-related, then, for each
modal operatofX') of ABOABE such thafz, y]|Rx [z, v/],
there exists an intervadly’, 2] such thatlz’,y’] and [w’, 2’]

A completely symmetric argument can be applied for theare Z-related andw, z] Rx [w’, 2']. Once more, we proceed

completeness proof ¢f4). O

4.4 Completeness foKD), (D), (O), and (O)

To deal with the modalitiesD), (D), (O), and(O), we pro-
ceed as follows. We first introduce the notion fsmodel,
that is, for any given functiorf : R — Q, we define a model
My, called f-model, whose valuation is based ¢n Then,
for any given pair of functiong; and f-, we define a suitable
reIanan2 between the model¥/ ¢, andM, (from now on,

we will S|mply write Z when there is no ambiguity about the
involved models). Finally, we specify the requirementg tha
f1 and f, must satisfy to make’ the bisimulation we want
(these requirements vary from one modality to the other).

Lemma 4.4. The set of inter-definability equations fGb),
(D), (0), and(O) given in Table 2 is complete.

Proof. We will detail the case of the modalityD). The other
cases can be proved using similar arguments.

According to Table 2({D) is definable in terms dBE. The
fragmentsALBOALBEDO andALEOALBEDO are thus the
only C-maximal ones not featuringD) and not containing
BE. We should provide a bisimulation, not preserving the
relation induced by D), for each of these fragments, but,
thanks to the symmetry of the operators, it suffices to con
sider only one of them, sayL. BOALBEDO (by Lemma 3.2,

case-by-case. For the sake of brevity, we only detail the cas
of (4). The other modalities can also be dealt with by exploit-
ing the requirements for the functioyis and f, in a suitable
way. Let(X) (A). By definition of (4), ' = y and
we are forced to choose’ z. Byy = z, it immedi-
ately followsz’ = w’. We must find a point’ > 2 such
thaty’ = 2’ and bothy’ ~ f1(y) andz’ ~ f3(z) for some
~€ {<,=,>}. Let us suppose that < fi(y). In such
a case, we choose a poitftsuch that: < 2z’ < f3(z) and

" = 2. The existence of such a pointis guaranteed by condi-
tion (i) on f, and by the density o andQ in R. Otherwise,

"= f1(y), we choose’ = f,(z). By definition of f; and
f2 (the codomain off1 and f» is Q), bothy’ andz’ belong
to Q and thusy’ = 2’. Finally, if 3/ > fi(y), we choose
z' > fa(z) such that/ = 2’. The existence of such a pointis
guaranteed by right-unboundednes®aindQ. Satisfaction
of the backward condition for all modalities can be checked
in a similar way.
To complete the proof, we exhibit two functions that meet

the requirements we have imposedjioand f-, but do not
preserve the relation induced Bp). Let P(Q) = {Q |

q € Q} andP(Q) = {Q, | ¢ € Q} be infinite and countable
partitions ofQ andQ, respectively, such that for eveqy= Q
bothQ, and@ are dense ifR. For everyg € Q, letRR,

QquU @ We define a functiog : R — Q that maps every
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