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Abstract: Much attention has been devoted in artificial intelligenzehie verification of multi-agent systems and dif-
ferent logical formalisms have been proposed, such asmtery Time Temporal LogicATL), Alternating
p-calculus AMC), and Coalition Logic CL). Recently, logics able to express bounds on resourceshesare
introduced, such aBB-ATL andPRB-ATL, both of them based oATL. The main contribution of this paper
is the introduction and the study of a new formalism for deglivith bounded resources, basedsecalculus.
Such a formalism, called Priced Resource-Bounded Altergatcalculus PRB-AMC), is an extension of
bothPRB-ATL andAMC. In analogy withPRB-ATL, we introduce arice for each resource. By considering
that the resources have each a price (which may vary durengdme) and that agents can buy them only if
they have enough money, several real world scenarios caddzpiately described. First, we show that the
model checking problem fd?PRB-AMC is in EXPTIME and has a PSPACE lower bound. Then, we solve the
problem of determining the minimal cost coalition of agermally, we show that the satisfiability problem
of PRB-AMC is undecidable, when the game is played on arenas with olstate.

1 INTRODUCTION real world scenarios can be adequately described. All
the formalisms introduced so far are basedAdrL

or CL. The main contribution of this paper is the
introduction and the study of a new formalism for
dealing with bounded resources, basequaralculus.
Recall that they-calculus is an extension of modal
logic with least and greatest fixpoints of monotone
operators on sets. Intuitively, least fixpoints corre-
spond to inductive definitions (e.g. liveness proper-
ties), and greatest fixpoints correspond to coinductive
definitions (e.g. safety properties). Nesting fixpoints
give further power to thei-calculus so that it sub-
sumes many temporal, dynamic, and game-theoretic
logics used in system verification, artificial intelli-
gence, game theory, etc.

Much attention has been devoted in the artificial
intelligence field to the verification of multi-agent
systems. In that regard, different logical formalisms
have been proposed, such Alternating-time Tem-
poral Logic (ATL) (Alur et al., 2002),Alternating
p-calculus(AMC) (Alur et al., 2002), andCoalition
Logic (CL) (Pauly, 2002). Such logics allow one to
predicate about the abilities of teams of agents with
respect to specific tasks. Recently, some efforts have
been done towards the definition of more powerful
formalisms, which are able to capture also quantita-
tive aspects related to the task to be performed. In par-
ticular, we mentiorRB-ATL (Alechina et al., 2009; ] ] .
Alechina et al., 2010) anBAL (Bulling and Farwer, The formalism we propose is calle@riced
2010). By means of formulae of these logics it is Resource-Bounded Alternating p-calculus
possible to assign an endowment of resources to eacHPRB-AMC). It is an extension of bothPAMC
agent of a team and express the property that the teanfNdPRB-ATL.
is able to perform a given task with the available re- We study the model checking problem for
sources. In (Della Monica et al.,, 2011), a further PRB-AMC, which turns out to be decidable in EX-
variation of ATL, called Priced Resource-Bounded PTIME and PSPACE-hard, analogously to what hap-
Alternating Time Temporal Logic(PRB-ATL), has pens forPRB-ATL (Della Monica et al., 2011). We
been considered; in this logic price for each re-  remark that in our logic, agents can both consume
source is introduced and team operators are accord-and produce resources. Note that, when production
ingly extended. By means of these features, severalis allowed, the model checking problem can be unde-



cidable (see, e.g, (Bulling and Farwer, 2010)). Our is as follows:
decidability property is due to the fact that although $ -
agents can produce resources, the production should®::= P | X | =@ @A@[ (A%)) O @| pX.@(X) | ~b

not exceed the initial availability of the resources. = o
- ) . wherepe N, X e VAR AC 4G, $e N, beM
Such a restriction to the notion of production makes and~c {<,> —,<.>}. MoreoveruX.g(X) is de-

sense as, in practical terms, it allows one to model sig- fined only wherX occurs in an even number of nega-
nificant real-world slcengnos, such as, acqumnglmem- tions in @, so that formulas define monotonic opera-
r rogram in r durin rav n ' c o
ory by a program, easing a ca during ravel, a .d’ tors on sets and we can apply Knaster-Tarski Fixpoint
in general, any scenario in which an agentis releasing Theorem (Tarski, 1955). Recall that the greatest fix-

resources previously acquired. . point operatowX.@(X) can be defined as usual, that
We also tackle the problem of coalition forma- is, VX.Q(X) = ~pX.—@(—X).

tion. How and why agents should aggregate is not

a new issue and has been deeply investigated, in,;i environmenti.e., tuplesG = (Q, T, ENV,d, qty.
past and recent years, in various frameworks, as for5, p). They are analogous to the priced game struc-
example in algorithmic game theory, argumentation tures used in (Della Monica et al., 2011), the only
settings, and logic-based knowledge representation,newingredient being the environmeaNV : VAR
see (Wooldridge and Dunne, 2006; Dunne et al., joxar |,; . ' .
2010; Bulling and Dix, 2010). Analogously to what i}g ﬁx’pv(\)/;:; :gﬂ;&vef ngcz\ﬁﬁge formulas contain

e e 20100 The semantcs i based on pricd game stuc.
' P 997 tures with environment analogous to the ones used

priced resouroe bou1ded agents Wi he 903 P (Della Monica et al. 2013), 1. (e —
y mufa. 'n partic y (Q, ILENV,d,qty,d,p); here there is one extra fea-
the problem of determining the minimal cost coali- that | ; ENV - VAR _s 20X
tions of agents acting in accordance to rules expresseotu.re’ at IS an environme : AN
with which we can evaluate formulas containing fix-

by a priced game arena and satisfying a given for- : )
mula. We show that also the optimal coalition prob- point variables. Recall that:

lem is in EXPTIME and has a PSPACE lower bound. ® Q 1S @ finite set of locations, usually denoted

. P d,91,92,.. ..
PRBFIRE:/I”)(/Z, we sfgjow.éh%tl the iat'Sf'r?b'“ty prqblelm Ofd o 1:Q— 2" is alabeling function assigning to each

) IS undecidable, when the game is playec location the set of all atomic propositions which
on a one-point arena, that is, the underlying graph is are true on it
COSSt't.Létegl.by a S|?g(;e vertex. (Nogge tlhat SUCZ an 4 d(q,a) is the number of actions available for the
undecidability result does not immediately extend to agenta on stateg. We code actions with num-
generic graphs.) While the result seems to be weak bers from 1 tal(q,a). We assume that(g,a) > 1
per se, we conjecture that the problem is undecidable (there is always :alt least one action avéilaﬁe) and
in the general setting and we hope to use the present

o the action 1 means “doing nothing”.
result as a preliminary step towards the proof of the For each locationg € Q and team A —
general case.

{a1,...,a} C 4G, we denote byDa(q) the set
of action profiles available to the team A at the
location g defined ada(q) = {1,...,d(qg,a1)} x
...x{1,...,d(q,a)}. For the sake of readability,
2 SYNTAX AND SEMANTICS we denoteD 45(q) by D(q). Given a teanmh, an
agenta € A, and an action profiléa, we will re-

The semantics is based priced game structures

The scenario is the same B&B-ATL. So, we fer to the component of the vectdr correspond-
have a sef1G of n agents, a SERE Sof r resources, ing to the agen& asda[al. Actions (resp., action
the setM = (NU {e})" of resource availabilities, the profiles) are usually denoted ly,as, ... (resp.,
set?( = (NU{w})" of money availabilities, wheris a,dy,...).

e gty(q,a,a) is an element oZ" representing the
quantity of resources consumed or produced by
the agenta while performing the actiorn €
d(q,a) on the locatiorg (Z is the set of integers).

is the set of all natural numbers?2,.... We IetB, m
range ovetM and$ range over\'. Moreover, given a
vector$, we will refer to the component correspond-

ing to the agena as$[al. Positive components represent resource produc-
On the logical side, we use a set of atomic propo- tions, negative ones represent resource consump-
sitions and a set of fixpoint variablegAR to be tions. qty(qg, a, 1) is the zero vector, for alj € Q,

used inp-calculus formulas. The syntax of formulas a € 4G. With an abuse of notation we also de-



note bygtythe function defining the amount of re-
sources required by an action profilg € Da(q),
thatisqty(d,da) = Yacadty(d, 8, Ga(a)).

e 9(q,(01,...,0n)) is the transition function giving
the state reached frompwhen then agents per-
form the action profiléay,...,an) € D(q).

e p(mM,q,a) is the price of the resources depending
on resource availabilityh € M, the locationg
Q, and the agerd.

In order to define the semantics BRB-AMC,

we must introduce the notion of strategy. Unlike
2011), here it is enough to con-

(Della Monica et al.,
sider only one-step strategies.
Let us fix the initial global availability of resources

Mp and letA be a set of agents. A one-step strategy

Fa for Ais a function giving for eaclig,m) € Q x M
an action profileda containing a movéi[a] for each
a€ A. The outcome of a one-step strategy (o)
is the set of all configurationg/, M) € Q x M such
that there is an extensidiy; of Ga to 4G such that:

e q= 8(q,0.ag),

o M =m+qty(q,dag),

e 0<M+qty(q,da54) < Mo,
whered 5\ is the restriction ofi 6 to 4G\ A,

A one—step(7$?, Mo)-strategyFa is a strategy such
that for every(d',nY) in the outcome ofFa on (g, M),
we have:

e 0 <M <y
e p(m,q,a)-consumed, a, Fa(q)[a]) < $[a), for all
acA,
whereconsumed, a, o) is obtained frongty(q, a, o)

e G,My,q,m =0 ((A%)) O @ iff there exists a
@,ﬁb)-strategyFA such that, for all configura-
tions (q,Y) in the output ofFa, it holds that
G,Mo,q, M = @,

e G,Mp,q,M o uX.@(X) iff (g,m) belongs to the
smallest sett such thatE = {(d,n")|G[X :=
E], Mo, , M =o @}, whereG[X := E] is the same
priced structure with environment &3, except
thatENV(X) = E;

e G,My,q,M =o~ Diff M~ Db.

Finally, the propemodelhoodelation is defined:

G,g,ME @« G,m,q,M=o @.

3 EXPRESSIVENESS

Recall from (Della Monica et al.,
PRB-ATL has the following  syntax:

9:=p| 0| 07| ((A) Q0| ((A%)pue
[(A)De| ~B,
where pe N, AC 4G, $€ N, be M and
~e{<,>,=<,2)
Intuitively ((A%)@Ug means thah can ensurep

until ¢ holds, and (A%))Clgo means thaf can ensure
thatg holds forever.

So, PRB-ATL extendsATL, hence also the tem-
poral logic CTL. Moreover, it is well known that

2011) that

by replacing the positive components, representing CTL (resp.,ATL) can be efficiently translated into

resource productions, with zeros, and the negative calculus (resp.

, the alternation-free fragment of

ones, representing resource consumptions, with theirAMC), but not conversely, and thaTL* (resp.,

absolute values.

ATL*) can be translated into thg-calculus (resp.,

We define the semantics of our logic in two steps. AMC), but not conversely.

As afirst step, we define a prelimingrge-modelhood

In our more general setting, we extend the previ-

relation, and as a second step, we define the propelgys results as follows:

modelhoodelation, that makes use of the former one.

The pre-modelhoodelation is a quinary relation, de-
noted by:

G, Mo, d, M=o @,

whereG is a priced game structure with environment,

Mp is the initial availability,q is a location,m is the
current availability anapis a formula.

We always suppose that < my and My has the
same infinite components &s

The definition of=o is by induction onp, and the
clauses are:
G, Mo, 0, M=o piff pem(q ),

. Gr?bq,m#oxlff (g,m) € ENV(X);
° G,ﬁ‘b g, M o —@iff not G, My, q, M o @;
e G,Mo,q,M =0 @A @ iff G,Mo,q,M =0 @ and

G, Mo, g, M=o @;

Theorem 3.1. PRB-ATL can be translated in
PRB-AMC.

Proof. The proof hinges on the model checking algo-
rithm for PRB-ATL. In fact, in order to make it clear
that these operators are fixpoint definable, it suffices
to rewrite the subroutines of the model checking al-
gorithm 1 of (Della Monica et al., 2011) for the oper-
ators((A%)) @ U, and ((A%)) .

We intend that the vectd can contain finite and
infinite components. The rewriting process goes by
induction on the sum of the finite component@of

We say thas is zero-infinite if it consists only of
zeros and infinites, and, for eve%ywe denote b)%o
the least vector with the same infinite componen% as



(which is necessarily zero-infinite). In the algorithms The first line of the algorithm is a fixpoint def-
we assume the convention— co = co. inition by the zero-infinite case. Moreover, in each
Rather than distinguishing two subroutines iteration of the for loop (line 2), the first assigment is
for zero and nonzero money assignments as in a fixpoint definition by induction, and the while loop
(Della Monica et al., 2011), we distinguish two (line 4) is equivalent to a fixpoint assignment on the
subroutines for zero-infinite and non-zero-infinite variableso andt. By replacing the while loop with
money assignments. this fixpoint assignment, we have a fixpoint definition
In all our subroutines we replace tRee operators of o andt at the end of every iteration of the for loop.

- $ : - : So, at the end of the algorithm we have a fixpoint def-
\évgg?:'i(/ltcoperator«A )) O @, which are available in inition of the semantics

We fix a priced arena with environme@tand an The situation is analogous fgr= ((A%))0y. Let
initial availability m. Given a formulap, we use the  us begin with the subroutine f@tA%))Cy when$ is
notation|q| to denote the s€t(d, M) | G, M, g, M =o zero-infinite.
¢}, wherej= is the auxiliary pre-modelhood relation
defined in the previous section. By definition of the
proper modelhood relatioe:, we have(q, M) € [¢) if
and only ifG,q,m = ¢, for eachg € Q.

Let us begin with the subroutine fop =

((A%)) 1 U, when$ is zero-infinite.

1: T« [trug

2: 0« [y

3: whilet # o do

4 T1+0

5 0 < [(A%) Ol [Y]
e

- end while

@0
1: 1+ [falsd
%; méﬂ o do In this case, the while loop (I[ne 3) calculates a
4 1+0 B greatest fixpoint, i.eg,T := vX.((A%)) O X A Y. By
5. o« tU([((A%)O1N[wi]) replacing the while loop with a fixpoint assignment,
g ﬁ;}ﬂ%“e we have a fixpoint definition of the semanticsgf

Finally, if $ is not zero-infinite then we have:

Now we observe that the while loop (line 3) cal-
culates fixpoints. More precisely, it is equivalent to

a simultaneous assignmentr := uX., V (((A*)) O
X AW1). By replacing the while loop with a fixpoint
assignment we obtain the algorithm:

T [((A%) Oy )
: for all $ < $ with the same infinites a&do

0 TU([((A> %)) O (A))Ow] N [y))
whilet # o do

CoNoOlhrwNR

T+0 -
0« TU([((A%)) O TN [Y])

1: 1+ [falsd end while

2: 0+ [Py] ) : F&diog

300, T X2V (((A%) OXAt) :

4: [g«+o

The first line of the algorithm is a fixpoint defini-
tion by the zero-infinite case. Moreover, in each iter-
ation of the for loop (line 2), the first line is a fixpoint
definition by induction, and the while loop (line 4)
calculates a least fixpoint. So by replacing the while
loop with a fixpoint assignment amandt, we have a

where it is clear that the semantics@is definable in
PRB-AMC.

Likewise, if$ is not zero-infinite then we have:

1T [((Aé")NJlULIJz] fixpoint definition ofo andt at the end of every iter-
2: for all § < $ with the same infinites ddo ation of the for loop. At the end of the algorithm, we
3 o TU([AS ) O UAY ) P aws] N i) have a fixpoint definition of the semanticsqf

4:  whilet£0odo g

5: T+0 .

6: 0 —TU([((A%)) OT]N[W1]) Notice that the existence of @fficienttranslation

;5 g—f;d while from PRB-ATL to PRB-AMC (like the one ofCTL

o ﬁg] <_0(r; into p-calculus) is an open problem currently under

investigation.




4 MODEL CHECKING

In (Della Monica et al., 2011), the authors con-
sider the model checking problem fétRB-ATL,
proving thatitis in EXPTIME and it is PSPACE-hard.
In this paper, we extend these result®®B-AMC.

Theorem 4.1. The model checking problem for
PRB-AMC is in EXPTIME and it is PSPACE-hard.

Proof. The PSPACE-hardness directly follows from
the one of the model checking problem fIRB-ATL.

To prove the EXPTIME upper bound, we pro-
vide an exponential time recursive algorithm, called
set (see Algorithm 1, wheréV <™ denotes the set
{me M | m<nr}, for a resource availabilityf €
M), which, given a priced game structure with envi-
ronmentG, a formulag, and a resource availability
M, outputs the set of all configuratiorig, M), with
m < /Y, which verify@in G. The algorithm is a com-
bination of those in (Della Monica et al., 2011) and
(Emerson, 1996).

Note that the time complexity of the algorithm
is O((|G| x [M|")®), while the space complexity is
O(|G| x [M|"), whereM is the maximum component
occurring in the initial resource availability vectof.

Finally, in order to check whether a formulg
is true over a game structuf@ and a configuration
(g,m) in G, the model checking algorithm simply
consists in verifying if(g, M) belongs to the output
of set(g, G, m).

Algorithm 1 set(, G, )
/1 conputes the set of configurations
(g,m) such that m<m and G,M,gq,MEe®

1: if p=~ bthen

2:  return {(q,m)|mM~bandm<nf}

3: dseifo=0p *pen* then

4: return {(q,m) | p € mi(q), M <’}

5: eseif =X I* X e VAR*/ then

6: return {(q,m) | (q,M) € ENV(X),m< '}
7. dseif = - then

8: return (Qx M=")\set(y,G,n)
9: eseif =W AWy then
10:  return se(HJl,G,ﬂf)mset(ng,G,ﬁ‘{)

11: dseif o= ((A®)) Oy then
12:  return Pre(A y,$,G,m)
13: dseif o= pX.Y(X) then

14: X' 0

15: X+ set(y(X),G,nr)
16:  whileX’ # X do

17: X' =X

18: X = set((X), G, )
19:  endwhile

20:  return X

21: end if

O

Observe that the problem is PSPACE-complete
when the number of resources is constant.

5 THE OPTIMAL COALITION
PROBLEM

In (Della Monica et al., 2011), an optimality prob-
lem is introduced, called th@ptimal Coalition prob-
lem (OC). This is the problem of finding the coali-
tions which achieve the given formulas with least
cost, if such coalitions exist. Formally, we intro-
duce team variable¥,... Yk (we useY to avoid
confusion with fixpoint variables), and we admit for-

mulascp(Yfl,...,Yfk) containing the team variables
Y1,..., Y (in place of some of the teams) with the cor-
responding money endowmess .. ., $. We denote
by @[Y1,...,Yk/Aq,..., Al the formula in which each
team variablé; is replaced by the teaky C 4G. We
fix a priced game structur@, a locationq of G and
an initial global availabilitym. The output is a triple
(res A*,cost) where:

e rese {true false} andres= true iff there is a
vector of teamgAy,...,Ax) such thatG,g,m =
(p[Yl, . ,Yk/Al, .. ,Ak];

o if res=true, A* is a vector which minimizes the
cost (otherwisé\* is undefined);

e cost= Zik:l@i -A is the cost of the vector of teams,
whereA is the characteristic vector éf seen as
a subset 0f4G, and- denotes scalar product be-
tween vectors.

We have the following result:

Theorem 5.1. In PRB-AMC, the OC problem is in
EXPTIME and itis PSPACE-hard.

Proof. We check the cost of all possib2")* vectors
of teams by calling each time the model checking al-
gorithm of the previous section. As we have seen, this
algorithmis inEXPTIME; so also th@©Cproblem is.
The PSPACEhardness follows from hardness of
the decisional version, and hardness of the latter fol-
lows from the proof of Theorem 3.2 of (Della Monica
et al., 2011) (again because tR&B-ATL formulas
used there actually belong ERB-AMC). O

6 AN UNDECIDABILITY RESULT

In this section we show the following result:



Theorem 6.1. It is undecidable whether a formula of  work, in particularPRB-ATL, the complexity of both
PRB-AMC is satisfiable in a one point arena (i.e. an the model checking problem and the optimal coali-
arena where Q is a singleton). tion problem is not harder than iRRB-ATL, i.e,

To prove the theorem we reduce to our satisfiabil- EXPTIME with PSPACE lower bound. The exact
ity problem a well-known undecidable problem, the SOMPlexity of both problems is conjectured to be
solvability of equationsA(n) = B(n), wheren is a EXPTII_\/IE-C(_)_ranete. Additionally, we have gxpl_ored
vector of variables ranging ovéf andA andB are  the satisfiability problem foPRB-AMC, proving its
polynomials with coefficients iV, see (Matiyase- undemdat_)lllty in the partlcular case when the game
vich, 1993). In this section we let the lettensn, p, . .. structure is an arena with only one state. The satis-
range oven. fiability problem in the general case is an interesting

The first step of the reduction, which is standard, ©P€n problem currently under study.
is to start from an equatioA(n) = B(n) and to ex-
press solvability of the equation via solvability of a
finite systemx (A, B) of equations of the forrm=a REFERENCES
(withae N), m=n+pandm=nx p. The second
step is the following lemma: Alechina, N., Logan, B., Nga, N. H., and Rakib, A. (2009).
Lemma 6.1. Let S be a finite system of relations of A logic for coalitions with bounded resources. In
the form m=a (a€ N), m=n+ p and m=n x p, Proc. of the 21st International Joint Conference on

. . . Artificial Intelligence 1JCAI '09, pages 659-664.
with a set X of unknown variables. Then one can find Alechina, N., Logan. B.. Nga, N. H., and Rakib, A. (2010).

effectively: Resource-bounded alternating-time temporal logic. In
e asetR of resources and a subset Qf Rx Proc. of the 9th International Conference on Au-
e aformula A of PRB-AMC over R satisfiable in tonomous Agents and Multiagent Systems: Volume 1
a one point arena AAMAS '10, pages 481-488.
e aformulaAs of PRB-AMC Alur, R., Henzinger, T. A., and Kupferman, O. (2002).
such that in every one point model M of & holds Alternating-time temporal logic. Journal of ACM
in M if and only if M verifiesIQsAs. 49:672-713.

Bulling, N. and Dix, J. (2010). Modelling and verifying

The proof of the lemma is omitted for lack of coalitions using argumentation and ATLlnteligen-

space and will be provided in a future extended ver- cia Artificial, Revista Iberoamericana de Inteligencia

sion. Now, the theorem follows from the next Corol- Artificial, 14(46):45-73.

lary of Lemma 6.1. Bulling, N. and Farwer, B. (2010). On the (un-)decidability

. . of model checking resource-bounded agent$rrc.

Corollary 6.1. Let 2 be a finite system of equations of the 19th Europgean Conference on Agificial Intelli-

Of the fOI’m m= a (aG N),m: n+ p and m=nx p gence ECA' 110’ pages 567_572

Then one can find effectively: Della Monica, D., Napoli, M., and Parente, M. (2011). On
e asetR of resources a Logic for Coalitional Games with Priced-Resource
e aformula A over R Agents. Accepted for publication to LAMAS 2011
e aformulaAs of PRB-AMC http://wwmw. di a. uni sa.it/dottorandi/dario.

such thaf is solvable if and only if AAAs is satisfi- del | amoni ca/ pubs/ | amas11. pdf.

able in a one point arena iRRB-AMC. Dunne, P. E., Kraus, S., Manisterski, E., and Wooldridge,

M. (2010). Solving coalitional resource gamesti-
ficial Intelligence 174(1):20-50.

Emerson, A. (1996). Model checking and the mu-calculus.

7 CONCLUSIONS In Descriptive Complexity and Finite Modelpages
185-214.

In this paper, we have presented an extension of Matiyasevich, Y. (1993)Hilbert’s Tenth ProblemThe MIT
p-calculus, calledPRB-AMC, suitable for modeling Press. Foreword by Martin Davis and Hilary Putnam.
collective behavior of groups of agents acting in envi- Pauly, M. (2002). A modal logic for coalitional power
ronment where resource availability is limited. in games. Journal of Logic and Computation

The present work follows previous approaches in %2(1):149‘166' . o
that direction (Alechina et al., 2010; Bulling and Tarski, A._ (1955)_. A Iatuoe_—t_heoretlcal fixpoint theqrem
Farwer, 2010; Della Monica et al., 2011), the main and its applicationsPacific Journal of Mathematics

difference being the formalism underlying the logic 5(2):285-309.

v th gl lus instead of th yAﬁ fi gic, Wooldridge, M. and Dunne, P. E. (2006). On the computa-
r)ame y, thep-caicu }Js Instead o e ernallng.— tional complexity of coalitional resource gamesti-
time Temporal Logic. Even though our logic is ficial Intelligence 170(10):835-871.
more expressive than logics introduced in previous



