An Automaton-based Characterisation of
First-Order Logic over Infinite Trees

Massimo Benerecetti Dario Della Monica
Universita degli Studi di Napoli Federico 11 Universita degli Studi di Udine
massimo.benerecetti@unina.it dario.dellamonica@uniud.it
Angelo Matteo Fabio Mogavero
Universita degli Studi di Udine Universita degli Studi di Napoli Federico II
matteo.angelo@spes.uniud. it fabio.mogaveroQunina.it
Gabriele Puppis

Universita degli Studi di Udine
gabriele.puppis@uniud.it

In this paper, we study First Order Logic (FO) over (unordered) infinite trees and its connection with
branching-time temporal logics. More specifically, we provide an automata-theoretic characterisation
of FO interpreted over infinite trees. To this end, two different classes of hesitant tree automata are
introduced and proved to capture precisely the expressive power of two branching time temporal
logics, denoted cCTL’; and CCTL;, which are, respectively, a restricted version of counting CTL with
past and counting CTL* over finite paths, both of which have been previously shown equivalent to
FO over infinite trees. The two automata characterisations naturally lead to normal forms for the two
temporal logics, and highlight the fact that FO can only express properties of the tree branches which
are either safety or co-safety in nature.

1 Introduction

Characterisation theorems [25] are powerful model-theoretic tools that offer a principled approach to
understanding the intrinsic features of formal systems. They allow us to mark the expressive boundaries
of specification languages, compare these formalisms w.rt. their descriptive power on specific classes of
models, and design new languages starting from a given set of requirements, in the spirit of Lindstrom-
style theorems [34] (e.g., based on maximality principles). They also play a central role in definability
theory, guiding the identification of expressive fragments and meaningful extensions of known logics,
thus supporting the selection of suitable languages for the specification of the correct behaviour of systems
in verification and synthesis tasks.

A foundational distinction exists between linear-time and branching-time languages [36, 37]. The
former capture properties of computations viewed as totally-ordered sets of events, while the latter account
for the branching structure inherent in concurrent and nondeterministic system behaviours.

The linear-time case, where models are isomorphic to (finite or infinite) words, is by now well
understood. A rich and intertwined network of equivalences connects predicate logics over linear orders
with temporal logics, such as LTL [44, 45] and ELTL [54], with star-free [50, 43] and w-regular [12]
languages, and with automata-theoretic models, including finite [42, 48] and Biichi [19, 12, 13] automata.
These connections provide deep insights into the structure of definable properties and lead to optimal
decision procedures across different representations.

Submitted to:

Sixteenth International Symposium on
Games, Automata, Logics, and Formal
Verification (GandALF 2025)

© Benerecetti, Della Monica, Matteo, Mogavero and Puppis
This work is licensed under the
Creative Commons Attribution License.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 An Automaton-based Characterisation of First-Order Logic over Infinite Trees

By contrast, the branching-time setting remains more fragmented. Even for First-Order Logic (FO)
interpreted over (finite or infinite) trees many fundamental definability questions remain unsettled. A
longstanding open problem posed by Thomas in the 1980s [51] asks whether it is decidable if a given
regular-tree language is definable in FO. This question has been studied under various combinations of tree
types (ranked/unranked, ordered/unordered) and interpreted vocabularies (e.g., including only child, only
ancestor, or both relations). Aside from the positive result for FO over finite trees with the child relation [1],
the problem remains open in all other settings. Efforts to resolve this question have mainly followed
algebraic approaches [60], inspired by their success in the word case (most notably the Schiitzenberger
theorem on star-free languages [50]). These approaches rely on the compositionality and structural insights
provided by syntactic algebras. Despite significant progress, they have provided only partial results, mostly
for classes of finite trees [40, 4, 23, 9] or topologically simple infinite trees [7, 8]. An alternative and often
complementary line of work seeks direct characterisations of FO-definable tree languages via automata.
This route, highly successful in the linear-time case, has also led to fruitful results in the branching-time
setting, including a correspondence [29] between Monadic Second-Order Logic (MSO) [47], Parity Tree
Automata [40, 22], and the Modal u-CALCULUS [30]. More recently [2], the landscape has expanded
to include the expressive equivalence of Monadic Chain/Path Logics (MCL/MPL) [51, 52, 28], their
temporal Computation Tree Logic counterparts (ECTL*/CTL™) [53, 20, 21], and variants of Hesitant Tree
Automata (HTA) [32].

In this work, we continue this line of development, by providing the first, to the best of our knowledge,
complete automata-theoretic characterisation of first-order logic with the descendant relation of unranked
unordered infinite trees. Our approach builds on previous results for two branching-time temporal logics,
namely a fragment of Computation Tree Logic with past and counting, denoted cCTLY., and the Full
Computation Tree Logic with counting and finite path quantification, denoted CCTL}. In [49, 2] these
logics were shown to be expressively equivalent to FO when interpreted on unordered infinite trees.
For these two logics, we introduce corresponding variants of hesitant graded automata, called Two-Way
Hesitant Linear Tree Automata (2HLGT) and counter-free Hesitant Weak Tree Automata (HWGT,z), and
prove that they capture precisely the expressive power of the considered logics, and therefore of FO as
well. This establishes a full mutual equivalence between logics and automata. These characterisations also
uncover a polarised normal form for both temporal logics, revealing a noteworthy semantic feature of FO
over infinite trees: formulas that quantify existentially on branches can only express co-safety properties,
while those quantifying universally correspond exclusively to safety properties. This observation aligns
with earlier findings [15] that relate fragments of the modal u-CALCULUS, variants of Propositional
Dynamic Logic (PDL) [24], and Weak Monadic Chain Logic (WMCL).

Other related work. In earlier work, Bojariczyk [4] showed that, over finite binary trees, FO with child
and ancestor relations is equivalent to a cascade product of so-called aperiodic wordsum automata. While
related in spirit, this result targets a different logic and a different class of structures. More recently,
Ford [26] focused on the same tree structures that are considered here, and introduced the class of
antisymmetric path parity automata, which are shown to be no more expressive than FO. However, that
work does not provide a translation from FO to automata, leaving the equivalence question open.
Organization. The paper is organised as follows. In Section 2 we give the necessary preliminaries on
words, trees, first order and temporal logics. In Section 3 we recall the two branching-time temporal logics
equivalent to FO and investigate their most interesting properties. Section 4 is devoted to the introduction
of the class of graded tree automata and of its weak and hesitant restrictions. Sections 5 and 6 are the
main sections, in which we prove the equivalence of two classes of automata with the two temporal logics
discussed in Section 3, while in Section 7 we present the normal forms obtained for them. Finally, Section
8 discusses the results.

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 3

2 Preliminaries

Words and trees. Given a finite alphabet X, a finite (resp., infinite) word over ¥ is a finite (resp. infinite)
sequence of letters in X. A word language over X is a set of words over X.

We consider unranked and unordered infinite trees with arbitrary finite branching. A tree is a connected
acyclic graph T = (Vp,Er), where V7 is its set of nodes and Er € Vr x Vr is its transition relation; Er is
total, that is, for every n € Vr, (n,n") € E7 for some n’. We denote the reflexive and transitive closure of Er
by E;. We denote the root of a tree 7 by &7. Given two nodes v,w in T, we say that v is the parent of w if
(v,w) € Er and that v is a child or successor of w if (w,v) € Er. A tree is unranked if there is no restriction
(apart from finiteness) on the number of children a node might have. If two nodes have the same parent
we say they are siblings. A tree is unordered if the order of the siblings is irrelevant. Moreover, we say
that v is an ancestor of w if (v,w) € E}, and that v is a descendant of w if (w,v) € E7..

The subtree of T rooted at a node w is the tree consisting of all the descendants of w. A path & of a
tree T is a finite or infinite sequence of nodes of 7', whose first element is the root of 7 and where every
element but the first one is a child of its predecessor in the sequence. Given a path 7 = ngn; ..., we write
7 (i) to refer to n;.

Given a finite alphabet X, a X-labelled tree (X-tree for short) is a pair 7 = (T, 7) such that 7T is a tree
and 7:Vy — X is a labelling function assigning to each node in 7" a letter of ¥. A tree language over X is a
set of X-trees. We denote by Ty the language of all X-trees.

First-Order logic. We introduce monadic First-Order logic on trees with the ancestor relation (FO for
short). Let AP be a set of atomic propositions. Formulas of FO are generated by the following grammar,
where p ranges over AP and x,xg,x1,... are first-order variables from a set Var:

@:=(xo=x1) | (o<x) | p(x) | -@ | ove | Ixg

The usual abbreviations T, 1,A,—, <>,V are allowed. A variable is free if it is not bound to any quantifier.
A formula without free variables is called a sentence.

An FO formula ¢ is interpreted over a structure M = (7 ,{), where T = (T,7) is a X-tree,' with
¥ =2AP and ¢ : Var - V7 is a function associating a node of T with each variable. The relational symbols
= and < are interpreted, respectively, by the identity on the nodes and by the reflexive and transitive closure
E7 of the transition relation of T'; the rest of the semantics is standard. Note that we can equally interpret
FO formulas on words, seen as trees whose nodes have at most one successor.

Temporal logics. We now introduce variants of the branching-time temporal logics CTL and CTL*. In
doing so, we adopt a suggestive notation that annotates a base logic, e.g. CTL, with superscripts and
subscripts, denoting enhancements and restrictions, respectively. The most expressive logical formalism in
this setting is denoted cCTL*"?, and can be seen as the extension of CTL* with counting modalities (e.g.,
for counting the number of successors satisfying a certain property) and past operators (for navigating the
tree along ancestors). Formulas of cCTL*? are generated by the following grammar, where n ranges over
the natural numbers and p ranges over a set AP of atomic propositions:

9:=D"¢ | p| -9 |9vo|Ep|Xo|oUp|Ye|pse
—— N——_——— —/
counting operators past operators

Some abbreviations are FQ =TUQ, G = -F -0, 9RO’ = ~(-@U-¢"), pW @' =GoVv (pU¢’'), Ap = -E-0.

'Tt is sometimes convenient to identify X with AP. Since here we are not concerned with succinctness of formulas or
complexity of satisfiability problems, this detail is immaterial.

4 An Automaton-based Characterisation of First-Order Logic over Infinite Trees

Formulas of cCTL**” are evaluated with respect to a X-tree 7 = (T,), where X = 24P, an infinite

path 7 of T, and a position i € N along this path. The satisfaction relation & is defined by induction over

c¢CTL*** formulas as follows (we omit the obvious Boolean cases):

. T,m,i = D"y iff there are n distinct infinite paths 7y, ..., 7, such that (i) they coincide with 7 up to
position i, (ii) they all differ at position i + 1, and (iii) they satisfy 7, 7;,i+ 1= @ forall 1 < j <n,

« T,mirpifpet(n(i)),

. T,m,i = Ey iff there is an infinite path 7’ that coincides with 7 up to position i and satisfies
T,7iey,

. T, mieXyif T,mi+1Ey,

. T,m,iewUy iffthereis j>isuchthat 7,7, jEy and T, 7w, kE yforalli<k< j,

. T, mi=Yyiffi>0and T,w,i-1E v,

. T,miewSy iffthereis j<isuchthat 7.z, jEy and T, 7w ke yforalli>k> j.

We say that two formulas y and W’ are equivalent” if for every X-tree 7 = (T,) and every infinite path 7

of T, we have that 7, 7,0 = y iff 7, 7,0 £ /. We say that a X-tree T is a model of a formula ¢, denoted

T =y, if T,m,0 = y for every infinite path . A formula is valid if every X-tree is a model of it.

We denote by L(y) the language of models of a given formula y, and we shall consider classes
of languages defined by formulas in certain fragments of cCTL**?. In particular, we say that two such
fragments are expressively equivalent if they define the same class of languages, and that one fragment
is strictly less expressive than another one when the class of languages defined by the former is strictly
contained in the class of languages defined by the latter.

Let us now discuss the main fragments of cCTL*"”. A first fragment is CTL**?, which is cCTL*"?
devoid of the counting operators D”. In its turn, CTL*” without the past operators corresponds to the
classical CTL* logic. Fragments CTL? and CTL are obtained by applying the same restrictions (analogous
removals of counting and past operators) to cCTL?, the fragment of cCTL*"” where path quantifiers and
future temporal operators must be paired together, as indicated by the following grammar:

cCTL”

CTL?

p:=D"¢|p|-¢0|ove |EXe |E(pUe) |E(pRQ) Yo |pSe

CTL

cCTL

Finally, cCTL* and ¢cCTL are, respectively, cCTL*"” and cCTL? without past operators. It is well known
that CTL is strictly less expressive than CTL? [33, Theorem 4.1, 4.2], and consequently cCTL is strictly
less expressive than cCTL”.

Finally, we have the Linear-time Temporal Logic with and without past operators, abbreviated,
respectively, LTL? and LTL for short. These logics can be seen as the fragments of CTL*” and CTL*
that are evaluated over unary trees, that is words (notice that in this setting the path quantifier E becomes
pointless). It is worth recalling that LTL and LTL? are expressively equivalent [27, Theorem 2.2], and
they correspond to FO when the latter is evaluated on words as well:

Proposition 1. [/8, Theorem 1.1] LTL and LTL? are equivalent to FO over finite and infinite words.

2This is a standard notion called initial equivalence, sometimes contrasted with the stronger equivalence that evaluates
formulas at arbitrary nodes. In this paper, we are only concerned with initial equivalence, and therefore we opt for saying just
“equivalent” without further specification.

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 5

Word automata. A Nondeterministic Parity word Automaton (NPA) is a tuple A = (Q,X, 8,q;,Q), where
Q is a finite set of states, X is a finite alphabet, 8 : O x £ — 2€ is a transition relation (represented as
a function towards the powerset of Q), g; € Q is an initial state, and Q : Q — N is a priority function
associating a number with each state. An NPA is deterministic if § : Ox XL — Q.

A path of A on a finite (resp., infinite) word w = aga; . .. is a finite (resp., infinite) sequence of states
qoq - -. such that g1 € 6(g;,a;) for all positions i in w. Such a path is called a run of A on w if it is
infinite and, moreover, its first state g is the initial state ¢; of the automaton. We denote by inf(r) the
set of states visited infinitely often along a run r, and say that r is successful if the highest priority of the
states in inf(r) is even. An infinite word w is accepted by A if there is a successful run of .A on w. The
language L£(.A) recognized by A is the set of words accepted by .A. Two automata are equivalent if they
recognize the same language.

Variants of NPAs are obtained by changing the acceptance conditions. One way is to simply turn
existential non-determinism into universal non-determinism, that is, to declare that the automaton accepts
a given word whenever every run on it is successful; we call these models of automata universal (e.g., we
have Universal Parity word Automata, abbreviated UPA). Another way is to constrain the co-domain of
the priority function to be of cardinality 2 and to contain both an odd and an even number. An NPA with
this restriction is a Biichi (resp., coBiichi) automaton if the largest number in the co-domain cod(Q) of
Q is even (resp., odd). Note that such an acceptance condition can be equivalently specified by the set
F={q<c0]|Q(q) =max(cod(Q))}, whose states are usually called accepting or rejecting depending on
whether we deal with Biichi or coBiichi conditions. Accordingly, a run r is successful for a Biichi (resp.,
coBiichi) condition if inf(r) N F # & (resp., inf(r) N F = &).

An automaton A is counter-free if the following holds for all states g, all finite words 1, and all
numbers n: if A admits a path on 1" that starts and ends at g, then it admits a path also on 1 that starts and
ends at g. By [18, Theorem 1.1], counter-free Biichi nondeterministic automata and FO capture the same
class of word languages.

3 Temporal Logics and FO

In this section, we introduce two temporal logics provably equivalent to FO over unranked and unordered
finitely branching infinite trees.

The polarized fragment of counting CTL with past operators. The first temporal logic we discuss is
a syntactic restriction on cCTL?, introduced and studied by Schlingloff in [49]. More precisely, in [49,
Theorem 4.5] it is shown that there is a fragment of cCTL? that is expressively equivalent to FO over
infinite finitely branching trees. We call this fragment Polarized cCTL?, abbreviated cCTLY. Its formulas
are generated by the following grammar:

¢:=D"¢ |p|-¢|ove |EXe |E(pUg) | Yo | ¢So

Accordingly, we denote by cCTL,. the sub-fragment obtained from cCTL by disallowing past operators.

The only difference w.r.t. cCTL” and cCTL is that E(¢ R @) is not included as primitive in the syntax
(and it cannot be restored as an abbreviation). Indeed, it is possible to define the following abbreviations:
AXQ = -EX-@, EF@ =E(TU®), AGQ = -EF -0, A(pR@') = =E(-@U-¢"); however, formulas of the
form EG@, E(pR@’), AF @, A(9U @) are not derivable. The semantic intuition behind this syntax is that
formulas that existentially quantify over branches can only express co-safety properties; dually, universal
quantifications can only be paired with safety properties. This will become transparent in the following of

6 An Automaton-based Characterisation of First-Order Logic over Infinite Trees

the paper, but note already that this is similar to what happens in a fragment of the modal u-CALCULUS
isolated in [15], that the authors call completely additive, and that allows only the interplay of least fixpoint
operators and existential modalities, and, dually, of greatest fixpoints and universal modalities.

Before proceeding, we address two natural issues: whether cCTLY, is strictly less expressive than
cCTL? and whether cCTL, is strictly less expressive than cCTLY. It turns out that the answer is positive
in both cases, for the following two propositions.

Proposition 2. [2, Theorem 3]] No FO formula can express the CTL formula AF p.
The result follows from the equivalence of FO and cCTLY.
Proposition 3. /33, Lemma A.2] No cCTL, formula can express the CTL* formula E((pv qUr)Us).

By investigating the proof of [33, Lemma A.1], it turns out that there is indeed a formula of cCTLY
equivalent to E((p v qUr)Us) (it is quite long so we omit it here). Note how such a formula predicates
about a finite prefix of the selected path. Finally, to sum up: cCTL, is strictly less expressive than cCTLZ,
which is in turn less expressive than cCTL?.

Counting CTL" over finite paths. The second temporal logic equivalent to FO that we investigate is
cCTL}. The equivalence of this logic with FO can be established easily by adapting the model-theoretic
argument of [39] and it was first noticed in [2, Proposition 3].

¢CTL} is cCTL" with path quantification ranging over finite paths. Given a 24P tree T = (T,7), a
finite non-empty path 7 of T, and a position i on the path, the satisfaction relation k of a cCTL} formula
is defined as follows (once again we omit the obvious Boolean cases):

. T ,m,i=D"y iff path = does not end at 7(i) and there are n distinct finite paths 7, ..., 7, such that
(i) they coincide with 7 up to position i, (ii) they all differ at position i+ 1, and (iii) they satisfy
T.mj,i+1=¢@forall 1< j<n,

. T,mi=piff pet(n(i)),

. T, 7,i E Ey iff there is a finite path 7’ coinciding with 7 up to i, such that 7,7’ ,i = y,

. T,m,i= Xy iff path T does not end at (i) and 7,7, i+ 1 = .

. T,m,iewUy iffthereis j>isuchthat 7,7, jEy and T, 7w, kE yforalli<k< j,

While the semantics for atomic propositions and the temporal operator until U is unchanged compared to

cCTL", the other clauses must be slightly adapted to deal with finite path quantification. The notions of

formula equivalence and model must be adapted accordingly: two formulas y and ' are equivalent if for

every X-tree 7 = (T,7) and every finite non-empty path 7 of T, we have that 7, 7,0 = y iff 7, 7,0 = y/;

a X-tree T is a model of a formula ¢, denoted 7 = v, if T, 7,0 = y for every finite non-empty path 7.

In cCTL}, it makes sense to define an abbreviation for the dual of X, defined as X ¢ = =X -, thus
corresponding to the semantic clause:

. T,7,i= Xy iff the path 7 ends at (i) or T, 7,i+1E y.

Notice that, in cCTL*, the semantics of X and X coincide (X is the dual of itself). The introduction of

X changes a few things. Recall that F@ <> ¢ VXF@ and oUy < yVv (@ AX(@UWy)). Now, by putting

G@ =-F-0 and @RY = ~(-@U-Vy), one obtains G < @ AXGQ and @RY < w A (@ VX(QPRY)).

Moreover, ~EX -y = AX y.

The equivalence of cCTL} with ¢cCTLY could come as a surprise, since the former does not share
the syntactic restriction of the latter. In the following proposition we show how finite path quantification
actually enforces semantically the same behaviour of cCTLY.

Proposition 4. Let ¢, y, and 'y be cCTL} formulas. Then, the following are valid cCTL} equivalences:
1. EXQ < Tand AXQ < 1,
2. QRY <oy, and QUY < 0y, where oy, = WU((XLV @) Ay) and oy, = WR((XTAQ) V)

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 7

E(pRY) < E(ag,,) and A(9Uy) < A(dy),
EX (@R Y) < EX(0y) and AX (@Uy) < AX (ot)

E(pU(YRY)) < E(@Uay) and A(9R(YUY)) < A(pRay),

E((pRY)UY) < E(0p, UY) and A((9UW)RY) < A(cty , RY).
Equivalences with F and G can be obtained from the equivalences with U and R. Thus, even if it
seems that cCTL} is able to syntactically specify properties impossible to express with cCTLY, the finite
path quantification indeed trivializes many of these properties. Interestingly, both logics have an ability
the other one lacks, but as we have already mentioned they share the same expressive power: cCTLY
enjoys past operators and thus the ability to reason backwards over the input tree, while cCTL}*p is able
to nest U and R operators without a path quantifiers in between. The equivalence with FO shows that
these abilities yield the same expressiveness. Indeed, notice that the cCTLY formula equivalent to the
above cited CTL* formula E((pVv qUr)Us), that makes cCTLY, strictly more expressive than cCTL, (see
Proposition 3 above), preserves its meaning also in CCTL}. Basically, the syntactic restrictions of cCTLY
are semantically retained in CCTL}. Once again, we mention the completely additive fragment of the
modal p-CALCULUS to emphasize its relationship with these two logics and to better understand their
behaviour. In [15, Theorem 3.6], this fragment is shown equivalent to PDL, while in [14, Theorem 1] it is
shown that PDL is equivalent to a fragment of Weak Monadic Chain Logic (WMCL). Since FO is itself
a fragment of WMCL, it makes sense that the temporal logics equivalent to it enjoys such “polarized”
properties, meaning that the existential and universal modalities are bounded to express dual properties,
such as co-safety and safety ones.

ISANN I NI

4 Hesitant and Weak Graded Tree Automata

Here we study a general automaton model inspired by the class of Graded Tree Automata, originally
introduced in [31, Section 3]. We progressively restrict the recognising power of this model, until we
obtain two classes of automata provably equivalent to cCTL? and cCTL}, and consequently to FO.

Graded tree automata. A set of positive Boolean formula over a set X is denoted by B*(X), and is
composed of formulas of the form T, L,x,0 v 0,0 A 0, where x € X.

A Graded Alternating Parity Tree Automaton (GTA) is a tuple A = (Q,X,8,q;,Q), where Q is a
finite set of states, X is a finite alphabet, g; € Q is an initial state, Q : Q — N is a priority function, and
0:0xE - B"({Ok, 0k | k> 0} x Q) is an alternating transition function. We call atom any pair (V,q),
where © is either & or O. When & = 1, we simply write ¢ instead of ¢ and O instead of 0.

A run of a GTA A on a X-labeled tree 7 = (7,7), is a Vr x Q-labelled tree R = (R,p), where
R = (Vg,ER) is a tree (possibly with some leaves) and p : Vg — V7 x Q is a labeling function that associates
every mnode of R to a node of the input tree and a state of the automaton. Before describing the additional
conditions that must be satisfied by a run, we briefly explain how to evaluate a positive Boolean formula
that may appear in the transition function of the automaton. We start by considering the case of atoms.
Given a candidate run R = (R,p) on T = (T, 7) and a node s € Vg, with p(s) = (n,q), we let:

. s & (Ok,q') if n has at least k successors in T, say, ny,...,n, and, for each i = 1,.. .k, s has at least
one successor in R labeled by (n;,q");

. s & (Og,q") if for all but k— 1 successors n’ of n in T, there is a successor of s in R that is labeled by
(n',q").

The satisfaction relation k= is then extended to the constants T and 1 and to the Boolean connectives A and
v in the obvious way, e.g. by letting s = T when s is a leaf. Now, the additional conditions that must be
satisfied by arun R = (R,p) of Aon T = (T,7) are as follows: (a) p(&r) = (€r,41), (b) for every node

8 An Automaton-based Characterisation of First-Order Logic over Infinite Trees

seR, with p(s) = (n,q), s= 8(g,7(n)). Given such arun R = (R,p) and a maximal path 7 in it (which
can be finite or infinite), we denote by inf(7) the set of states visited infinitely often along 7, and we say
that 7 is accepting if either it terminates in a leaf (implying that there is a transition reaching T), or it is
infinite and the highest priority assigned by Q to the states in inf(7) is even. Finally, a run R is successful
if every maximal path in it is accepting.

Weak and Hesitant tree automata. We are interested in a proper subclass of GTAs, characterized by
a hesitant partition on the state set and a weak acceptance condition. We define the weak acceptance
condition first, following [41].

A Weak Graded Alternating Parity Tree Automaton A={(Q,%,8,q;,Q) (WGT) is a GTA such that
there is a partition of Q into disjoint non-empty sets (from now on, components) {Qy,....,Qx} and a partial
order < such that the transitions from a state in Q; can only lead to states in Q; or to states in a component
with lower order. The acceptance condition is weak because we enforce that every component either
contains only states marked even by the priority function or contains only states marked odd.

A Hesitant Weak Graded Alternating Tree Automaton (HWGT) A =(Q,X,8,q;,Q) is a WGT such
that each component is of one of the following three types:

. Q; is existential, if for all o € ¥ and for all ¢,q" € Q;, ¢’ can appear in the disjunctive normal form of
0(q,0) only in an atom (<>,q"), and only disjunctively related to other atoms with states in Q;;

. Q; is universal, if for all o € X and for all ¢,q’ € Q;, ¢’ can appear in the conjunctive normal form of
0(g,0) only in an atom (O,q"), and only conjunctively related to other atoms with states in Q;;

. Q; is transient, if for all 6 € ¥ and for all ¢,q’ € Q;, ¢’ does not appear in any atom in d(g, o).

Note that in the existential and universal components & and O; must have k = 1, if they are paired with a
state of the component. This is the hesitant constraint on the partition of the state set, introduced in [32,
Section 5.1]. Clearly, every path of a given run will eventually get stuck in an existential or a universal
component. We let every state in a universal (resp., existential) component be marked even (resp., odd)
by the priority function. Let Q; be the component in which a path 7 of a given run R gets stuck: if Q; is
universal, 7 satisfies the accepting condition if it visits infinitely often a state in Q;; if Q; is existential,
7 satisfies the accepting condition if it visits finitely often every state in Q;. Notice that this accepting
condition is weak, since it basically states that the universal components are entirely accepting and the
other components are entirely rejecting. It is possible to have a HWGT A with a positive boolean formula
0 as initial condition instead of a state. It is then possible to convert it to an automaton with an initial state
by having as initial an extra state gg, such that 8(qg,0) = 0 for every o € £. Such an automaton will be
denoted by A°?. Given a HWGT A and a state g € Q, we denote by A the automaton A where ¢ is the
starting state.

Summing up, we will work with a HWGT A = (Q,X, 5, q;,Q), with an hesitant partition on the state
set and a weak acceptance condition, stating that every state in the existential components are only visited
finitely often or some state in the universal components is visited infinitely often. However, this class of
automata is still not weak enough to be equivalent to FO. Indeed, note the striking similarity of HWGTSs
with the Additive Weak Parity Automata (AWA) introduced in [14, Section IV] and proven equivalent
to WMCL on trees. This suggests that HWGTS as above defined are equivalent to this logic, too. In
the following, we will further restrict their recognising power and yield equivalence results with the two
temporal logics above introduced.

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 9

5 Automaton-based Characterization of cCTLY

What currently prevents us from saying that HWGTs and cCTL” are equivalent are the following two
observations: an HWGT cannot reason upward along the input tree and its components have no restriction
other than being purely accepting or purely rejecting. In this section we will solve both these problems in
a straightforward way, and prove that the obtained class of automata is equivalent to cCTLY.

Two-Way Linear HGTA. A Two-Way HWGT (2HWGT) is defined exactly like a HWGT, namely, as
a tuple A=(Q,%,8,q;,Q), but where § : Q x (X2x{0,1}) - B*({Ok, 0k, —1} x Q). The idea is that the
automaton can send states towards the successors of the currently visited node, as well as towards its
parent, if it exists. These transitions are determined, as usual, from the current state and from the label
of the visited node, but they might also depend on whether the head is at the root or not — for this, we
explicitly mark the nodes of the input tree with a flag that distinguishes the root from the other nodes.
Givenarun R = (R,p) of a 2HWGT A over a E-labelled tree as above, and a node s in Vg such that
p(s) =(n',q"), the semantics of an atom (-1,q) € B* ({ Ok, Ok, —1} x Q), for some g € Q, is as follows:
. s (-1,q) iff n’ has a parent n”” and s has a parent labelled by (n”, g) — note in particular that when
the head is at the root this atom is always false.
Moreover, we enlarge the hesitant types adding to the above defined transient, existential and universal
the following. Given a 2HWGT 4 and a component Q; of A:
. Q; is upward, if for all ¢ € ¥ and for all ¢,q" € Q;,¢’ can appear in 6(g,) only in the form (-1,q).
Finally, a linear HWGT, or HLGT for short, is a HWGT A = (Q,X, §,q;,Q) in which the partitioning
of the state set is composed entirely of singletons. This latter condition is reminiscent of a restriction
on Additive Weak Parity Automata (AWA) (already cited above at the end of section 4) introduced in
[26, Definition 3.3.1], and giving rise to the so-called Antisymmetric AWA. In that paper, the author
states the expressive equivalence between AWA and WM CL, and conjectures an equivalence between
Antisymmetric AWA and FO (he was only able to prove that FO is at least as expressive as Antisymmetric
AWA). This conjectured correspondence will be discussed again at the end of the section.
Finally, merging the two restrictions together, we get the class of 2HLGT, i.e., two-way automata in
which every state is either transient, existential, universal or upward. We will now prove that 2HLGT are
equivalent to cCTLY.

5.1 Equivalence of 2HLGT and cCTL%

Here we prove that given a 2HLGT, it is always possible to obtain a cCTLY formula equivalent to it. The
approach is a combination of the translation procedure of [35, Theorem 6] and [1 1, Theorem 3.1].

Theorem 5. Given a 2HLGT A over ¥ = 247, for a set of atomic propositions AP, it is always possible to
obtain a cCTLY, formula ¢ 4 such that L(A) = L(Q4).

Proof. Fix a 2HLGT A =(0Q,X,8,q;,Q2). We will show how to translate any given ¢ € Q by induction
over the order of the singletons in the partition. This will yield the result, by the translation of g;. For a
given state ¢ or a positive boolean formula 6, we will use in the following ¥ (¢) and x(0) for the cCTL”
formulas equivalent to A% and A°?, respectively.

First of all, we translate any o € X by the cCTLY formula ys = A peaPA/Np¢s—p- By construction,
for every g € Q and every 0 € X, if ¢’ € 6(g,0) and ¢’ # ¢, we know that ¢’ is of lower order than g with
respect to the partition of the state set. By inductive hypothesis, we could assume to have a cCTL. formula
x(q") for each one of them, if it wasn’t for atoms. Indeed, since cCTL? is closed under v and A, and T
and 1 are already allowed formulas of the logic, we can assume to translate this kind of formulas without

10 An Automaton-based Characterisation of First-Order Logic over Infinite Trees

any problem. With regards to atoms, however, the translation is also easy: (<O, q) is translated as D¥x (g),
(Ok,q) is translated as -D¥-x(¢) and (-1,q) = Yx(g). We just have to show how to obtain ¥ (g). This
is done in the following way. Having fixed age Q and a 6 € £, §(g, 0) is a positive boolean formula 6.
Moreover, if we ignore a (possible) atom in wich g itself occurs, it is a positive boolean formula composed
entirely of states of order lower than ¢, denoted by x(6,). The subscript says that it is the formula
obtained by 0(g¢,0). Now, we define the recursion to obtain . This is done by induction on the order on
the components of the partition, that is well-founded.

Given g € Q and o € X, we know that ¢ can only be of a specific type because the automaton is hesitant.
For any one of these types we can present d(g, o) in a precise way, as follows:
. if ¢ is transient, 8 (g, 0) is of the form 6’,
. if ¢ is existential, 6 (g, o) is of the form ((<,¢) A0) v '),
. if ¢ is universal, (g, o) is of the form ((O,¢) A0) Vv 6'),
. if ¢ is upward, (g, o) is of the form ((-1,4) A0) v 6").
We impose that ¢ does not appear neither in 6 nor 6 and this is always possible because if there are
more instances of ¢ in §(g,0) we can always rewrite it with just one. The reasoning behind this form is
that 6 is the positive boolean formula that appears conjunctively related with g itself, while 6’ is only
disjunctively related to g. This means that whenever 0 is true, the automaton has to keep staying in state
g, while whenever 6’ is true, it must leave g.

Recall that by induction we can assume to have x(6,,5) and (6, ;). Thanks to this, we can obtain
two formulas related to g, that tells if the automaton stays in the state or leaves it. Namely:

'}’q:VGeZWGAZ(Qq,O') 7(;:\/6&2\[/6/\7((9;’5)

What is missing is how to translate a single state:
. if g is transient, @, = ¥,
. if g is existential, ¢, =E(%,UY,),
. if g is universal, @, = A(Y,WY,),
. if g is upward, @, = 1,87,

Proposition 6. Forany g€ Q, L(A?) = L(x(q)).

The other direction of the translation is classic and can be obtained by adapting in a straightforward
way the proof of [17, Section 14.7.2].

Theorem 7. Given a cCTLY formula ¢ one can construct a 2HLGT Ay such that L(@) = L(Agp).

Clearly, the equivalence between 2HLGT and cCTLY is allowed by backward transitions. If one
removes the possibility of going “up” the input tree, one also loses the expressive power given by the past
operators of the logic. By inspecting the translations, it is clear that the two-way head movements and the
past temporal operators are intertwined, and that if one removes them both from the two formalisms there
is still a possibility of translations between the formalisms thus obtained, yielding the following lemma.

Lemma 8. HLGT and cCTL.. are equivalent formalisms.

By combining this with Propostion 3, one obtains that HLGT are strictly less expressive than FO.
The following conjecture implies that the class of Antisymmetric AWA introduced in [26] and above
mentioned is strictly less expressive than FO over trees.

Conjecture. HLGT and Antisymmetric Additive-Weak Parity Automata are equivalent formalisms.

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 11

6 Automaton-based Characterization of cCTL}

In this section, we complete the picture of logics-vs-automata correspondences by showing a class of
automata, in fact, restrictions of HWGTs, that are expressively equivalent to cCTL}. We will follow
the approach from [3], with minor cosmetic changes. We shall mostly focus on the translation from the
restriction of HWGTs (to be defined soon) to equivalent cCTL} formulas, which is the interesting part of
the proof.

Linearization of components. The first step consists in focusing on the non-transient components of an
HWGT, and thinking of them as suitable word automata over an expanded alphabet. We remark that in
this step, we move from automata that process trees to automata that process words. This abstraction is
possible thanks to the restrictions imposed to an HWGT.

Definition 9. Ler A=(0Q,X,0,q;,(Qv,03)) be an HWGT and let B be the set of all atoms that occur in

the images of its transition function. For each component Q; of A and each state q € Q, let qexit be a fresh

state and let Ag, 4 = (Qi 9 {qexit},Xx 2%,8,q,0;) be the word automaton obtained from A by restricting
the state set to Q; and adding qexit, declaring q to be the new initial state, annotating the input letters with
subsets of B, and redefining the transition relation and the acceptance condition as follows:
1. if Q; is an existential component, then AQuq is a non-deterministic coBiichi automaton (NCA), with
Q; as set of rejecting states (implying that the only successful runs are those that eventually exit Q;),
and with transitions defined by
. qexit €0'(q',(0,C)) (for ¢' € Qi 9 {qexit}, 0 €L, C S B) whenever q' = gexit or the disjunctive
normal form of 8(q',0) contains a clause of the form \C (note that, thanks to the restrictions
imposed to an HWGT, the states appearing in C have all lower order than those in Q;);

e ¢"€dp,(q,(0,0)) (for ¢',q" € Qi, 6 €L, C C B) whenever the disjunctive normal form of
0(q’',0) contains a clause of the form (&,q¢") ANC;

2. dually, if Q; is a universal component, then AQi;q is a universal Biichi automaton (UBA), with Q; as
set of accepting states (implying that the successful runs are those that remain inside Q;), and with
transitions defined by
. gexit €0'(¢',(0,C)) (for ¢’ € Qi {qexit}, O €L, C S B) whenever q' = qexit or the conjunctive

normal form of 6(q’,0) contains a clause of the form \/ C;
e ¢"€dp,(q,(0,C)) (for ¢',q" € Q;, 6 € £, C < B) whenever the conjunctive normal form of
0(q’',0) contains a clause of the form (0,4"") v\ C.

We denote by By, the set of subsets C of B for which there is q' € Q; with 8'(q',(0,C)) nQ; + @ — intuitively,

these are the annotations that allow the automaton Ag, 4 to enter a lower component.

The word languages recognized by the Ay, ,’s are quite simple. Specifically, when Q; is an existential
component, Ap, , accepts by exiting Q;, implying that it recognizes a co-safety language, namely, a
language of the form FX®, for some finite F € £*. Dually, when Q; is universal, Ay, , accepts by staying
inside Q;, implying that it recognizes a safety language, i.e. the complement of a co-safety language.
Summing up, with the above definition we have achieved two crucial goals. First, we moved from tree
automata to word automata, thus enabling the use of characterizations of subclasses of languages. Second,
we encoded the behaviour of each component as a (co-)safety language, which is essentially a property
referred to finite prefixes. This justifies the existence of a translation from (a suitable restriction of)
HWGTs to cCTL}, the variant of cCTL* with quantification on finite paths.

Counter-free word automata. The next step is to bound the expressive power of these word automata to
get FO expressiveness, that over words is equivalent to LTL, as already remarked. The goal is then to

12 An Automaton-based Characterisation of First-Order Logic over Infinite Trees

translate each automaton A, , to an equivalent LTL formula and, combining together the formulas thus
obtained, we will get a single cCTL} formula that defines the entire language of trees recognized by the
original HWGT.

Of course not all (co-)safety languages are LTL-definable. This means that, in order to enable the
desired translation, we need to first identify which HWGTSs produce component automata Ay, , that are
within the expressiveness of LTL. For this, we shall rely on the well-known characterization of LTL
in terms of languages recognized by counter-free automata [18, Theorem 1.1]. In view of this, it is
tempting to simply require that all non-transient components of the given HWGT induce counter-free
word automata Ay, ,: this would indeed guarantee that each Ay, , translates to an equivalent LTL formula.
However, a straightforward adaptation of [3, Example 5.1] shows an HWGT in which all non-transient
components induce counter-free word automata, and yet the language recognized by the HWGT is not
definable in FO. In particular, this means that the counter-free condition on the components will not
guarantee the possibility of combining together the LTL formulas obtained in the previous step so as to
obtain a single CCTL} equivalent to the HWGT. However, in [3] it is also shown that one remains in FO if,
in addition to the counter-free condition on the components, a mutual exclusion property is also enforced:

Definition 10. An HWGT A satisfies the mutual exclusion property if for every non-transient component
Qi and every C # C' € By, there are atoms o € C and B € C' such that L(A%) is the complement of L(AP).

We denote by HWGT, s the subclass of HWGTs that satisfy the mutual exclusion property and the
counter-free condition on the word automata induced by non-transient components. Accordingly, from
now on, we assume that 4 is an HWGT,.

Let us now inspect the translation from the word automata Ay, ,’s to equivalent LTL formulas. Since
the Ay, ,’s recognize safety or co-safety languages, it is useful to first recall the safe and co-safe fragments
of LTL, that capture precisely these languages within LTL. The safe (resp., co-safe) fragment of LTL,
denoted SafeLTL (resp., coSafeLTL), allows the usual atomic propositions and Boolean connectives
(except for negation), the next operator X, and the release operator R (resp., the until operator U). On
the automaton side, we also recall that SafeL.TL (resp., coSafeLTL) languages are recognized precisely
by the so-called looping, counter-free deterministic Biichi (resp., deterministic coBiichi) automata [10],
where looping means that all states are accepting (resp., rejecting), with the exception of a single sink
state. Building upon this result, the following can be obtained with an adaptation of the argument in [38,
Theorem 5.1]:

Lemma 11. SafeLTL (resp., coSafeLTL) and counter-free, looping, universal Biichi (resp., non-
deterministic coBiichi) automata are expressively equivalent formalisms.

6.1 Equivalence of HWGT, and cCTL}

In this section, we prove the equivalence of HWGT, s and the logic CCTL}. This equivalence yields a
normal form for cCTL}*c formulas, which turns out to be a sort of polarized cCTL*.

Theorem 12. Let A be a HWGT s over the alphabet ¥ = 24P Then, one can construct a CCTL} formula
@4 such that L(A) = L(@4).

Proof. Let A=(0Q,Z,0,q1,(Qv,03)) be a HWGT,. For every state g € 0, we can obtain a cCTL}
formula ¥ (q) such that £(A?) = L(x(q)) and the theorem follows by setting ¢ to be g;. The proof
is by induction on the order of the components. Moreover, for every ¢ € X, we denote by W, the
cCTL} formula: Aj,espAApes—p. So, let’s fix a component Q;, and let’s say g € Q;. We consider
the case in which Q; is universal: the transient case is straightforward and the existential case can

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 13

be restored by a dualization argument. Thus, suppose Q; is universal. Then, we can focus on the
counter-free looping UBA Ay, , = (Q:i ¢ {qexit },2*" x Bg;, 80:,¢, Qi) as given in Definition 9. Moreover,
since every C € By, is composed of atoms whose states belong to components of lower order than i,
by induction hypothesis we can assume to have a cCTL} formula x(C) for every C € I'g,, such that
L(AVE) = L(x(C)). Since A satisfies the mutual exclusion property, it also holds that for every distinct
C,C" €T, L(1(C)) UL(X(C)) = T

For every C € By,, we define a fresh atomic proposition pc. We denote by APy the union of AP
with all these new atomic propositions. Now, we can see the Biichi automaton Ay, , as Ap = (Qiw
{Qexit },247%, 85, q, Q;). Basically, we just hide By, in the alphabet. The only thing that is modified
from Ayg, 4 to Ag is the transition function, i.e., 8g(q,0¢) = 8¢,(¢,(0,C)) if ¢ = 6 U pc (Where o € AP),
otherwise 0p(q, 0c) = @. Clearly, these little changes do not modify any property of the starting automaton,
so Ap is still counter-free and looping. By Lemma 11, we can assume to have a SafeLTL formula yj,
such that £(Ag) = L(yp). Now, we have to find a way to link this formula to the tree language defined
by the automaton. First, we note that the following holds by construction.

Fact. Let Abe an HWGT, s, Q; be a universal component of A and g € Q;. Then, for each input tree
T =(T,t),T € L(AT?) iff for every infinite path 7w of T starting at the root, there is a word & of the form
& =(1(m(0)),Co),(t(m(1)),C1),(t(mw(2)),C2),... , such that either & € L(Ay,) or there is a a position
i=(t(x(i)),C;) such that Tr(;.1) € L(AVE+1), where Tx(i+1) is the subtree of 7" rooted at node 7(i+1).

Note this about the above claim: it basically states that a node such that its subtree is in £(AY)
releases the path on which it is from the satisfaction of the constraint imposed by Ap, ,. Moreover,
we saw above that by induction hypothesis we have for every C € By, a cCTLJ*, formula x (C) such that
L(AVE) = L(x(C)). Combining this with the fact above, we get the following claim about the tree
language defined by .49. This characterization can be used to prove the correctness of the translation.

Fact. For each X-labelled tree T, T € L(A?) iff for every infinite path 7, there is an infinite word & over
24 guch that either & & yp, or there is i > 0 such that & (i) nAP = (i), for all pc € &(i), T, 7,iE x(C)
and there is a unique C € By, such that pc € & (i).

Now, replace every pc and —pc in yr by the cCTL} formulas x (C) and Vererg, e} x(C"), respec-
tively. The formula thus constructed is denoted f(wg). We can finally define the formula x(q):

2(a) = (f(¥5) W Veeny, 2(0))

The formula basically states that on every path the satisfaction of the formula defined by the word

automaton can only be released by the satisfaction of a \/C. O

Proposition 13. For any q € Q;, where Q; is a universal component, L(A?) = L(x(q)).

The translation from a cCTL} formula to a HWGT, is basically the same provided in [3, Theorem
5.9].

Theorem 14. Given a cCTL} formula ¢, one can construct a HWGT .y Ag such that L(¢) = L(Ay).

7 Normal Forms of Temporal Logics

In the previous sections, we have proved the equivalence of the two logics considered in Section 3, i.e.,
cCTL” and cCTL;, with two classes of automata. In particular, thanks to Proposition 4 and the class of
automaton proven equivalent to cCTL}, it was possible to highlight the semantic behaviour of the latter.
Namely, whenever an existential path quantification is involved, a CCTL} formula can only express a
co-safety property, while, dually, whenever a universal path quantification is involved, it can only express

14 An Automaton-based Characterisation of First-Order Logic over Infinite Trees

a safety property. These observations give rise to the following normal form, that captures syntactically
the semantic content provided by the finite path quantification.
Lemma 15. For any CCTL} formula, there is an equivalent formula generated by the grammar
p:=p|-¢|eve|D'¢|Ey
yi=@ | yvy [yAay | Xy | yUy

Note that this grammar allows to state that E is only followed by coSafeLTL and, by the use of
negation, that A is only followed by SafeL.TL. Moreover, the difference between finite and infinite path
quantification becomes redundant. Indeed, every finite path property can also be seen as an infinite path
property and vice versa. This implies that the normal form of cCTL} is nothing else than a polarized
version of cCTL”, that we will denote by cCTL], creating a symmetry with Schlingloff’s work and also
showing that the semantic content provided by finite path quantification is useless when one restricts the
syntax as above. To conclude, the following is well known.

Proposition 16. [/6] SafeLTL (resp., coSafeL.TL) and LTL? formulas of the form G (resp., F @), where
¢ is a formula using only past temporal operators, are equivalent formalisms.

This suggests a normal form also for cCTLY. Since ¢cCTLY and CTL are equivalent formalisms,
cCTL” can express co-safety properties existentially and safety properties universally. Combining this
with the proposition above, we get the following normal form for cCTL”.

Lemma 17. For any cCTLY formula, there is an equivalent formula generated by the grammar
¢:=pl-¢|orp|[D|EFy
V=@ |l yvy [yay | Yy [ySy

8 Conclusions

In this work, we provided two automaton-based characterisations of the temporal logics cCTLY and CCTL},
both of which are known to be equivalent to FO over infinite trees. These gives us two corresponding
characterisations of FO. The automata-theoretic perspective reveals two distinctive features of FO in this
setting: (a) when expressing existential properties over paths, it can capture only co-safety properties
of the node sequences along those paths, whereas universal path quantification allows it to express only
safety properties; (b) every formula can be normalised into a Boolean combination of formulae where only
the variable bound to the outermost quantifier is independent, while all others depend on the variable(s)
quantified first. These insights were obtained by establishing corresponding normal forms for cCTLY and
CCTL}-, each derived from its associated class of automata.

Despite these advancements, several open problems remain. First, while [49] shows that cCTLY is
equivalent to FO, and [39] establishes that cCTL* corresponds to MPL, no analogous result is known
for cCTL”. As shown in Proposition 2, cCTL? is strictly more expressive than cCTLY, while it is well
known that it is strictly less expressive than cCTL*. Determining the exact expressive power of cCTL?
remains an important open question. Second, although the two classes of automata we introduced are
equivalent, current translations between them passes through FO, which leads to a non-elementary blowup.
An interesting direction for future work would be to develop direct translations between the two automata
classes, bypassing the intermediate FO encoding. Third, we observe a strong similarity between the
normal form of cCTLY and the logic studied in [5]. While cCTL” supports both counting and the S
operator, the logic in [5] includes only the past-time version of F. Importantly, the definability problem for
that logic is decidable over finite trees. Investigating whether the same holds for cCTL”, in the finite-tree
setting would be a valuable contribution. Finally, a more immediate objective is to prove the conjectured
equivalence between HLGTSs and Antisymmetric Additive-Weak Parity Automata.

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 15

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

M. Benedikt & L. Segoufin (2009): Regular Tree Languages Definable in FO and in FO mod. TOCL 11(1),
pp- 1-32, doi:10.1145/1614431.1614435.

M. Benerecetti, L. Bozzelli, F. Mogavero & A. Peron (2023): Quantifying over Trees in Monadic Second-Order
Logic. In: LICS’23, IEEE Computer Society, pp. 1-13, doi:10.1109/LICS56636.2023.10175832.

M. Benerecetti, L. Bozzelli, F. Mogavero & A. Peron (2024): Automata-Theoretic Characterisations of
Branching-Time Temporal Logics. In: ICALP’24, LIPIcs 297, Leibniz-Zentrum fuer Informatik, pp. 128:1-20,
doi:10.4230/LIPIcs.ICALP.2024.128.

M. Bojanczyk (2004): Decidable Properties of Tree Languages. Ph.D. thesis, Warsaw University, Warsaw,
Poland.

M. Bojariczyk (2009): Two-Way Unary Temporal Logic over Trees. LMCS 5(3), pp. 1-29, doi:10.2168/LMCS-
5(3:5)2009.

M. Bojanczyk (2021): Algebra for Trees. In: Handbook of Automata Theory, Volume I - Theoretical
Foundations, European Mathematical Society Publishing House, Ziirich, Switzerland, p. 801-838.

M. Bojaniczyk & T. Idziaszek (2009): Algebra for Infinite Forests with an Application to the Temporal logic
EF. In: CONCUR’09, LNCS 5710, Springer, pp. 131-145, doi:10.1007/978-3-642-04081-8_10.

M. Bojaniczyk, T. Idziaszek & M. Skrzypczak (2013): Regular Languages of Thin Trees. In: STACS’13,
LIPIcs 20, Leibniz-Zentrum fuer Informatik, pp. 562-573, doi:10.1007/s00224-014-9595-z.

M. Bojariczyk, H. Straubing & 1. Walukiewicz (2012): Wreath Products of Forest Algebras, with Applications
to Tree Logics. LMCS 8(3), doi:10.2168/LMCS-8(3:19)2012.

U. Boker, K. Lehtinen & S. Sickert (2022): On the Translation of Automata to Linear Temporal Logic. In:
FOSSACS’22, LNCS 13242, Springer, pp. 140-160, doi:10.1007/978-3-030-99253-8 8.

U. Boker & Y. Shaulian (2018): Automaton-Based Criteria for Membership in CTL. In: LICS’ 18, Association
for Computing Machinery, pp. 155-164, doi:10.1145/3209108.3209143.

J.R. Biichi (1962): On a Decision Method in Restricted Second-Order Arithmetic. In: ICLMPS’62, Stanford
University Press, pp. 1-11.

J.R. Biichi (1966): On a Decision Method in Restricted Second Order Arithmetic. In: Studies in Logic and the
Foundations of Mathematics, 44, Elsevier, pp. 1-11.

F. Carreiro (2015): PDL is the Bisimulation-Invariant Fragment of Weak Chain Logic. In: LICS’15, IEEE
Computer Society, pp. 341-352, doi:10.1109/LICS.2015.40.

F. Carreiro & Y. Venema (2014): PDL inside the u-Calculus: A Syntactic and an Automata-Theoretic
Characterization. In: AIML’ 14, College Publications, pp. 74-93.

E. Chang, Z. Manna & A. Pnueli (1992): Characterization of Temporal Property Classes. In: ICALP’92,
LNCS 623, Springer, pp. 474—486.

S. Demri, V. Goranko & M. Lange (2016): Temporal Logics in Computer Science: Finite-State Systems.
Cambridge University Press.

V. Diekert & P. Gastin (2008): First-Order Definable Languages. In: Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas], Texts in Logic and Games 2, Amsterdam University Press, pp.
261-306.

C.C. Elgot (1961): Decision Problems of Finite Automata Design and Related Arithmetics. TAMS 98, pp.
21-51.

E.A. Emerson & J.Y. Halpern (1983): “Sometimes” and “Not Never” Revisited: On Branching Versus Linear
Time. In: POPL’83, Association for Computing Machinery, pp. 127-140, doi:10.1145/567067.567081.

E.A. Emerson & J.Y. Halpern (1985): Decision Procedures and Expressiveness in the Temporal Logic of
Branching Time. JCSS 30(1), pp. 1-24, doi:10.1016/0022-0000(85)90001-7.

https://doi.org/10.1145/1614431.1614435
https://doi.org/10.1109/LICS56636.2023.10175832
https://doi.org/10.4230/LIPIcs.ICALP.2024.128
https://doi.org/10.2168/LMCS-5(3:5)2009
https://doi.org/10.2168/LMCS-5(3:5)2009
https://doi.org/10.1007/978-3-642-04081-8_10
https://doi.org/10.1007/s00224-014-9595-z
https://doi.org/10.2168/LMCS-8(3:19)2012
https://doi.org/10.1007/978-3-030-99253-8_8
https://doi.org/10.1145/3209108.3209143
https://doi.org/10.1109/LICS.2015.40
https://doi.org/10.1145/567067.567081
https://doi.org/10.1016/0022-0000(85)90001-7

16

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

An Automaton-based Characterisation of First-Order Logic over Infinite Trees

E.A. Emerson & C.S. Jutla (1991): Tree Automata, muCalculus, and Determinacy. In: FOCS’91, IEEE
Computer Society, pp. 368-377, doi:10.1109/SFCS.1991.185392.

Z. Esik & P. Weil (2010): Algebraic Characterization of Logically Defined Tree Languages. IICM 20(02), pp.
195-239, doi:10.1142/S0218196710005595.

M.J. Fischer & R.E. Ladner (1979): Propositional Dynamic Logic of Regular Programs. JCSS 18(2), pp.
194-211, doi:10.1016/0022-0000(79)90046-1.

J. Flum (1985): Characterizing Logics. In: Model-Theoretic Logics, Springer, pp. 77-120.

C. Ford (2019): Investigations into the Expressiveness of First-order Logic and Weak Path Automata on Infinite
Tree. Master’s thesis, University of Amsterdam, Amsterdam, Netherlands.

D.M. Gabbay, A. Pnueli, S. Shelah & J. Stavi (1980): On the Temporal Analysis of Fairness. In: POPL’80,
Association for Computing Machinery, pp. 163-173.

T. Hafer & W. Thomas (1987): Computation Tree Logic CTL* and Path Quantifiers in the Monadic Theory of
the Binary Tree. In: ICALP’87, LNCS 267, Springer, pp. 269-279.

D. Janin & 1. Walukiewicz (1996): On the Expressive Completeness of the Propositional mu-Calculus with
Respect to Monadic Second Order Logic. In: CONCUR’96, LNCS 1119, Springer, pp. 263-277.

D. Kozen (1983): Results on the Propositional muCalculus. TCS 27(3), pp. 333-354, doi:10.1016/0304-
3975(82)90125-6.

O. Kupferman, U. Sattler & M.Y. Vardi (2002): The Complexity of the Graded muCalculus. In: CADE’02,
LNCS 2392, Springer, pp. 423-437.

O. Kupferman, M.Y. Vardi & P. Wolper (2000): An Automata Theoretic Approach to Branching-Time Model
Checking. JACM 47(2), pp. 312-360, doi:10.1145/333979.333987.

F. Laroussinie & P. Schnoebelen (1995): A Hierarchy of Temporal Logics with Past. TCS 148(2), pp. 303-324,
doi:10.1016/0304-3975(95)00035-U.

P. Lindstrom (1969): On Extensions of Elementary Logic. Theoria 35(1), pp. 1-11.

C. Loding & W. Thomas (2000): Alternating Automata and Logics over Infinite Words. In: Theoretical
Computer Science: Exploring New Frontiers of Theoretical Informatics, Springer, pp. 521-535.

Z. Manna & A. Pnueli (1992): The Temporal Logic of Reactive and Concurrent Systems - Specification.
Springer.

Z. Manna & A. Pnueli (1995): Temporal Verification of Reactive Systems - Safety. Springer.
S. Miyano & T. Hayashi (1984): Alternating Finite Automata on w-Words. TCS 32(3), pp. 321-330.

F. Moller & A.M. Rabinovich (2003): Counting on CTL*: On the Expressive Power of Monadic Path Logic.
IC 184(1), pp. 147-159, doi:10.1016/S0890-5401(03)00104-4.

A.W. Mostowski (1984): Regular Expressions for Infinite Trees and a Standard Form of Automata. In: SCT 84,
LNCS 208, Springer, pp. 157-168.

D.E. Muller, A. Saoudi & P.E. Schupp (1984): Alternating Automata, the Weak Monadic Theory of Trees and
its Complexity. In: ICALP’86, LNCS 226, Springer, pp. 275-283.

A. Nerode (1958): Linear Automaton Transformations. PAMS 9(4), pp. 541-544.
D. Perrin & J. Pin (1986): First-Order Logic and Star-Free Sets. JCSS 32(3), pp. 393—406.

A. Pnueli (1977): The Temporal Logic of Programs. In: FOCS’77, IEEE Computer Society, pp. 46-57,
doi:10.1109/SFCS.1977.32.

A. Pnueli (1981): The Temporal Semantics of Concurrent Programs. TCS 13, pp. 45-60, doi:10.1016/0304-
3975(81)90110-9.

A. Potthoff (1995): First-Order Logic on Finite Trees. In: TAPSOFT’95, Springer, pp. 123-139,
doi:10.1080/11663081.1992.10510780.

https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1142/S0218196710005595
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1145/333979.333987
https://doi.org/10.1016/0304-3975(95)00035-U
https://doi.org/10.1016/S0890-5401(03)00104-4
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1080/11663081.1992.10510780

Benerecetti, Della Monica, Matteo, Mogavero and Puppis 17

[47]

[48]
[49]
[50]
[51]

[52]

[53]

[54]

M.O. Rabin (1969): Decidability of Second-Order Theories and Automata on Infinite Trees. TAMS 141, pp.
1-35.

M.O. Rabin & D.S. Scott (1959): Finite Automata and their Decision Problems. IBMJRD 3, pp. 115-125.
B.-H. Schlingloff (1992): Expressive Completeness of Temporal Logic of Trees. JANCL 2(2), pp. 157-180.
M.P. Schiitzenberger (1965): On Finite Monoids Having Only Trivial Subgroups. IC 8(2), pp. 190-194.

W. Thomas (1984): Logical Aspects in the Study of Tree Languages. In: CAAP’84, Cambridge University
Press, pp. 31-50.

W. Thomas (1987): On Chain Logic, Path Logic, and First-Order Logic over Infinite Trees. In: LICS’87,
IEEE Computer Society, pp. 245-256.

M.Y. Vardi & P. Wolper (1984): Yet Another Process Logic. In: LP’83, LNCS 164, Springer, pp. 501-512,
doi:10.1007/3-540-12896-4_383.

P. Wolper (1983): Temporal Logic Can Be More Expressive. IC 56(1-2), pp. 72-99, doi:10.1016/S0019-
9958(83)80051-5.

https://doi.org/10.1007/3-540-12896-4_383
https://doi.org/10.1016/S0019-9958(83)80051-5
https://doi.org/10.1016/S0019-9958(83)80051-5

	Introduction
	Preliminaries
	Temporal Logics and FO
	Hesitant and Weak Graded Tree Automata
	Automaton-based Characterization of polarized cCTLp
	Equivalence of 2HLGT and polarized cCTLp

	Automaton-based Characterization of cCTLf*
	Equivalence of HWGTcf and cCTLf*

	Normal Forms of Temporal Logics
	Conclusions

