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Abstract7

In this paper, we study First Order Logic (FO) over (unordered) infinite trees and its connection with branching-8

time temporal logics. More specifically, we provide an automata-theoretic characterisation of FO interpreted over9

infinite trees. To this end, two different classes of hesitant tree automata are introduced and proved to capture10

precisely the expressive power of two branching time temporal logics, denoted cCTL𝑝
± and cCTL⋆

𝑓 , which are,11

respectively, a restricted version of counting CTL with past and counting CTL⋆ over finite paths, both of which12

have been previously shown equivalent to FO over infinite trees. The two automata characterisations naturally13

lead to normal forms for the two temporal logics, and highlight the fact that FO can only express properties of14

the tree branches which are either safety or co-safety in nature.15
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1. Introduction17

Characterisation theorems [1] are powerful model-theoretic tools that offer a principled approach to18

understanding the intrinsic features of formal systems. They allow us to mark the expressive boundaries19

of specification languages, compare these formalisms w.r.t. their descriptive power on specific classes of20

models, and design new languages starting from a given set of requirements, in the spirit of Lindström-21

style theorems [2] (e.g., based on maximality principles). They also play a central role in definability22

theory, guiding the identification of expressive fragments and meaningful extensions of known logics,23

thus supporting the selection of suitable languages for the specification of the correct behaviour of24

systems in verification and synthesis tasks.25

A foundational distinction exists between linear-time and branching-time languages [3, 4]. The former26

capture properties of computations viewed as totally-ordered sets of events, while the latter account for27

the branching structure inherent in concurrent and nondeterministic system behaviours.28

The linear-time case, where models are isomorphic to (finite or infinite) words, is by now well under-29

stood. A rich and intertwined network of equivalences connects predicate logics over linear orders with30

temporal logics, such as LTL [5, 6] and ELTL [7], with star-free [8, 9] and 𝜔-regular [10] languages,31

and with automata-theoretic models, including finite [11, 12] and Büchi [13, 10, 14] automata. These32

connections provide deep insights into the structure of definable properties and lead to optimal decision33

procedures across different representations.34

By contrast, the branching-time setting remains more fragmented. Even for First-Order Logic (FO)35

interpreted over (finite or infinite) trees many fundamental definability questions remain unsettled.36

A longstanding open problem posed by Thomas in the 1980s [15] asks whether it is decidable if a37

given regular-tree language is definable in FO. This question has been studied under various combina-38

tions of tree types (ranked/unranked, ordered/unordered) and interpreted vocabularies (e.g., including39
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only child, only ancestor, or both relations). Aside from the positive result for FO over finite trees40

with the child relation [16], the problem remains open in all other settings. Efforts to resolve this41

question have mainly followed algebraic approaches [17], inspired by their success in the word case42

(most notably Schützenberger theorem on star-free languages [8]). These approaches rely on the43

compositionality and structural insights provided by syntactic algebras. Despite significant progress,44

they have provided only partial results, mostly for classes of finite trees [18, 19, 20, 21] or topologi-45

cally simple infinite trees [22, 23]. An alternative and often complementary line of work seeks direct46

characterisations of FO-definable tree languages via automata. This route, highly successful in the47

linear-time case, has also led to fruitful results in the branching-time setting, including a correspon-48

dence [24] between Monadic Second-Order Logic (MSO) [25], Parity Tree Automata [26, 27], and the49

Modal 𝜇-Calculus [28]. More recently [29], the landscape has expanded to include the expressive50

equivalence of Monadic Chain/Path Logics (MCL/MPL) [15, 30, 31], their temporal Computation Tree51

Logic counterparts (ECTL⋆/CTL⋆) [32, 33, 34], and variants of Hesitant Tree Automata (HTA) [35].52

In this work, we continue this line of development, by providing the first, to the best of our knowl-53

edge, complete automata-theoretic characterisation of first-order logic with the descendant relation54

of unranked unordered infinite trees. Our approach builds on previous results for two branching-55

time temporal logics, namely a fragment of Computation Tree Logic with past and counting, denoted56

cCTL𝑝
±, and the Full Computation Tree Logic with counting and finite path quantification, denoted57

cCTL⋆
𝑓 . In [36, 29] these logics were shown to be expressively equivalent to FO when interpreted58

on unordered infinite trees. For these two logics, we introduce corresponding variants of hesitant59

graded automata, called Two-Way Hesitant Linear Tree Automata (2HLGT) and counter-free Hesitant60

Weak Tree Automata (HWGT𝑐𝑓 ), and prove that they capture precisely the expressive power of the61

considered logics, and therefore of FO as well. This establishes a full mutual equivalence between logics62

and automata. These characterisations also uncover a polarised normal form for both temporal logics,63

revealing a noteworthy semantic feature of FO over infinite trees: formulas that quantify existentially64

on branches can only express co-safety properties, while those quantifying universally correspond65

exclusively to safety properties. This observation aligns with earlier findings [37] that relate fragments66

of the modal 𝜇-Calculus, variants of Propositional Dynamic Logic (PDL) [38], and Weak Monadic Chain67

Logic (WMCL).68

Other relatedwork. In earlier work, Bojańczyk [19] showed that, over finite binary trees, FOwith child69

and ancestor relations is equivalent to a cascade product of so-called aperiodically wordsum automata.70

While related in spirit, this result targets a different logic and a different class of structures. More71

recently, Ford [39] focused on the same tree structures that are considered here, and introduced the class72

of antisymmetric path parity automata, which are shown to be no more expressive than FO. However,73

that work does not provide a translation from FO to automata, leaving the equivalence question open.74

2. Temporal logics equivalent to FO and tree automata75

Temporal logics. We consider FO over unranked and unordered finitely branching infinite trees.76

In the following we will call them just infinite trees. The syntax and semantics for FO we consider is77

entirely standard (we refer the reader to [31] for details). Here, we present two branching time temporal78

logics provably equivalent to FO over infinite trees: they are, respectively, a fragment of CTL with79

past and counting, that we call polarized and denote by cCTL𝑝
±, and CTL⋆ with counting and finite path80

quantification, denoted by cCTL⋆
𝑓 .81

The former logic cCTL𝑝
± has been introduced in [36] and shown equivalent to FO over infinite trees.82

It is a restriction of cCTL𝑝, i.e., CTL with past modalities (CTL𝑝) [40], further enhanced with counting.83

The following grammar (where 𝑝 ranges over a set of atomic propositions 𝐴𝑃 ) defines the syntax of84

cCTL𝑝
±:85

𝜙 ::= D 𝑛𝜙⏟ ⏞ 
counting operators

⃒⃒
𝑝

⃒⃒
¬𝜙

⃒⃒
𝜙 ∨ 𝜙

⃒⃒
EX𝜙

⃒⃒
E(𝜙 U𝜙)

⃒⃒
Y𝜙

⃒⃒
𝜙 S𝜙⏟  ⏞  

past operators



The semantics is standard, except for the counting operator [41] D 𝑛𝜙, which is satisfied if the node86

of the tree at which it is evaluated has at least 𝑛 successors satisfying 𝜙. Compared to cCTL𝑝, the87

fragment cCTL𝑝
± disallows formulas of the kind E(𝜙 R𝜓), that cannot be restored through the use88

of negation. In particular, U must be paired with E, while R (the dual of U ) must be paired with A89

(the dual of E). This syntactic restriction is reflected in the semantics: existential quantification can90

predicate only about co-safety properties, while, dually, universal quantification one can only express91

safety properties.92

The latter logic cCTL⋆
𝑓 can be shown equivalent to FO by adapting the model-theoretic argument of93

[41]: this was noticed for the first time in [29]. The syntax is the same as the one of cCTL⋆ [41]:94

𝜙 ::= D 𝑛𝜙
⃒⃒
𝑝

⃒⃒
¬𝜙

⃒⃒
𝜙 ∨ 𝜙

⃒⃒
E𝜙

⃒⃒
X𝜙

⃒⃒
𝜙 U𝜙

The difference is in the semantics: cCTL⋆ features infinite path quantification, while cCTL⋆
𝑓 predicates95

on finite nonempty paths. Unlike cCTL𝑝
±, it is possible in cCTL⋆

𝑓 to pair R with E, as in E(𝜙 R𝜓).96

However, this syntactic ability does not reflect in a real (semantic) gain. As a matter of fact, the semantic97

constraint of cCTL⋆
𝑓 causes the validity of formulas such as 𝜙 R𝜓 ↔ 𝜓 U ((𝑋̃⊥ ∨ 𝜙) ∧ 𝜓), making it98

possible to equivalently rewrite the above formula E(𝜙 R𝜓) as E(𝜓 U ((𝑋̃⊥ ∨ 𝜙) ∧ 𝜓)). Therefore, the99

aforementioned polarized behavior of cCTL𝑝
± is observed in cCTL⋆

𝑓 as well: somehow, the syntactic100

restriction in the former logic and the semantic constraint in the latter one are equivalent.101

In this work, we provide automaton-based characterisations for both logics, allowing the identification102

of normal forms.103

Tree automata. A Graded Alternating Büchi Tree Automaton (GTA) is a tuple 𝒜 = ⟨𝑄,Σ, 𝛿, 𝑞𝐼 , 𝐹 ⟩,104

where 𝑄 is a set of states, Σ is a finite alphabet, 𝛿 : 𝑄 × Σ → ℬ+({♢𝑘,□𝑘 | 𝑘 > 0} × 𝑄) is the105

transition function, 𝑞𝐼 is the starting state and 𝐹 ⊆ 𝑄 is the set of accepting states. Given a set 𝑋 ,106

ℬ+(𝑋) denotes as usual the set of positive boolean formulas over 𝑋 . We skip the details on how a run107

of a GTA is structured (the reader can find them in, e.g., [42, 43]), limiting ourselves to stating that it is108

itself a tree and is accepting if every branch visits a state in 𝐹 infinitely often.109

A Weak GTA (WGT ) is a GTA 𝒜 = ⟨𝑄,Σ, 𝛿, 𝑞𝐼 , 𝐹 ⟩ such that there is a partition of 𝑄 into non-empty110

disjoint sets {𝑄1, ..., 𝑄𝑛}, called components, and a partial order ≤ such that the transitions from a state111

in 𝑄𝑖 can only lead to states in 𝑄𝑖 or to states in a component with lower order. Moreover, every112

component 𝑄𝑖 is either entirely composed of states in 𝐹 or entirely of states outside 𝐹 . This is the113

notion of weak automaton as introduced by [44].114

An Hesitant WGT (HWGT ) is a WGT 𝒜 = ⟨𝑄,Σ, 𝛿, 𝑞𝐼 , 𝐹 ⟩ such that every component 𝑄𝑖 is of one115

of the following three types:116

• 𝑄𝑖 is existential, if for all 𝜎 ∈ Σ and for all 𝑞, 𝑞′ ∈ 𝑄𝑖, 𝑞′ can appear in the disjunctive normal117

form of 𝛿(𝑞, 𝜎) only in a pair of the form (♢1, 𝑞
′), and only disjunctively related to other pairs118

with states in 𝑄𝑖;119

• 𝑄𝑖 is universal, if for all 𝜎 ∈ Σ and for all 𝑞, 𝑞′ ∈ 𝑄𝑖, 𝑞′ can appear in the conjunctive normal120

form of 𝛿(𝑞, 𝜎) only in a pair of the form (□1, 𝑞
′), and only conjunctively related to other pairs121

with states in 𝑄𝑖;122

• 𝑄𝑖 is transient, if for all 𝜎 ∈ Σ and for all 𝑞, 𝑞′ ∈ 𝑄𝑖, 𝑞′ does not appear in any pair in 𝛿(𝑞, 𝜎).123

Given this structural restriction on components, every path of a run of a HWGT gets eventually stuck124

in an existential or in a universal component: imposing that every state in a universal component is125

accepting and every state in an existential one is not, one gets that HWGT are also weak. The hesitant126

constraint was first introduced in [35].127

In what follows, we present our result: we identify two restrictions of HWGTs that are respectively128

equivalent to cCTL𝑝
± and cCTL⋆

𝑓 .129



3. Restrictions of HWGT and equivalence results130

Two-way linear HWGT. The first restriction of HWGTs we introduce is designed to obtain the131

equivalence with cCTL𝑝
±. First, we actually enhance HWGTs, giving them the chance of going up the132

input tree as cCTL𝑝
± does using past operators. This is achieved through the following.133

A Two-Way HWGT (2HWGT ) is a HWGT 𝒜 = ⟨𝑄,Σ, 𝛿, 𝑞𝐼 , 𝑄∀⟩ such that 𝛿 : 𝑄 × Σ →134

ℬ+({♢𝑘,□𝑘,−1}×𝑄). Basically, the automaton can send also states in the parent of the current node,135

traversing the input tree upwards. This suggests an extension of the hesitant types. Given a 2HWGT, a136

component 𝑄𝑖 can be existential, universal, transient but also upward:137

• 𝑄𝑖 is upward, if for all 𝜎 ∈ Σ and for all 𝑞, 𝑞′ ∈ 𝑄𝑖, 𝑞′ can appear only in a couple of the form138

(−1, 𝑞′).139

This is not enough for our purposes. Currently, components are not restricted enough to get FO’s140

expressive power. So, we introduce the following.141

A Linear HWGT (HLGT ) is a HWGT 𝒜 = ⟨𝑄,Σ, 𝛿, 𝑞𝐼 , 𝑄∀⟩ in which every component is a singleton.142

Combining the two restrictions, one gets Two-Way Linear HWGT (2HLGT ) and this class of automata143

is provably equivalent to cCTL𝑝
± formula.144

Theorem 1. 2HLGT and cCTL𝑝
± are expressively equivalent formalisms.145

This characterisation is effective, meaning that given a cCTL𝑝
± formula one can obtain an equivalent146

2HLGT, and vice versa given a 2HLGT one can translate it in an equivalent cCTL𝑝
±.147

Counter-freeHWGT. The automaton-based characterisation of cCTL⋆
𝑓 turns out to be more involved.148

The Two-Way head movement here is not needed, since the logic only employs future temporal operators.149

Moreover, the singleton restriction would be too strong, making it impossible to translate formulas of150

the form E((𝜙 U𝜓) U 𝛾). Thus, we have to find a suitable and reasonable restriction of the non-transient151

components, wihout making them too weak. This is achieved by looking at components as word152

automata, in a similar fashion to what has been done in [42, Definition 5.2]. The crucial point of153

this construction is the acceptance condition: since we are dealing with a weak automaton, universal154

components are entirely accepting, while existential components are entirely rejecting. To retain155

this property when we see components as word automata, we let every universal (resp., existential)156

component be a Universal (resp. Non-deterministic) Büchi (resp., Co-Büchi) word automaton with every157

state in 𝐹 , but a sink state. For detailed definitions of Universal, Nondeterministic, Büchi and Co-Büchi158

word automata we refer the reader to [45]. In this way we clearly have limited the expressive power159

to co-safety and safety properties: a word automaton for an existential component 𝑄𝑖 accepts only160

exiting 𝑄𝑖, while dually a word automaton for a universal component 𝑄𝑖 accepts only staying inside 𝑄𝑖.161

However, not every safety and co-safety property can be expressed by FO. To get a further restriction,162

we recall that Linear-time temporal logic, usually denoted by LTL, is equivalent to FO over words.163

LTL is generated according to the following grammar: 𝜙 ::= 𝑝
⃒⃒

¬𝜙
⃒⃒
𝜙 ∨ 𝜙

⃒⃒
X𝜙

⃒⃒
𝜙 U𝜙.164

It is well known [46] that if one only allows LTL formulas employing atomic propositions, boolean165

operations (except negation), and temporal operators X and U , one gets coSafeLTL, while replacing166

Uwith R , one gets SafeLTL: these are the co-safety and safety fragments of LTL, respectively, and167

consequently also of FO. With a restriction on the structure of word automata (namely counter-freeness,168

as defined in [47, Definition 11.1]), we get the following.169

Lemma 2. SafeLTL (resp., coSafeLTL) and counter-free universal Büchi (resp. non-deterministic Co-170

Büchi) automata are expressively equivalent formalisms.171

The counter-freeness of a word automaton basically implies that the automaton cannot count modulo172

𝑛 ≥ 2 while reading an input. Thus, to limit the expressiveness of the components of HWGT, we173

require them to be counter-free. We also impose another restriction on the word automata called mutual174

exclusion, but it is of rather technical nature and so we do not recall it here. It can be found in [42,175



Definition 5.5]. We are finally done. An HWGT in which every non-transient component, seen as a176

word automaton, is counter-free and satisfies mutual exclusion is denoted HWGT𝑐𝑓 .177

Theorem 3. HWGT𝑐𝑓 and cCTL⋆
𝑓 are expressively equivalent formalisms.178

Again, the translation in the two directions is effective.179

4. Normal forms of temporal logics180

In the previous section, we have sketched the definition of two classes of automata provably equivalent181

to cCTL𝑝
± and cCTL⋆

𝑓 . Now, thanks to the class of automaton proven equivalent to cCTL⋆
𝑓 , it is possible182

to highlight the semantic behaviour of the latter. Namely, whenever an existential path quantification is183

involved, a cCTL⋆
𝑓 formula can only express a co-safety property, while, dually, whenever a universal184

path quantification is involved, it can only express a safety property. These observations give rise to185

the following normal form, that captures syntactically the semantic content provided by the finite path186

quantification.187

Lemma 4. For any cCTL⋆
𝑓 formula, there is an equivalent formula generated by the grammar188

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∨ 𝜙 | D 𝑛𝜙 | E𝜓

𝜓 ::= 𝜙 | 𝜓 ∨ 𝜓 | 𝜓 ∧ 𝜓 | X𝜓 | 𝜓 U𝜓

Note that this grammar allows to state that E is only followed by coSafeLTL and, by the use of189

negation, that A is only followed by SafeLTL. Moreover, the difference between finite and infinite path190

quantification becomes redundant. Indeed, every finite path property can also be seen as an infinite path191

property and vice versa. This implies that the normal form of cCTL⋆
𝑓 is nothing else that a polarized192

version of cCTL⋆, that we will denote by cCTL⋆
±, creating a symmetry with [36] and also showing193

that the semantic content provided by finite path quantification is useless when one restricts the syntax194

as above. To conclude, let LTL𝑝 be LTL enhanced with past operators Y and S . Then, the following is195

well known.196

Lemma 5. [48] SafeLTL (resp., coSafeLTL) and LTL𝑝 formulas of the form G𝜙 (resp., F𝜙), where 𝜙 is197

a formula using only past temporal operators, are equivalent formalisms.198

This suggests a normal form also for cCTL𝑝
±. Since cCTL𝑝

± and CTL𝑓 are equivalent formalisms,199

cCTL𝑝
± can express co-safety properties existentially and safety properties universally. Combining this200

with the proposition above, we get the following normal form for cCTL𝑝
±.201

Lemma 6. For any cCTL𝑝
± formula, there is an equivalent formula generated by the grammar202

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | D 𝑛𝜙 | EF𝜓

𝜓 ::= 𝜙 | 𝜓 ∨ 𝜓 | 𝜓 ∧ 𝜓 | Y𝜓 | 𝜓 S𝜓

(as usual, using negation one can construct shorthands of the form AG𝜓).203

5. Conclusions204

In this work, we provided two automaton-based characterisations of the temporal logics cCTL𝑝
± and205

cCTL⋆
𝑓 , both of which are known to be equivalent to FO over infinite trees. These characterisations206

give us two corresponding characterisations of FO and also allowed us to unveil a peculiar behaviour207

of FO over infinite trees, namely the fact that when expressing existential properties over paths, it208

can capture only co-safety properties of the node sequences along those paths, whereas universal path209

quantification allows it to express only safety properties. As a by-product, we also obtained two normal210

forms for the two temporal logics considered. Despite the advancements, several problems remain open211

and we plan to further investigate FO over trees, with a focus on the definability problem.212
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