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DELLA MONICA, GORANKO, SCIAVICCO

1 Introduction

Interval temporal logics are based on temporal structuves @usually) linearly
ordered domains, where time intervals, rather than time&amns, are the primi-
tive ontological entities. The problem of representing asasoning about time
intervals arises naturally in various other fields of conep@icience, artificial in-
telligence, and temporal databases, such as theoriesioh actd change, natural
language processing, and constraint satisfaction prablémparticular, temporal
logics with interval-based semantics have been proposadiasful formalism for
the specification and verification of hardwagé][and of real-time systemd4.§].

A systematic analysis of the variety of relations betweem itvtervals in a lin-
ear order was initiated by Alleri], who proposed the use of interval reasoning in
systems for time management and planning. Allen identifiecthirteen different
binary relations between intervals on linear orders, Hexeeeferred to as Allen’s
relations. In 9], Halpern and Shoham introduced a multi-modal logic, hiteea
called HS, involving modal operators corresponding to s interval relations
and showed that such a logic is undecidable under very wesakrggions on the
class of interval structures in which it is interpreted. @f¢he few known cases
of decidable interval logics with truly interval semantieet reducible to point-
based semantics) is the Propositional Neighborhood lakéagic (PNL) [6,18].
PNL is a fragment of HS with only two modal operators, coroesping to Allen’s
relationsmeetsand its inversanet by Its satisfiability problem has been shown
to be decidable (NEXPTIME-complete) when interpreted oxgtous classes of
linearly ordered sets, in particular, over domains basedabaral numbersf]; the
results presented in the same paper an@%hghowed that all possible extensions
of PNL with Allen’s modal operator make the logic undecidghihich means that
PNL is maximal in terms of decidability (as a matter of fabigre are extensions
of PNL that are non-elementarly decidable only if interpdebver finite prefixes
of N and undecidable in most of the other cas&g)[ In [5,8], authors proposed a
‘metric’ extension of PNL, called/etric PNL (MPNL, for short), which involves
special propositional letters expressing equality or uadity constraints on the
length of the current interval with respect to fixed integenstants. The satisfi-
ability problem for MPNL interpreted in the interval strucé overN is proved to
be decidable ing], with complexity between EXPSPACE and 2NEXPTIME when
the integer constraints in formulae are represented impiaad with complexity
in NEXPTIME-complete when the integer constraints in folaeuare constant or
represented in unary.

In the present paper we have investigated the question ofrhoah hybrid
machinery can be added to PNL and MPNL without losing thedidality of the
satisfiability problem inN. Since the difference modality is definable in PNL

6 The definition in the strict semantics is given further; ie thon-strict semantics it needs using
the modal constant for point intervals.
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[18], nominals can be simulated there, so adding them alonepioblematic with
regards to decidability. However, it is very easy to seedlding binders over state
variables immediately leads to undecidability. On the ph@nd, in the framework
of Metric PNL it is quite natural to use binders not on statgaldes ranging over
intervals, but on integer variables ranging olesrgths of intervalsthus enabling
storage of the length of the current interval and furtheenefices to it. We notice
that such length variables and binders bear resemblantethgtinterval length
variables used in Duration CalculusZ21].

1.1 A brief comparison with Duration Calculus

Duration Calculus is an interval logic introduced by ZhowaGbhen, C.A.R. Hoare,
and A.P. Ravn13], based on Moszkowski’'s ITLZ6]. In the classical version, only
one modal operator is allowed, namelyop(C): by assertinggCq, onesplitsthe
current intervala, b] into two consecutive intervalg, ¢/, [¢, b] such thafa, ¢| sat-
isfiesp and|c, b] satisfies;. Both the interval logic with chop only and the duration
calculus built over it are undecidable in its original versi over the majority of
interesting classes of linear orders. 11i], a duration calculus based on Neighbor-
hood Logic, denoted as DC/NL, has been introduced; it feattire two modalities
<, and<;, and, without any simplifying assumption, it is undecidabs it allows
to embed the whole DC.

In [3], Bouajjani at al. uses the framework of DC for the problenspécifica-
tion and verification of hybrid systems, also approachedXpjoiting techniques
for hybrid automata. Moreover, i15,17,24], model checking methods for DC are
described. More work has been done concerning the vaksditigfiability prob-
lem. As a matter of fact, several version of DC have been stydiiming to get
decidability for the satisfiability/validity problem. Asxa@xample, in27], Pandya
defines the interval-based version of DC, callgerval Duration Logic(IDL), that
is, in general, undecidable. Nevertheless, on the onesi@g], it has been proved
that at least a specific fragment of IDL with suitable syntaahd semantic restric-
tions, denoted by.IDL—, is decidable, by using an automata-theoretic argument.
On the other side, the problem of deciding the validity of I@mulae has been
further invstigated in10], where the authors propose a syntactic characterization
of a subset of IDC-formulae that share a property cagdng Closure under In-
verse Digitalizationthat allows one to effectively check the validity of formela
that belong to such a subset by reducing it to the validityfmm of formulae of
Discrete Time Duration Calculu®QDDT), that is, the corresponding discrete-time
logic, whose validity problem is decidabl2d. Subsequently, M. Franzle and M.
R. Hansen give a decidability result for a rich fragment of [26], extending the
work of Zhou Chaochen et allf] on decidability of linear duration invariants to
a much wider fragment of DC. In the Restricted Duration Clailsy20] denoted
by RDC,, the length of the current intervals can be referred to bpgidie equal-
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ity constraintlen_, (which can be expressed usingandlen—;). This fragment
turns out to be decidable over discrete time, but undectdaér dense time. On
the other hand, the subset denoted by RDthere lengths of current intervals can
also be referred to by means of variables and quantifierss turt to be undecidable
for both discrete and dense time interpretations. As meation the Introduction,
under the assumption ¢dcality (that is, the truth of formulae over intervals is re-
duced to the truth of it over the points inside the interviat)t only DC but also a
hybrid extension of it (HDC), that allows a binder for intals (not lengths) and a
syntactic construct to refer to specific intervals, is dabld, because the locality
assumption essentially reduces the interval logic to atgmased one, and therefore
reduces the satisfiability problem ove&rto the one for MSO oveN.

1.2 Our contributions

The main part of this paper is devoted to analyze extensioRPNa and MPNL
with interval length variables and binders with respecteoidability. Eventually,
we show that even very weak extensions become undecidatleh w some cases
was not obvious at all, and even somewhat surprising, beisparp contrast with
the decidability of MPNL, which can be seen as a hybrid lagguaith length
constraints only involving constants over interval lerggtifihese results show that
MPNL itself is, in this sense, a maximal decidable (weaklyptd extension of
PNL. Finally, we also notice the contrast between the siyopigevailing undecid-
ability of hybrid interval logics with truly interval-basesemantics, demonstrated
here, and the much more robust decidability of even veryesgive hybrid exten-
sions of interval logics with essentially point-based setica, notably the Hybrid
Duration Calculus studied ir2], the decidability of which is obtained there by
reduction to the decidability of the MSO of trees.

The paper is structured as follows. In Section 2 we recalbyimtax and seman-
tics of PNL and MPNL. In Section 3 we discuss hybrid extensiohMPNL, and
present théVeakly HybridMPNL. In Section 4 we prove the main undecidability
results, and in Section 5 we present some ideas of how tardgaidability, before
concluding.

2 Metric Propositional Neighborhood L ogic

The language of the Propositional Neighborhood Logic (PBian)sists of a set
AP of atomic propositions, the propositional connectiveandV, and the modal
operators®, and<,, corresponding to the Allen’s interval relationseetsand its
inversemet-by[1]. The other propositional connectives, as well as the klgion-
stantsT (true) and_L (false), and the dual modal operatars andd;, are defined
as usual. PNL has been studied both in the so-calledt semanticswhich ex-
cludes point-intervals, and in thn-strictone which includes them. In the latter
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case, it is natural to include in the language a special at@muposition (modal
constant), usually denoted hy that is true over all and only the point-intervals.
The expressive powers of the various cases have been sautiedmpared inlg].

The formulae of PNL, denoted by, v, ..., are generated by the following
grammar:

pu=m|plopleVelOp| .

Given a linearly ordered domaih = (D, <), a (hon-stric) interval overD is any
ordered paifa, b] such thats < b. An interval structureis a pair(D, (D)), where
I(D) is the set of all intervals oved. The semantics of PNL is given in terms of
models of the formM = (D, I(D), V), where(D, (D)) is an interval structure
andV : AP — 2I®) js a valuation function assigning to every propositiontele
the set of those intervals over which it is true. Note that anditions, such as
locality, homogeneity, etc. on the valuation are imposed.r&¢ursively define the
satisfiability relation as follows:

M, [a,b] Ik« iff a = b;
M, [a,b] IF piff [a,b] € V(p), foranyp € AP;
M, [a,b] Ik — iff it is not the case thad/, [a, b] IF ¢;
M, [a, b]
M, [a, b]

a,

I 4 VT iff M, [a,b] IF o or M, [a,b] IF 7
a, b] I <, iff there existse > b such thatV/, [b, ¢] I ;
M, [a,b] Ik O iff there existse < a such thatV/, [c, a] IF 1.

The satisfiability problem of the various version of PNL hagiv shown to be
decidable in§,18]. In [9], a tableau-based method has been presented for PNL.
From now on, we only consider PNL and its extensions intégorén the in-

terval structure olN. We denote by : N x N — N the distancefunction onN,
defined asi(a,b) = |a — b|. Most of the claims and results in this paper hold not
only onN, but also orZ and many other linear orders on which distance between
points is definable. The metric extension of PNL, called MPMNias introduced
and studied in§,5]. MPNL extends PNL withatomic propositions for length con-
straints These are pre-interpreted propositional letters refgiio the length of the
current interval, which can be seen as the metric genetiaimaof the modal con-
stantr. From now on, lelC = {<, <, =, >, >}. For eactC € C, we introduce
the length constrainéng, with the following semantics, whefec N:

7a/7

M, [a,b] IF lengy iff 0(a,b)Ck.

The satisfiability problem for MPNL has been shown%hto be decidable; in
particular the following theorem holds.

Theorem 2.1 The complexity of the satisfiability problem for MPNL inteted
overN is between EXPSPACE and 2NEXPTIME if the length constranetsep-
resented in binary.
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3 Hybrid Propositional Neighborhood L ogics

Some operators of hybrid flavor can be defined in the languédNa. For in-
stance, theiniversal modalityG], referring to all intervals in the model, is defin-
able in all variants of PNL. As an example, if we consider tba-strict semantics,
it may be defined as followdG|y = 0,0,0,0,¢. Moreover, in the strict seman-
tics, as shown in18], the difference modality##] can be defined as:

[7&]90 = DlDlDr(P A DlDrDr(P A DrDlDl(P A DTDTDIQP'

Using the constant modality for point-intervals, the formula above can be eas-
ily modified to define[#] in the non-strict semantics, too. Thus, nominals over
intervals can be simulated in PNL, and therefore Basic Hybrid extension of
PNL (BHPNL) remains decidable over a large family of linear asjencluding

N. However, it is quite easy to see that adding stronger hymadhinery, such
as binders or quantifiers over intervals, immediately |gadsndecidability even
under very week assumptions about the class of linear orders

On the other hand, in the framework of MPNL it is quite natdwoalise binders
not on state variables ranging over intervals, but on integaables ranging over
lengths of intervals In its “classical” version, MPNL allows metric constrasnt
expressed by explicit numbers; for example,(len_s A p — <©,<C,q) is a well-
formed MPNL formula, while®,.(len—x A p) is not. This means that, despite the
fact that MPNL can be considered very expressive (as shovgebgral examples
in [5]), there are simple and natural properties that we are rlettabexpress in
this language, such as e.ghe right neighbor interval with length equal to the
length of the current interval satisfies the propejtyThus, it is natural to extend
the language of MPNL with a sort of hybrid machinery whicloal$ one to store
the length of the current interval and to use it further imfatae.

Here we introduce such a hybrid extension of MPNL, that we\d&akly Hy-
brid Metric Proposition Neighborhood Logior WHMPNL, for (not so) short. In
fact, we are considering the weakest natural hybrid exbensi MPNL that would
allow us to store the length of current interval in a variadhel unrestrictedly re-
fer to it in sub-formulae in order to express metric progsof intervals. To this
end, we introduce a special sort of a bindercalledlength bindey a countable
set oflength variablesDVar = {x,y,...} (where DVar N AP = ()) and a cor-
responding set dfiybrid metric constraint®f the kindlen., for eachC € C and
x € DVar. Formulae of WHMPNL will be evaluated with respect to a Soiga
valuation functions over length variables and the class@lation function over
propositional letters. Thus, as in classical hybrid logvwes define dength assign-
mentg : DVar — N. A model for WHMPNL overN is defined as a quadruple

7 The qualifier ‘weakly’ indicates that we do not add a full highlanguage over interval logics —
as we have noted above, that would immediately lead to iradgp@undecidability.
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M = (N,I(N),V, g), wherel(N) is the interval structure oN, V : AP — 2

is a valuation function for propositional letters, amé a length assignment. For
two length assignmentg, ¢ and a variable: we write ¢’ ~, ¢ to mean that’
possibly differs fromy only on the value of. WHMPNL-formulae are defined by
the following grammar:

pu=p|lencc |leney |~ [V Vo | Orp | Crp| la @,

wherek € Nandz € DVar.
The semantic rules of WHMPNL extend those of MPNL with theisks:

e M, a,b] IF lengy iff 6(a,b)Cyg(x);

e M, la,b] IF|, ¢ iff M’ [a,b] IF ¢ for M = (N,I(N),V, q'), whereg' is a
length assignment such thgt~, g andg’(x) = §(a, b).

Note that a universal (and, respectively, existential)@nse of the hybrid op-
eratorQ is definable, too, by, ¢ := [G](len_, — ), with respective semantics:

e M, la,b] IF @,y iff for any intervallc, d] such that (¢, d) = g(x) itis the case
that M, [c, d] IF .

We denote by WHPNL the fragment of WHMPNL not involving at@mpropo-
sitions for length constraints (that is, sub-formulae @f kmdlen_,).

We note that, while the different types of atomic proposisidor length con-
straints (i.e., involvings, =, >, <, and>, but only comparing with explicit num-
bers) are definable in terms of each other, not all of thess-afinitions work
for hybrid metric constraints. For examplen-, is equivalent to-len_, but it is
not possible to definen<, or len., in terms oflen_,. Therefore, it makes sense
to consider also sub-languages of WHMPNL not including gbrid metric con-
traints. If L is any of WHMPNL and WHPNL, for ang’ C C we denote by L()
the language that includes only hybrid metric constraifitthe kind leng,, with
C € C. For any such language Lwe denote by |, its sub-language containing
only n length variables.

4 Undecidability of WHMPNL and Fragments

In this section we show that even the weakest fragment of WNM#hat still re-
tains |, for only onelength variabler is already undecidable, even when atomic
propositions for length constraints are not allowed. Tleault, while disappoint-
ing, is interesting because it shows how dangerously ckodgeinon-hybrid MPNL

to undecidability, and raises the question of searchingdoweaker and still mean-
ingful decidable hybrid extensions of MPNL.

7
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4.1 Undecidability of WHMPNL

We begin by noticing that, while PNL is a strict fragment oé tHalpern-Shoham
modal logic of Allen’s relations HS (whose satisfiabilityoptem is undecidable
under very general assumptions for the class of linear suaaderlying the interval
structures, se€lp]), its hybrid metric version is, in fact, at least as expresss
the whole HS. To show that it suffices to define the operatBis corresponding

to the interval relatiofegins and(F), corresponding to the interval relatiends
and their inverse$B) and(E), as all other modal operators in HS are definable in
terms of these plue; and<, [19]. Indeed:

(B)p := Lo O10n(p Alengy),
(E)p = |z OrOi(p Alensy).
(B)p = Lz O10n(p Alensy),
(E)p = Ls OrOulp Alens,).

Thus, we have the following result.

Theorem 4.1 The satisfiability problem for WHPNL, and hence for WHMPNL,
interpreted ovelN is undecidable.

4.2 Undecidability of the fragments

It is known [4] that any of the pairs of HS-modaliti€s3), (E) and (B), (E) is
sufficient to establish undecidability. Thus, even very krimagments of WH-
PNL, namely WHPNL(); and WHPNL(),, are strong enough to flow into un-
decidability. Sincéden., is definable in WHPNLK),, andlen_, is definable in
WHPNL(>),, these two languages are undecidable too.

It remains to be seen what happens when tily, is allowed. This case turns
out rather more difficult, but we will show here that it is ucitable, too. For
better understanding, we first show that WHPNL:),, where the modal constant
7 is added, is undecidable, and then we show how the proof caddyaed to the
fragment WHPNLE),. We will make use of the undecidability of tienite Tiling
Problem[22]. It is the problem of establishing whether, for a given ddtle types
7 = {t1,..., 1}, there exists a finite rectanglé = [0, X] x [0,Y] = {(7,)) :
i, ENAO<i< XA0<j<Y}forsomeX,Y €N, suchthat can correctly
tile R with the entire border colored by the same designated &platso called
side color To be more precise, for every tile typec 7, letright(t;), left(t;),
up(t;), anddown(t;) be the colors of the corresponding sideg0f To solve the
Finite Tiling Problem forZ7 one must find two natural numbei$ andY’, and a

8
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mappingf : R — 7 such that

right(f(i,7)) = left(f(i+1,7)) foreach0 <i< X,0<; <Y,
up(f(i,j)) = down(f(i,j+1)) foreach0 <i< X,0<j <Y,

and that satisfies, in addition, the following constraints:

left(f(0,7)) =% and right(f(X,j))=$ foreach0 <j <Y,
down(f(i,0)) =% and up(f(i,Y))=9%  foreach0 <i < X.

where$ is the side color ofk.

In order to perform the reduction from the Finite Tiling Pkero for the set of
tles7 = {t;,...,1;} to the satisfiability problem for WHPNk( =), we will
make use of some special propositional letters, namgely, x, tile, Start, Stop,
IdStart, [dStop, up_rel, Ltile, Rtile, t4, ty, ..., t,. FOr every propositional lettey,
by p-interval we mean an interval satisfying The reduction consists of three
main steps:

(i) the encoding of the rectangle by means of a suitable aobiago-called ‘unit’
intervals (i-intervals, for short);

(i) the encoding of the ‘above-neighbor’ relation by meafsa suitable family
of so-calledup_rel-intervals; and

(i) the encoding of the ‘right-neighbor’ relation.

Here is a sketch of the encoding. First, we set our framewgrfolring the
existence of a unique finite chain @fintervals on the linear ordering{chain, for
short). Theu-intervals are used as cells to arrange the tiling. Next, eftnd a
chain ofld-intervals (d-chain, for short), each of them representing a row of the
rectangle; the additional propositional lett&tStart andldStop are used to encode,
respectively, the bottom and the top rows of the rectangte. IA-interval consists
of a sequence af-intervals. Using the length binder, we force eddtinterval to
contain exactly the same numberintervals. Eachu-interval is used either to
represent a part of the plane or to separatelthintervals. In the former case, it
is labeled with the propositional letteite, in the latter case, it is labeled with the
propositional lettes. Then, we use the propositional letigs_rel to encode the
relation that connects each tile with its above neighbdRirFinally, we introduce
a set of propositional letterB = {t4, t,,..., ty} corresponding to the set of tile
types7T = {t,1,...,t;} and define a formulé&; which is satisfiable if and only
if there exists a finite rectangl@ for someX,Y € N and a proper tiling ofR by
7T, i.e., atiling that satisfies the color constraints on thedbotiles and between
vertically- and horizontally-adjacent tiles.

To define thai-chain we use the following formulae:

9
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(1) u A Start A O,=Start A ©,.$,.(Stop A u) starts theu-chain
(2) [G](uV Start V Stop — len_,) u, Start, Stop are equally long
(3) [G](¢,Start — O, (~m — O,—Start)) Start is unique
(4) [G](©,Stop — O, (=7 — O,—Stop)) Stop is unique
(5) [G](u A =Stop — <,u) u-chain to the right
(6) [G]((Start — O0;0,—-u) A (Stop — O,0,-u))  nou out of the chain
(7)) (DA...A(6)

Lemma4.2 Let M = (N,I(N),V, g) be a WHPNL-model such that

M, la,b] k], (7).

Then there exists a finite sequence of poipts b, < ... < b, with k& > 0, such
thatby = a, b; = b, and:

(i) Allintervals[b;, b; 1], for 0 <1i < k — 1, have the same length— a > 0.
(i) M, [b;,b;11] IFu foreach0 <i <k —1.
(iii)y M, [e,d] IF u holds for no other interval, d].

Proof First of all, notice that the interval satisfyirigart is unique, and same ap-
plies toStop, due to B) and @). Indeed, by {), one interval satisfyinGtart is
[a,b] = [by,b1] @and it is not a point-interval because it also satisfigs:Start.
Moreover, by () and @), all u-, Start-, and Stop-intervals have the same length
b — a, hence no two differeritart-intervals can start from the same point. Then,
by (5), the intervalby, b;] starts a finite chain of-intervals[b;, b; 1], with i > 0.
The finiteness follows from the fact that, b¥)( some futureu-interval satisfies
Stop and no interval starting to the right of it iswainterval, by ©). That interval
must belong to the chain, otherwise it will be overtaken l&/¢hain, by §), which
would be a contradiction. Furthermore, anynterval that is not in that chain may
not be to the left ofStart, (6), and must start another chain wintervals, all of
the same lenghit — a, and therefore overlapping theintervals of the first chain.
However, the unique interval satisfyirigop cannot belong to the second chain,
and therefore must be overtaken by it — a contradiction véth (

O

We now define théd-chain with the following formulae:
10
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8)  [G]((u < tile V x) A (x — —tile)) u is eithertile or x
9)  [G]((©,Start « <O, ldStart) A (<;Stop < <ldStop))  first and lastld
(10) [G](IdStart V ldStop — Id) A (IdStart — —IdStop)  IdStart, IdStop def
(11) [G](ld — len—, A O Otile) Ids same length
(12) [G](Cld = Opx) Ids start with *
(13) [G]((Id A =ldStop — <,1d) A (Id A —ldStart — <ld)) |d-chain

(14) (8) A...A(13) AldStart A O,—ldStart

Note that the last formula above ensures that the intertishgag IdStart, and
hence anyd-interval, is not a point-interval.

Lemma4.3 Let M = (N,I(N),V, g) be a WHPNL-model such that
M, [a,b] -l (7) A 10, 1o (14).

Then there exist positive integérsv and a finite sequence of points= 19 < b1 <
<= <<t =0 <. < b, =1 < ... < b such that for each
1 <j <w,we have:

(i) M, 10,5 I .

1770

(i) M, [bi, 6] I tile for eachO < i < h.
(iii) M, [10, 6] I 1d.

Moreover, no other interval satisfies respectivelyile, andld, but those indicated
above.

Proof Firstofall, by Lemmat.2 there is a finite sequence of poiats- by < b; <
... < by, defining a finite chain ofi-intervals. Each of theseintervals is either
a x-interval or atile-interval and no other interval is-ainterval or atile-interval,
by (8). Furthermore, byl2), everyx-interval starts ad-interval, everyld-interval
starts with ax-interval and ends with &le-interval. Thus, everyd-interval spans
several-intervals. therefore, there are finitely maayintervals. Let their number
bewv. The firstu-interval [a, b], which is also the onltart-interval, starts ard-
interval [a, b,| for someh < k, satisfyingldStart, by (9). The onlyStop-interval,
which is the lastu-interval, ends the ladtl-interval, satisfyingldStop, again by
(9). Since allu-intervals have the same length— a and allld-intervals have the
same length, — a, then evenjld-interval spans exactly u-intervals. Hence, the
sequence, < b; < ... < b, canbewrittenag) < bl < ... < =8} < ... <

bh =103 < ... < b =8 < ... < asrequired. Now, the first 3 claims of
the lemma are immediate. As for the last one, it suffices tecadhat everyld-
interval starts a chain déi-intervals which must terminate, hence it must end with
the onlyldStop-interval, itself ending with the onl§top-interval. Furthermore, the
first possibldd-interval starts with the first possibtée-interval, which is the only

11
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Start-interval. Thus, no othdd-intervals exist inM/, but those of the typg?, b”].
The rest of claim 4 is now immediate.
O

The above lemma guarantees the existence dti-amain. Now we want to
force the propositional letterp_rel to correctly encode the relation that connects
pairs of tiles of the rectanglR that are vertically adjacent.

(15) [G](up_rel — len_, A OO tile) up_rel andld are equally long
(16) [G](tile — (<, <, 1dStop « ;O up-rel)) tile startsup_rel
(17) (15) A (16)

Lemma4.4 Let M = (N,I(N),V, g) be a WHPNL-model such that

M, [0,8] I+ L, (7) A 00, L, ((14) A (17))

andleta =0 <bl <...<br =0 <...<bh=0)<...<t)<.. <blbe
the sequence of points guaranteed by Lerdn3a Then, for each < j < v, the

interval b}, b} |] satisfiesup_rel, and no other interval satisfieg_rel.

Proof By the first conjunct of 15), we have thatp_rel-intervals have the same
length ofld-intervals. By (6), eachtile-interval, but the ones belonging to the last
Id-interval, starts aip_rel-interval. Finally, by the second conjunct dfY), each
up_rel-interval is started by aile-interval. Given that alu-intervals are equally
long and everyd-interval spans the same numbermeihtervals, the claim follows
immediately from Lemmd4.3.

O

Finally, we can force all tile-matching conditions to bepested, by using the
following formulae, wher€e’,. (resp.,7;, 7., 7;) is the subset of in which all tiles
have the right (resp., left, up, down) side colored vith

12
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(18) [G](((tile A <©.x) V (tile A Stop)) < Rtile) right sidetiles

(19) [G](tile A Opx «— Ltile) left sidetiles

(20) [G((tle— \/ tg)An A\ —(tqAty)) tiles are tiles
tq€T tq,tu€7 tqFtu

(21) [G](tile A O, tile — \/  (t4AOpt,) right-leftconstraint

right(tq)=left(tu)

(22) [G](up-rel — \/ (O1Optq A O, Oty,))  UP-down constraint

up(tq)=down(ty)

(23) [G](<ldStart — O;0;(tile — \/ tq)) down side constraint
tq€7y
(24) [G](©,IdStop — O,0,(tile — \/ tq)) up side constraint
tq€7y
(25) [G](Ltile — \/ tq) left side constraint
tq€7;
(26) [G](Rtile — \/ t,) right side constraint
tq€7Tr

(27) (18 A...NA(26)
The following theorem implies the undecidability of the iogVHPNL (7, =);.

Theorem 4.5 Given any finite set of tileg and a side colo#, the formula

is satisfiable inN if and only if 7 can tile some finite rectangl® with side color
$.

Proof (Only if:): Suppose thab\/, [a,b] I+ ®. Then, by Lemmal.3, there is a
sequence of pointgy = 0 < bl < ... <V =0 <...<Wh =00 <...<t<
.. < b =1b,. We putX = h —1andY = v. We have tha\/, [b7, b7, ] It tile if
and onlyifs > 0, whichimplies)M, [b7, b7 ] I t4 for auniquet,. Now, for alls, .,
wherel < s < X,1 <r <Y, definef(s,r) =t,ifand only if M, [b7, 07 ] IF tq.
From Lemma4.2, 4.3 and4.4 it follows that the functionf : R — 7 defines a
correct tiling of R, whereX andY are defined as above.

(If:) Let f : R — 7T be a correct tiling function of the rectangke = [0, X| x
[0, Y] for someX, Y, and a given border col@: For convenience, we will identify
the tile-variables with their corresponding tiles fram We will show that there
exista modelM/ and an intervala, b] such thatV, [a, b] IF ®. Letn = (X +1)-Y,
we define a model! = (N, I(N), V, g) such that/, [0, 1] IF ®. We must provide
a valuation functiory/. Since the only length variable occurringdns = and it has
no free occurrences there, any valuatiorr@fould be as good as any other, so we

13
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putg(x) = 1. Then, for each, ; € N, we put:

{[i,i+1] 10 <i < n};
V(Start) = {[0,1]};
{[n —1,n]}.

E
i

This guarantees thaf)is satisfied. Now, in order to satisfy the remaining part of
® on [0, 1] it suffices to show that the formula; <, |, ((14) A (17) A (27)) can

be satisfied on the intervéd, X + 1], i.e., (14) A (17) A (27) can be satisfied on
[0, X + 1] by a valuation assigning valug + 1 to the length variable. With the
following, we define the valuation for the remaining propiosial letters:

V() = {i- (X +1),(+1)- (X + 1] [0<i <V}
V() = (- (X + 10 (X4 D) 41 [0<i<Y);
V(tile) := V(u) \ V(+);
V(ldStart) := {[0, X + 1]};
V(ldStop) := {[(X +1)- (Y = 1),(X +1)-Y]};
Vi(up-rel) := {[i, j] [ 6(3,5) = X + 1L, [i, j] ¢ V(Id), 0 <é, j < n};
V(ltile) :={[i- (X +1)+1,i- (X +1)+2]|0<i< Y}
V(Rtile) :={[i- (X +1)—1,i-(X+1)]|0<i<Y}.

Finally, we evaluate the tile-variables as follows. Forleae T:
Vie) ={li+ (G -1) - (X+1),i+ (-1 - (X+ D+ D] f(iJ) =1}

It is now straightforward to check that, [0, 1] I ®, hence the claim. O

Now, we will sketch how we can eliminate the modal constafrom the for-
mulae in the construction above. Note that the modal cohstaminvolved only
in formulae @) and @), forcing uniqueness of theintervalsStart andStop, and
consequently uniqueness of tirehain. Without the modal constantin the lan-
guage, it seems that we cannot force that uniqueness any8tdlewve can ensure
that any twaStart intervals must overlap, by replacing the formudx With

[G](Start — u A O,0,—Start).
Likewise for theStop-intervals, by replacing4) with

|G](Stop — u A O,0,—Stop).
14
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Thus, othew-chains may be possible in a model satisfying the resultingdifita-
tion of |, (7), butthey all would have the same lengtand numbet: of u-intervals
and may differ from each other by a translation to the lefigihtrat a distance less
thand. By a similar argument, the same would happen toléhehains in every
model of the modified formulg,. (7) A ;<. |, ((14) A (17) A (27)). Eventually,
every model of the modified formul& would have possibly several isomorphic
copies of the encoding of the required finite tiling; conedysevery correct finite
tiling would generate a model satisfying the modified foranétl We leave the
further details to the reader. Thus, we obtain the followrgplt.

Theorem 4.6 The satisfiability problem for WHPNL(), interpreted oveN is un-
decidable.

Another minor modification of some of the formulae above @uce the Fi-
nite Tiling Problem to the satisfiability problem of the log?vVHPNL(=); inter-
preted ovelN with strict semanticsthus excluding point intervals, hereafter de-
noted WHPNL=); . Essentially the only necessary changes in the formulag use
in the encoding of the tiling problem are to replace formwé¢he typed, 0,
with 0,9 A O0,0,4, likewiseD;0;¢ with 0,9 A 0,02, and, respectivelyp, <4
with <, A O, O, likewise &< with & A OO rp. The rest should be es-
sentially the same, save for the fact that the complicataamsing from the point
intervals will now disappear.

5 Regaining Decidability: PNL with Restricted Interval Length
Binders

As we have seen so far, adding even a single length variable dinder over it
to PNL leads to undecidability. The natural question thesesris whether there is
any natural decidable extension of PNL or MPNL that stilbal a restricted use
of length binders, i.e. memory. So far, our proposal to regacidability is to limit
the range of the binders over length variables, by replathiegoinder|, with a
hierarchy of restricted versioqs” | k£ € N} and modifying suitably the semantics
when the length of the current interval exceeds the limihefltiinder. We consider
two such versions of the semantics|§f

1. Restricted semantic9/, [a, b] IF"|* o iff
i) 0(a,b) < kandM’, [a,b] IF ¢ for M' = (N,I(N),V,¢'), whereg' is the
assignment such that ~, g andg’(z) = d6(a, b), or
i) d(a,b) > kand M’ [a,b] IF ¢ for M = (N,I(N),V,¢'), and forsome
assignmeny’ such thay’ ~, g andg’(x) > k.
2. Truncated semantics\/, [a, b] IFt|* ¢ iff
i) d(a,b) < kandM’',[a,b] IF ¢ for M' = (N,I(N),V,¢'), whereg' is the
assignment such that ~, g andg¢’(z) = d6(a, b), or

15
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i) d(a,b) > kandM’, [a,b] IF ¢ for M’ = (N,I(N),V,¢), whereg' is the
assignment such that ~, g andg’(z) = k£ + 1.

The intuition is clear: the binder® can only store the length of the current
interval if it does not exceek, otherwise in the truncated semantics it stdres1
and in the restricted semantics it only stores the constiain,.

We now consider therestricted fragmentWHMPNL"(=) of the logic
WHMPNL(=), where only restricted length binders may occur and thealéei
length constraints of the tyden_, may only occurpositively(i.e., we do not al-
low sub-formulae of the kinehlen_,, after the formula is transformed to a negation
normal form), interpreted with the restricted semantictie funcated fragment
WHMPNL!(=) of WHMPNL (=) is defined likewise, but without the polarity re-
striction on the occurrences keh_,, and interpreted with the truncated semantics.

Theorem 5.1 We have that:

(i) Every formulayy of WHMPNL (=) can be effectively translated to a formula
7" (v) of MPNL which is equisatisfiable with when interpreted ovelN and
has length at most exponential in the lengthjof

(i) Every formulayy of WHMPNL (=) can be effectively translated to a formula
7'(1) of MPNL which is equisatisfiable with when interpreted ovell and
has length at most exponential in the length/of

Proof Both translations, for WHMPNL(=) and WHMPNL (=), into MPNL, dis-
tribute over all logical connectives except the length bisgdon which they act re-
spectively as follows, wherd[Z/len_,] is the result of simultaneous substitution
of all freeoccurrences on_, (i.e., not in the scope of &) by Z in A:

T’"(l’; ) = (lens, A 77(¥)[lensy /len—]) V \/(Ien:j A T"()[lenz;/len—]).

k
715 4) i= (lensy A T (1) [len—yy1/len—y]) \/ len_j A 78(1)[len—;/len—,]).

We claim that each of these translatlons, when applied tmdtae in the re-
spective languages, produces a formula equisatisfiablettét original one. For
lack of space, we leave the details to the reader. O

Note that the translation” does not work correctly when a variable length
constrainten_, occurs negatively, becausé:n_, is not equivalent te-len-,, when
x > k. Forinstancel® (len-, A O, (—len_, A lensy)) is satisfiable in the restricted
semantics but” (1% (len, AO,(mlen_ Alensy))) = (lens AC, (—lensy Alensy))V
\/fzo(len:jA(Ien>k A O (—lenzj Allensy))) is not. That problem does not arise for
the translation”.
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Now, the following is immediate from Theorefland Theoren2.1

Corollary 5.2 The satisfiability problem for both the fragments WHMP{NY)
and WHMPNL(=), interpreted oveN, is decidable in BNEXPTIME, when length
constraints in the formulae are represented in binary, amn@NEXPTIME, when
length constraints in the formulae are constant or représéin unary.

6 Conclusions and Future Directions

In this paper we have demonstrated that extending (M)PNh wariables and
binders over interval lengths is natural, but generallyl$¢etn undecidability even
in very restricted fragments. While these results are sdmedisappointing, they
show that strong restrictions must be imposed on the apialicaf length binders
in order to retain the decidability of the non-hybrid fragmer he restrictions pro-
posed here render the resulting languages no more expgdisaivtheir non-hybrid
fragments, so the question whether an essential gain oéssipeness can be ob-
tained by adding some hybrid machinery to interval logic satdining decidability,
is still open.
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