Decidability and Complexity of the Fragments of the
Modal Logic of Allen’s Relations over the Rationals™

D. Bresolin®, D. Della Monica®®4¢ A. Montanari®, P. Salaf, G. Sciavicco®

@ Dept. of Mathematics, University of Padova, Italy
bIstituto Nazionale di Alta Matematica “F. Severi” (INAAM), Italy
¢Dept. of Electronic Engineering and Information Technologies, University of Napoli, Italy
dSistemas Informaticos y Computacion, Universidad Complutense de Madrid, Spain
¢ Dept. of Mathematics, Computer Science, and Physics, University of Udine, Italy
f Dept. of Computer Science, University of Verona, Italy
9 Dept. of Mathematics and Computer Science, University of Ferrara, Italy

Abstract

Interval temporal logics provide a natural framework for temporal reason-
ing about interval structures over linearly ordered domains, where intervals
are taken as first-class citizens. Their expressive power and computational
behaviour mainly depend on two parameters: the set of modalities they fea-
ture and the linear orders over which they are interpreted. In this paper,
we consider all fragments of Halpern and Shoham’s interval temporal logic
HS with a decidable satisfiability problem over the rationals, and we pro-
vide a complete classification of them in terms of their expressiveness and
computational complexity by solving the last few open problems.

Keywords: interval temporal logics, satisfiability, decidability,
computational complexity

1. Introduction

Most temporal logics proposed in the literature assume a point-based
structure of time. They have been successfully applied in a variety of fields,
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ranging from the specification and verification of communication protocols to
temporal data mining. However, a number of relevant application domains,
such as, for instance, planning and synthesis of controllers and verification of
multi-agent systems, would greatly benefit from the use of interval temporal
logic, which has the ability to deal with advanced features that are neglected
(accomplishments and temporal aggregations) or managed in an unsatisfac-
tory way (durative actions and their temporal relationships) by point-based
temporal logics.

Temporal logics with interval-based semantics have been proposed as suit-
able formalisms for the specification and verification of hardware [2], soft-
ware [3], real-time [4], and multi-agent systems [5]. Moreover, successful im-
plementations of interval-based systems can be found in the areas of machine
learning, e.g., the adaptive learning system TERENCE [6], that provides a
support to poor comprehenders and their educators, is based on Allen’s in-
terval algebra [7], and real-time data systems, e.g., the algorithm RISMA [8],
for performance and behaviour analysis of real-time data systems, is based
on Halpern and Shoham’s modal logic of Allen’s relations [9].

The variety of binary relations between intervals in a linear order was
first studied by Allen [7], who investigated their use in systems for time
management and planning; Allen identified 12 different relations between
two intervals in a linear order, often called Allen’s relations [7]: the six
relations Ry (meets or adjacent), Ry, (after or later), Rp (starts or begins),
Rg (finishes or ends), Rp (during), and Ro (overlaps), depicted in Fig. 1,
and their inverses, that is, R+ = (Rx)™!, for each X € {A,L, B, E, D,O}.
In [9], Halpern and Shoham introduced and studied the (full) modal logic
of Allen’s relations (HS for short), that has one modality for each Allen
relation, showing that the satisfiability problem for HS is highly undecidable
over most (classes of) linear orders. This result motivated the search for
syntactic fragments of HS offering a good balance between expressiveness
and computational complexity. During the last decade, a systematic analysis
of HS fragments has been carried out to characterize the complexity of their
satisfiability problem [10, 11] as well as their relative expressive power [11,
12, 13]. Such an analysis clearly showed that expressiveness and complexity
(decidability) of HS fragments depend on both the modalities they feature
and the class of linear orders over which they are interpreted. The case of
the logic of the sub-interval relation (Allen relation during) is paradigmatic
in this respect: it is decidable (PSPACE-complete) over the rationals and
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Figure 1: Allen’s interval relations and the corresponding HS modalities.

undecidable over finite/discrete linear orders.

This paper aims at providing a complete classification of decidable HS
fragments, interpreted over the linear order of the rational numbers Q (equiv-
alently, the class of all dense linear orders), with respect to both their ex-
pressiveness and the complexity of their satisfiability problem. An analogous
classification has been provided in [11] for the class of finite linear orders,
the class of discrete linear orders, the linear order of the natural numbers N,
and the linear order of the integers Z. As for the class of all linear orders, a
complete classification of HS fragments with respect to their expressiveness
can be found in [12], while decidability and/or complexity of the satisfia-
bility problem are still unknown for some meaningful fragments, the most
interesting one being probably the logic of Allen relation during.

Related work. While a complete classification of the expressiveness of HS
fragments over Q was provided in [12], some fundamental tiles of their clas-
sification with respect to the computational complexity of the satisfiability
problem are still missing. The aim of this paper is to complete the picture
by filling all the gaps.

Known results about decidability and complexity of the satisfiability prob-
lem for HS fragments over Q can be summarized as follows.

The set of undecidable fragments of HS consists of (i) HS fragments
containing, possibly as definable, modality (O) (Allen relation overlaps) or
(O) (overlapped by) [10], (i) HS fragments containing, possibly as definable,
modality (B) (begins) or (B) (begun by) together with modality (F) (ends)
or (E) (ended by) [14], and (i) HS fragments containing, possibly as de-
finable, modality (A) (meets) or (A) (met by) together with modality (D)



(during) or (D) (contains) [10].

The set of decidable fragments of HS contains the logics AABBLL (fea-
turing Allen’s relations meets, met by, begins, bequn by, before, and later),
AAEELL (meets, met by, ends, ended by, before, and later), BBDDLL (begins,
begun by, during, contains, before, and later), and EEDDLL (ends, ended by,
during, contains, before, and later), and their fragments.! The fragment
AABB has been shown to be non-primitive recursive in [15] (the same holds
for the fragment AAEE by symmetry). Known complexity results for its
fragments (resp., for the fragments of AAEE) are as follows: ABBL (resp.,
AEEL) is EXPSPACE-complete [16], while A, A, and AA are NEXPTIME-
complete [17]. The PSPACE-completeness of the logic D of the sub-interval
relation, and of some variants of it, has been proved in [18, 19]. Such a
result has been improved in [20], where the authors showed that PSPACE-
completeness can actually be lifted to the logic BBDDLL (and to the sym-
metric fragment EEDDLL).

Main contributions. In this paper, we focus our attention on the set of
decidable fragments of HS and provide a fine-grained characterization of their
computational complexity that answers all the remaining open issues. First,
we show that the satisfiability problem for the HS fragment BBLL, which
is obtained from BBDDLL by removing the modalities for Allen’s relations
during and contains, is NP-complete. Such a result immediately propagates
to all the fragments of BBLL. Then, we prove that the satisfiability problem
for all HS fragments containing either the pair of modalities (A) (meets)
and (B) (begins) or the pair (A) (meets) and (B) (begun by) is EXPSPACE-
hard. Finally, we show that the satisfiability problem for all HS fragments

containing either the pair of modalities (A) (met by) and (B) (begins) or the
pair (A) (met by) and (B) (begun by) is not primitive recursive (we provide
a non-primitive recursive lower bound).

As we already pointed out, the present work is a considerably revised
and extended version of [1]. Its main novelties with respect to [1] can be

summarized as follows.

1. We work out in all the details the proofs of the NP-completeness of
BBLL (Section 5) and of the non-primitive recursive lower bound for

'In fact, modalities (L) (Allen relation later) and (L) (before) can be easily defined in

terms of modalities (A) and (A), respectively, and thus AABBLL (resp., AAEELL) is as
expressive as AABB (resp., AAEE).



AB and AB (Section 7). Both results are stated in [1], where only a
very high-level account of the main proof ideas is given (as a matter of
fact, we changed a lot the structure of the proof of the first result).

2. We prove the ExPSPACE-hardness of both AB and AB (Section 6).
Such a result was stated in [1], but no proof was given.

3. In order to show the potentialities of the considered logics, we use them
to model and to reason about a concrete application domain, namely,
the Chicago’s bike sharing program [21] (Section 3).

4. We discuss the relationships among different (classes of) dense temporal
domains (the linear order of the rationals, the linear order of the reals,
the class of all dense linear orders) with respect to the satisfiability
problem for HS fragments. As it turns out, HS fragments behave on Q
exactly as they do on the class of all dense linear orders, but, somehow
surprisingly, differences may occur when moving from Q to R.

Structure of the paper. In Section 2, we introduce syntax and semantics
of HS and its fragments. Then, in Section 3 we show how HS fragments
can be successfully exploited to reason about a concrete application domain,
namely, the Chicago’s bike sharing program. Next, in Section 4, putting
together known and new results (that will be proved in the subsequent sec-
tions), we give the complete picture of the computational complexity of the
satisfiability problem for the decidable HS fragments interpreted over Q.
Section 5, Section 6, and Section 7 respectively focus on the subclasses of
NP-complete, EXPSPACE-complete, and non-primitive recursive fragments
of HS. Finally, in Section 8, we briefly discuss the relationships among the
satisfiability problem for HS fragments interpreted over Q, R, and the class
of (all) dense linear orders. Conclusions provide an assessment of the work
done and briefly discuss related and future work.

2. Syntax and semantics of HS and its fragments

Let < be the usual relation of total order over the set Q of the rational
numbers. An interval over Q is an ordered pair [z, y], where x,y are rational
numbers and x < y, that is, either x = y or < y. An interval is called a point
interval if x =y and a strict interval if x < y. In this paper, we assume the
strict semantics, that is, we exclude point intervals and only consider strict
intervals. The adoption of the strict semantics, excluding point intervals,
instead of the non-strict one, which includes them, conforms to the definition



of interval given by Allen in [7], but differs from the one given by Halpern
and Shoham in [9]. It has at least two strong motivations: first, a number of
representation paradoxes arise when the non-strict semantics is adopted, due
to the presence of point intervals, as pointed out in [7]; second, when point
intervals are included there seems to be no intuitive semantics for interval
relations that makes them both pairwise disjoint and jointly exhaustive.

If we exclude the identity relation, there are 12 different relations between
two strict intervals in a linear order, often called Allen’s relations [7]: the six
relations R4 (meets or adjacent), Ry, (after or later), Rg (starts or begins),
Rg (finishes or ends), Rp (during), and Ro (overlaps), depicted in Fig. 1,
and their inverses, that is, Ry = (Rx) ™!, for each X € {A, L, B, E, D,O}.

We interpret interval structures as Kripke structures with Allen’s relations

playing the role of the accessibility relations. Thus, we associate a modality
(X) with each Allen relation Ry. Foreach X € {A, L, B, E, D,O}, the trans-

pose of modality (X) is modality (X), corresponding to the inverse relation
R+ of Rx. Halpern and Shoham'’s logic HS [9] is a multi-modal logic with
formulae built from a finite, non-empty set AP of atomic propositions (also
referred to as proposition letters), the propositional connectives V and —,
and a modality for each Allen relation. With every subset {Ry,, ..., Rx,} of
these relations, we associate the fragment XX ... X, of HS, whose formulae

are defined by the grammar:

pu=plop|leVel (Xnel|. ... | (Xe,

where p € AP. The other propositional connectives and constants, e.g.,
A, —, and T, as well as the dual modalities, e.g., [A]p = —(A)—yp, can be
derived in the standard way.

The (strict) semantics of HS is given in terms of interval models M =
(I(Q), V), where I(Q) is the set of all (strict) intervals over Q and V' is a
valuation function V : AP — 21@ which assigns to each atomic proposition
p € AP the set of intervals V(p) on which p holds. The truth of a formula
on a given interval [z,y] in an interval model M is defined by structural
induction on formulae as follows:

M, [x,y] IF p if and only if [z, y] € V(p), for each p € AP;

M, [z,y] IF = if and only if it is not the case that M, [z,y] IF ;

M, [z, y] Ik ¢V if and only if M, [z, y] IF ¢ or M, [z, y] IF 9;

M, [z,y] IF (X)) if and only if there exists an interval [2/,4/] such that
y|Rx[z',y'] and M, [2',y'] IF ), for each modality (X).

I

[z
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Given an interval model M and a formula ¢, we say that M satisfies ¢ if
there is an interval [z,y] in [(Q) such that M, [z,y] IF ¢. We say that ¢ is
satisfiable if there exists an interval model that satisfies it.?

We sometimes omit the model when it is clear from the context, and thus
we write, e.g., [z, y] IF ¢ instead of M, [z, y] IF ¢. In the analysis of the various
fragments of HS, we shall often make use of a global modality, denoted by [G],
which can be defined in terms of basic HS modalities. While the intended
semantics of [G] is the same across the various considered fragments, namely,
it forces a given property to hold over all intervals belonging to a relevant set
(the definition of such a set will be made formal in due course), its formal
definition and the one of relevant set of intervals depend on the modalities
featured by the fragment under consideration.

Formulae of HS are interpreted over a class of interval models. We identify
the class of interval models over linear orders in C with the class C itself. Thus,
we shall use, for example, the expression ‘formulae of HS are interpreted in
the class C of linear orders’ instead of the extended one ‘formulae of HS are
interpreted over the class of interval models over linear orders in C’. Among
others, we mention the following relevant (classes of) linear orders: (i) the
class of all linear orders Lin; (ii) the class of all dense linear orders Den, i.e.,
those in which for every pair of different points there exists at least one point
in between them; (1) the class of all weakly discrete linear orders WDis, i.e.,
those in which every element, apart from the greatest one, if it exists, has an
immediate successor, and every element, other than the least one, if it exists,
has an immediate predecessor; (iv) the class of all strongly discrete linear
orders Dis, i.e., those in which for every pair of different points there are only
finitely many points in between them; (v) the class of all finite linear orders
Fin, i.e., those having only finitely many points; (vi) the singleton classes
consisting of the standard linear orders over R, Q, Z, and N.

The mirror image (or, simply, mirror) of a fragment F is obtained by

simultaneously substituting (A) for (A), (E) for (B), (F) for (B), (O) for

2Tt is worth pointing out that the distinctive feature of a really interval-based temporal
logic is that its formulae express properties of pairs of time points rather than of single time
points and are evaluated as sets of such pairs, that is, as binary relations. As a consequence,
apart from some very special cases, e.g., the logic of Allen’s relations begins and begun by,
there is no a reduction of their satisfiability /validity problem to the satisfiability /validity
problem for (fragments of) monadic second-order logic. This means, in particular, that
Rabin’s theorem cannot be exploited in the context of interval temporal logics.



(O), (L) for (L), and the other way around (the mirror image of a formula
is defined analogously). When interpreted over left/right symmetric classes
of structures, that is, classes C such that if C contains a linear order D =
(D, <), then it also contains a linear order isomorphic to its dual linear
order D¢ = (D, ), where = is the inverse of <, such as the class Den, all
computational properties of a fragment are preserved by its mirror image.
Thanks to such a property, for each pair of mirror fragments, we can safely
restrict our attention to only one of them. In the following, we focus on
the linear order of the rational numbers Q (equivalently, the class Den of all
dense linear orders).

3. Interval temporal logics at work

In this section, we illustrate the potentialities of the various HS fragments
studied in this paper by means of a concrete application example taken from
the domain of temporal databases [22].

Generally speaking, in comparison to standard point-based linear tempo-
ral logic, interval temporal logic has two advantages and one drawback. First
of all, interval temporal logic allows one to express many relevant properties
in a more natural and compact way than point-based one. The following
simple example, due to Jakub Michaliszyn, gives a nice exemplification of
the claim. Consider the property: “there is always a banquet during a con-
ference”. In interval temporal logic (HS fragment D), it is captured by the
formula: conference — (D) banquet. The same property can be expressed
in Linear Temporal Logic (LTL), interpreted in a discrete temporal domain,
by the formula:

conferenceggy —
X (mcon ferenceenqU(banquet o N (—mcon ferenceen,qU (banquet g/

—conferenceeng N F conferenceenys))))

Second, as we have already pointed out in the introduction, there are tem-
poral conditions which are inherently interval-based, and thus cannot be
properly dealt with in point-based temporal logic. This is the case with telic
statements [23], that is, statements that express goals or accomplishments,
like the statement: “The airplane flew from Venice to Toronto” (an encoding
of such a statement in the HS fragment ABB can be found in [16, Sect. I1.B]).
Similarly, interval temporal logic makes it possible to express statements like:
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“the average speed of the mobile device in the considered section must not
exceed the specified threshold”, which involves a temporal aggregation and
thus cannot be associated with the single time points.> The disadvantage of
interval temporal logic is the computational complexity of its satisfiability
problem. Luckily, there are various computationally well-behaved fragments
of HS, which are expressive enough to express the requirements of realistic
application domains, as shown by the considered case study.

The application domain. The example is inspired by Divvy, a system
for the management of bike sharing developed by the city of Chicago. The
system consists of a fleet of bikes that are locked into a network of docking
stations located throughout the city. Bikes can be rented from and returned
to any station in the city, creating a network of trips with many possible com-
binations of starting and ending points. Anonymized trip data are stored in
a temporal database and openly available through the “Divvy Data Chal-
lenge” program [21]. Here we consider the slightly simplified version of the
Data Challenge trip database depicted in Table 1. The database consists of
two tables: a table Trips, maintaining information about user rentals, and a
table Maintenance, storing data about repairs and other maintenance activ-
ities on bikes. We assume that repairs and maintenance are carried out at a
special station (with identifier 1) and that bikes are regularly collected from
the stations in the city and brought to the repair station. At the end of the
repair activity, the bike can be rented again by the customers from station 1
(it is not brought back to the station from which it was collected). If a bike
is collected for repair at station 1, no data is stored in the table Maintenance
(we record only maintenance trips originating from a non-repair station).
Every trip (resp., repair) is represented by the following data:

e a unique trip_id (resp., repair_id);

3 A systematic comparison of the expressive power of interval temporal logics and point-
based ones, over discrete temporal domains, has been done in [24], where it is shown that
under the homogeneity assumption [25], according to which a proposition letter holds
over an interval if and only if it holds at all its points (notice that such an assumption
considerably weakens the expressive power of an interval temporal logic as it prevents it
from modeling temporal features like accomplishments and temporal aggregations that do
not satisfy the assumption), LTL and HS have the same expressive power, but the latter
is provably at least exponentially more succint than the former (in fact, the HS fragment
AB suffices to capture LTL). As a matter of fact, the comparison has been done in the
model checking setting, but it can be easily adapted to the satisfiability checking one.



Trips

trip-id starttime stoptime bikeid from_station_.id to_station_id
4118 2013-06-27 12:11  2013-06-27 12:16 316 85 28

4275 2013-06-27 14:44  2013-06-27 14:45 64 32 32

4291 2013-06-27 14:58  2013-06-27 15:05 433 32 19

4316 2013-06-27 15:06  2013-06-27 15:09 123 19 19

4342 2013-06-27 15:13  2013-06-27 15:27 852 19 55

4480 2013-06-27 19:40  2013-06-27 22:28 27 340 46

Maintenance

repair_id  starttime stoptime bikeid from._station_.id to_station_id
5327 2013-06-28 09:05  2013-06-28 10:15 594 27 1

5335 2013-06-28 09:14  2013-06-28 10:41 227 26 1

5346 2013-06-28 09:26  2013-06-28 14:25 118 74 1

5353 2013-06-28 09:35  2013-06-28 09:50 226 24 1

Table 1: The bike sharing system database.

e an interval [starttime, stoptime|, that keeps track of the time period
during which the trip (resp., repair) takes place;

e a bike_id, that associates a bike with a trip (resp., repair);

e a pair of station identifiers (from_station_id, to_station_id), that respec-
tively designate the station from which the bike is collected and the
station to which it is returned.

The formalization. Interval temporal logics can be used to reason about
database knowledge in at least two different ways: as query languages, to
extract information from a given database instance, and as specification lan-
guages, to express functional dependencies, integrity constraints, and other
requirements that all database instances must satisfy. Here we focus on
the latter, showing how different HS fragments can be successfully exploited
as specification languages. In general, once the requirements of a given
(database) application domain have been collected and formalized by domain
experts, the first problem the designer must deal with is consistency, that is,
the problem of checking whether or not these requirements can actually be
met by a concrete instance of the database. In its most general formulation,
the consistency problem can be expressed as the problem of checking whether
the set of formulae representing the requirements is satisfiable or not.

In the following, we assume the domain of the starttime and stoptime
timestamps to be the set of nonnegative rationals Q=" and the sets of bike

10



and station identifiers to be finite, and we ignore trip and repair identifiers.
To express the requirements, we make use of the following proposition letters:

e proposition letters of the form trip(i, j, k), representing a trip of bike i
from station j to station k;

e proposition letters of the form repair(i, j, k), representing a bike re-
pair (bike i was collected at station j and brought to station k to be
repaired).

Every instance of the database corresponds to an HS model, where an
interval [z, y] satisfies trip(i, j, k) if and only if there is a tuple in the table
Trips with starttime = x, stoptime = y, bikeid = 1, from_station_id = j,
and to_station_id = k, and it satisfies repair(i, j, k) if and only if there is a
tuple in the table Maintenance with starttime = x, stoptime =y, bikeid = 1,
from_station_id = j, and to_station_id = k.

To simplify formulae, we shall use trip(i) (resp., repair(i)) as a short-
hand for \/j,k trip(i, j, k) (resp., \/M repair(i, j, k)). Similarly, we shall write
trip(i, j) (vesp., repair(i, j)) for \/, trip(i, j, k) (vesp., \/,, repair(i, j, k)).

Finally, for the rest of the section, let [G] (global modality) be defined as:

[Gle = ¢ A [Blo A[Ble A [B][Dle,
which can be interpreted as follows: for each formula ¢, [G]p is true over an
interval [x,y] if, and only if, ¢ is true over all intervals [2, /], with 2’ > x.

Trip and repair requirements. We split the set of requirements into three
subsets: a set of requirements on bike trips, a set of requirements on bike re-
pairs, and a set of requirements that involve both of them. In this paragraph,
we show how to encode them in suitable fragments of HS; in the next one,
we shall discuss the problem of checking their satisfiability (consistency).
Since bike trips and repairs must satisfy, among others, some very similar
requirements, we preliminarily introduce some general parametric formulae
and then suitably instantiate them in the two cases. Let ¢ be an arbitrary
propositional formula, that is, a formula devoid of temporal modalities. The
following formula constrains intervals over which ¢ holds to be disjoint:

disj(¢) = [Gl(¢ = (=(B)p A=(D)p A=(E)p A={O)p A=(A)g)) (1)

The next formula forces a non-infinitesimal delay between consecutive inter-
vals over which ¢ holds:

del(p) = [G](¢ = (A)(=(D)p A =(E)p A —~(0)p)) (2)

11



Such a condition makes it evident the advantages of the choice of a dense
temporal domain over a discrete one, as it relieves us from the necessity to
introduce an artificial discretization of the temporal domain.

The first requirement we enforce on table Trip is that at any time point a
given bike can belong to at most one trip and that there is a delay between a
trip and the next one. Formally, for each bike identifier i, (a) every interval
satisfies at most one trip(i, j, k), (b) pairs of intervals respectively satisfying
trip(i, j, k) and trip(i,l,m) must be disjoint, and (¢) there must be a non-
infinitesimal delay between the end of a trip and the beginning of the next
one. In full HS, the above requirement can be expressed by means of the
following pair of formulae:

NG (trip(i,j, k) =~ \/  trip(i,1,m)) (3)

ik (k) #(Lm)

/\dzsy trip(i)) A /\del trip(i)) (4)

Arguably, full HS makes it possible to express this requirement in a pretty
easy and natural fashion. Unfortunately, formula (4) belongs to the HS frag-
ment ABBDEO (modality (B) occurs in the formula defining [G]), which is
undecidable [10]. Luckily, by exploiting the density of the temporal domain,
it can be rewritten in the PSPACE-complete fragment BBD (see Section 4),
in a very compact way, as follows:

NG (trip(i) = (~(B)trip(i) A (B)[D][B]trip(i))) ()

i

The second requirement states that, for any given bike, a possible new trip
must start from the station where its previous trip ended. Since the number
of recorded trips of any given bike is obviously finite, this requirement can
be easily enforced by the following formula:

/\[G](trzp i, 7,k /\ Aytrip(i,1) — (D)trip(i, k))) (6)

4,5,k I#k

Once again, formula (6) belongs to the undecidable HS fragment ABBD [10];
however, the decidable fragment BBD turns out to be expressive enough to
encode such a requirement over dense temporal structures (notice that, over

12



dense structures, (L) is definable using (B) and (D), as shown in [12]):

N\ [G)(trip(i, j, k) A (L)trip(i,1,m) —
P (B)((D)(B)trip(i, k) A [D)[B](trip(i) — trip(i, k)))) (7)
The basic requirement on table Maintenance is the same as for table Trip,
that is, (a) every interval satisfies at most one repair for each bike, (b) two

repairs for the same bike must not overlap, and (c¢) for any given bike, there
exists a non-infinitesimal delay between a repair and the next one:

/\ [G](repair(i, j, k) — = \/ repair(i,1,m)) (8)

.5,k (7.k)#(L;m)

/\ disj(repair(i)) A /\ del(repair(i)) 9)

Formula (9) can be rewritten in BBD exactly as formula (4).
The next requirement forces a repair to start from a station different from
1 and to end in station 1:

/\[G] (—repair(i, 1, j) A /\ —repair(i, j, k)) (10)
irj k#1

The following requirement constrains maintenance to be performed on a
regular basis (infinitely often):

[GI{L) repair (i) (11)
i
Requirements on the relationships between trips and repairs state that
(7) during maintenance a bike cannot make a trip, and vice versa, and (i7)
there is a non-infinitesimal delay between repairs and trips, and vice versa.

To express them, we introduce the following two parametric formulae, where
@ and v are arbitrary propositional formulae:

disj(p.v) = [Gl(p = (= A =(B)yA 12
(D) A~(E)Y A =(0)y A ~(A)y))
del(p,¥) = [G](p = (A)(=(D) A ~(E)Y A=(0))) (13)
Notice that disj(p, 1) and del(p,1) can be viewed as two-variable variants
of, respectively, disj(p) and del(y) (we deliberately overloaded the symbols
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disj and del to make such a connection evident), and that disj(p, ) differs
from disj(y) also for an additional conjunct (=) in the consequent of —.
Thus, requirements (7) and (i) above are expressed by the following formula,
that can be easily rewritten in BBD:

/\dzsg repair(i), trip(i /\/\dzsg trip(1), repair(i)) A

(14)
/\del repair (i), trip(i)) A /\del trip(i), repair(i))

where the first (resp, second) line captures requirement (i) (resp., (i7)).
The next requirement states that a repair must start from the end station
of the previous trip:

/\[G] (tmp i,7, k /\ A)repair(i,l) — \/(D)trip(i,m, l))) (15)

L5k I#k

Finally, the following requirement forces the first trip after a repair to start
from the station where the repair ended:

/\[G] (repazr i,j, k) — /\ A)trip(i, 1) — (D)tm’p(z’,k))) (16)

iyjyk l7ék

Once more, observe that formulae (15) and (16) belong to an undecidable
fragment of HS, but they can be easily rewritten in BBD.

The above requirements can be viewed as a set of basic rules governing
the behavior of the system for the management of bike sharing. We now
show that BBD can also be exploited to force specific policies involving more
advanced temporal constraints like, for instance, those about event duration.

Consider the requirement “two trips of the same bike must be at least ¢
time units apart”. Requirements of this kind can be added to an extended
scenario where the system also keeps track of users renting bikes and special
fares apply for short trips to prevent users from starting a new rental right
immediately after the previous one has ended. It can be formalized by making
use of a pre-interpreted proposition letter ¢-long which holds true exactly over
intervals [x,y] whose length is at least ¢, that is, y — 2z > t.4

4The addition of such a proposition letter does not cause an increase in the complexity
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First, we constrain the proposition letter long-break, to hold over intervals
whose length is at least ¢ (first conjuct of formula (17)) and that are disjoint
from trips involving bike i (second and third conjunct of formula (17)) :

/\[G](ZOHg—breaki — t-long) N /\disj(long—breaki, trip(i))A
| Z/\ disj(trip(i), long-break;) (17)

Formula (17) can be re-written in BBD in the usual way.
Then, we force the delay between any pair of trips of the same bike to be
equal to at least ¢ time units by the following formula:

/\[G] (trip(i) A (L)trip(i) — (B)((D)long-break; A =(D)trip(i)))  (18)

7

Consistency checking. Let us consider the above set of formulae. At a first
look, they seem to provide a correct and complete encoding of the intended
requirements on the bike sharing system. However, it turns out that they are
actually inconsistent. This is because, as it is often the case, an important
detail has been neglected: we implemented the specification “a bike trip ends
at the station from which the next trip (of the same bike) starts” while the
requirements allow for an exception, as in “a bike trip ends at the station
from which the next trip (of the same bike) starts, unless the bike goes under
maintenance between the two trips”. Formally, formula (6) forces every trip
to end at the station from which the next trip (of the same bike) starts.
Consider the case of two consecutive trips of the same bike i with a repair (of
i) in between. By formulae (15) and (16), the first trip ends at some station
7, from which the repair starts, and the second trip starts from the station
k, where the repair ends. By formula (10), it holds that 7 # 1 and k = 1,
and thus the two consecutive trips of ¢ do not satisfy formula (6).

The decision procedures developed for the HS fragments can be employed
to spot inconsistencies like the above one and then to fix the set of require-
ments. For instance, in the considered case, the inconsistency can be removed

of the analysis, as it can be shown that the complexity of the satisfiability problem for
resulting extension of BBD (over dense linear orders) is still in PSPACE by reducing it to
the satisfiability problem for an extension of BBD (over dense linear orders), called cone
logic, which is known to be PSPACE-complete [20].
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by rewriting formula (6) in such a way that it takes repairs into account:

/\[G](tTZP i, 7,k /\ A)trip(i,1) — ((D)trip(i, k)
W 7 V (D) repair(i, k;)))) (19)

Since all requirements, including the last one, can be expressed in BBD,
the analysis can be carried out with PSPACE complexity.

4. Complexity of HS fragments: a general overview

HS fragments can be compared to each other in various respects. Here,
we are interested in establishing the exact complexity of the satisfiability
problem for each (decidable) fragment of HS when interpreted over Q. To
this end, we make use of the classification of HS fragments with respect to
their relative expressive power [12]. We say that HS modality (X) is definable
in a fragment F (denoted (X) <1 F) if, for any proposition letter p € AP,
the formula

(X)p ¢

is valid in the linear order of Q (we denote it by (X)p = v), for some F-
formula ¢ over p. The equivalence (X)p = v is called a definability equation
(or simply definability) for (X) in F. By identifying the complete set of
definabilities that hold in the linear order of Q, we are able to characterize
the subset of ezpressively different fragments of HS (for this particular class of
models). These are the fragments that we classify in terms of the complexity
of their satisfiability problem.

In [12], Aceto et al. proved that there are precisely 18 essential definabil-
ities, that is, such that no one can be derived from the others, that hold
among HS modalities over dense linear orders (equivalently Q):

1. (L)p = (A)(A)p and its mirror image;

2. (L)p = (B)[E](B)(F)p and its mirror image;

3. (L)p = (O)({O)T A [O](D){O)p) and its mirror image;

4. (LYp = (B)[D|(B)(D){(B)p and its mirror image;

5. (L)p = (O)[E](O)(O)p and its mirror image;

6. (L)p=(0)((O)T A [O](B){0O)(O)p) and its mirror image;
7. (L)p = (0O)({O) T A [O][LJ{0){(O)p) and its mirror image;
8. (O)p = (F)(B)p and its mirror image;
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Complexity Class

1: Non-primitive recursive DDL
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Figure 2: Decidable HS fragments over the linear order of the rational numbers: their
relative expressive power and their computational complexity.
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9. (D)p = (E)(B)p;
10. (D)p = (E){(B)p.

It is worth pointing out that while proving that a given definability is
correct is relatively easy, showing that a given set of definabilities is com-
plete is quite hard, as it requires a complex analysis based on bisimulations
or bisimulation-based games [12]. The set of all the essential definabilities
allows us to draw a graph of expressively different HS fragments, which, in
the case of dense linear orders, contains 966 of the 4095 different non-empty
subsets of 12 modalities (we do not consider the empty set of modalities,
corresponding to propositional logic). Of these, precisely 130 are decid-
able [15, 16, 17, 18, 19, 20].5> They are shown in Fig. 2. Notice that we

do not depict decidable fragments containing modalities (F) or (E), as their
mirror images, containing, respectively, (B) or (B) instead, are depicted.

Undecidable fragments. As shown in [10], a minimal condition for an HS
fragment to be undecidable over Q is to contain, as definable, the fragments
O, AD, or AD (or one of the mirror fragments). Each of these fragments
is indeed expressive enough to make it possible to reduce the finite tiling
problem [26] to it. In addition, it is well known from [14] that fragments
containing, as definable, modality (B) (begins) or (B) (begun by) together
with modality (E) (ends) or (E) (ended by) are undecidable.

Non-primitive recursive fragments. The decidability of AABB over Q
has been proved in [15]. The proof is based on an algorithm of non-primitive
recursive complexity. This leaves open the problem of establishing the exact
complexity of (most of the fragments of) AABB. In Section 7, we solve it by
proving the hardness of the fragments AB and AB (and thus of each fragment
containing one of them, as definable) for the non-primitive recursive class.

ExpSpace-complete fragments. As a consequence of the results given
in [16], we know that ABBL is in EXPSPACE. In Section 6, we show that
each fragment containing AB or AB is EXPSPACE-hard over Q.

It is worth pointing out the different positioning of the HS fragments AB
and AB with respect to the fragments AB and AB. One might indeed expect
the former to behave like the latter, while this is definitely not the case, as
they ended up in quite different complexity classes (non-primitive recursive

®We would like to notice that in [1] we wrote 146 instead of 130 as we mistakenly
considered as semantically different some HS fragments which, in view of the essential
definabilities above, are in fact equivalent.
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vs. EXPSPACE-complete). In fact, this does not come as a surprise, since the
modalities of the first pair of HS fragments support full access to intervals
in the past and, yet, make it possible to predicate about intervals ending in
the future, while those of the second pair cannot access intervals starting or
ending strictly before the current one.

NExpTime-complete fragments. The collection of NEXPTIME-complete
fragments of HS includes those fragments that have been the first to be proved
decidable. These results can be found in [17].

PSpace-complete fragments. PSPACE-complete fragments have been
identified in [18, 19, 20], where it has been proved that BBDDLL is PSPACE-
complete, and that a sufficient condition for any fragment of HS to be
PSPACE-hard is to contain, as definable, the fragments D or D.

NP-complete fragments. The results for the PSPACE-complete fragments
leave open the problem of establishing the complexity of those fragments of
BBDDLL containing neither D nor D. Among them, the most expressive
one is BBLL. In Section 5, we prove that BBLL and all of its fragments are
decidable in NP (NP-hardness trivially holds).

5. NP-complete fragments

In this section, we show that BBLL is in NP (NP-completeness immedi-
ately follows, as propositional logic is a syntactic fragment of BBLL).

The proof of NP-membership consists of two main steps. The first step
reduces the satisfiability of a formula ¢ to the existence of a suitable pseudo-
model, that is, it shows that ¢ is satisfiable if and only if there exists a
corresponding, finitely-representable structure that satisfies a given set of
constraints induced by ¢. The second step proves that (i) each satisfiable
formula admits a pseudo-model of size at most P(|¢|), where P is a polyno-
mial, and (ii) constraint satisfaction (by the pseudo-model) can be checked
in nondeterministic polynomial time.

The proof of item (i) makes use of two fundamental ingredients. The first
one is a fairly natural spatial representation of intervals, originally exploited
by Venema in [27], which maps intervals into points and, for any such point
and any Allen relation, provides a spatial characterization of all the points
which are in such a relation with it, that is, it identifies the region of the plane
all these points belong to. The second one is the monotonicity of modalities
(L)Y/(L) and (B)/(B). Points (equivalently, the intervals they represent)
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are first partitioned on the basis of their first coordinate and then clustered
according to the (L)/(L) requests of their second coordinate. Thanks to the
monotonicity of modalities (L)/(L), these clusters can be represented using
polynomial space (in the size of the input formula |p|). A point belonging
to any such cluster either is a unique witness in the model (a singleton) or
can be merged with its neighbours into a maximal open segment. Next, a
new set of clusters is associated with each point of the rational line, being
it a singleton or an element of an open segment, on the basis of its (B)/(B)
requests. Thanks to the maximality of open segments and the monotonicity
of modalities (B)/(B), the set of sets of clusters associated with the elements
of an open segment can be represented in polynomial space. Finally, despite
the fact that the number of possible sets of clusters that may label an open
segment is, in principle, exponential in ||, we show that if ¢ has a model in
@, then there exists a pseudo-model for ¢ that features only a polynomial
number of them.

To make the proof easier to follow, we shall first show that the sub-

fragment LL belongs to NP, and then we shall generalize the proof to BBLL.

5.1. Preliminaries

In the following, we recall terminology and notation which are common
in the (interval) temporal logic setting. We define the closure of a formula ¢,
denoted by Cl(ip), as the set of all sub-formulae of ¢ and all their negations
(we identify ——) with ¢, =(B)y with [B]—, —=[B]¢ with (B)—, and so
on). For technical reasons that will become clear soon, we also introduce the
extended closure of ¢, denoted by ECI(p), which, in addition, includes all
formulae of the form (X)¢ and [X]+, for X € {B, B, L,L} and ¢ € Cl(y).
We define a p-atom F (atom F for short) as a maximal, locally consistent
subset of ECl(p). Formally, F is a subset of ECI(y) such that (i) for all ¢ €
ECl(p), ¥ € F if and only if = ¢ F, and (ii) for all ¢» = ¢y V 1hy € ECl(y),
v € Fif and only if ¢y € F or ¥y € F. We denote the set of all p-atoms by
atoms(p). We say that an atom F' is B-reflexive if and only if (i) for each
[Bly € F, ¢ € F, and (ii) for each [BJy) € F, ¢ € F.

Given an atom F and X € {B,B,L,L}, let Reqx(F) be the set of
requests of F' for the relation Ry, namely, the set of formulae ¢ € Cl(y)
such that (X)y € F. Similarly, let Obs(F) = F N Cl(p) be the set of
observables of F—intuitively, the observables of F' are those formulae ¢ € F,
belonging to Cl(¢p), that fulfil requests of the form (X )1 associated with other
atoms. Given a BBLL formula ¢, we define a o-labeled interval structure for
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¢ (LIS for short) as a pair L = (Q, £), where £ : I[(Q) — atoms(y) is a
function that maps each interval on Q in an atom such that, for every pair
of intervals [z,y], [2/,v'] € I(Q) and each X € {B, B, L, L}, if [z, y| Rx[2, V],
then Obs(L([2",y])) € Reqx (L([z, y]))-

It can be easily checked that LISs satisfy universal (temporal) conditions
by construction. First, we observe that if [X]¢ is a subformula of ¢, then
(X)) belongs to ECI(p). Now, let [x,y] € [(Q) and L([x,y]) = F, for some
atom F. If [X]¢ € F, then, by definition of atom, (X)— ¢ F, and thus —
does not belong to Reqx (F'). By definition of LIS, it immediately follows that
for all intervals [2/,y/] € I(Q) such that [z,y|Rx[z,y], = ¢ Obs(L([z',y'])),
and thus, again by definition of atom, ¥ € Obs(L([x",y])).

We say that L is a fulfilling LIS for ¢ if it satisfies the following properties:
(i) for every interval [z,y] € 1(Q), each X € {B,B,L,L}, and each ¢ €
Reqx(L([z,y])), there exists [2/,1/] € I(Q) such that [z, y|Rx[z,y'] and ¢ €
Obs(L([2',y])), and (ii) there exists an interval [z,y] € I(Q) such that ¢ €
L([z,y]). The next theorem, whose proof is straightforward (see, e.g., [17]),
states that fulfilling LISs suffice to witness satisfiability.

Theorem 1. Let ¢ be a BBLL formula. It is satisfiable over Q if and only
if there exists a fulfilling LIS L = (Q, L) for it.

5.2. The sub-fragment LL

To start with, we observe that, by the semantics of modality (L), intervals
with the same right endpoint agree on the truth of formulae of the form
(L)e ((L)-formulae for short). Symmetrically, intervals with the same left
endpoint agree on (L)-formulae. Given an interval model M = (I(Q), V') for
a formula ¢ and a rational number z, we define the LL-requests of x as the
pair of sets (L, L,), where L, contains all formulae ) € CI(y) such that
(L) is true over all intervals [y, z], with y < o (L-requests), and L, contains
all formulae ¢ € Cl(p) such that (L)1 is true over all intervals [z,y], with
x < y (L-requests). By the transitivity of (L) (resp., (L)), we have that the
set of L-requests (resp., L-requests) is monotone with respect to <, that is,
for every pair of rational numbers z,y, with < y, it holds that L, O L,
(vesp., Ly C L,).

Since the closure of a formula is a finite set, we can partition QQ into a finite
number of clusters whose elements have the same LL-requests (LL-clusters).
It is possible to define the partition in such a way that each cluster is either
a singleton (point-interval) or a convex, open set (open interval).
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Definition 1. An LL-sequence is a finite sequence of triples of the form:

(Llazh Typ61>, (L27EQ7 Typ62>, ER) (Lmzm Typen)a

where, for 1 < i < n, L; and L; are sets of L-requests and L-requests, re-
spectively, and Type; is either point (for a point-interval) or interval (for an
open interval), such that:
(i) Li 2 Liy1 and L; C Ly, 1, for 1 <i < n (monotonicity);
(i) for all i,j, with 1 < i < j < n, if Type; = Type; = interval, then
(Li, L;) # (Lj, L;) (mazimality);
(i1i) Type, = Type, = interval (the first and last clusters are open sets);
(iv) for each 1 < i < m, if Type; = point, then Type; 1 = Typeir1 =
interval (no consecutive clusters of type point).

Since both |L;| and |L;| are less than or equal to |Cl(¢)| = 2 ||, for each
1 <i < n, there are at most 8 - || — 1 distinct triples in the sequence: by
(i) and (ii), there are at most 4 - |¢| triples of type interval, and, by (iii) and
(iv), there are at most 4 - || — 1 triples of type point.

Definition 2. A pseudo-model for an LL formula ¢ is a labeled LL-sequence
(L1, Ly, Typey), ..., (Ln, Ly, Type,), where the labeling function f : {(i,7) :
1 <i<j<n} s 20toms) satisfies the following constraints on the cardi-
nality of the images:

o |f(i,1)] =0 if Type; = point (we assumed the strict semantics);

o |f(i,7)|=1ifi# j and Type; = Type; = point;

o |f(i,7)] > 1 if Type; = interval or T'ype; = interval (or both),
as well as the following featuring, consistency, and fulfillingness conditions:

e there exist a pair (i,7), with i < j, and an atom F € f(i,7) such that
¢ € F (featuring condition );

o for each pair (i,j), with i < j, and each atom F € f(i,7), Reqr(F) =
Li, Reqr(F) = L;, if Type; = point (resp., interval ), then Obs(F) C
Lji1 (resp., Obs(F) C L;), and if Type; = point (resp., interval), then
Obs(F) C L;_q (resp., Obs(F) C L;) (consistency );

e for each index i, with 1 < ¢ < n, and each formula v € L;, if
Type; = point (resp., interval ), there exist a pair (j,j'), withi < j < j'
(resp., i < j < j'), and an atom F € f(j,j") such that b € F (L-
fulfillingness );

o L-fulfillingness is defined analogously.
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Figure 3: A graphical account of an LL pseudo-model.

The consistency condition takes care of [L]- and [L]-formulae, while the
fulfillment conditions guarantee that (L)- and (L)-formulae are satisfied.
We call the labeling function f an LL-witness for the LL-sequence (Ly, Ly,
Typei),. .., (Ln, Ly, Type,). Figure 3 gives a graphical account of an LL
pseudo-model, that features 6 clusters, by exploiting the natural correspon-
dence between intervals [z,y] and points (x,y) on the cartesian half-plane
x <yof QxQ [27]. Clusters of type point (2 and 5, in red) and interval (1,
3, 4, and 6, in blue) partition the “half plane” into regions of different shape,
that are then labeled by the function f. Such regions can be either “open
rectangles”, e.g., f(3,4), “open triangles”, e.g., f(3,3), “open segments”,
e.g., f(2,4) and f(3,5), or “points”, e.g., f(2,5). Cardinality, featuring,
consistency, and fulfillingness conditions guarantee that such a partitioning
respects the semantics of the formulae and the shape of the different regions.

The next lemma proves that the satisfiability of an LL formula ¢ can be
reduced to the existence of an LL pseudo-model for it.

Lemma 1. An LL formula o is satisfiable over Q if and only if there exists
an LL pseudo-model for it.

Proof. We first prove the left-to-right implication. Let L = (Q, L) be a
fulfilling LIS for ¢, whose existence is guaranteed by Theorem 1. We build
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an LL pseudo-model for ¢ as follows. Let [z1], [22],..., [*.] be a partition
of Q that satisfies the following properties: (i) the representatives are totally
ordered, that is, 1 < zy < ... < xy,; (ii) each [z;] is either the singleton
{x;} or an open interval (x; ,z;) of Q (notice that z;, resp., ;" , might be
—00, resp., +00); (i) for i = 1,...,n, all elements in [z;] have the same
LL-requests (L;, L;); (iv) for each pair of open intervals [z;], [z;], with i # j,
(Li> Li) 7é (LJ" Lj)'

Since the set of L-requests (resp., L-requests) is monotone with respect
to < and there is a finite number of possible (different) LL-requests, such a
partition can always be defined. Moreover, the first and the last element
of the partition [z;] and [z,] are necessarily open intervals and, since Q is
dense, there are not two consecutive singletons. We define the LL-sequence
of the LL pseudo-model for ¢ as follows:

orrL = <L1>Zl> Typ61)7 (L2az27 Typ€2)7 BRI (Lnazna Typ@n),

where, for i = 1,...,n, (L;, L;) are the LL-requests of [x;] and Type, = point
(resp., Type, = interval) if [z;] is a singleton (resp., an open interval). It can
be easily checked that o7 is indeed an LL-sequence. The labeling function
f of the LL pseudo-model can be defined as follows:

fG@,3) = L[z, y) [ @ € [:] and y € [;]}-

In the following, we show that f satisfies cardinality, featuring, consistency,
and fulfillingness constraints.

The satisfaction of cardinality constraints immediately follows from the
definition of f and the properties of the partition: (i) if [x;] is a singleton,
then the interval [z;, x;] does not belong to I(Q) (strict semantics), and thus
f(i,7) is the empty set; (i) if both [z;] and [z;] (i < j) are singletons, then
f(i,7) contains the labeling of the interval [z;, z;] only; (44) in all the other
cases f(i,7) contains at least one atom.

As for the featuring condition, L = (Q, £) is a fulfilling LIS for ¢ and
thus there exists an interval [z,y| such that ¢ € L([z,y]). Let [z;] and [z;]
be the two elements in the partition such that x € [z;] and y € [z;]. By the
definition of f, L([x,y]) € f(i,j) and thus the featuring condition is fulfilled.

We now check that the consistency conditions are satisfied as well. Let
F € f(i,7). Since all elements in [z;] (resp., [z;]) have the same set of L-
requests (resp., L-requests), it immediately follows that Reqy,(F) = L; (resp.,
Reqr(F) = L;). Suppose now that [z;] is the open interval (x5, xj) By the
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definition of f, we can find an interval [z, y| such that x € [z;], y € [z,], and
F = L([x,y]). Since Q is dense, we can find an interval [z/,y/] with y < 2’ <
z). By the definition of LIS, it holds that Obs(L[z,y]) € Reqr(L([+',y)),
and thus Obs(F) C L;. The other cases, as well as the last consistency
requirement, can be dealt with in the very same way.

To prove that the condition of L-fulfillingness is satisfied, consider a for-
mula ¢ € L; for some 1 < i < n. Since L = (Q, £) is a fulfilling LIS, there is
an interval [z, y|, with z; < x, such that ¢ € L([z,y]). Now, let z € [z,] and
y € [z;]. By the definition of f, L([z,y]) € f(j,7'), and, by the definition
of the partition, j < 7/ and i < j, if [z;] is a singleton, and i < j, if [z;] is
an open interval. L-fulfillingness can be proved in a similar way.

To prove the right-to-left implication, let us consider an LL pseudo-model
consisting of the LL-sequence (L1, Ly, Typei), ..., (Ln, Ly, Type,) for ¢ and
the associated labeling function f, that satisfies the cardinality, featuring,
consistency, and fulfillingness conditions. The fulfilling LIS L = (Q, £) sat-
isfying ¢ is obtained as the limit of an infinite sequence of finite LISs Ly =
(]D)(), Eo), L1 = (]D)l, £1>, LQ = (DQ, LQ)7 .... Each finite LIS Lz = (DZ, ,CZ>, with
D; = (D;, <), is paired with a clustering function Clst; : D; — {1,...,n}
such that, for each interval [z,y] € I(D;), L;([z,y]) € f(Clst;(z), Clst;(y)).
By the featuring condition, there exist a pair of indexes 7, k, with 7 < k, and
an atom F, € f(j, k) such that ¢ € F,.

The initial LIS Ly = (Dg, L), with Dy = (D, <), is defined as follows: we
let Dy ={1,2,...,n}, Lo([s,k]) = F,, L([l,m]) equal to an arbitrary atom
in f(I,m), for all (I,m) # (j, k), and Clsto(h) = h, for all 1 < h < n. Then,
the LIS L;,, is obtained from the LIS L; by selecting one of its “defect” and
fixing it (as it will soon be clear, for all i, we can find a defect in L;).

Five distinct types of defect must be taken into consideration (in the
following, we enumerate the elements of D; as 1y < 2y < ... < 1 Di‘)'
The first two types of defect are L- and L-requests which are not fulfilled.

L-defects: an L-defect occurs if there exist an interval [x,, zp] € I(DD;) and a
formula (LYY € L;([x4, 7)) such that for all [z., z4] € I(D;), if z, > x3, then
(0 € 'Ci([xcv zd])

To fix such a defect, we must insert in L;;; a new interval that satisfies 1.
To find its correct placement, we proceed as follows. Let j = Clst;(x;). By
the definition of Clst; and the consistency of f, ¢ € L; = Reqr(Li([za, zp]))
(¢ belongs to the set of L-requests of the j-th cluster). Hence, by the L-
fulfillingness condition, there exist two indexes k, [, with j < k <1 < n, and
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an atom F, such that ¢ € F, and Fy, € f(k,l). Let z. and x4 be the greatest
elements in D; such that Clst;(z.) = k and Clst;(z4) = [, and let z/, and 2/,
be the immediate successors of x. and x4 in I;, respectively. The endpoints
of the new interval [z, 1] are defined as follows:

/

T, it Type, = point;
' = x.+1 if Type, = interval and x, = max(D););
\ # otherwise,
(24 if Type, = point;
+1 if z. = 24 and 24 = max(Dy);
y = @ if x. = x4 and x4 # max(D;);
xg+1 if z. # x4 and 24 = max(Dy);
\ % otherwise.

Hence, we let D; 11 = D; U {2’,y'} and we define the labeling £;,; as:

(Fy, if x =2" and y = o/;

F e f(k,Clsti(y)) ifx=2a',y#y, and 2’ € D;;
F € f(Clsti(x),l) ifx#2',y=1vy,andy & D;;
F e f(Clsti(x),k) ify=2a"and 2’ &€ Dj;

F e f(l, Clsty(y)) ifx=1vy and ¢ & D;;

L Li([z,y]) otherwise.

Lita([z,y]) =

As for Clst;yq, we let Clst;1(2') = k, Clsti1(y') = [, and Clstiq(x) =
Clst;(x) for all x € D;.

L-defects: an L-defect occurs if there exist an interval [z,, 7] € I(ID;) and a
formula (L)1 € L([x4,23)) such that for all [z., z4] € I(Dy), if 24 < x4, then
W & L([x.,z4]). To fix such a defect, we must insert in L;;; a new interval
that satisfies ¢b. We can proceed exactly as in the previous case.

The remaining three types of defects are: D; is not dense, ID; has a minimum,
and D; has a maximum. They occur in every L; and can be fixed as follows.

Disc-defects: we pick two consecutive elements x, and x,y; in D; and we
add either one or two elements to D;,;, depending on the Type of the j-th
and the k-th triple, where j = Clst;(x,) and k = Clst;(x441):
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e if Type; = point, then we add the point 2’ = % to D;y1 and we
put Clst;iq1(2') = k;

o if Type, = point, then we add the point 2’ = % to D;11 and we
put Clst;1(2') = j;

o if Type;, = Type, = interval, then we add the points 1’ = 3
and iy = W# to Diy1, putting Clst;1(x') = j and Clst;11(y') = k,
respectively.

2Ta+Tat1

It is worth pointing out that it cannot be the case that Type; = Type), =
point: the initial LIS has a witness for each triple and thus either £ = j
or k = 7+ 1 and there cannot be two consecutive triples of type point.
The labeling function £;,1 extends £; by putting £;+1([x,y]) = F, for some
F € f(Clstii1(x), Clstiy1(y)), for all intervals [z, y] ¢ (D).

Min-defects: given x; = min(D;), we add the element 2’ = z; — 1 to D, 1,
and we let Clst;11(2') = 1. For each element y > 2/, we choose an atom
F € f(Clstiiq1(a"), Clst;i(y)) and we put L;1([2,y]) = F.

Max-defects: given z|p, = max(ID;), we add the element 2’ = zp, + 1 to
D;yq, and we let Clst;y1(2') = n. For each element x < z’, we choose an
atom F' € f(Clst;(x), Clst;11(2")) and we put L£;11([z,2']) = F.

By fixing all the defects according to a fair strategy which guarantees that

no (L)-/(L)-request is indefinitely postponed and the final domain is dense,
we can force the limit structure L, = [J,. L; to be a fulfilling LIS for ¢. [

We complete the proof by showing that the existence of a pseudo-model
can be checked in polynomial time. We already observed that the number of
clusters, and, thus, the length of an LL-sequence, is bounded by 8 - lp] — 1.
Then, the size of the domain of the labeling function f is at most w.
However, each element in the image of f is a subset of atoms(p) whose size
might be exponential. The next lemma states the existence of polynomially

bounded LL-witness for LL formulae which are satisfiable over Q.

Lemma 2. Let ¢ be an LL formula which is satisfiable over Q. For ev-
ery pseudo-model (Ly, Ly, Typey),...,(Lpn, Ln, Type,) for ¢, there is an LL-
witness f such that for all 4,7, with i < j, |f(i,7)] < 2-|p|.

Proof. Let (Ly, Ly, Type1), ..., (Ln, Ly, Type,) be a pseudo-model for ¢ and
let f be an LL-witness such that |f(i,5)| > 2 - |¢| for some pair of indexes
i,j. We show how to find a new witness f’ such that for each pair of indexes
i, with o < j, [f(i, ) <2 o]
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Let i < j be such that |f(i,j)] > 2 - |p|. To fix such a defect, we
replace f(i,7) by a subset of it. In doing that, we must be careful not to
spoil featuring and fulfillingness conditions of f (notice that, by replacing
f(i,7) with a subset of it, there is no danger of spoiling consistency). Let
R ={¢ €Cl(p) | IF € f(i,7) with ¢ € F'} be the set of formulae in Ci(yp)
that are fulfilled in f(4, 7). It clearly holds that |R;;| < |Cl(p)] <2-|p|. We
take a minimal subset S of f(i, j) such that, for each ¢ € R;;, ¢ € F for some
F € S. Since |S| < |Rij| < 2-|p|, a new LL-witness f’, with |f'(i, )| < 2-]¢],
can be obtained from f as follows:

rep= S, Hi=twiss
f(@@',7") otherwise.

By repeating the same process for each pair @', j" such that |f(¢', 5')[ > 2-[¢],
we obtain an LL-witness f' with |f'(i,7)] < 2-|¢|forall 1 <i<j<n. O

Lemma 2 allows us to to restrict our attention to LL-witnesses with poly-
nomially bounded images, that is, we can focus on candidate LL-witnesses f
consisting of a sequence of at most w sets of atoms, each of them
of cardinality at most 2 - |p|. An NP procedure to decide the satisfiability
of an LL formula can be easily obtained as follows: we guess an LL-sequence
of size at most 8 - || — 1 and an LL-witness f of size at most w
and then we check whether it fulfills cardinality, featuring, consistency, and

fulfillingness conditions.

Theorem 2. The satisfiability problem for LL over Q is NP-complete.

5.3. The fragment BBLL

In this section, we generalize the proof for LL to BBLL. In particular, in
Lemma 1, we showed how to partition QQ into a finite set of clusters, each one
consisting of elements with the same set of LL-requests, and then to obtain a
pseudo-model from such a partition. The same construction can be exploited
in the case of BBLL, provided that additional information is associated with
the clusters of the partition, or, equivalently, the triples of the LL-sequence
of the pseudo-model.

Let ¢ be a BBLL formula, M be a (concrete) model for it, and = be
a rational number. For every interval [x,7], we define the BB-requests of
[z,y] as the pair of sets (Bx7y,§x7y), respectively called B-requests and B-
requests, where B, (resp., B,,) contains all formulae ¢ € Cl(p) such that
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(B)Y (resp., (B)v) is true over [x,y]. By the transitivity of (B) (resp., (B)),
for any given left endpoint z, the set of B-requests (resp., B-requests) is
monotone with respect to the ordering of the right endpoints, that is, for
every pair y,y', with y < ¢/, it holds that B,, C B, (resp., B, 2 Ba.).
Once again, since the closure of a formula is a finite set, we can partition the
set of all intervals with a given left endpoint x into a finite number of clusters
of intervals whose elements have the same BB-requests (BB-clusters). The
partition can be defined in such a way that each cluster is either a singleton

or a convex, open set of intervals.

Definition 3. A BB-sequence is a finite sequence of quadruples of the form:
opg = (Bi, By, Clustery, BTypey), ..., (Bm, Bm, Cluster,,, BType,,),

where, for 1 < i < m, B; and B; are sets of B-requests and B-requests,
respectively, Cluster; > 1, and BType; € {open, singleton}, such that:

(i) B; € Biy1 and B; D By, for 1 < i < m (monotonicity of BB-

requests);
(i1) for each 1 < i < m, either Cluster;;; = Cluster; or Cluster;;; =
Cluster; + 1 (monotonicity of the sequence Clustery, ..., Cluster,,);

(111) for all i,j, with 1 < i < j < m, if Bl'ype; = BType; = open, then
(Bi, B;) # (Bj, Bj) or Cluster; # Cluster; (mazimality);

(iv) BType; = BType,, = open (the first and last clusters are open sets);

(v) for each 1 < i < m, if Bl'ype; = singleton, then BType;_1 = BType; 1
= open (no consecutive clusters of type singleton ).

A BB-sequence models the behaviour of all intervals with the same left
endpoint and it is not an independent element of the pseudo-model: it must
be embedded into an LL-sequence in a way that guarantees the consistency
of both BB- and LL-requests.

Let 055 be the BB-sequence for the intervals with left endpoint x. We
call the LL-cluster (Ls, L;, Type;) to which x belongs the starting cluster of
opp, and we constrain all the right endpoints included in a BB-cluster of
opp to belong to the same LL-cluster. BB-sequences can thus be viewed as
a “refinement” of LL ones. A graphical account of the resulting picture is
given in Figure 4.

The interplay between BB- and LL-sequences can be formalized as follows.

Definition 4. Given an LL-sequence oL = (Ll,zl,Typel),...,(Ln,_zm
Type,) and a BB-sequence ogg = (By, By, Clustery, BT'ypey), ..., (B, Bm,
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Figure 4: The interplay between BB- and LL-sequences: a BBLL pseudo-model.

Clustern,, BType,,), we say that o is compatible with the LL-cluster (Lj,
L;, Type;) if (and only if):

e Cluster, =i (the BB-sequence starts at (L;, L;, Type;) );

e Cluster,, = n (the BB-sequence covers the entire suffiz (L;, L, Type;),
ooy (Lp, L, Typey) of ort);

o if Type cruster, = interval, then BType; = open (matching types between
clusters - condition 1);

o for each 1 < j < m, if Typecuster; = point, then BType; = singleton
(matching types between clusters - condition 2);

o for each 1 < j < m, if Typecusier, = interval and Cluster; , #
Cluster; or Cluster;jiy # Cluster;, then BType; = open (matching
types between clusters - condition 3);

e BType,, = open (matching types between clusters - condition 4).

It can be easily checked that there are at most 24 - |p| — 3 distinct BB-
clusters in the sequence ogg: by items (i), (ii), and (iii) of Definition 3, there
are at most 4- ||+ (8- |p| —1) = 12-|¢| — 1 clusters of type open (notice that
for each 4, Cluster; < n < 8-|p|—1), and, by items (iv) and (v) of Definition
3, there are at most 12 - |¢| — 2 clusters of type singleton. A BBLL-sequence
is obtained from an LL one by adding a set of compatible BB-sequences to
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each of its clusters.

Definition 5. Let (L1, Ly, Typey), ..., (Ln, Ly, Type,) be an LL-sequence. A
BBLL-sequence is an n-long sequence of quadruples of the form:

ORBLL = (Ll,fl, Typey, 1), .. ., (Ln,zn, Type,,, Xy)

where, for each 1 <1i <mn, ¥; is a finite enumeration of BB-sequences {O’i’l

} BB’
0.'57171'

-, 035} such that (i) for each 1 < j < p;, cr;’;% is compatibile with the cluster
(Ls, L, Type;) and (i) if Type; = point, then p; = 1, otherwise p; > 1.

A BBLL pseudo-model pairs a BBLL-sequence with a labeling function.

Definition 6. A pseudo-model for a BBLL formula ¢ is a labeled BBLL-
sequence (Ly, Ly, Type,, 21), ..., (Ln, Ly, Type,, ¥y, where the labeling func-
tiong:{1,...,n}x{1,..., Py x{1,..., M} +s 20oms(®) " qyith P = max{p; |
1 <i<n}and M = max{|ogg| | opg € Xi, 1 < i < n}, satisfies the
following constraints on the cardinality of the images:

o |g(i,j, k)| =014f |5 <j or |0j§%| < k (incorrect indezes);

o |g(i,j, k)| =1 if the k-th BB-cluster of ag% is of type singleton;

o |g(i,j, k)| > 1 if the k-th BB-cluster of 02% is of type open,
as well as the following featuring, consistency, and fulfillingness conditions
(for each triple (i,j, k), we shall denote by (By, By, Clustery,, BTypey) the

k-th cluster of 05 ):

e there exist a triple (i,j,k) and an atom F € g(i,j, k) such that p € F
(featuring condition );

e for each triple (i, j, k) and atom F € g(i, j, k), Reqz(F) = L;, Reqr(F)
= Lcuster,, if the Clustery-th LL-cluster is of type point (resp., inter-
val), then Obs(F) C Lcster,+1 (Tesp., Obs(F) C Lcster,, ), and if the
i-th LL-cluster is of type point (resp., interval), then Obs(F) C L;_,
(resp., Obs(F) C L;) (LL-consistency);

e for each triple (i,j, k) and atom F € g(i, 7, k), Reqp(F)=DBy, Reqg(F)
= By, and if BType;, = singleton (resp., open), then Obs(F) C Bj,_1N
By (resp., Obs(F) C By, N By) (BB-consistency );

o for each index v, with 1 <1 < n, and each formula ¢ € L;, if the i-th
LL-cluster is of type point (resp., interval), there exist a triple (i, ', k'),
with i < i’ (resp., 1 <4i'), and an atom F € g(i',j', k') such that ¢ € F
(L-fulfillingness);

31



e for each index i, with 1 < i < n, and each formula 1 € L;, if the i-th
LL-cluster is of type point (resp., interval), there eist a triple (i, ', k'),
with " < i and Clustery < i (resp., i < i and Clustery < i), and an
atom F € g(i',j', k') such that ¢ € F (L-fulfillingness );

e for each triple (i,j,k), with 1 < i <n, O'g% €Y, and |ai§%| > k,and
formula 1 € By, if the k-th BB-cluster is of type singleton (resp.,
open), there exist an index k', with k' < k (resp., k' < k), and an atom
F € g(i,j, k") such that ¢ € F (B-fulfillingness);

e B-fulfillingness is defined analogously.

We call the labeling function g a BBLL-witness for the BBLL-sequence
(L1, L1, Type,, 1), - - -, (L, Ly, Type,,, 3,). Figure 4 gives an intuitive ac-
count of how to expand the LL pseudo-model with 6 LL-clusters of Figure 3
into a full BBLL pseudo-model. In particular, it displays a BB-sequence
(in green) that is compatible with the 3rd LL-cluster, which partitions the
half-plane in regions that can be either “open segments”, e.g., ¢(3,1,4), or
“points”, e.g., g(3,1,5). Cardinality, featuring, consistency, and fulfillingness
conditions guarantees that the labeling defined by the function g respects the
semantics of the formulae and the shape of the different regions.

Lemma 3. A BBLL formula ¢ is satisfiable over Q if and only if there exists
a BBLL pseudo-model for it.

Proof. We first prove the left-to-right implication. Let L = (Q,£) be a
fulfilling LIS for ¢, whose existence is guaranteed by Theorem 1. We build a
BBLL pseudo-model for ¢ as follows. Let [21], [z2], ..., [z.] be the partition
of Q and 0,7 = (L1, Ly, Typer), (Lo, Ly, Types), . .., (Ly, Ly, Type,) be the
corresponding LL-sequence defined as in the proof of Lemma 1.

For each x € Q, we define a finite partition (z,vy1)), {z,y2), ..., (=, ym)
of the intervals with left endpoint = that satisfies the following properties (for
each i, we choose [z,y;] € (x,y;)) as the representative of the class (x,y;))):

e foralli, (x,y;) is either the singleton {[x, y;]} or an open set of intervals
{[z,y] | v € (y;,y;") for some open interval (y; ,y;")} (notice that y;"
might be +00);

e for all 4, all intervals in {(z, ;) have the same set of BB-requests (B;, B;);
moreover, if y; € [z;], so does y, for all [z,y] € (x, v:);

o for all pairs of open sets (z, 5), (. 4;), with i # . (By, By) # (B;, B)
or y; € [zy] and y; € [x;] for some " # j';
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e the set of witnesses of the partition is monotonically increasing: y; <
Yo < ovo < Y-
For all z € Q, the above partition induces a BB-sequence:

o5 = (Bi, By, Clustery, BTypey), . .., (B, B, Cluster,,, BType,,)

where Cluster; is such that y; € [z custer,] and BType; = singleton if {x, y;)
is a singleton, BType; = open otherwise. It can be easily shown that if
x € [z;], then 0%y is compatible with the i-th LL-cluster (L;, L;, Type;).
Hence, for each cluster (L;, L;, Type;) of the LL-sequence o, we can define
the set of induced BB-sequences X; = {0% | z € [z;]}. Even though [z;]
may contain infinitely many rational numbers, there are only finitely many
different BB-sequences compatible with (L, L;, T'ype;), and thus ¥; is a finite

1 .
set that we can enumerate as ¥; = {0 oh

BB OhB)
We define the BBLL-sequence of the BBLL pseudo-model for ¢ as follows:

OBBLL — (L17z1a Typely Z:1)7 (LZa z?a Typ€2, 22)7 ey (Lna z’rm Typena En)a
while the labeling function ¢ (the BBLL-witness) is defined as follows:
g<i7j7 k) - {E([J:?y]) | O-jBJB S Ebo-%é = O-Zéjé and ["L‘7y} € <<x’yk>>}>

if |3;] > j and |O’iéjé| > k; g(i,j,k) = 0 otherwise. It is easy to check that g
fulfills the cardinality, featuring, consistency, and fulfillingness constraints.
To prove the opposite implication, let us consider a BBLL pseudo-model
for ¢ consisting of the BBLL-sequence (L, Ly, Type1, ¥1), . . ., (Ln, Ln, Typey,
¥.,) and the associated labeling function g, that satisfies the cardinality, fea-
turing, consistency, and fulfillingness conditions. As in the proof of Lemma 1,
the fulfilling LIS L = (Q, £) satisfying ¢ is obtained as the limit of an infi-
nite sequence of finite LISs Ly = (Do, £o), L1 = (Dy, £1), Ly = (Do, Ls), . . ..
We pair each finite LIS L; = (D, £;) with (i) a function Clst; that asso-
ciates elements in D; with LL-clusters (as in Lemma 1), (ii) a function Seg; :

D; — N that associates each z € D; with a BB-sequence aggti(r)’seqi(m) S
Y Cisty(z), and (ii7) a function IClst; : I(ID;) — N that associates each inter-

val [z,9] € I(D;) with a BB-cluster in the BB-sequence aggti(z)’seqi(x). The
three functions are such that for each interval [z,y] € 1(D;), L;([z,y]) €

g(Clst;(x), Seq;(x), IClst;([z,y]))-
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The initial LIS Lo = (Do, £o) is such that the domain Dy = {1,2,...,n}
contains an element for each LL-cluster and the labeling function £, fea-
tures the formula ¢ (its definition is similar to the one given in the proof of
Lemma 1, and thus we omit its details). Then, the LIS L;,; is obtained from
L; by choosing one of its defects and fixing it.

L-defects, L-defects, Disc-defects, Min-defects, and Max-defects are dealt
with as in the proof of Lemma 1. In addition, we must cope with B- and B-
requests which are not fulfilled (B-defects and B-defects, respectively). These
defects are fixed as follows.

B-defects: a B-defect occurs if there exist an interval [z,, x| € I(ID;) and a
formula (B)Y € L;([x4,xp]) such that for all [z,,z.] € I(D;), with z. < x,
U & Li([xa, c))-

To fix such a defect, a new interval that satisfies ¢y must be properly
added to L;yy. Let i/ = Clst;i(z,), 7' = Seq;(z,), and k' = IClst;([xa, p)).
Moreover, for each k, let (By, By, Clustery, BTypey,) be the k-th cluster of
the j’-th BB-sequence ag’g € Y. We have that L;([z,,xp]) € g(i', 7, k).
By the BB-consistency of g, Reqp(Li([a,7s])) = By, which implies that
1 € Byj. By the B-fulfillingness condition, there exist an index £” and an
atom Fy, € g(¢', j', k") such that £/ < k" and ¢ € F. Let . be the greatest
element in ; such that IClst([z,, z.]) = k" and let z/ be its immediate
successor in D;. The right endpoint of the new interval [z,, 1] is defined as
follows:

,f we+ 1 if . = max(Dy);
y= otherwise.

T+l
2

Hence, we let D;yy = D; U {y'}. To complete the definition of L; i, we
put ¢’ = Clustery, and we proceed as follows: (i) we set Clst;11(y') = i”
(/ belongs to the i”-th LL-cluster); (ii) we associate a (randomly selected)
BB-sequence agg/ from 3, with 3 by setting Seq,,,(y") = j” for some
1 < j" < |8]; (i) we set ICIst([y/, x]) = k", where the k”-th BB-cluster
(By, By, Clusteryn, BTypegn) of the j”-th BB-sequence Uggl € X, is such
that Clustery» = Clst;(z); and (iv) we set IClst(|x,y']) = k", where the k"'-
th BB-cluster (By», By, Clusterym, BTypegn) of the Seq;(x)-th BB-sequence
aglf“(x)’geqi(x) € Ycusty(z) 18 such that Clustery» = i". As for the labeling £; 4,
we let Li11([xq,y']) = Fy and for all new intervals [z,y], that is, intervals
[z,y], with 2 = ¢/ or y = 3/, we put Li1([z,y]) € g(Clstiy1(v), Seq;1 (),
IClst;1([z,y])); the labeling of the other intervals does not change.
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B-defects are dealt with in a completely symmetrical way, and thus details
are omitted.

By fixing all the defects according to a fair strategy which guarantees

that no (L)-/(L)-/(B)-/{B)-request is indefinitely postponed and the final
domain is dense, we can force the limit structure L, = UieN L; to be a
fulfilling LIS for . O

To prove that the satisfiability problem for BBLL is in NP, we need to
show that the existence of a BBLL pseudo-model can be checked in polynomial
time. We have already shown that the length of an LL-sequence and of a BB-
sequence are bounded by 8- || —1 and 24-|¢|—3, respectively. However, this
is not enough. Polynomial bounds on the number of BB-sequences contained
in the ¥; component of an LL-cluster and on the size of the BBLL witness
function g are needed. The next lemma provides such missing bounds.

Lemma 4. Let ¢ be a BBLL formula which is satisfiable over Q. Then, there
exists a BBLL pseudo-model for o consisting of a BBLL-sequence (Ly, Ly,
Type1,%1), ..., (Ln, Ly, Typen, £y,) and an associated BBLL-witness g such
that (i) |X;| < 2|, for each 1 < i < n, and (1) |g(i,7,k)| < 2-|pl|, for
each triple (1,7, k) in the domain of g.

Proof. Let us prove item (i). Let (L, Ly, Typer, ¥1), - . ., (Ln, Ly, Typen, ¥y)
be a BBLL pseudo-model that violates it, that is, |¥;| > 2 - |¢|, for some
1 <i < n. We proceed as in the proof of Lemma 2. Let R; = {¢ € Cl(y) |
3j,k, and I such that F' € g(i,j, k) and o) € F'}. It holds that | R;| < 2-|¢].
Let S; be a minimal subset of ¥J; such that, for each ¢ € R;, there is U;;B € S;
that fulfills ¢, that is, ¥ € g(4, 7, k)) for some k. Since |S;| < 2 - |p|, we can
replace ¥; by S; in the pseudo-model. By repeating the same process to all
i such that |X;| > 2 - ||, we obtain a pseudo-model that fulfills condition
(). Ttem (i7) can be proved in a similar way, by replacing each ¢(i, j, k) such
that |g(i, 5, k)| > 2 - || with a minimal subset fulfilling all BB-requests. [

Thanks to Lemma 4, we can restrict our attention to BBLL pseudo-models
of polynomially-bounded size. First, the number of quadruples of the BBLL-
sequence of a BBLL pseudo-model is equal to the number of clusters of the
LL-sequence and thus it is bounded by 8-|¢|—1. Then, by Lemma 4 (item (i)),
for each quadruple (L;, L;, Type;, ;) in the BBLL-sequence, we can assume
the number of BB-sequences in ¥; to be bounded by 2 - |p|. Finally, the
number of clusters in each opz-sequence is bounded by 24 - |p| — 3. Hence,
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the total number of o 5-clusters in the BBLL pseudo-model, or, equivalently,
the total number of meaningful triples (4, j, k), is bounded by 2- || (8- || —
1) - (24 - || —3) =384 |p|> =96 - |¢]* + 6 - |¢|. Now, by Lemma 4 (item
(ii)), for each triple (4,74, k), |g(i,7,k)| < 2-|¢| and thus the size of g is at
most 2 - || - (384 - |o]> — 96 - |p]* + 6 - |¢|). An NP procedure to decide the
satisfiability of a BBLL formula can be obtained as follows: we first guess
a BBLL-sequence and an associated BBLL-witness, that satisfy the above
bounds, and then we check whether cardinality, featuring, consistency, and
fulfillingness conditions are fulfilled.

Theorem 3. The satisfiability problem for BBLL over Q is NP-complete.

6. EXPSPACE-complete fragments

In this section, we show that the satisfiability problem for AB (and AB)
over Q is EXPSPACE-hard via a reduction from the exponential-corridor tiling
problem, which is known to be EXPSPACE-complete [28].

Formally, an instance of the exponential-corridor tiling problem is a tuple
T = (T,t,,tv,H,V,n), where T is a finite set of tiles, ¢, € T is the bot-
tom tile, t+ € T is the top tile, H and V are two binary relations over 7T,
that specify the horizontal and vertical constraints, respectively, and n is a
positive natural number encoded in unary notation. The problem consists of
establishing whether there is a tiling function f : N x {0,...,2" =1} — T
of the infinite discrete corridor of height 2" such that: (i) for all z € N,
f(z,0) =t (it associates the tile ¢, with the bottom row of the corridor);
(i1) for allz € N, f(x,2"—1) = t (it associates the tile ¢+ with the top row of
the corridor); (ii) for all z € Nand 0 <y < 2", (f(x,y), f(x+1,y)) € H (it
satisfies the horizontal constraints H); (iv) for all € Nand 0 <y < 2" —1,
(f(x,y), f(x,y +1)) € V (it satisfies the vertical constraints V).

In the following, we reduce the exponential-corridor tiling problem to the
satisfiability problem for AB. The reduction exploits: (a) a correspondence
between the points p = (z,y) of the infinite corridor N x {0, ...,2" — 1} and
a suitable set of “unit” intervals labeled by the proposition letter u; (b) n
additional proposition letters to encode the binary representation of the y-
coordinate of each row of the corridor; (¢) |T'| proposition letters to represent
tiles in T'; (d) modalities (A) and (B) to enforce the constraints on f.

For an interval [z,y], let Q[Afy] be the set of intervals {[z,y]} U {[w, z] |
w > y}. In the rest of the section, even when not explicitly said, we focus
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on intervals in (]@"By}. Let [G*B]p be the following shortcut: [GAB]p = ¢ A
[A]p A [A][A]p. Modality [GAB] can be thought of as the global modality
for the fragment AB as it allows one to predicate about all intervals in the
relevant set g@?y]. This is formally stated by the next proposition, whose
straightforward proof is omitted (to keep the notation light, and with an

abuse of notation, in the rest of the section we omit the superscript A8 in
[GAB] and denote it simply by [G]).

Proposition 1. Let ¢ be an AB-formula and [x,y] be an interval. Then,
M, [z, y] IF [Gly if and only if M, [w, z] Ik ¢, for all [w,z] € Q[AxB

Yl

We start by building an infinite chain of unit intervals by means of the
following formula:

Pu-chain = (A)u N [Gl(u = (A)u) ANG](u = ~(B)u) A [G](u = =(B)(A)u)

Lemma 5. Let M, [z, y] IF @u_chain- Then, M features an infinite ascending
sequence of points xg < 1 < x9 < ..., such that:

(i) xo =y;
(i) [xi,xi41] is a u-interval, for every i > 0;
(111) if [w, 2] is a u-interval, then either w < xo, or [w,z] = [x;, xi41] for
some 1 >0, or x; < w for every j > 0.

Proof. The first conjunct of ¢, _chain guarantees the existence of a u-interval,
say it [xg, z1], with zy = y. The second conjunct states that every wu-interval
[w, z] is immediately followed by another one [w’, 2], with w' = z. This
is enough to prove (i) and (ii). To prove (iii), suppose, by contradiction,
that there exists a u-interval [w, z] such that [w, z] # [x;, x;11] for any i and
o < w < z; for some j. Three cases may arise. If w = z; and z < x;44, for
some 0 < i < j, then [x;,z;41] is a u-interval that satisfies (B)u. If w = x;
and z > x;41, for some 0 < ¢ < j, then [x;, 2] is a u-interval that satisfies
(B)u. Finally, if z; < w < x;11, for some 0 < i < j, then [z;,w] IF (A)u and
thus [z, z;41] IF (B)(A)u. The first two cases violate the third conjunct of
Pu—chain, the third one violates the fourth conjunct. The thesis follows. [

In the reduction, u-intervals are used to represent the points (z,y) of
the infinite corridor N x {0,...,2" — 1}. To correctly encode the vertical
and horizontal constraints of the tiling function, we need to identify the
y coordinate of the points of the corridor. To this end, we introduce the
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proposition letters vyo,...,y,—1 to represent the binary expansion of the y
coordinate and to “count” from 0 to 2" — 1. Let a,_1...ag be the binary
expansion of a number a, with 0 < a < 2" — 1, and let k be the index such
that ay = 0 and a; = 1 for all i < k, if such an index exists; otherwise (that
is, when all digits are equal to 1), we put & = n. The binary expansion
bn_1...bp of a+1 mod 2" can be defined as

0 ifi<k
b,=<1 ifi=k

a; otherwise

To encode the above definition of the successor, we make use of two auxiliary
formulae ¢!, and ¢}, ., which are defined by induction on 7 as follows:

' T ifi=n
T { ((yz- AAY A Y:)) V(=i A (A) (A ﬁyl.))>wgl fi<n

P T A A A ) A Y (A (AN A ) AT i<

Intuitively, gpfiq forces two adjacent intervals to assign the same truth value
to the proposition letters y;, ..., y,—1, while ¢! . guarantees that the binary
number represented by the letters y;,...,y,_1 (ignoring the least signifi-
cant digits) is incremented by one on the next interval. To formally prove
that the above formulae match the intuition, we define an auxiliary function
bin([z, y|, j) that, for every interval [x,y] and each index 0 < j < n, returns
the number encoded by the most significant proposition letters y;, ..., yp1:

bi ) = 277

in([z, ], 5) Zie{ieN | j<i<n and M,[z,y|lFy;}

The next lemma proves that the formulae goiq and ¢!, . actually encode the
successor (modulo 2") of a y-coordinate.

Lemma 6. Let M, [x,y] Ik Yu_chain and let zo,xq, . .. be the sequence of points
of Lemma 5. Then, for every [x;,z;] and each 0 < k < n, it holds that:

(i) [z, ;] IF @k, if and only if bin([z;, zj14], k) = bin([z;, 2], k);
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(ii) [xi,x] - ©F. if and only if bin([z;, x;41], k) = bin([z;, z;], k) + 1
mod 2"7*.

Proof. The proof is by (backward) induction on k.

Base case: k =n — 1. First, assume that [z;, z;] IF @Zq‘l. Two cases may
arise. If [z;, x;] IF yn—1, then [z;, z;] IF (A)(u A yn—1), and thus, by Lemma 5,
[z, xj41] Ik yp—1. Similarly, if [z;,2;] Ik —y,—1, then [z, ;1] IF =y,
and thus bin([zj, z;41],n — 1) = bin([z;, zj],n — 1). As for the converse
implication, assume that bin([z;,zj11],n — 1) = bin([z;, z;],n — 1). Then,
either y,,_ is true over both [z;,z;] and [z;,x;11] or it is false over both of
them. Both scenarios imply that [z;,z;] IF @7 ", and thus (i) is proved. To
prove (ii), suppose that [z;, ;] IF ¢ ', By an argument similar to the above
one, we can prove that [z;, z;] IF y,_; if and only if [z}, z;41] IF —y,_1, thus
showing that bin([x;, z;41],n—1) = bin([z;, z;],n—1)+1 mod 2. As for the
converse, suppose that bin([z;, zj41],n — 1) = bin([z;, z;],n — 1) +1 mod 2.
Then, either y,_; is true over [z;, z;] and false over [z}, z;41], or vice versa.
Both scenarios imply that [x;, z;] IF @'

Inductive step: k < n—1. Let us assume () and (i) to hold for k+1. To
prove (i), suppose that [z;,z;] IF F,. Two cases may arise. If [z, 2] I yg,
then [x;, x;] IF (A)(u A yx), and thus, by Lemma 5, [x;, xj41] IF yg. Similarly,
if [x;,z;] IF —yg, then [z;,x;14] Ik —yz. Moreover, [z;,x;] IF gpfq implies
[w;, ;] IF @EM, and, by the inductive hypothesis, bin([z;, z;1],k + 1) =
bin([x;, z;], k + 1). Since the truth value of y; is the same over [z;, z;] and
[z;,2j41], we can conclude that bin([z;, z;11], k) = bin([z;, z;], k). To prove
the converse implication, suppose that bin([z;, x;+1], k) = bin([z;, z;], k). It
immediately follows that the truth value of y; is the same over [z;,z;] and
[z;,xj41], and that bin([z;, z;41], k + 1) = bin([z;, x;], k + 1). It follows that
[z, 2] = (g A (A (w A y)) V (=g A (A)(u A —y;)), and, by the inductive
hypothesis, we also have that [z;, ;] IF @& Thus, [z;, z;] IF ¢F,.

To prove (i), suppose [z;, z;] IF @k . Two cases may arise. If [z;, ;] IF
Yk, then [z, z;] IF @it and [2;,2;41] - =y By the inductive hypoth-
esis, bin([z;,zj41],k + 1) = bin([z;, 2],k + 1) + 1 mod 2"~ *+V Then,
by definition of bin, bin([z;, z;41], k) = 2 - bin([z;, zj41], b +1) +0 = 2 -
(bin([xy, 7], k+1)+1 mod 2"~ +D) = 2.(bin([x;, x;], k+1)+1) mod 2" * =
bin([z;, z;], k) +1 mod 2" 7%, If [z, ;] IF =y, then [z;, z;] IF @E and [z,
xj41) IF yg. By the inductive hypothesis, bin([z;, z,41], k+1)=bin([z;, 2], k+
1). Then, bin([x}, ;41], k) = 2-bin([x;, j41], k+1)+1 = 2-bin([z;, z;], k+1)+
1 = bin([z;, z;], k) + 1. Since y; is false over [z;, x;], bin([z;, x;], k) < 2"7F -1,
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and thus bin([z;, z;], k) + 1 = bin([z;, z;], k) + 1 mod 2"

As for the converse implication, assume bin([x;, z;41], k) to be equal to
bin([z;, 2], k) + 1 mod 2"7*. Two cases may arise. If [z;,z;] IF —yx, then
[z, xj41] IF yy, and bin([z;, z;41], k +1) = bin([x;, z;], k+1). Then, it follows
that [z;, z;] Ik (A)(uAy). By (4), [zi, z;] IF @5, and thus [z, 2;] IF of,.. If
[z, z;] IF yg, then [z;, x;41] IF —yx and bin([z;, ;41], k+ 1) = bin([z;, 2], k+
1) + 1 mod 2"~*+1_ Tt follows that [z;,z;] IF (A)(u A =), and, by the
inductive hypothesis, [z;, z;] IF ¢Ett Thus, [z;, 2] IF ¢k, O

Formulae ¢!, and ¢}, are used to place the y coordinate of the points of
the corridor on the correct u-interval. Let ¢, be defined as follows:

(A) (U A No<icn ﬁyi>/\
oy = [G] /\O§i<n<(yi < [B]yi) A (ﬂyi AR [B]ﬁy»)/\
[G](u = ¢h,e)

Lemma 7. Let M, [z,y] I+ ©u_chain N\ @y and let zg,z1,... be the se-
quence of points of Lemma 5. Then, for every interval [x;,z], it holds that
bin([z;, 2],0) =4 mod 2".

Proof. We prove the thesis by induction on 7. As for the base case, consider
an interval [z, 2], with xy = y. By the first conjunct of ¢,, it holds that
[z0, z1] IF —y;, for each j € {0,...n — 1}. By the second conjunct, for all z,
it holds that [z, 2] IF ~y;, for each j, and thus bin([xo, 2],0) = 0. As for the
inductive step, let ¢ > 0 and let the thesis hold for the interval [z;_1, z;]. By
the third conjunct of ¢,, it holds that [z;_1,2;] IF ¢?, .. Then, by Lemma 6,
bin([x;, 2;41],0) = bin([z;_1,2;],0) + 1 mod 2", and thus, by the inductive
hypothesis, bin([x;, z;41],0) = ¢ mod 2". By the second conjunct of ¢,, we
can conclude that bin([z;, 2], 0) = bin([z;, z;41],0) for all z > ;. O

Now, we can use u-intervals to represent the tiling function f : N x
{0,...,2" — 1} — T. Let T = {t1,...,tx} be the set of tiles. We first
associate a unique tile f(p) with each point p in the corridor as follows:

or =[G (u V. tz-) NAN, .. " At).
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Then, we enforce the constraints (¢)—(iv) on the tiling function:

1 = [G] <U A /\0§i<n Y = M);
o1 = [G] <U A /\0§i<n yi — tT>§
o =G\, (6% ABI(AY = —8) A (B)ts) — \/

oy = [C] /\&Sk (ti — \/(m)ev(Aﬂj).

The formula encoding the tiling problem is:

(A)t;);

(titj)eH

OT = Pu—chain NPy N@r N1 N1 ANpg A py.

Lemma 8. Let M, [x,y] IF o7 and let xg,x1, ... be the sequence of points of
Lemma 5. Then, for every interval [x;,x;+1], it holds that:

(1) there exists a unique tile t; such that [z;, ;4] IF t;;

(i) if i mod 2" =0, then [z;, x;1] IF ) ;

(#i) if i mod 2" = 2" — 1, then |x;, xiq] IF tr;

(Z’U) Zf [ZEZ‘, xi—i—l] [+ tj and [ZL’i+2n7ZL’Z’+2n+1] [+ tm; then (tj,tm) S H,'
(v) if [xi, xisa] IF t; and [xi11, Tigo] IF t, then (t,t,) € V.

Proof. Let M, [z,y] IF o7 and let 9 < 21 < 23 < ... be the infinite as-
cending sequence whose existence has been proved by Lemma 5. Item (i)
immediately follows from ¢;. To prove (i7), let [z;, x;11] be a u-interval
such that ¢ mod 2" = 0. By Lemma 7, bin([z;, z;11],0) = 0 and thus
[z, xiq] IF /\O§j<n ;. By @1, we can conclude that [x;, z;41] IF t,. Item
(#7i) can be proved as (i7). To prove (iv), suppose, by contradiction, that
there exist two intervals [z;, ;1] and [z;40n, Z;19n 1] such that [z, z;4] IF
t; and [Titon, Titoni1] IF &, but (¢,t,,) ¢ H. Consider now the inter-
val [z, Z;4on]. Since i mod 2" = ¢ + 2" mod 2", by Lemma 7, it holds
that bin([z;, x;420],0) = bin([x;42n, Zir2n11],0). By Lemma 6, we have that
[, Tisan] IF @0, Moreover, since for each j € {i+1,...,i+2n — 1}, it
holds that bin([z;, ;41],0) = 7 mod 2" # ¢ mod 2" = bin([z;, z;],0), by
Lemma 6, we have that [z;, z;] IF ﬂgogq, for each j € {i +1,...,i+2n — 1},
and thus [z, ;] IF [B]((A)u — —¢?,). Now, since [z, zi41] I t;, by op, it
follows that (t;,t,) € H, against the hypothesis that (¢;,%,,) ¢ H. Finally,
(v) immediately follows from ¢y . O
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The next lemma proves the correctness of the encoding.

Lemma 9. The AB-formula @1 is satisfiable if and only if T = (T,t,,t7, H,
V,n) is a satisfiable instance of the exponential-corridor tiling problem.

Proof. Let us first assume o7 to be satisfiable, that is, there are an interval
model M and an interval [z,y] such that M, [z,y] IF p7. By Lemmas 5-8,
we can easily check that M represents a satisfiable instance of 7.

To prove the converse direction, let 7 = (7, ¢, ,tr, H,V,n) be a satisfiable
instance of the tiling problem and let f : Nx{0,...,2"—1} + T be the corre-
sponding tiling function. A model over Q that encodes f can be obtained as
follows. First, we build the infinite chain of u-intervals [0, 1], [1,2],[2, 3], .. ..
Then, we define the enumeration g(z,y) = x - 2" +y that associates a unique
natural number with every point p = (z,y) € Nx{0,...,2" —1}. For every
point (z,y), we put the interval [g(z,y), g(z,y) + 1] in the valuation of the
proposition letter corresponding to the tile f(z,y). It is easy to define a
valuation for all the other proposition letters that conforms to their intended
meaning, as shown in the above encoding, thus obtaining a model M such
that M, [—1,0] IF ¢r. O

A similar reduction can be given for the fragment AB.

Theorem 4. The satisfiability problem for AB and AB over Q is EXPSPACE-
hard.

7. Non-primitive recursive fragments

To complete the picture given in Figure 2, we just need to add one missing
piece concerning the non-primitive recursive fragments. The non-primitive
recursiveness of AAB and AAB has been shown in [15]. Here, we prove that,
in fact, all fragments containing AB or AB are non-primitive recursive. In the
following, we shall make an essential use of lossy counter machines. They
can be viewed as a variant of Minsky counter automata where transitions
may non-deterministically decrease the values of counters. A comprehensive
survey on lossy/faulty machines and the relevant complexity, decidability,
and undecidability results can be found in [29].

Formally, a (Minsky) counter automaton is a tuple A = (Q, qo,C, A),
where () is a finite set of control states, gy € Q) is the initial state, C' =
{c1,...,cx} is a finite set of counters, whose values range over N, and A C
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Q x L x Q, with L = {inc,dec,ifz} x {1,...,k} (instruction set), is the
transition relation. A configuration of A is a pair (¢, v), where ¢ € @ and
v € N¥ is a vector of counter values (we denote the i-th component of © by
v;). There is a transition from configuration (¢,v) to configuration (¢’,v")
via instruction [, (¢, v) AN (¢',v") for short, if, and only if, (¢,1,¢') € A and
either (i) I = (inc,i), v; = v; + 1, and v} = v; for each j # i (increment),
or (i)l = (dec,i), v; = v; — 1, and v} = v; for each j # i (decrement), or
(1)l = (ifz,i), v; = 0, and v} = v; for all j (test). A runis a finite or infinite
sequence of configurations such that, for every pair of consecutive configura-
tions (¢, v), (¢',v), (¢,0) AN (¢',v") for some I. Lossy counter machines differ
from Minsky counter automata for the possible presence of faulty transitions
in a run, i.e., transitions that nondeterministically decrease the value of some
counter. Formally, we have a faulty transition (q,v) L>T (¢',7") if, and only
if, there is a transition (g, v4) AN (¢, v%) with both v > vy and v} > ¥, where
the ordering > is defined component-wise in the obvious way. The non-
termination problem for lossy machines is the problem of deciding whether a
lossy machine A has at least one infinite run starting from the initial config-
uration (qo,0). In [29], it has been shown that this problem is non-primitive
recursive. In the following, we reduce the non-termination problem for lossy
counter machines to the satisfiability problem for AB over Q.

Let A = (Q,q,C,A) be a lossy counter machine. We build an AB-
formula ¢4 which turns out to be satisfiable over Q if and only if A has at
least one infinite run starting from the initial configuration. The infinite run
is encoded (left-to-right) to the left of the interval [z, y] where the formula is
evaluated by exploiting the fact that, for all ' < z, there are infinitely many
intervals between 2’ and x. We shall make use of the proposition letters
u for wnits, qo,...,qq-1 for states, conf for configurations, c ..., co for
counters, and corr, corry, ..., corrg| for correspondences. Proposition letters
c1...,¢c| allow us to encode the counters of A: given a configuration where
the value of the i-th counter is n, the corresponding conf-interval will contain
precisely n ¢;-intervals (for every proposition letter p, we call p-intervals those
intervals that satisfy p). Additional proposition letters will be exploited in
the reduction for technical reasons.

Given an interval [z, y], let Q@?’y]

from [z, ] by AB-formulae, that is, Qé‘?y] = {[z,y]}U{[z, 2] | z < y}U{[w, 2] |

z < z}. In the rest of the section, even when not explicitly stated, we focus

be the set of intervals that are reachable
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on intervals in g[éi/]. Let [G"B]y be the following shorthand: [GAB]p =

¢ A [Blo A [Alp A [A][A]p. Modality [GAB] can be thought of as the global
modality for the fragment AB, as it allows one to predicate about all intervals
in the relevant set [/;'?y]. This is formally stated by the following proposition,
whose proof is straightforward and thus omitted (as we did in the previous
section, to keep the notation light, and with an abuse of notation, from now

on we omit the superseript A8 in [G*B] and denote it simply by [G]).

Proposition 2. Let ¢ be an AB-formula and [x,y] be an interval. Then,
M, [z,y] IF [G]e if and only if M, |w, z] IF ¢, for each [w, z] € g[{;z],

As a preliminary step, for a given proposition letter p, we show how to
prevent p-intervals from being proper prefixes of or to start inside other p-
intervals. To this end, we use an auxiliary proposition letter p;, (the subscript
‘0’ stands for ‘beginning’). Let no_overlap(p) be a shorthand for the formula:

[G(p = ~(B)p) A [G](p = [Blps) A [Gl(p — =(A)py).
It can easily shown that the following proposition holds.

Proposition 3. If M, [z,y] IF no_overlap(p), then no pair of distinct p-
intervals [w, 2], [w', 2'] € g{;?y] is such that w < w' < z.

The first step in the construction of the formula 4 is the discretization
of the domain, which makes an essential use of the proposition letter u. Let
Vu—chain be the formula:

O onin — { (A)(A) (u A start) N\ [A]((A)u — (B)u) A no_overlap(u)A
e (G](start — [A]—u A [A][A]-u) A [G](start — )

The next lemma shows that, when evaluated over an interval [z, y], ©u_chain
generates an infinite chain of u-intervals, which starts with a start-interval
and is confined to the left of [z, y].

Lemma 10. Let M, [z, y] IF ©u—chain. Then, M features an infinite sequence
of points xg,x1,..., with xg <x1 < ...<w3; < ...<x <y, such that:
(1) for everyi >0, [x;, x;i11] is a u-interval;
(i1) no other u-interval [w, z] exists with z < x; for some i > 0;
(11) [xo, 1] is a start-interval and no other start-interval [w, z] exists with
z < x; for some i > 0.
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Proof. The first conjunct of ¢, _chain guarantees the existence of a u-interval,
say it [xo, 1], with 21 < x, which is a start-interval as well. The second
conjunct states that every w-interval [w, 2|, with z < z, is immediately fol-
lowed by another u-interval [z, 2’|, with 2/ < x. Thus, (i) holds. By way of
contradiction, assume that there exists a w-interval [w, z|, with z < z; for
some ¢ > 0, such that [w, 2] # [z}, xj11] for every j > 0. We must distinguish
two cases. First, if z < z¢, then there would be a start-interval preceded by
a u-interval, thus contradicting the fourth conjunct of ¢, _cpain. Otherwise,
if z; < z < w;41 for some ¢ > 0, then, by the second conjunct of v, _chuin,
there would be a u-interval (different from [x;, x;,1]) that starts at z and ends
at some point to the left of x, which contradicts no_overlap(u). Therefore,
(1) is proved. Finally, we already proved the existence of the start-interval
[0, 1], which is also a u-interval, and, now, we show that there are no other
start-intervals [w, z], with z < x; for some ¢ > 0. By way of contradiction,
assume that there exists one such interval [w,z]. By the last conjunct of
Ou—chain, |W, 2] is also a u-interval. By item (ii) above, [w, z] = [x;, x;1] for
some ¢, which leads to contradiction with the fourth conjunct of v, cpein. [

The sequence of u-intervals is used to encode a run of the machine: each u-
interval corresponds to either a state (g;-intervals) or a counters’ instance (¢;-
intervals); states and counters’ instances will be then suitably wrapped into
configurations. To handle increment and decrement transitions, we introduce
the proposition letters ¢; or ¢; (1 < i < |C]), respectively, that correspond
to special counters’ instances. Let OC = {¢; |0 <i <|Q] -1} U{¢; |1 <
i < |C|} be the set of proposition letters for states and counters’ instances.
The correct behaviour of these proposition letters, as well as of proposition

letters ¢ and ¢, is forced by the following formula:

Dunits = { [GI(u = Vipeae P) MG Ny, pocac pisp, (P1 = P2)A
units [G] Nieqa...jen ((cq = )N (e =)

The next formula forces the existence of an infinite sequence of configura-
tions (conf-intervals). The first configuration is associated with the u-interval
[0, 1] (start-interval), and it contains the initial state ¢y only. This conforms
to the requirement that the value of each counter in the initial configuration
is 0. Moreover, we guarantee that (i) the endpoints of configurations are also
endpoints of u-intervals and (i7) every configuration contains a state, which
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is associated with its last u-interval.

[G](start — conf A qo) A [A]((A) conf — (B)conf )\

Deonf—chain = § no-overlap(conf) A [G](start —>_[A]—|conf /\_[A] [A]=conf)A
[G](conf — (uV (B)u)) A GI((A)conf < (A) Vo, 10j-1 @)

Lemma 11. Let M, [z, y] IF @u—chain N\ Punits N\ Peon f—chain and let T, x1, . .. be
the sequence of points of Lemma 10. Then, M features an infinite sequence
of points xj, xy, ..., with xj, =xo < ) =21 <) <2y < ... <2, <...<
x <y, such that:

(i) [x(, 2] is a qo-interval and, for alli >0, [, . ] is a conf-interval;

(i1) no other conf-interval [w, z| exists with z <z, for some i > 0;

(iii) for all i > 0, there exist o', 2", and j, with o’ < x} , 2" > x}, and
0 <j < |Q|—1, such that [z},2'] is a u-interval and [x",x] ] is a
gj-interval;

w) for alli >0, no q;-interval [w, 2| exists with . < z < x} ;.
J 7 i+1

Proof. By the first conjunct of @eonf—chain, 20, 1] (= 2o, 21]) is a go-interval.
Thanks to the second conjunct of @Yeonf—chain, the existence of an infinite
sequence of conf-intervals can be proved by exploiting the same argument
used in the proof of item (i) of Lemma 10. This proves (i). To prove (i),
we can proceed as for item (7i) of Lemma 10, by using the third and fourth
conjunct of Yeonf—chain- Let us consider now (#i7). By the fifth conjunct of
Peonf—chain, €Very conf-interval [z}, « ] is either a u-interval or it is started
by a u-interval, and in either case it follows that there exists 2’ < 2}, ; such
that [2,2'] is a u-interval. Moreover, by the sixth conjunct of Yeonf—chains
there exist 2" and j, with 2” <z, , and 0 < j < |Q|— 1, such that [2", 2] ]
is a g;-interval. By the first conjunct of punits, (2", 2}, ;] is a u-interval as
well. To complete the proof, we need to show that z” > z.. By way of
contradiction, let us assume that 2" < z}. By the fifth conjunct of Yeon r—chain,
there is a u-interval starting at z;, and, since 2" < z < «},, it starts inside
the u-interval [2”, 27, ], thus violating the third conjunct of Yy_chain- So, (i77)
holds. Finally, as for (iv), assume, by way of contradiction, the existence of
two indexes i and j such that [w, 2] is a g;-interval and 2} < z < ] ,. By
the sixth conjunct of Yconf—chain, there is a conf-interval ending at z, which
contradicts item (i) of the lemma. O

The formula built so far constrains every conf-interval to contain exactly
one g;-interval (one state), all the other u-intervals being counters’ instances.
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Figure 5: A (fragment of a) model satisfying ¢ 4 (for the sake of readability, we omit the
symbol corry, that labels all the prefixes of corr intervals).

We now show how to force, for each 1 < ¢ < |C/|, the number of counters’
instances (¢;-intervals) in every conf-interval to be equal to the value of the
1-th counter in the corresponding configuration of the run being encoded.

Here the differences between a Minsky counter automaton and a lossy
counter machine come into play. In the former, the values of the counters are
univocally determined by the transition: the values of the counters affected
by the transition operation must change accordingly, while the ones of the
others remain unchanged. In the latter, it suffices to guarantee that no
counter is ever incremented, with the possible exception of the ones involved
in an increment operation, and to force the value of the counters involved in
a decrement operation to be decreased at least by one. It is worth noticing
that a counter’s value can possibly decrease even in case it is involved in an
increment operation, due to a faulty behaviour of the machine.

To encode these constraints, we make use of the additional proposition
letters corr, corry, ..., corngy, corry,, and corry*, besides proposition letters
u, q;, with i € {0,...,]|Q| — 1}, and cj,cj,cj*, with j € {1,...,]|C|}. The
idea is that ¢/ -intervals (resp., c; -intervals) are used to encode increment
(resp., decrement) transitions, while corr;-intervals maintain correspondence
between c¢;-intervals in adjacent configurations, in order to prevent the addi-
tion of ¢;-intervals unless an increment transition occurs (see Figure 5).

More precisely, every ci-interval [x,y] that is not labeled with ¢ corre-
sponds to a ¢-interval [w, z] in the previous configuration. Such a correspon-
dence is encoded by labeling the interval [z, 2] with corr;. On the contrary,
ci-intervals that are also labeled with ¢;” do not correspond to any c;-interval
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(in the previous configuration) because they are added to encode an incre-
ment transition. Similarly, a c¢;-interval that is also labeled with c; does
not correspond to any ¢;-interval in the next configuration: it disappears in
order to simulate a decrement of the i-th counter. Notice that a c¢; -interval
occurring in a configuration encodes an increment transition leading to that
configuration, while a ¢; -intervals occurring in a configuration encodes a
decrement transition starting from that configuration. Finally, proposition
letters corr, and corry* are used to force corr-intervals to connect intervals
belonging to consecutive configurations.
The above conditions are encoded by the following formula.

(ci A=) — (A)corr) A

/\z’:17...,|C| corr; — corr) N [G]((A) corr — (Ayu)A
(cirr — (\/Z.:072|Q|_1(qi V (B)q;) V (B)corry*))A
(A)corry* — (A)u)A B

(A Nizo,.jgi—1 @) = —(A)corry™)A

orr — [Blcorry)\

\/i:ow_"@_1 q:;) = [A](corry — corry®))A
z‘:O,...,|Q\—1(COTTb* — =g; A\ [B]=gi) A

(corry* — [B]=corry*) A [G)(corr — [B]—corr)

Q

>A

]

G]

Gl

G]

_ ) (Gl
Peorr c
G]

G]

G]

G]

The correctness of the encoding is formally stated by the next two lemmas.

Lemma 12. Let M, [x,y] IF @u—chain N Punits /N Peonf—chain /\ Peorr and let
xy, ), ... be the sequence of points of Lemma 11. Then, for each 1 < i < |C/|,
it holds that:

(i) for every c;-interval [w, 2], which is not a ¢; -interval, there exists w' <

w such that [w',w| is a corr;-interval;

(i1) for every corr;-interval [w, z], there exists w' < w such that W', w] is a
ci-interval, but not a c; -interval;

(ii) for every corri-interval [w, 2], if 2, < z < 2’ ,, for some j > 0,
then x% < w < %, that is, the conf-interval the right endpoint of
a corri-interval belongs to is the successor of the conf-interval its left
endpoint belongs to.

Proof. Ttem (i) directly follows from the first conjunct of @ee-, and item (i7)
is an immediate consequence of the second one.
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To prove item (iii), by way of contradiction, let [w, z] be a corr;-interval
such that 2%, , <z <z, for some j > 0, and either w > z%,, or w < 2.
Notice that, by the third conjunct of @eo, [w, 2] is a corr-interval as well.

Let us assume that w > 2%,,. By item (iii) of Lemma 11, there is 7,
such that [T, 2}, ,] is a gi-interval, for some 0 < k < |@Q| — 1. By the third
conjunct of ..., there is a u-interval ending in z and, by Lemma 10, there is
also a u-interval starting at z. Therefore, it holds z < Z,,5 (otherwise, there
would be two overlapping u-intervals). Since 2;,; <w < z < Tj9 < )y, by
item (iv) of Lemma 11, neither [w, z] nor its prefixes are g,,-intervals, for any
0 <m < |Q|—1. Thus, the fourth conjunct of ... implies the existence of a
corry*-interval [w, 2], with w < 2z’ < z. By the fifth conjunct of .y, there is
a u-interval ending in 2’ and, by Lemma 10, there is also a u-interval starting
at 2/ and ending not later z (otherwise, there would be two overlapping u-
intervals). Let [2/,2"] be such an interval. Once again, since z7,, < w <
2 < 2" <z <, by item (iv) of Lemma 11, [/, 2"] is not a g,,-interval,
for any 0 < m < |Q[ — 1. Hence, [, 2"] IF (A A2 011 7@) A (A)corn,*,
thus contradicting the sixth conjunct of @

Now, suppose that w < 2. Two cases are possible. If j = 0, then, by
item (774) of Lemma 10 and by Lemma 11, [z}, 2, ,] = [}, ;11] is the only
start-interval, and there is no wu-interval to the left of it, thus contradicting
item (i7) above. Let us assume j > 0. By item (i7i) of Lemma 11, there are
two points 7; > 2%, and 711 > @ such that [7;, 2] and [Z41, 2] are,
respectively, a gp-interval and a ggr-interval, for some 0 < k' k" < |Q| — 1.
By item (ii) above, w < Z; (otherwise, there would be two overlapping u-
intervals). By the seventh conjunct of weor, (W, Zj41] is a corry-interval and,
by the eighth conjunct of ..., it is a corr,*-interval as well. We distinguish
three cases. If w = 7; and 2, = Z;,, then [Z;, 2] is both a g- and a corr,*-
interval, thus violating the ninth conjunct of pcor,. If w = Z; and x; < Tjy1,
then the gy-interval [7;, 2] starts the corr,*-interval [w, T;14], thus violating
again the ninth conjunct of .. If w < Z;, then, by the seventh conjunct
of Yeorr, (W, T;] is a corrp-interval and, by the eighth conjunct of per, it is a
corry*-interval as well, and thus the corr,*-interval [w, ;] starts the corr,*-
interval [w, Z;41], thus violating the tenth conjunct of @.e. O

Lemma 13. Let M, [z, y] IF ©u_chain N Punits N\ Peonf—chain N Peorr- For €v-
ery pair of consecutive conf-intervals [, x| and [x),, 2% ,,], with j > 0,
where, for 1 < i < |C|, the number of c;-intervals in [x), 2%, ] and [2, 1, 2]
is respectively n and n’q, it holds that:
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(i) if [« ;+17 o] does not contain ¢ -intervals, then n' | < n';
(i1) if [, 2, 5] contains (exactly) one cf -interval, then n! ., S nt +1;
(i) if [, 2 1] contains a c; -interval and (241, @4 5] does not contam c*-

intervals, then nJJrl < nj 1.

Proof. For each c¢-interval [w, 2] contained in [, ,,2/,,] that is not a ¢;-
interval, (a) there exists a corr;-interval [w', w] (Lemma 12 item (7)), (b) there
exists a ¢;-interval ending in w’ (Lemma 12, item (i7)), and (¢) such a ¢;-
interval is contained in |27, z ' +1] (Lemma 12, item (i4)). Thus, for each c;-
interval in [, ¥ ] there is a corresponding ¢;-interval in [27, 2%, | (unless
such a ¢;-interval is also a c¢; -interval). Moreover, by the tenth conjunct
of Yeorr (in particular, [G](corr — [B]—corr)), two distinct ¢;-intervals in
(2415 x]+2] cannot be linked to the same ¢;-interval in [x], v’y,]. Hence, if
[ 41, 2%,5] does not contain ¢ -intervals, then n},, < n!, and (i) holds.
As for (ii), the proof is basmally the same. We only need to observe that
there might be a c;-interval in [z, , 2, ,], namely, the one which is also a
¢/ -interval, that has no corresponding c;-interval in [z, 2] (due to the
first conjunct of Yeor-). The thesis immediately follows. A similar argument
works for (iii). We only need to observe that there must be at least one

ci-interval in [27, 27, ], namely, the one which is also a ¢; -interval, that does
not correspond to any ¢;-interval in [27,,,2%,,] (due to the second conjunct
of Yeorr). The thesis immediately follows. O

To encode the transitions of the run, we introduce an auxiliary proposi-
tion letter confiy,q) for each (¢,l,¢") € A. These proposition letters hold
on conf-intervals and carry information on which transition produced the
corresponding configuration. To start with, every configuration, but start, is
the result of exactly one transition, as formally stated by the formula:

Peonf = { Clfcon 1 “start) < (\/(q,l,q’)EA Conf(q,l,q’)))/\
[G] /\(q,l7q/)eA(CO7’Lf (g,1,q") _> (/\(q”,l’,q’”)#(q,l,q’) _‘COTLf(q//J/’q///)))

The next four formulae encode the effects of transitions by imposing suit-
able constraints on conf-intervals on the basis of the transitions that generate
them. The first formula g;,. forces every configuration produced by an in-
crement transition (i being the involved counter) to contain at most one
c-interval (the first three conjuncts of ¢;,.). In order to do that, the new
auxiliary proposition letter c;fb is used to label intervals whose right endpoint
coincides with the right endpoint of a ¢; -interval (first conjunct of ¢;,.), and
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whose left endpoint coincides with the left endpoint of the conf-interval to
which the relevant ¢/ -interval belongs (second conjunct of @;,.); then, by
imposing that a czyb—mterval cannot be a prefix of another one (third con-
junct of ¢;,.), we are guaranteed that a configuration contains at most one
c-interval. Notice that a configuration produced by an increment transition
may possibly contain no ¢ -intervals at all, due to a faulty behaviour of the
machine that suppressed the effect of the increment. Moreover, ¢; -intervals
are allowed only within configurations produced by increment transitions
(last conjunct).

[G] Nici._ o) ((A) ey, 2 (A)ei)A
oo~ L O A (€5 = (Aeons A [BI-conf)
e [G] /\PL ..,\C|( — [B ]_'C:—b)/\
[G] /\Z 1, ._,\C|((C‘mf N (B) ;Lb) — Vq7q’EQ Conf(%(inc,i),q’))

The next formula @ge. is similar to @;,., the only difference being that a
faulty behaviour cannot suppress the effect of a decrement. Thus, a conf-
interval corresponding to a configuration produced by a decrement transi-
tion (¢ being the involved counter) is met by a conf-interval containing a
c; -interval (recall that a c¢; -interval occurring in a configuration encodes an
increment transition leading to it, while a ¢; -interval occurring in a configura-
tion encodes a decrement transition starting from it). In the next definition,
¢; Plays the role played by ¢, in the definition of @iy

..,|C\(<Z>C;b & (A)e )N

A
Nizt..ici(cip = ((A)conf A [Bl=conf)) A
N

i=1,.1o)(Cip = [B]__'Ci_,b)/\
/\izl,...,|0\((00”f A (A)(conf N <B>Ci_,b)) < Vq,q/eQ Conf(q,(dec,i),q/))

The next formula ;. states that a conf-interval corresponding to a con-
figuration produced by a test transition (i being the involved counter) is met
by a conf-interval that does not contain ¢;-intervals.

Dire — [G] /\i:l,...,|C’|((<Z>C’i - [Z]Ciz,b) A (_‘<_Z>Cz‘ - [Z]__'szb))/\
iz G] /\(q,(ifz,i),q’)EA(conﬁQa(ifzvi)aq/) — (A)(conf A [B]_‘Cf,b))

Finally, the formula ¢ ensures that source and target states of tran-
sitions are correctly encoded by the relevant configurations:

Pstate = [G] /\ ((Conf(q,l,q/) — <Z>q) A (<Z> COnf(q,l,q’) — <Z>q/))

(g,l,¢")eA
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Let PA = Pu—chain A Punits A Peonf—chain A Peorr A Peonf A Pine A Pdec A Pifz A Pstate-

Lemma 14. Let M, [z,y| Ik 4. For every pair of consecutive conf -intervals
[, 2] and [2, 1, 2 5], with j >0, it holds that:
(1) if [y, 2 y,] contains a cf -interval, then it is a conf(q (inc,q),q)-interval
and it contains exactly one c; -interval;
(4) [, 2% ] is a config (dec,i),qy-interval if and only [z}, 2] contains a
c; -interval; moreover, [z}, 2, ] contains at most one c; -interval;
(did) if [2) 41, 7] z'ls a CONf(q(ifzi),q")-interval, then 2%, 2%, || does not contain
any c;-interval;
() if [2),1, 7o) is a confgu,e)-interval, then there exist ¥’ and 2" such
that [2', 2%, ,] is a q-interval and [2", ) ,,] is a q'-interval.

Proof. The first two conjuncts of ;. force the proposition letter c;fb to hold
exactly over intervals [w, 2] such that, for some j >0, (a) w = 2, (b) 2 <
z < xf,;, and (c) there exists w' > x such that [w',2] is a ¢ -interval.
This allows us to conclude that a conf-interval contains a ¢ -interval if and
only if among its prefixes there is a cifb—interval. More precisely, we can pair
each ¢ -interval contained in a conf-interval with a corresponding prefix c;fb—
interval. The third conjunct of ¢;,. ensures that no conf-interval contains
more than one c;':b—interval as prefix, and the last one guarantees that every
conf-interval containing a ¢ -interval as a prefix is a conf(q (inc,i),q)-interval.
Therefore, (7) holds.

As for (i7), the first two conjuncts of ¢ force the proposition letter c;,
to behave (with respect to ¢; -intervals) exactly as ¢, does (with respect to
c-intervals). Thus, the last conjunct forces every conf-interval met by a
conf-interval that contains a c; -interval to be a confiy,(dec,s),q)-interval (left-
to-right direction) and, conversely, every conf(q (dec,i),¢)- interval to be met
by a conf-interval containing a ¢; -interval (right-to-left direction). As in the
previous case, the third conjunct ensures that no conf-interval contains more
than one c; - interval.

As for (i17), the first conjunct of ;. forces the proposition letter ¢, to
hold exactly over intervals [w, z] such that z is the right endpoint of a ¢;-
interval. Hence, a conf-interval contains a ¢;-interval if and only if it has a
c;p-interval as a prefix. The second conjunct ensures that every config,ifz.i),q')-
interval is met by a conf-interval that does not contain any c;,-interval as a
prefix.

Finally, (iv) immediately follows from ¢gqqe. O
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The next lemma proves the correctness of the proposed encoding.
Lemma 15. ¢4 is satisfiable if and only if A has at least one infinite run.

Proof. As for the left-to-right direction, let ¢ 4 be satisfiable, that is, there
exist an interval model M and an interval [z, y] such that M, [z, y] IF 4. By
Lemmas 10-14, we can easily check that M represents an infinite run of A.

As for the converse direction, let (¢°,2°), (¢*,9), (¢%,9?), ... be an infinite
run of A. A model over Q that encodes the run can be built as follows. Let
(¢,7) be the j-th configuration of the run (j > 0). It is encoded by the
conf-interval [, 2, 1] = [D21 ¢ 3F A sl [#), 2%, ,] is in turn partitioned
into 1 + Z‘k(i'l vy u-intervals with the same length (the sum of all counters’
values, plus an interval for the state—recall that vy is the k-th component of
the vector v), as follows: the first v; intervals are cj-intervals, the following
vy intervals are co-intervals, and so on; the last interval is a g-interval (notice
that density plays a role here in allowing one to divide a fixed-size interval
into an arbitrary large number of intervals). It is easy to define a valuation for
all the proposition letters according to their intended meaning, as described
in the above encoding, and to obtain a model M such that M, [2,3] IF ¢4
(notice that density is exploited again here to make it possible for an infinite
sequence of conf-intervals to fit in a bounded subset, namely, [1,2[, of Q). O

A similar reduction can be provided for the fragment AB.

Theorem 5. The satisfiability problem for AB and AB over Q is non-
primitive recursive.

8. Rational numbers, real numbers, and dense linear orders

In this short section, we briefly compare the behaviour of HS fragments
over Q, R, and the class of (all) dense linear orders. We first show that, as
pointed out in Section 1, their behaviour over Q is (essentially) the same
as over the class of dense linear orders; then, we point out similarities and
differences between the cases of Q and R.

In order to show the substantial equivalence between the linear order of
@ and the class of all dense linear orders, suppose that a formula ¢ of a given
HS fragment is satisfied in some dense model (as a matter of fact, in many
HS fragments density can be added as part of the formula). This amounts to
say that the standard translation of ¢ in first-order logic, denoted by ST'(¢),
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is satisfied in the respective first-order model with the linear ordering relation
< and extra binary relations for the proposition letters (not quantified over).
The existence of such a model for the first-order logic formula ST(p) is
equivalent to the existence of a model in some dense linear order of the
respective existentially quantified second-order version of ST(¢). Now, by
the Downward Lowenheim-Skolem theorem, ST'(¢) has a countable model,
the dense order of which, by Cantor’s theorem, is isomorphic either to Q,
or to an interval on Q, depending on the endpoints, if any. Using that
isomorphism, one can re-build the entire model of ST(¢) on Q or on an
interval on Q. As an immediate consequence, we have that any procedure,
e.g., a tableau system, that allows one to decide whether a formula of a given
HS fragment has a model over Q can be easily turned into a procedure to
establish whether such a formula is satisfiable over the class of (all) dense
linear order. All that is needed is to adjust the decision procedure to look
for models over Q with possible endpoints.

As for the relationships between the behaviour of HS fragments over Q
and over R, on the one hand, it has been shown that their relative expressive
power over the former and the latter is exactly the same [12]; on the other
hand, it has been proved that decidability and complexity of their satisfia-
bility problem may differ. More precisely, in [30], Della Monica et al. have
shown that the set of satisfiable formulae of the fragments A and A over Q is
the same as the set of satisfiable formulae over R, and thus the NEXPTIME
decision procedure developed for the former can actually be used also for
the latter, but this is not the case with the fragment AA. As shown in [30],
there exists an AA formula that separates R from Q, and thus the decision
procedure for AA over Q cannot be exploited to check AA satisfiability over
R. (As a matter of fact, the satisfiability problem for AA turns out to be
NExpTIME-complete both over Q [17] and over R [31].) Finally, while the
fragments AABB and AAEE are decidable over Q [15] (see Section 4), it has
been shown that they are undecidable over R [32].

9. Conclusions

In this paper, we focused on the variety of fragments of Halpern and
Shoham’s interval temporal logic (HS) interpreted over the linear order of
the rational numbers Q or, equivalently, the class of all dense linear orders.
As a matter of fact, the relative expressive power of all HS fragments over Q
has been studied in [12], where it has been shown that there exist precisely
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996 expressively different fragments. Moreover, it was known from recent
results that the satisfiability problem for 130 of them is decidable.

The main result of the present paper is a complete classification of the
decidable fragments of HS, interpreted over QQ, by their computational com-
plexity. The emerging picture turns out to be multifaceted, including NP-,
PSprace-, NExPTIME-, EXPSPACE-complete, and even non-primitive recur-
sive fragments. This work adds up to a number of recent results aimed at
providing a complete classification of HS fragments that include, so far, the
relative expressive power of the fragments, when interpreted over the class
of all linear orders [12], and their classification by computational complexity
with respect to the class of (strongly) discrete linear orders, the class of fi-
nite linear orders, and the linear orders of the natural numbers N and of the
integers Z [11].

As pointed out in Section 8, while the relative expressive power of HS
fragments over Q and R is the same, this is not the case with their com-
putational complexities. Some HS fragments have the same computational
complexity over Q and R, while other ones are decidable over Q and unde-
cidable over R; moreover, the decidability /complexity of some HS fragments
over R is still unknown. In general, while the hardness results we provided
for Q can be easily replicated for R, as they are all based on the construction
of the computation history of some Turing Machine and they all involve a
sort of discretization of the underlying linear order, the portability of the up-
per bounds we obtained for Q to R is definitely not guaranteed. Among the
missing elements of the picture for R, we are quite interested in the status of
the satisfiability problem for BBDDLL and its fragments. One of the reasons
is that there seems to be a natural connection between the fragment DDLL,
interpreted over R, and the temporal logic of the two dimensional Minkowski
spacetime, which has been recently investigated by Hirsh and Reynolds [33].
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