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5

Qualitative timeline-based planning models domains as sets of independent, but interacting, compo- 6

nents whose behaviors over time, the timelines, are governed by sets of qualitative temporal con- 7

straints (ordering relations), called synchronization rules. Its plan-existence problem has been shown 8

to be PSPACE-complete; in particular, PSPACE-membership has been proved via reduction to the 9

nonemptiness problem for nondeterministic finite automata. However, nondeterministic automata 10

cannot be directly used to synthesize planning strategies as a costly determinization step is needed. In 11

this paper, we identify a large fragment of qualitative timeline-based planning whose plan-existence 12

problem can be directly mapped into the nonemptiness problem of deterministic finite automata, 13

which can then be exploited to synthesize strategies. In addition, we identify a maximal subset of 14

Allen’s relations that fits into such a deterministic fragment. 15

1 Introduction 16

Timeline-based planning is an approach that originally emerged and developed in the context of plan- 17

ning and scheduling of space operations [16]. In contrast to common action-based formalisms, such 18

as PDDL [11], timeline-based languages do not make a distinction between actions, states, and goals. 19

Rather, the domain is modeled as a set of independent, but interacting, components whose behavior over 20

time, the timelines, is governed by a set of temporal constraints. It is worth pointing out that timeline- 21

based planning was born with an application-oriented flavor, with various successful stories, and only 22

relatively recently some foundational work about its expressiveness and complexity has been produced. 23

The present paper aims at bringing back theory to practice by identifying expressive enough and compu- 24

tationally well-behaved fragments. 25

Timeline-based planning has been successfully employed by planning systems developed at NASA [5, 26

6] and at ESA [12] for both short- to long-term mission planning and on-board autonomy. More recently, 27

timeline-based planning systems such as PLATINUm [18] are being employed in collaborative robotics 28

applications [19]. All these applications share a deep reliance on temporal reasoning and the need for a 29

tight integration of planning with execution, both features of the timeline-based framework. The latter 30

feature is usually achieved by the use of flexible timelines, which represent a set of possible executions of 31

the system that differ in the precise timing of the events, hence handling the intrinsic temporal uncertainty 32

of the environment. A formal account of timeline-based planning with uncertainty has been provided by 33

[7], and much theoretical research followed, including complexity [3, 4, 13] and expressiveness [9, 14] 34

analyses, based on such a formalization, which is the one we use here as well. 35
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To extend the reactivity and adaptability of timeline-based systems beyond temporal uncertainty, the36

framework of timeline-based games has been recently proposed. In timeline-based games, the system37

player tries to build a set of timelines satisfying the constraints independently from the choices of the38

environment player. This framework allows one to handle general nondeterministic environments in the39

timeline-based setting. However, this expressive power comes at the cost of increasing the complexity of40

the problem. While the plan-existence problem for timeline-based planning is EXPTIME-complete [13],41

deciding the existence of strategies for timeline-based games is 2EXPTIME-complete [15], and a con-42

troller synthesis algorithm exists that runs in doubly exponential time [1].43

Such a high complexity motivates the search for simpler fragments that can nevertheless be useful in44

practical scenarios. One of these is the qualitative fragment, where temporal constraints only concern the45

relative order between events and not their distance. The qualitative fragment already proved itself to be46

easier for the plan-existence problem, being PSPACE-complete [8], and this makes it a natural candidate47

for the search of a good fragment for the strategy existence problem.48

A deterministic arena is crucial to synthesize a non-clairvoyant strategy in reactive synthesis prob-49

lems (see, for instance, [17]). However, determinizing the nondeterministic (exponentially sized) au-50

tomaton built for the qualitative case in [8] would cause an exponential blowup, thus resulting in a51

procedure of doubly-exponential complexity. In this paper, we show that, by imposing some natural52

restrictions on the set of temporal constraints of the qualitative fragment, it is possible to lower the com-53

plexity of the strategy existence problem to EXPTIME. We show that, on the one hand, these restrictions54

are sufficient to directly synthesize a deterministic finite automaton (DFA) of singly-exponential size,55

thus usable as an arena to play the game in an asymptotically optimal way, and, on the other hand, the56

resulting fragment is expressive enough to capture a large subset of Allen’s relations.57

The rest of the paper is organized as follows. Section 2 recalls some background knowledge on58

timeline-based planning. Section 3 defines the considered fragment, that directly maps into a DFA of59

singly exponential size. Section 4 gives a word encoding of timelines, and vice versa. Section 5 builds an60

automaton to recognize plans, and Section 6 shows how to construct an automaton that accepts solution61

plans. Section 7 identifies the maximal subset of Allen’s relations which is captured by the fragment62

of Section 3. Finally, Section 8 summarizes the main contributions of the work and discusses possible63

future developments.64

2 Background65

In this section, we recall the basic notions of timeline-based planning and of its qualitative variant.66

2.1 Timeline-Based Planning67

The key element of the framework is the notion of state variable. Let N+ be the set of positive natural68

numbers.69

Definition 1 (State variable). A state variable is a tuple x = (Vx,Tx,Dx), where:70

• Vx is the finite domain of the variable;71

• Tx : Vx → 2Vx is the value transition function, which maps each value v ∈Vx to the set of values that72

can (immediately) follow it;73

• Dx : Vx → N+ × (N+ ∪ {+∞}) is a function that maps each v ∈ Vx to the pair (dx=v
min ,d

x=v
max) of74

minimum and maximum durations allowed for intervals where x = v.75
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A timeline is a finite sequence of tokens, each denoting a value v and (the duration of) a time interval 76

d, that describes how a state variable x behaves over time. 77

Definition 2 (Tokens and timelines). A token for x is a tuple τ = (x,v,d), where x is a state variable, 78

v ∈Vx is the value held by the variable, and d ∈N+ is the duration of the token, with Dx(v) = (dx=v
min ,d

x=v
max) 79

and dx=v
min ≤ d ≤ dx=v

max . A timeline for a state variable x is a finite sequence T= ⟨τ1, . . . ,τk⟩ of tokens for 80

x, for some k ∈ N, such that, for any 1 ≤ i < k, if τi = (x,vi,di), then vi+1 ∈ Tx(vi). 81

For any timeline T= ⟨τ1, . . . ,τk⟩ and any token τi =(x,vi,di) in T, we define the functions start(T, i)= 82

∑
i−1
j=1 d j and end(T, i) = start(T, i)+di. We call the horizon of T the end time of the last token in T, that 83

is, end(T,k). We write start(τi) and end(τi) to indicate start(T, i) and end(T, i), respectively, when there 84

is no ambiguity. 85

The overall behavior of state variables is subject to a set of temporal constraints known as synchro- 86

nization rules (or simply rules). We start by defining their basic building blocks. Let N be a finite set 87

of token names. Atoms are formulas of the following form: 88

atom := term ≤l,u term | term <l,u term

term := start(a) | end(a) | t

where a ∈ N , l, t ∈N, and u ∈N∪{+∞}. As an example, atom start(a)≤l,u end(b) (resp., start(a)<l,u 89

end(b)) relates tokens a and b by stating that the end of b cannot precede (resp., must succeed) the 90

beginning of a, and the distance between these two endpoints must be at least l and at most u. An atom 91

term ≤l,u term, with l = 0 and u =+∞, is qualitative (the subscript is usually omitted in this case). 92

An existential statement E is a constraint of the form: 93

∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn]. C

where x1, . . . ,xn are state variables, v1, . . . ,vn are values, with vi ∈ Vxi , a1, . . . ,an are symbols from the 94

set N of token names, and C is a finite conjunction of atoms, involving only tokens a1, . . . ,an, plus, 95

possibly, the trigger token (usually denoted by a0) of the synchronization rule in which the existential 96

statement is embedded, as described below.1 97

Intuitively, an existential statement asks for the existence of tokens a1,a2, . . . ,an whose state variables 98

take the corresponding values v1,v2, . . . ,vn and are such that their start and end times satisfy the atoms in 99

C . 100

Synchronization rules are clauses of one of the following forms: 101

a0[x0 = v0]→ E1 ∨E2 ∨ . . .∨Ek

⊤→ E1 ∨E2 ∨ . . .∨Ek

where a0 ∈N , x0 is a state variable, v0 ∈Vx0 , and Ei is an existential statement, for each 1 ≤ i ≤ k. In the 102

former case, a0[x0 = v0] is called trigger and a0 is the trigger token, and the rule is considered satisfied if 103

for all the tokens a0 for which the variable x0 takes the value v0, at least one of the existential statements 104

is satisfied. In the latter case, the rule is said to be triggerless, and it states the truth of the body without 105

any precondition.2 We refer the reader to [7] for a formal account of the semantics of the rules. 106

A timeline-based planning problem consists of a set of state variables and a set of rules that represent 107

the problem domain and the goal. 108

1W.l.o.g., we assume that if a token a appears in the quantification prefix ∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn] of E , then
at least one among start(a) and end(a) occurs in one of its atoms.

2W.l.o.g., for non-triggerless rules, we assume that both start(a0) and end(a0) occur in all of its existential statements.
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Definition 3 (Timeline-based planning problem). A timeline-based planning problem is defined as a pair109

P = (SV,S), where SV is a set of state variables and S is a set of synchronization rules involving state110

variables in SV.111

A solution plan for a given timeline-based planning problem is a set of timelines, one for each state112

variable, that satisfies all the synchronization rules.113

Definition 4 (Plan and solution plan). A plan over a set of state variables SV is a finite set of timelines114

with the same horizon, one for each state variable x ∈ SV. A solution plan for a timeline-based planning115

problem P = (SV,S) is a plan over SV such that all the rules in S are satisfied.116

The problem of determining whether a solution plan exists for a given timeline-based planning prob-117

lem is EXPSPACE-complete [13].118

Definition 5 (Qualitative timeline-based planning). A timeline-based planning problem P = (SV,S) is119

said to be qualitative if the following conditions hold:120

1. Dx(v) = (1,+∞), for all state variables x ∈ SV and v ∈Vx.121

2. all synchronization rules in S involve only qualitative atoms.122

Unlike timeline-based planning, such a qualitative variant is PSPACE-complete [8]. A reduction of123

qualitative timeline-based planning to the nonemptiness problem for non-deterministic finite automata124

(NFA) has been provided in [8].125

3 A Well-Behaved Fragment126

In this section, we introduce a meaningful fragment of qualitative timeline-based planning for which we127

will show that it is possible to construct DFAs of singly exponential size.128

The fragment is characterized by means of some conditions on the admissible patterns of synchro-129

nization rules (eager rules). The distinctive feature of eager rules is that they can be checked using an130

eager/greedy strategy, that is, when a relevant event (start/end of a token involved in some atom) occurs,131

we are guaranteed that the starting/ending point of such a token is useful for rule satisfaction. Instead, in132

case of non-eager rules, it may happen that a relevant event happens that is not useful for rule satisfaction:133

some analogous event in the future will be.134

W.l.o.g., we assume that no constraint of the forms start(a) ≤ end(a) and start(a) < end(a) occurs135

explicitly in synchronization rules, even though they hold tacitly, as they follow from the definition of136

token (Definition 2).137

As a preliminary step, we define a sort of transitive closure of a clause. First, by slightly abusing the138

notation, we identify a clause C with the finite set of atoms occurring in it. Let t, t1, t2, t3 be terms of the139

form start(a) or end(a), with a ∈N . We denote by Ĉ the transitive closure of C , defined as the smallest140

set of atoms including C and such that: (i) if term t occurs in C , then atom t ≤ t belongs to Ĉ , (ii) if141

terms start(a) and end(a) both occur in C for some token name a, then atom start(a) < end(a) belongs142

to Ĉ , (iii) if atom t1 < t2 belongs to Ĉ , then atom t1 ≤ t2 belongs to Ĉ as well, (iv) if atoms t1 ≤ t2 and143

t2 ≤ t3 belong to Ĉ , then atom t1 ≤ t3 belongs to Ĉ as well, (v) if atoms t1 < t2 and t2 ≤ t3 belong to Ĉ ,144

then atom t1 < t3 belongs to Ĉ as well, (vi) if atoms t1 ≤ t2 and t2 < t3 belong to Ĉ , then atom t1 < t3145

belongs to Ĉ as well.3146

3W.l.o.g., we assume that Ĉ is consistent, i.e., it admits at least a solution. We point out that this check can be done in
polynomial time, since it is an instance of linear programming.
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Notice that, in some particular cases, condition (ii) may introduce in the closure of a clause atoms of 147

the form start(a)< end(a), which, according to our assumption, do not belong to any clause. 148

Let us now define the core notion of eager rule. 149

Definition 6 (Eager rules). Let R be a synchronization rule and let C1, . . . ,Ck be the clauses occurring in 150

its existential statements. We say that R is eager if and only if, for all C ∈ {C1, . . . ,Ck} and a1,a2 ∈ N 151

appearing in C , the following conditions hold: 152

1. if both a1 and a2 are non-trigger tokens and {start(a2) ≤ end(a1),end(a1) ≤ end(a2)} ⊆ Ĉ , then 153

end(a1)≤ start(a2) ∈ Ĉ (i.e., the end of a1 and the start of a2 coincide), 154

2. if a1 is either a trigger token or a non-trigger one, a2 is a non-trigger token, and {start(a2) ≤ 155

start(a1),start(a1)≤ end(a2)} ⊆ Ĉ , then start(a1)≤ start(a2) ∈ Ĉ (i.e., a1 and a2 start together), 156

and 157

3. if a1 is a trigger token, a2 is a non-trigger one, and {start(a1)≤ start(a2),end(a1)≤ end(a2)}⊆ Ĉ , 158

then start(a2)≤ start(a1) ∈ Ĉ (i.e., a1 and a2 start together). 159

We define the eager fragment of a qualitative timeline-based planning problem as the set of qualita- 160

tive timeline-based planning problems P = (SV,S) such that S contains only eager rules. 161

An explanation of the restrictions in Definition 6 is due. Given a non-trigger token a2, Condition 1 162

forces any other non-trigger token a1 ending during a2 (that is, such that start(a2)≤ end(a1)≤ end(a2)) 163

to end exactly when a2 starts, while Condition 2 forces any other (trigger or non-trigger) token a1 starting 164

during a2 (that is, such that start(a2)≤ start(a1)≤ end(a2)) to start simultaneously to a2. Finally, when- 165

ever a non-trigger token a2 starts during a trigger token a1 and ends not before the end of a1, Condition 166

3 forces the two tokens to start at the same time. 167

Conditions 1, 2, and 3 suffice to obtain a singly exponential DFA, whose construction will be illus- 168

trated in the next sections. We give here a short intuitive account of the rationale of the above conditions. 169

Consider the following rule: 170

a0[x0 = v0]→∃a1[x1 = v1].

(start(a0) = start(a1)∧ end(a0)≤ end(a1)),

where start(a0) = start(a1) is an abbreviation for start(a0) ≤ start(a1)∧ start(a1) ≤ start(a0). This rule 171

is eager because Conditions 1, 2, and 3 are fulfilled; in particular, we have that start(a0) = start(a1). 172

This is crucial for any DFA A recognizing solution plans, because, when A reads the event start(a0), it 173

can eagerly and deterministically go to a state representing the fact that both start(a0) and start(a1) have 174

happened. Moreover, if later it reads the event end(a1), but it has not read end(a0) yet, then it transitions 175

to a rejecting state, that is, a state from which it cannot accept any plan. 176

Let us provide now an example of a non-eager rule that cannot be checked in an eager/greedy fashion. 177

Consider the rule obtained from the above one by replacing = with ≤: 178

a0[x0 = v0]→∃a1[x1 = v1].

(start(a0)≤ start(a1)∧ end(a0)≤ end(a1)).

This rule is not eager, because atom start(a1)≤ start(a0) does not belong to Ĉ (Condition 3 is violated). 179

Indeed, for this rule, a DFA A that first reads event start(a0), but not start(a1), and then, strictly after, 180

reads event start(a1) has to nondeterministically guess the order between the end of such a token a1 181

and the end of a0, making the construction of an automaton of singly exponential size impossible in the 182
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general case. Indeed, if token a1 ends before token a0, the rule is not satisfied, but we cannot exclude the183

existence of another token for x1 = v1 that starts after that one and ends after the end of a0, thus satisfying184

the rule.185

We conclude by showing that excluding constraints of the forms start(a) ≤ end(a) and start(a) <186

end(a) from clauses makes it sometimes possible to turn an otherwise non-eager rule into an eager one.187

As an example, rule a0[x0 = v0]→∃a1[x1 = v1].(start(a1)< end(a1)∧ start(a0) = end(a1)) is not eager188

(Condition 2 is violated); however, it can be rewritten as a0[x0 = v0]→∃a1[x1 = v1].start(a0) = end(a1),189

which is eager.190

In what follows, we give a reduction from the plan-existence problem for the eager fragment of the191

qualitative timeline-based planning problem to the nonemptiness problem of DFAs of singly exponential192

size with respect to the original problem. The approach is inspired by those in [8, 9] for non-eager193

timeline-based planning problems, where an NFA of exponential size is built for any timeline-based194

planning problem. However, the reductions presented there use nondeterministic automata, which cannot195

be used as arenas to solve timeline-based games without a previous determinization step that would cause196

a second exponential blowup.197

First, we show how to encode timelines and plans as finite words, and vice versa (Section 4). Then,198

given a planning problem P, we show how to build a DFA whose language encodes the set of solution199

plans for P. The DFA consists of the intersection of two DFAs: one aims at verifying the constraint on200

the alternation of token values expressed by functions Tx, for x ∈ SV, as well as that the word correctly201

encodes a plan over SV (Section 5); the other one verifies that the encoded plan is indeed a solution plan202

for P (Section 6).203

From now on, we consider only qualitative timeline-based planning problems belonging to the eager204

fragment and, for the sake of brevity, we sometimes refer to them simply as planning problems.205

4 From Plans to Finite Words and Vice Versa206

In this section, as a first step in the construction of the DFA corresponding to an eager qualitative timeline-207

based planning problem, we show how to encode timelines and plans as words that can be recognized by208

an automaton, and vice versa.209

Let P = (SV,S) be an eager qualitative timeline-based planning problem, and let V = ∪x∈SVVx. We210

define the initial alphabet ΣI
SV as ({−}×V )SV, that is the set of functions from SV to ({−}×V ).4211

Similarly, we define the non-initial alphabet ΣN
SV as ((V ×V )∪{⟲})SV, where the pairs (v,v′) ∈V ×V212

are supposed to represent the value v of the token that just ended and the value v′ of the token that has just213

started, and ⟲ represents the fact that the value for the state variable has not changed. The input alphabet214

(or, simply, alphabet) associated with SV and denoted by ΣSV is the union ΣI
SV ∪ΣN

SV. Observe that215

the size of the alphabet ΣSV is at most exponential in the size of SV, precisely |ΣSV| = |ΣI
SV|+ |ΣN

SV| =216

|V ||SV|+(|V |2 +1)|SV|.217

We now show how to encode the basic structure5 underlying each plan over SV as a word in ΣI
SV ·218

(ΣN
SV)

∗ ∪{ε}, where ε is the empty word (and corresponds to the empty plan), (ΣN
SV)

∗ is the Kleene’s219

closure of ΣN
SV, and · denotes the concatenation symbol. Intuitively, let ν be the symbol at position i of a220

word σ ∈ ΣI
SV · (ΣN

SV)
∗∪{ε}. Then, if ν(x) = (v,v′) for some x ∈ SV, then at time i a new token begins221

in the timeline for x with value v′; instead, if ν(x) =⟲, then no change happens at time i in the timeline222

4The symbol {−} is a technicality that allows us to consider pairs instead of just values in V .
5With “basic structure” we refer to the fact that, in this section, we neither take into account the transition functions Tx of

state variables nor their domains Vx (cf., Definition 1), which will be dealt with in Section 5.
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for x, meaning that no token ends at that time point in the timeline for x. The value v of the token ending 223

at time i will be used later in the construction of the automata. 224

We remark that not all words in ΣI
SV · (ΣN

SV)
∗ ∪ {ε} correspond to plans over SV: for a word to 225

correctly encode a plan, the information carried by the word about the value of a starting token and the 226

one associated to the end of the same token must coincide. Formally, given a word σ = ⟨σ0, . . . ,σ|σ |−1⟩ ∈ 227

ΣI
SV · (ΣN

SV)
∗ ∪{ε} and a state variable x ∈ SV, let changes(x) = (ix0, i

x
1, . . . , i

x
kx−1), for some kx ∈ N, be 228

the increasing sequence of positions where x changes, i.e., σi(x) ̸=⟲ if and only if i ∈ changes(x), for all 229

i ∈ {0, . . . , |σ |− 1}. We denote by vx
i and v̂x

i the first and the second component of σi(x), respectively, 230

for all x ∈ SV and i ∈ changes(x). We omit superscripts x when there is no risk of ambiguity. 231

Definition 7 (Words weakly-encoding plans). Let σ ∈ ΣI
SV ·(ΣN

SV)
∗ and let changes(x) = (i0, i1, . . . , ik−1). 232

We say that σ weakly-encodes a plan over SV if v̂ih−1 = vih for all x ∈ SV and h ∈ {1, . . . ,k−1}. If this 233

is the case, then the plan induced by σ is the set {Tx | x ∈ SV}, where Tx = ⟨(x, v̂i0 , i1 − i0),(x, v̂i1 , i2 − 234

i1), . . . ,(x, v̂ik−1 , ik − ik−1)⟩ and ik = |σ |, for all x ∈ SV. 235

Intuitively, if a word weakly-encodes a plan, then it captures the dynamics of a state variable mod- 236

ulo its domain and its transition function, which will be taken care of in the next section. A converse 237

correspondence from plans to words can be defined accordingly. 238

Before concluding the section, we introduce another notation that will come handy later. We denote 239

by events(σ) the set of events (beginning/ending of a token) occurring at a given time, encoded in the 240

alphabet symbol σ . Formally, events(σ) is the smallest set such that: 241

• if σ(x) = (v,v′) for some x, then {end(x,v),start(x,v′)} ⊆ events(σ), and 242

• if σ(x) = (−,v′) for some x, then start(x,v′) ∈ events(σ). 243

5 DFA Accepting Plans 244

Given an eager qualitative timeline-based planning problem P = (SV,S), we show how to build a DFA 245

TSV, of size at most exponential in the size of P, accepting words that correctly encode plans over 246

SV, that is, words that weakly-encode plans (cf., Definition 7) and comply with the constraints on the 247

alternation of token values expressed by functions Tx, for x ∈ SV. In the next section, we show how to 248

obtain a DFA, of size at most exponential in the size of P, that accepts exactly the solution plans for P. 249

For every planning problem P = (SV,S), the DFA TSV is the tuple ⟨QSV,ΣSV,δSV,q0
SV,FSV⟩, whose 250

components are defined as follows. 251

• QSV is the set of states of TSV. Intuitively, a state of TSV keeps track of the token values of the 252

timelines at the current and the previous step of the run. Therefore, a state is a function mapping 253

each state variable x into a pair (v,v′), where v′ (resp., v) denotes the token value of timeline x at the 254

current (resp., previous) step. To formally define QSV, we exploit the definition of alphabet ΣSV 255

from Section 4. Mostly, states are alphabet symbols, except for those functions σ ∈ ΣSV assigning 256

to at least one state variable x ∈ SV value ⟲. For technical reasons, we also need a fresh initial 257

state q0
SV and a fresh rejecting sink state sSV. 258

Formally, QSV =
(
ΣSV \QSV

)
∪{q0

SV,sSV}, where QSV = {σ ∈ ΣSV | σ(x) =⟲ for some x ∈ SV}. 259

Clearly, the size of QSV is at most as the size of ΣSV, which is in turn at most exponential in the 260

size of P. 261

• ΣSV is the input alphabet, defined as in Section 4. 262
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• δSV : QSV ×ΣSV → QSV is the transition function. Towards a definition of δSV, we say that an263

alphabet symbol σ ∈ ΣSV is compatible with a state σ1 ∈ QSV (we use for states the same symbols264

as for the alphabet, i.e., σ ,σ1,σ2, . . ., to stress the fact that states are closely related to alphabet265

symbols) if one of the following holds: (i) σ1 = q0
SV is the initial state and σ ∈ ΣI

SV is an initial266

symbol such that for each x∈ SV it holds that σ(x)= (−,v) with v∈Vx; (ii) σ1 =(v,v′)∈ΣSV\QSV267

and σ ∈ ΣN
SV is a non-initial symbol such that for each x ∈ SV either σ(x) =⟲ or σ(x) = (v′,v′′)268

with v′′ ∈ Tx(v′)∩Vx.269

Now, δSV : QSV ×ΣSV → QSV is defined as follows. For all σ1 ∈ QSV and σ ∈ ΣSV, if σ is not270

compatible with σ1 or σ1 is the sink state (i.e., σ1 = sSV), then δ (σ1,σ) = sSV; otherwise271

– if σ1 is the initial state (i.e., σ1 = q0
SV), then δ (σ1,σ) = σ ; in other words, in this case the272

automaton transitions to the state represented by the input letter;273

– if σ1 ∈ ΣSV \QSV, then δ (σ1,σ) = σ2, where σ2(x) = σ1(x) if σ(x) =⟲, and σ2(x) = σ(x)274

otherwise, for all x ∈ SV; intuitively, the automaton transitions into a state keeping track of275

the updated information about which tokens have changed value and which ones have not.276

We point out that, in both cases, the automaton transitions to the next state in a deterministic277

fashion.278

• FSV = QSV \{sSV} is the set of final states.279

Correctness of the DFA TSV is proved by the next lemma.280

Lemma 1. Let P = (SV,S) be an eager qualitative timeline-based planning problem. Then, words ac-281

cepted by TSV are exactly those encoding plans over SV. Moreover the size of TSV is at most exponential282

in the size of P.283

6 DFA Accepting Solution Plans284

In this section, we go through the construction of an automaton recognizing solution plans for a planning285

problem. Towards that, it will come in handy to define some auxiliary structures, namely blueprints,286

snapshots and viewpoints; moreover, we will define how these structures evolve and give a high-level287

intuition for each of them.288

Let P = (SV,S) be an eager qualitative timeline-based planning problem, and let V = ∪x∈SVVx. We289

first show how to build a DFA AP, whose size is at most exponential in the size of P, that accepts exactly290

those words encoding solutions plans for P when restricted to words encoding plans over SV. In different291

terms, if a word encodes a plan over SV, then it is accepted by AP if and only if it encodes a solution292

plan for P. However, AP may also accept words that do not encode a plan over SV. Therefore, we need293

the intersection of such a DFA AP with DFA TSV from the previous section.294

In the following, we use preorders to represent the ordering relation imposed by synchronization295

rules. Each existential statement of the form ∃a1[x1 = v1]a2[x2 = v2] . . .an[xn = vn].C , with C conjunction296

of atoms, identifies a preorder whose domain is the set of terms start(a)/end(a) occurring in C , and297

where term t1 precedes term t2 in the preorder whenever t1 ≤ t2 belongs to Ĉ .298

For a preorder P , we denote by dom(P) its domain and by ⪯P the ordering relation. Moreover,299

we use x ≡P y to denote the fact that both x ⪯P y and y ⪯P x hold, and x ≺P y to denote the fact that300

x ⪯P y holds but y ⪯P x does not. Finally, we denote by [x]≡P the equivalence class of x with respect to301

≡P for every x ∈ dom(P), that is, [x]≡P = {y ∈ dom(P) | y ≡P x}. We omit the subscript P when it is302

clear from the context. A preorder P induces a directed acyclic graph (DAG) G = (V,A), where V is the303

set of equivalence classes, that is, V = {[x]≡ | x ∈ dom(P)}, and, for every x,y ∈ dom(P) there is an arc304
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start(a0)
start(a1)

end(a0) end(a1)

start(a0)
start(a1)

end(a0) end(a1)

Figure 1: Above, we show the blueprint for the unique existential statement in the rule a0[x0 = v0] → ∃a1[x1 =
v1].(start(a0) = start(a1)∧end(a0)≤ end(a1)), from Section 3. It forces token a0 to either be a prefix of or coincide
with token a1. Below, the blueprint obtained replacing end(a0) ≤ end(a1) with end(a0) < end(a1), that forces a1
to be a strict prefix of a1.

from [x]≡ to [y]≡ in A (denoted by ([x]≡, [y]≡) ∈ A or [x]≡ → [y]≡ when set A is clear from the context) if 305

and only if x ≺ y and there is no w ∈ dom(P) such that x ≺ w and w ≺ y. Clearly, there is a path from 306

[x]≡ to [y]≡ (denoted by [x]≡ →∗ [y]≡) if and only if x ⪯ y. Therefore, given an existential statement E 307

occurring in a synchronization rule R, we refer to the associated preorder and DAG as, respectively, PE 308

and GE . 309

It is important to observe that a conjunction of atoms C within an existential statement E contains 310

atoms of both forms t1 ≤ t2 and t1 < t2. To keep track of these different constraints in DAG GE = (V,A) 311

associated with E , we identify the subset A< ⊆ A of arcs of GE as the set A< = {([x]≡, [y]≡) ∈ A | x < 312

y ∈ Ĉ }. We sometimes write [x]≡ ⇒ [y]≡ for ([x]≡, [y]≡) ∈ A<, when A is clear from the context. Figure 313

1 shows such a difference. 314

Let E be an existential statement occurring in a rule R and GE the DAG associated with E . The 315

set of events associated with a vertex [x]≡ of GE , denoted by eventsGE ([x]≡), is the smallest set such 316

that if start(a) ∈ [x]≡ (resp., end(a) ∈ [x]≡) and a[y = v] either occurs in E or is the trigger of R, then 317

start(y,v)∈ eventsGE ([x]≡) (resp., end(y,v)∈ eventsGE ([x]≡)). The set of events associated with a subset 318

V ′ of vertices of GE , denoted by eventsGE (V
′), is the set

⋃
v∈V ′ eventsGE (v). 319

6.1 Blueprints, Snapshots, and Viewpoints 320

A DAG associated with an existential statement E is also called a blueprint for E . A snapshot for an 321

existential statement E is a pair (G,K), where G = (V,A) is a blueprint for E and K ⊆V is a downward 322

closed subset of vertices of G, that is, v ∈ K implies v′ ∈ K for all v′ ∈ V with v′ →∗ v. The number 323

of different snapshots for E is at most 2|V |, hence at most exponential in the size of P, denoted by |P|. 324

A viewpoint V for a rule R is a set of snapshots for existential statements in R, at most one for each 325

statement. Let nR be the number of existential statements in R; then, it is easy to see that the number 326

of different viewpoints for R is at most (2|P|)nR , hence exponential in the size of P. If K = ∅ for all 327

(G,K) ∈ V, then V is the initial viewpoint of R; analogously, if K is the entire set of vertices of G, for 328

some (G,K) ∈ V, then V is a final viewpoint of R. 329

Intuitively, a viewpoint checks the satisfaction of a rule R by recognizing when at least one existential 330

statement has been fulfilled. This check works by collecting, for each existential statement, information 331

about the tokens seen so far along the plan into snapshots, which are downward closed and accurately 332

represent all relevant symbols read. How information is collected, thus how viewpoints and snapshots 333

evolve, is explained in the following. 334
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States of automata AP are sets of viewpoints containing at least one viewpoint for each rule of P335

(besides a fresh rejecting sink state sP); recall that viewpoints are in turn sets of snapshots. Therefore,336

to define automata runs, we first show how snapshots and viewpoints evolve upon reading an alphabet337

symbol. To this end, we need the following notions.338

For a snapshot (G,K), we set next(G,K) = K′, where K′ is the largest downward closed subset of339

vertices of G for which there is no pair of vertices v,v′ ∈ K′ \K with v ⇒ v′. Moreover, given an alphabet340

symbol σ ∈ ΣSV, we define next((G,K),σ) = K′, where K′ is the largest downward closed subset of341

vertices of next(G,K) such that eventsG(K′ \K)⊆ events(σ). We say that snapshot (G,K) is compatible342

with symbol σ if for all start(x,v)∈ eventsG(K) and end(x,v)∈ events(σ)∩eventsG(V \K), it holds that343

end(x,v) ∈ eventsG(next((G,K),σ)).344

Intuitively, during a run of the automaton, a snapshot (G,K) evolves by suitably extending K.345

next(G,K) identifies the only vertices that can appear in such an extension independently from the al-346

phabet symbol read, that is, vertices in V \K reachable (from K) without crossing arcs in A<. The exact347

extension, however, depends on the actual symbol σ read by the automaton: K cannot be extended with348

events that are not included in σ . Therefore, next((G,K),σ) identifies precisely how a snapshot evolves.349

At last, observe that for a snapshot to be allowed to evolve upon reading a symbol, it must be guaranteed350

that no token ending is overlooked, which is formalized by the notion of compatibility of a snapshot with351

a symbol.352

We can now characterize the evolution of snapshots and viewpoints when reading an alphabet sym-353

bol σ ∈ ΣSV. The evolution of a snapshot (G,K) when reading σ , denoted evol((G,K),σ), is snapshot354

(G,next((G,K),σ)), if (G,K) is compatible with σ ; it is undefined otherwise. The evolution of a view-355

point V when reading σ , denoted evol(V,σ), is viewpoint V′, defined as the smallest set such that for all356

(G,K) ∈ V, if evol((G,K),σ) is defined, then evol((G,K),σ) ∈ V′.357

6.2 States, Initial State, and Final States of AP358

We have already mentioned that states of AP are sets of viewpoints containing at least one viewpoint for359

each rule R ∈ S (recall that S is the set of rules in planning problem P), besides a fresh rejecting sink360

state sP. However, since it is crucial for us to bound the size of AP to be at most exponential in the one361

of P, we impose the linearity condition, formalized in what follows.362

First, recall that, given a rule R, featuring existential statements E1, . . . ,EnR , a viewpoint V for R363

only contains at most one snapshot for each existential statement in R; therefore, it holds that |V| ≤ nR364

and there is a partial surjective function fV : {E1, . . . ,EnR}→V, where fV(E ) is the only snapshot for E365

in V, if any, for all E ∈ {E1, . . . ,EnR}.366

Now, for all rules R ∈ S, let ϒR be the set of viewpoints for R, and let ϒP =
⋃

R∈S ϒR . We de-367

fine an ordering relation ⪯ between viewpoints: for all V,V′ ∈ ϒP, it holds that V ⪯ V′ if and only if368

(i) V,V′ ∈ ϒR for some R ∈ S, (ii) dom( fV′) ⊆ dom( fV),6 and (iii) for all E ∈ dom( fV′), we have that369

fV(E ) = (G,K), fV′(E ) = (G,K′), and K ⊆ K′. Intuitively, V ⪯ V′ captures the fact that V′ has gone370

further than V in matching input symbols to satisfy a rule. Therefore, a snapshot in V either evolved into371

one in V′, according to the symbols read, or has disappeared because it is not compatible with some of372

the symbols read, and thus it cannot be used anymore to satisfy the rule.373

At this point, we can formalize the linearity condition, crucial to constrain the size of AP (Lemma 2).374

Definition 8 (Linearity condition). A set of viewpoints ϒ satisfies the linearity condition if for all view-375

points V,V′ ∈ ϒ and rules R ∈ S, if V,V′ ∈ ϒR , then V⪯ V′ or V′ ⪯ V holds.376

6For a partial function f , we denote by dom( f ) the set of elements where f is defined.
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Intuitively, we impose all viewpoints for the same rule in a state of AP to be linearly ordered. 377

We are now ready to formally characterize the set of states of AP, consisting of the sets ϒ ⊆ ϒP of 378

viewpoints that contain at least one viewpoint for each rule R ∈ S and that satisfy the linearity condition, 379

and including, in addition, a fresh rejecting sink state sP. We denote it by QP. 380

The initial state q0
P of AP is the set {V0

R | R ∈ S}, where V0
R is the initial viewpoint of rule R. 381

Towards a definition of the set FP of final states of AP, we introduce the notion of enabled viewpoints. 382

A viewpoint V for rule R ∈ S is enabled if either R is triggerless or R has trigger token a0 and start(a0)∈ 383

K for some (G,K) ∈ V. A state q of AP is final if every enabled viewpoint therein is final. 384

6.3 Transition Function of AP 385

The last step of our construction is the definition of the transition function δP for automaton AP. 386

To this end, we introduce the notion of alphabet symbol enabling a viewpoint V along with the one 387

of states of AP compatible with an alphabet symbol. Let V be a viewpoint for a non-triggerless rule R 388

with trigger token a0 and σ ∈ ΣSV an alphabet symbol. We say that σ enables V if there is (G,K) ∈ V 389

with start(a0) ∈ next((G,K),σ). Moreover, we say that a state q ∈ QP \{sP} is compatible with σ if for 390

all non-triggerless rules R ∈ S, with trigger token a0[x0 = v0], if start(x0,v0) ∈ events(σ), then there is a 391

viewpoint V ∈ q such that σ enables V. 392

We are now ready to define the transition function δP of AP. For all q ∈ QP and alphabet symbol 393

σ ∈ ΣSV: 394

• if q = sP or q is not compatible with σ , then δ (q,σ) = sP; 395

• otherwise, δ (q,σ) = q′, where q′ is the smallest set such that for all V ∈ q 396

– evol(V,σ) ∈ q′ and 397

– if σ enables V, then V ∈ q′. 398

Lemma 2. Let P = (SV,S) be an eager qualitative timeline-based planning problem. Then, each finite 399

word over ΣSV that encodes a plan over SV is accepted by AP if and only if it encodes a solution plan 400

for P. Moreover, the size of AP is at most exponential in the size of P. 401

Proof. For lack of space, we omit the proof of soundness showing that the automaton accepts the correct 402

language as claimed. Instead, we show that the size of AP is indeed at most exponential in the size of P. 403

Let k be the largest number of existential statements in a rule of P and k′ the largest number of atoms 404

in an existential statement of P. Thanks to the linearity rule enjoyed by states of P, it is not difficult to 405

convince oneself that the number of different viewpoints for the same rule in a state q ∈ QP to be at most 406

k×k′. Thus, each state in QP contains at most |S|×k×k′ different viewpoints (the product of the number 407

of rules in P by the number of different viewpoints for the same rule). 408

Therefore, the size of QP is at most |ϒP|(|S|×k×k′). Clearly, (|S|× k× k′) is at most polynomial in the 409

size of P. Since |ϒP| ≤ ∑R∈S |ϒR | and, as already pointed out, |ϒR | is at most exponential in the size of 410

P, we can conclude that the size of QP is at most exponential in the size of P. 411

Theorem 1. Let P = (SV,S) be an eager qualitative timeline-based planning problem. Then, the words 412

accepted by the intersection automaton of AP and TSV are exactly those encoding solution plans for P. 413

Moreover, the size of the intersection automaton of AP and TSV is at most exponential in the size of P. 414
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7 A Maximal Subset of Allen’s Relations415

Allen’s interval algebra is a formalism for temporal reasoning introduced in [2]. It identifies all possible416

relations between pairs of time intervals over a linear order and specifies a machinery to reason about417

them. In this section, we isolate the maximal subset of Allen’s relations captured by the eager fragment418

of qualitative timeline-based planning. To this end, we show how to map Allen’s relations over tokens in419

terms of their endpoints, that is, as conjunctions of atoms over terms start(a),start(b),end(a),end(b), for420

token names a and b. Then, we check which relation encoding satisfies the conditions of Definition 6.421

Let a,b ∈ N .422

• a before b (b after a) can be defined as end(a)< start(b).423

• a meets b (b is-met-by a) can be defined as end(a) = start(b).424

• a ends b (b is-ended-by a) can be defined as start(b)< start(a)∧ end(a) = end(b).425

• a starts b (b is-started-by a) can be defined as start(a) = start(b)∧ end(a)< end(b).426

• a overlaps b (b is-overlapped-by a) can be defined as start(a) < start(b)∧ start(b) < end(a)∧427

end(a)< end(b).428

• a during b (b contains a) can be defined as start(b)< start(a)∧ end(a)< end(b).429

• a = b can be defined as start(a) = start(b)∧ end(a) = end(b).430

It is not difficult to see that, if one of the tokens, let’s say a, is the trigger token, then the encod-431

ings not complying with Definition 6 are the ones for Allen’s relations ends, is-ended-by, overlaps,432

is-overlapped-by, and during. Thus, the maximal subset of Allen’s relations that can be captured by an433

instance of the eager fragment of the timeline-based planning problem consists of relations before, after,434

meets, is-met-by, starts, is-started-by, contains, and =.435

As an example, consider relation overlaps and let C = {start(a)< start(b),start(b)< end(a),end(a)<436

end(b)} be its encoding. Clearly, the transitive closure Ĉ of C (cf. Section 3) includes also start(a) ≤437

start(b) and end(a) ≤ end(b) but it does not include start(b) ≤ start(a), thus violating Condition 2 of438

Definition 6. A similar argument can be used for relations ends, is-ended-by, is-overlapped-by, and439

during.440

If, instead, none of the token is a trigger token, then the only Allen’s relations not violating any of441

the conditions of Definition 6 are before, after, meets, and is-met-by. We omit the details.442

8 Conclusions443

In this paper, we identified a maximal fragment of timeline-based planning whose solutions can be rec-444

ognized by DFAs of singly exponential size. Specifically, we identified restrictions on the allowed syn-445

chronization rules, which we called eager rules, for which we showed how to build the corresponding446

deterministic automaton of exponential size, that can then be directly exploited to synthesize strategies.447

Moreover, we isolated a maximal subset of Allen’s relations captured by such a fragment.448

As for future work, a parametrized complexity analysis over the number of synchronization rules is449

an interesting direction. A characterization in terms of temporal logics, like the one in [10], is of interest450

as well.451
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