Hybrid Metric Propositional Neighborhood Logics with Interval Length Binders

D. Della Monica¹, V. Goranko², G. Sciavicco³

¹University of Udine, Italy

²Technical University of Denmark

³Universidad de Murcia, Spain

Edinburgh, 10th July - HYLO 2010

< ロ > < 同 > < 回 > < 回 > < 回 >

2 Hybrid extension of Propositional Neighborhood Logics

< 回 > < 回 > < 回 >

2 Hybrid extension of Propositional Neighborhood Logics

Conclusions and future works

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

< □ > < 同 > < 回 > < 回 >

Time and logics

Studying time and its structure is of great importance in **computer science**:

• Artificial Intelligence.

Planning, Natural Language Recognition, ...

Databases.

Temporal Databases.

Formal methods.

Specification and Verification of Systems and Protocols, Model Checking, ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Points vs. intervals

Usually, time is formalized as a set of **time points** without duration.

But... this concept is extremely abstract:

time is actually viewed as a set of **intervals** (periods) with a duration.

Problem

It would be nice to have **temporal logics** that take time intervals as primary objects.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Interval Temporal Logics

- The time period, instead of the time instant, is the primitive temporal entity
- Propositional letters are evaluated over pairs of points (instead of individual points)
- Relations between worlds are more complicate than the point-based case

< ロ > < 同 > < 回 > < 回 > < □ > <

Allen's relations

J. F. Allen

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

< 回 > < 回 > < 回 >

Allen's relations

Allen's relations

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

Allen's relations

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

∃ ► < ∃ ►</p>

Allen's relations

J. F. Allen Maintaining knowledge about temporal intervals. *Communications of the ACM*, 1983.

ъ

Allen's relations

Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983.

Introduction to ITLs

Hybrid extension of Propositional Neighborhood Logics Conclusions and future works

First discouraging undecidability results

HS is undecidable

J. Halpern and Y. Shoham

A propositional modal interval logic.

Journal of the ACM, 1991.

< ロ > < 同 > < 回 > < 回 >

Introduction to ITLs

Hybrid extension of Propositional Neighborhood Logics Conclusions and future works

First discouraging undecidability results

HS is undecidable

J. Halpern and Y. Shoham

A propositional modal interval logic.

Journal of the ACM, 1991.

Undecidability of a small fragment of HS: BE

🚺 K. Lodaya

Sharpening the Undecidability of Interval Temporal Logic.

ASIAN 2000, volume 1961 of LNCS, pages 290-298. Springer, 2000.

< ロ > < 同 > < 回 > < 回 > .

Some decidable fragments

• RPNL (A)

D. Bresolin, A. Montanari, and G. Sciavicco

An optimal decision procedure for Right Propositional Neighborhood Logic.

Journal of Automated Reasoning, 2007.

< ロ > < 同 > < 回 > < 回 >

Some decidable fragments

RPNL (A)
PNL (AA)

D. Bresolin, A. Montanari, and P. Sala

An optimal tableau-based decision algorithm for Propositional Neighborhood Logic.

STACS 2007, volume 4393 of LNCS, pages 549-560. Springer, 2007.

< ロ > < 同 > < 回 > < 回 >

Outline

2 Hybrid extension of Propositional Neighborhood Logics

3 Conclusions and future works

< □ > < 同 > < 回 > < 回 >

PNL

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

Extending PNL

ヘロン 人間 とくほど 不良と

æ

Extending PNL

< □ > < 同 > < 回 > < 回 > < 回 >

æ

Extending PNL

→ ∃ > < ∃ >

< 一 →

æ

Extending PNL

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

э

Extending PNL

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

э

Extending PNL

Extending PNL

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

Extending PNL

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

Possible hybrid extension of PNL and MPNL

Nominals are definable in PNL (*Basic Hybrid PNL*)

ヨト イヨト

D. Della Monica, V. Goranko, and G. Sciavicco

Hybrid Metric PNL with Interval Length Binders

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals) (*Strongly Hybrid MPNL*) lead to undecidability

Nominals are definable in PNL (*Basic Hybrid PNL*)

∃ ► < ∃ ►</p>

D. Della Monica, V. Goranko, and G. Sciavicco

Hybrid Metric PNL with Interval Length Binders

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals) (*Strongly Hybrid MPNL*) lead to undecidability

Nominals are definable in PNL (*Basic Hybrid PNL*)

∃ ► < ∃ ►</p>

D. Della Monica, V. Goranko, and G. Sciavicco

Hybrid Metric PNL with Interval Length Binders

Possible hybrid extension of PNL and MPNL

Binders over state variables (intervals) (*Strongly Hybrid MPNL*) lead to undecidability

Binders over length of intervals (Weakly Hybrid MPNL)

Nominals are definable in PNL (*Basic Hybrid PNL*)

∃ ► < ∃ ►</p>

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

PNL and MPNL: syntax and semantics

Syntax

• PNL:
$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \mathsf{A} \rangle \varphi \mid \langle \overline{\mathsf{A}} \rangle \varphi$$

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

< ロ > < 同 > < 回 > < 回 > < □ > <
PNL and MPNL: syntax and semantics

Syntax

- PNL: $\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \mathsf{A} \rangle \varphi \mid \langle \overline{\mathsf{A}} \rangle \varphi$
- MPNL: $| len_{< k} | len_{= k} | len_{> k} | len_{\ge k} | len_{\le k}$

ヘロト ヘ戸ト ヘヨト ヘヨト

э.

PNL and MPNL: syntax and semantics

Syntax

- PNL: $\varphi ::= \boldsymbol{p} \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \mathsf{A} \rangle \varphi \mid \langle \overline{\mathsf{A}} \rangle \varphi$
- MPNL: $| len_{< k} | len_{= k} | len_{> k} | len_{\ge k} | len_{\le k}$

Semantics

• Operators *meets* ($\langle A \rangle$) and *met-by* ($\langle \overline{A} \rangle$):

meets: $\langle A \rangle \varphi$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

mee

PNL and MPNL: syntax and semantics

Syntax

- PNL: $\varphi ::= p | \neg \varphi | \varphi \lor \varphi | \langle A \rangle \varphi | \langle \overline{A} \rangle \varphi$
- $\bullet \text{ MPNL: } \qquad | \text{ len}_{< k} | \text{ len}_{= k} | \text{ len}_{> k} | \text{ len}_{\ge k} | \text{ len}_{\le k} |$

Semantics

• Operators *meets* ($\langle A \rangle$) and *met-by* ($\langle \overline{A} \rangle$):

ts:
$$\langle \mathsf{A} \rangle \varphi \qquad \varphi$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

PNL and MPNL: syntax and semantics

Syntax

- PNL: $\varphi ::= p | \neg \varphi | \varphi \lor \varphi | \langle A \rangle \varphi | \langle \overline{A} \rangle \varphi$
- MPNL: $| len_{< k} | len_{= k} | len_{> k} | len_{\ge k} | len_{\le k} | len_{\le$

Semantics

• Operators *meets* ($\langle A \rangle$) and *met-by* ($\langle \overline{A} \rangle$):

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

= 900

PNL and MPNL: syntax and semantics

Syntax

- PNL: $\varphi ::= p | \neg \varphi | \varphi \lor \varphi | \langle A \rangle \varphi | \langle \overline{A} \rangle \varphi$
- MPNL: $| len_{< k} | len_{= k} | len_{> k} | len_{\ge k} | len_{\le k} | len_{\le$

Semantics

• Operators *meets* ($\langle A \rangle$) and *met-by* ($\langle \overline{A} \rangle$):

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

= 900

PNL and MPNL: syntax and semantics

Syntax

- PNL: $\varphi ::= p | \neg \varphi | \varphi \lor \varphi | \langle A \rangle \varphi | \langle \overline{A} \rangle \varphi$
- MPNL: $| len_{< k} | len_{= k} | len_{> k} | len_{\ge k} | len_{\le k} | len_{\le$

Semantics

• Operators *meets* ($\langle A \rangle$) and *met-by* ($\langle \overline{A} \rangle$):

$$\begin{array}{c|cccc} & & \langle A \rangle \varphi & \varphi \\ \hline meets: & & & & \\ \varphi & & \langle \overline{A} \rangle \varphi \\ \hline met-by: & & & \\ \end{array}$$

 Metric constraints over the length of the current interval: len_{∼k} holds over [d₀, d₁] iff d₁ − d₀ ∼ k

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

Weakly Hybrid MPNL (WHMPNL)

Metric constraints of MPNL use constants

 $\text{len}_{=5},\text{len}_{>2},\ldots$

WHMPNL allows one to store the length of the current interval and to refer to it in sub-formulae

 $\downarrow_x (\dots \operatorname{len}_{=x}), \downarrow_x (\dots \operatorname{len}_{\le x}), \dots$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len_{<x} in terms of len_{=x})

< ロ > < 同 > < 回 > < 回 > .

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len_{<x} in terms of len_{=x})

Possible choices:

- **()** which subset of hybrid constraints among $\{<, \leq, =, \geq, >\}$
- constant metric constraints are allowed or not (WHPNL or WHMPNL)
- In how many length variables

< ロ > < 同 > < 回 > < 回 > .

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len_{<x} in terms of len_{=x})

Possible choices:

- **(**) which subset of hybrid constraints among $\{<, \leq, =, \geq, >\}$
- constant metric constraints are allowed or not (WHPNL or WHMPNL)
- how many length variables

< ロ > < 同 > < 回 > < 回 > .

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len_{<x} in terms of len_{=x})

Possible choices:

- **(**) which subset of hybrid constraints among $\{<, \leq, =, \geq, >\}$
- constant metric constraints are allowed or not (WHPNL or WHMPNL)
- how many length variables

- 「同 ト - 1 目 ト - 1 日 ト - 1

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len_{<x} in terms of len_{=x})

Possible choices:

- **(**) which subset of hybrid constraints among $\{<, \leq, =, \geq, >\}$
- constant metric constraints are allowed or not (WHPNL or WHMPNL)
- how many length variables

	set of hybrid	constant	# of length
	constraints	constraints	variables
$WHMPNL(<, \leq, =, \geq, >)$	$\{<,\leq,=,\geq,>\}$	YES	unbounded
WHPNL(<,=)	$\{<,=\}$	NO	unbounded
WHPNL(<)1	{<}	NO	1

WHMPNL fragments

Remark

- Constant metric constraints are inter-definable
- Hybrid metric constraints ARE NOT!!! (e.g.: you cannot define len_{<x} in terms of len_{=x})

Possible choices:

- **(**) which subset of hybrid constraints among $\{<, \leq, =, \geq, >\}$
- constant metric constraints are allowed or not (WHPNL or WHMPNL)
- how many length variables

	set of hybrid	constant	# of length
	constraints	constraints	variables
$WHMPNL(<, \leq, =, \geq, >)$	$\{<,\leq,=,\geq,>\}$	YES	unbounded
WHPNL(<,=)	$\{<,=\}$	NO	unbounded
WHPNL(<)1	{<}	NO	1

The fragments $WHPNL(<)_1$ and $WHPNL(>)_1$

Theorem

The HS fragments BE and BE are undecidable

< □ > < 同 > < 回 > < 回 > < 回 >

The fragments $WHPNL(<)_1$ and $WHPNL(>)_1$

Theorem

The HS fragments BE and BE are undecidable

$WHPNL(<)_1$ undecidability

$$\langle \mathsf{B}
angle
ho := \downarrow_x \langle \overline{\mathsf{A}}
angle \langle \mathsf{A}
angle (\mathsf{len}_{< \mathsf{x}} \wedge
ho)$$

The fragments $WHPNL(<)_1$ and $WHPNL(>)_1$

Theorem

The HS fragments BE and BE are undecidable

$WHPNL(<)_1$ undecidability $\langle \mathsf{B} \rangle \rho := \downarrow_x \langle \overline{\mathsf{A}} \rangle \langle \mathsf{A} \rangle (\operatorname{len}_{<x} \land \rho)$

store length of current interval in x

ヘロト ヘ戸ト ヘヨト ヘヨト

The fragments $WHPNL(<)_1$ and $WHPNL(>)_1$

Theorem

The HS fragments BE and BE are undecidable

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

The fragments $WHPNL(<)_1$ and $WHPNL(>)_1$

Theorem

The HS fragments BE and BE are undecidable

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

The fragments $WHPNL(<)_1$ and $WHPNL(>)_1$

Theorem

The HS fragments BE and BE are undecidable

$WHPNL(<)_1$ undecidability

$$\langle \mathsf{B}
angle
ho := \downarrow_x \langle \overline{\mathsf{A}}
angle \langle \mathsf{A}
angle (\mathsf{len}_{<\mathsf{x}} \wedge
ho)$$

$$\langle \mathsf{E}
angle
ho := \downarrow_x \langle \mathsf{A}
angle \langle \overline{\mathsf{A}}
angle (\mathsf{len}_{<\mathsf{x}} \land
ho)$$

The fragments $WHPNL(<)_1$ and $WHPNL(>)_1$

Theorem

The HS fragments BE and BE are undecidable

$WHPNL(<)_1$ undecidability

$$\langle \mathsf{B}
angle
ho := \downarrow_x \langle \overline{\mathsf{A}}
angle \langle \mathsf{A}
angle (\mathsf{len}_{<\mathsf{x}} \wedge
ho)$$

$$\langle \mathsf{E}
angle
ho := \downarrow_x \langle \mathsf{A}
angle \langle \overline{\mathsf{A}}
angle (\mathsf{len}_{<\mathsf{x}} \land
ho)$$

WHPNL(>)1 undecidability

$$\overline{\langle \overline{\mathsf{B}}
angle
ho}$$
 := $\downarrow_x \langle \overline{\mathsf{A}}
angle \langle \mathsf{A}
angle (\mathsf{len}_{>x} \wedge
ho)$
 $\overline{\langle \overline{\mathsf{E}}
angle
ho$:= $\downarrow_x \langle \mathsf{A}
angle \langle \overline{\mathsf{A}}
angle (\mathsf{len}_{>x} \wedge
ho)$

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

The fragments $WHPNL(\leq)_1$ and $WHPNL(\geq)_1$

$WHPNL(\leq)_1$ and $WHPNL(\geq)_1$ undecidability

Immediately from:

- $len_{<x} \Leftrightarrow \neg len_{\ge x}$
- $len_{>x} \Leftrightarrow \neg len_{\leq x}$

・ロン・雪と・雪と、 ヨン・

3

The fragment $WHPNL(=)_1$

Reduction from the Finite Tiling Problem

This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

・ 同 ト ・ ヨ ト ・ ヨ ト

The fragment $WHPNL(=)_1$

Reduction from the Finite Tiling Problem

This is the problem of establishing whether, for a given finite set of tile types $\mathcal{T} = \{t_1, \ldots, t_k\}$, there exists a finite rectangle \mathcal{R} having the border colored with a fixed color such that \mathcal{T} can tile \mathcal{R} respecting the color constraints.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

< 回 > < 回 > < 回 >

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

< 回 > < 回 > < 回 >

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

< 回 > < 回 > < 回 >

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

∃⇒

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

D. Della Monica, V. Goranko, and G. Sciavicco Hybrid Metric PNL with Interval Length Binders

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

< ∃→

Proof overview

Encoding the rectangle

Encoding the neighbourhood relations

▶ < ≣ ▶

Regaining decidability

Binder can store into variables a bounded number of values (up to k)

Two semantic restrictions to the binder (when length is greater then k):

- in restricted semantic, the binder stores into the variable a non-deterministic value greater than k (hybrid constraints occur in positive form)
- (2) in truncated semantic, the binder stores into the variable the length k + 1

Both logics can be translated into MPNL (size at most exponential)

Complexity is in 3NEXPTIME

ヘロト 人間 とく ヨ とく ヨ と

Outline

2 Hybrid extension of Propositional Neighborhood Logics

< □ > < 同 > < 回 > < 回 >
Conclusions

Analyzed a number of hybrid extension of (M)PNL

- Also very weak extensions lead to undecidability
- Proposed decidable extension
 - no actual gain in expressivity wrt MPNL

Hybrid machinery increasing expressive power without losing decidability

→ Ξ →

.⊒ →

Conclusions

- Analyzed a number of hybrid extension of (M)PNL
- Also very weak extensions lead to undecidability
- Proposed decidable extension
 - no actual gain in expressivity wrt MPNL

Hybrid machinery increasing expressive power without losing decidability

ъ

Conclusions

- Analyzed a number of hybrid extension of (M)PNL
- Also very weak extensions lead to undecidability
- Proposed decidable extension
 - no actual gain in expressivity wrt MPNL

Open question

Hybrid machinery increasing expressive power without losing decidability

< □ > < 同 > < 回 > <

.⊒ →

Conclusions

- Analyzed a number of hybrid extension of (M)PNL
- Also very weak extensions lead to undecidability
- Proposed decidable extension
 - no actual gain in expressivity wrt MPNL

Open question

Hybrid machinery increasing expressive power without losing decidability

< □ > < 同 > < 回 > < 回 > < 回 >

Conclusions

- Analyzed a number of hybrid extension of (M)PNL
- Also very weak extensions lead to undecidability
- Proposed decidable extension
 - no actual gain in expressivity wrt MPNL

Open question

Hybrid machinery increasing expressive power without losing decidability

< □ > < 同 > < 回 > < 回 > < 回 >