Interval Temporal Logics over Strongly Discrete
Linear Orders: the Complete Picture

Davide Bresolin Dario Della Monica Angelo Montanari
University of Verona (Italy) Reykjavik University (Iceland) University of Udine (ltaly)
davi de. bresol i n@ni vr.it dariodm@u.is angel o. nont anari @ni ud. it

Pietro Sala Guido Sciavicco

University of Verona (Italy) University of Murcia (Spain)
pietro.sala@nivr.it gui do@m es

Interval temporal logics provide a general framework fonp®ral reasoning about interval structures
over linearly ordered domains, where intervals are takethagrimitive ontological entities. In
this paper, we identify all fragments of Halpern and Sholsaimerval temporal logic HS with a
decidable satisfiability problem over the class of strorttiferete linear orders. We classify them in
terms of both their relative expressive power and their derity. We show that there are exactly
44 expressively different decidable fragments, whose dexity ranges from NP to EXPSPACE. In
addition, we identify some new undecidable fragments f@lremaining HS fragments were already
known to be undecidable over strongly discrete linear @déWe conclude the paper by an analysis
of the specific case of natural numbers, whose behaviortilighfers from that of the whole class
of strongly discrete linear orders. The number of decid&blgments oveN raises up to 47: three
undecidable fragments become decidable with a non-pviemicursive complexity.

1 Introduction

Interval temporal logics provide a general framework fanperal reasoning about interval structures
over linearly (or partially) ordered domains. They takedimtervals as the primitive ontological entities
and define truth of formulas relative to time intervals, eatthan time points. Interval logic modalities
correspond to various relations between pairs of interweith the exception of Venema’s CDT and its
fragments, that consider ternary relations [21]. In patéi Halpern and Shoham’s modal logic of time
intervals HS[[15] features a set of modalities that makegssjble to express all Allen’s interval rela-
tions [1] (see Tablgl1). Interval-based formalisms havenlea¢ensively used in many areas of computer
science, such as, for instance, planning, natural langpemgmessing, constraint satisfaction, and verifi-
cation of hardware and software systems. However, moskeof imnpose severe syntactic and semantic
restrictions that considerably weaken their expressivegpolnterval temporal logics relax these restric-
tions, allowing one to cope with much more complex appl@atlomains and scenarios, Unfortunately,
many of them, including HS and the majority of its fragmenisn out to be undecidable|[4].

In this paper, we focus our attention on the class of strodggrete linear orders, that is, of those
linear structures characterized by the presence of finitelpy points in between any two points. This
class includes, for instanc®y, Z, and finite linear orders. We give a complete classificatiballdHS
fragments, reviewing known results and solving open proble The aim of such a classification is
twofold: on the one hand, we identify the subset of all exgikedy-different decidable fragments, thus
marking the decidability border; on the other hand, we deitee the exact complexity of each of them.
As shown in Figurél1AABB (that features modal operators for Allen’s relationsetsandstarted-by
and their inverses) and its mirror imagéEE (that replaces relatiorstartsandstarted-byby relations
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Relation | Operator Formal definition Pictorial example
meets A) | kyRA Yoy =x/ | —
before L | kylRix,y] oy <x/ I S

started-by (B) x,ylRplx' .yl x=x"y' <y Xﬂ /

finished-by|  (E) | oylRel/ syl oy =y’ x < x’ =
contains (D) x,ylRpx,y'lex<x'y' <y |—|y /

overlaps (0) x,ylRolx ylex<x <y<y’ Y

Table 1: Allen’s interval relations and the correspondirfg tdodalities.

finishesandfinished-by are the minimal fragments including all decidable subeé&tgperators from the
HS repository, for a total of 62 languages. Of those, 44 tutrt@be decidable.

As a matter of fact, the status of various fragments was@r&aown: (i) D, D, O, andO have been
shown to be undecidable inl[6,11&ii) BE, BE, BE, andBE are undecidable, as each of them can define
either (O) or (D), or one of their inversegjii) undecidability ofAAB andAAB (resp.,AAE and AAE)
can be proved as that @ABB (resp.,AAEE) [18]; (iv) ABBL (resp.,AEEL) is in EXPSPACEI[10],
and EXPSPACE-hardness already holdsA&andAB (resp.,AE andAE) over finite linear orders [7];
(v) AA (aka Propositional Neighborhood Logic) is in NEXPTIME [8]1and NEXPTIME-hardness
already holds foA andA [9]; (vi) BB is NP-complete[[14], and, obviously, NP-hardness alreaudgsh
for B andB (both include propositional logic)yii) the relative expressive power of the HS fragments
we are interested in is as shown in Figuré 17, 11].

In this paper, we complete the picture by proving the follogvhew results(i) the undecidability
of AAB (resp.,AAE) andAAB (resp.,AAE) can be sharpened #B (resp.,AE) andAB (resp.,AE), re-
spectively (Section 3)ii) the NP-completeness (in particular, NP-membershi@B®tan be extended
to BBLL (Section 4). In addition, we analyze the behavior of theawsifragments oveX (Section 6).

As N-models are not left/right symmetric, reversing the timéeorand coherently replacing modalities
(e.g.,(A) by (A)) does not preserve, in general, the computational prgseai a fragment. We show
that: (i) AB becomes decidable (which is a direct consequence of [18J§isely, non-primitive recur-
sive [7]; (i) the same holds fohB andABB, but, in these cases, the decidability proof AgkBB given

in [18] must be suitably adapteii) ABL, ABL, andABBL remain undecidable, but original reductions
must be suitably adapted. Thus, the number of decidablenteats oveN raises up to 47, the three new
decidable fragments being all non-primitive recursive. 8Aatter of fact, we can slightly generalize
such a result, as the addition of finite linear orders (finitfiges ofN) to N does not alter the decidabil-
ity/undecidability/complexity picture. However, to keppesentation and proofs as simple as possible,
we restrict our attention tBi-models only.

2 HSand its Fragments

Let D = (D, <) be astrongly discrete linearly ordered sehat is, a linearly ordered set where for ev-

ery pairx,y such thatx < y, there exist at most finitely man,z,...,z, such thatx < z; < zy <
..< zn <y. According to the strict (or pure) approach, we excluderimts with coincident endpoints

(point-intervals) from the semantics. Then,iaterval overD is defined as an ordered péiry], where
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Complexity class:

: Undecidable I —_ 1
AABB AAEE

: EXPSPACE-complete

: NEXPTIME-complete

: NP-complete

1
2
3
4

Figure 1: Hasse diagram of fragmentsAgkBB and AAEE over strongly discrete linear orders.

x,y € D andx < y. 12 different ordering relations (excluding equality) leeén any pair of intervals
are possible, often calleélllen’s relations[1]: the six relations depicted in Taklé 1 and their inverses
We interpret interval structures as Kripke structures ahens relations as accessibility relations, thus
associating a modalityX) with each Allen’s relatiorRx. For each modalityX), its inverse(or trans-
posg, denoted byX), corresponds to the inverse relatiRg of Rx (that is,Rg = (Rx)™Y). Halpern and
Shoham'’s logic HS is a multi-modal logic whose formulas axit lon a setAP of proposition letters,
the boolean connectiveg and—, and a set of modalities, one for each Allen’s relation. Véitkery
subsef{Rx,,...,Rx, } of these relations, we associate the fragnisX,...X, of HS, whose formulas
are defined by the following grammar:

eu=pl-eleVelX)el...| (Xg)e.

The other boolean connectives can be viewed as abbregaaon the dual operatofX] are defined as
usual (Xlo = —~(X)—@). Given a formulap, its length|g| is the number of its symbols.

The semantics of HS is given in termsiaferval modelsM = (I(D), V), wherel(D) is the set of
all intervals oveiD. Thevaluation functionV : AP — 2!?) assigns to every € AP the set of intervals
V(p) over whichp holds. Thetruth of a formula over a given intervak,y] of an interval modeM is
defined by structural induction on formulas:

M, [x,y] IFp iff [x,y] € V(p), for allp € AP;

M, [x,y] IF = iff it is not the case thaMl, [x,y] IF V;

M, [x,yl IF @ VU iff M, [x,yllF @ or M, [x,y] IF;

M, [x,y] IF (X)) iff there exists an intervalk’,y’] such thatx,ylRx[x’,y’] andM, [x’,y’] IF,
whereRy is the relation corresponding tX).

An HS-formulag is valid, denoted by ¢, if it is true over every interval of every interval model.
In this paper, we study expressiveness and computationgbleaity of HS fragments over the class
of strongly discrete linear orders. Given a fragmé&gt X; X, ...X, and a modality X), we write(X) € &
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if X € {Xy,...,Xx}. Given two fragment§; andJF>, we writeF; C F, if (X) € F1 implies (X) € F,, for
every modality(X).

Definition 1. We say that arHS modality (X) is definablein an HS fragment if there exists a for-
mulay(p) € F such that(X)p <> P (p) is valid, for any fixed proposition lettgr. In such a case, the
equivalencgX)p =1 (p) is called aninter-definability equation fo(X) in .

Definition 2. Let F; and &, be twoHS fragments. We say that (§, is at least as expressive &s
(F1 = F») if modality (X) € F is definable irFy; (ii) F is strictly less expressivihan F, (F1 < F») if
F1 X F, but notF, < Fy; (iii) F1 andF, are equally expressiveor expressively equivaler{F; = ),
if 51 < Fp andF, < F1; (iv) F1 andF;, are expressively incomparablgi # F,) if neither ¥, < F» nor
Fo < F.

We denote each HS fragmefitby the list of its modalities in alphabetical order, omigfithose
modalities which are definable in terms of the others. As denaf fact, in our setting, only modalities
(L) and (L) turn out to be definable in some fragments. Any fragnt&mtan be transformed into its
mirror image by reversing the time order and simultaneotegijacing (each occurrence df.) by (A),

(L) by (L), (B) by (E), and(B) by (E). In the considered class of linear orders, the mirroring aten
can be applied to any given fragment preserving all its cdatfmnal properties. Thus, all results given
in this paper, except for the ones in Section 6, hold bothHerdonsidered fragments and their mirror
images. On the contrary, when the considered class of madetd left/right symmetric, as it happens
with N, this is no longer true (see Section 6). The rest of the pay#r,the exception of Section 6, is

devoted to prove the following theorem.

Theorem 1. The Hasse diagram in Figufé 1 correctly shows all the dedielitagments oHS over the
class of strongly discrete linear orders, their relativepmssive power, and the precise complexity class
of their satisfiability problem.

3 Relative Expressive Power and Undecidability

The most basic definability results in HS are known sifnce:[H5 = AABBEE. Notice also that, when
point-intervals are included in the semantics, Venemaegutdhat HS= BBEE [21]. In order to show
non-definability of a given modality in a given fragment, wseuhe standard notion of bisimulation and
the invariance of modal formulas with respect to bisimolagi (see, e.g. [2]). In particular, we exploit
the fact that, given a modal logi€, anyJF-bisimulation preserves the truth of all formulasdinThus, in
order to prove that a modalityX) is not definable ir#F, it suffices to construct a pair of interval models
M andM’ and aF-bisimulation between them, relating a pair of intenalgy] € M and[x’,y’] € M/,
such thatM, [x,y] I+ (X)p andM’, [x’,y T I (X)p.

In the following, we focus our attention on fragments ABB and of its symmetric language,
AAEE, in order to prove that Figuig 1 is sound and complete for thgsoof all strongly discrete linear
orders, in the following sense. In Figlire 1 we depicted tlaplymvhose set of nodes is given by the set of
expressively different fragments 8/ABB and AAEE (including AABB and AAEE themselves). Nodes
are partitioned with respect to complexity of their satisifity problem: nodes corresponding to unde-
cidable fragments are identified by a red rectangle and bsuperscript 1, while nodes corresponding to
fragments that are EXPSPACE-complete (resp., NEXPTIMEgete, NP-complete) are identified by a
yellow rectangle and by the superscript 2 (resp., blue ngi¢asuperscript 3, green rectangle/superscript
4). Furthermore, all fragments of HS that does not appeadnérpicture are undecidable. The arcs of
the graph represent the relative expressive power of twynfemts: if two nodes, corresponding to the
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fragments¥; andJ, respectively, are connected by an arrow going ftBio 5>, then we havér, < F1

(5> is strictly less expressive thah); if two fragmentsF, andJF; are not connected by any path, then
we haveF; # F, (they are expressively incomparable). Thus, to show thgureil is sound and com-
plete, we need to provei) every pair of fragments which are not related to each othénerpicture
displays two expressively incomparable fragme(iisevery fragmenf; connected by a directed arrow
to a fragmentF; is strictly more expressive théfp; and(iii) the complexity of the satisfiability problem
of considered fragments is correctly depicted by the pict@ne can easily convince him/herself that
() and(ii) are direct consequences of the following lemma, which ha® Ipeoved in[[7], and whose
proof makes use of bisimulations based on finite linearherd sets; as the class of all strongly discrete
linearly ordered sets includes the finite ones too, all tesoimediately apply.

Lemma 1([7]). The only definability equations for thtS fragmentAABB, over the class of all strongly

discrete linear orders, aréL)p = (A)(A)p and(L)p = (A)(A)p.

It remains to be shown poir(tii). The rest of the section is devoted to prove the undecidgabili
of all fragments marked as undecidable in Figure 1. Thoggfemts that are not in the picture have
already been proved undecidable in the class of all strodiglgrete linearly ordered sets (seel[16, 6]).
As a consequence, we have that Figure 1 depicts all decidi@gments of HS over the class of all
strongly discrete linear orders. Poifiif) above will then be completed in the next sections with the
exact complexity characterization of all such decidalégfnents.

The undecidability result we give here presents some dgiitigls to those in[[i7,_18]. Nevertheless,
its adaptation is not trivial. From_[18, 19], we know thatrées a reduction from the satisfiability
problem forAAB and AAB to the structural termination problem for a lossy countepmata, which
is known to be undecidablé [17]. Here, by partly exploitimy® of the basic concepts of such a re-
duction, we focus on the non-emptiness problem for incrémgrounter automata over infinite words,
which, again, is known to be undecidable [[12]. Incrementingnter automata can be considered a
variant of lossy counter automata in which faulty transisioncrease the values instead of decrementing
them; a comprehensive survey on faulty machines and thelegityp(and decidability/undecidability)
of various problems associated with such machines can bedfou[3]. Formally, anincrementing
counter automators a tuple of the formA = (X, Q, qo,k,A,F), whereX is a finite alphabet(Q is a
finite set of controlstates qo € Q is the initial statek is the number otounterscy,...,cx (whose
values range oveN), A is atransition relation andF C Q is the subset of final states. The relation
A is defined as a subset §f x (ZlH{e}) x L x Q, wheree denotes thempty transitionandL is the
instruction sef. ={inc, dec,ifz} x{1,... k}. A configurationof A is a pair(q,c), whereq € Q andc
is the vector of counter values. Standard transitions afrdree counter automata are defines as usual:
(q,c) La, (q’,c’), wherea € (Z|+}{e}), Le L, and ifl = (inc,1) (resp.,l = (dec, 1), L = (ifz,1)) then the
counterc; is incremented by 1 (resp., decremented by 1, required td.Bedead, a run of an increment-

ing counter automaton consistsin€rementing transitionsf the form(q,c) l’—a>T (q’,c’), which means

that there exists; andc? such that < c¢, (q,c4) La, (q’,c_@, andc_§ < ¢/, and, therefore, counters may

have been increased nondeterministically before or dftetrnsition by an arbitrary natural number.
An infinite run onA is said to beacceptingfor an infinite wordw € L% if and only if it passes by a final
state inF infinitely often. Given an automataf, thenon-emptiness problem over infinite womssists
of deciding if there exists at least one infinite word acceig.A, and it is undecidable [12]. We will
show now that this problem can be reduced to the satisfialpititblem for the fragmentaB, AB, AE,
and AE, thus proving their undecidability. For the sake of simipficwe will show this result only for
the fragmen®AE; notice that in the class of all strongly discrete lineantgared sets, this fragment is in
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Figure 2: Encoding of a configuration of an incrementing deuautomata irAE.

fact symmetric toAB, thus the result trivially holds also for the latter fragrhevioreover, adapting it to
AE (and therefore, by symmetry, &B) is straightforward. In Section 6, on the other hand, we stithw
that when we focus our attention on the class of models bas&d the situation is slightly different, as
the symmetry does not hold anymore.

Lemma 2. There exists a reduction from the non-emptiness infinitélpro for incrementing counter
automata to the satisfiability problem féiE in the class of strongly discrete linear orders.

Proof. To prove this result, given an automatdn= (£, Q, qo,k,A,F), we need to produce a formula
@ 4 that it is satisfiable in the class of all strongly discretedirly ordered sets if and only if there exists
at least one infinite word on the alphatieticcepted byd. Let us assume th&®| =, |Z| =, |[F| =n,

|C| =k (whereC denotes the set of counters), and tl{gtthere arg. proposition lettersjo, qu,...,q.,
each of them corresponding to a state of the automaggredrresponds to the initial ongjj) similarly,
ai,...,a correspond to alphabet symbols; diii)l c1,...,cx correspond to counter elements. Moreover,
$q (resp., $i, $c) are proposition letters that are true if and only if at least q; (resp.,ai,cy) is true,
and are used to simplify formulas. Finally, teinf be a proposition letter used to denote a configuration.
Since in the strongly discrete case we can univocally ifiemtervals of length one, that is, of the type
[x,x+ 1], by means of the formulé] L, we will use them to encode the elements of a configuration. A
configuration will be encoded by a (non-unit) inter\alx + s] labeled byconf, and whose unit intervals
are labeled as followsx,x + 1] will be labeled by a state i, [x+ 1,x + 2] by a letter inZ, and every
other unit interval will be labeled by a counter propositietier but the last one; for technical reasons,
the last unit intervalx + s — 1,x + s] of every configuration will be labeled by a special propositi
letter . Figure[2 depicts (part of) the encoding of a configurationive® a configuration interval
[x,x+ s], we guarantee that it contains exactly one state and onatapletter, and the number of unit
intervals labeled witle; in [x,x + s] corresponds to the value of the countein that configuration. The
first configuration will contain no counter proposition &, as the in the non-emptiness problem we
can always assume all the counter values to start @t=0Q). Theuniversalmodality [U] can defined in
our language as followgU] @ = @ A[Alp A[A][A]l@. Now, let us start by making sure that proposition
letters that denote counter values, states, and elemehtaria correctly placed:

18 v k

[U($q <> \/ q) AlUI($a + \/ ai) AlUI($c + \/ c;)  placeholders are correctly set (1)
i=0 i=1 i=1

[UJ([E]L > $qV$aV SV $b) placeholders are unit intervals  (2)
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(A (gi = =) A A\ (@i = ~a5) A A (ei = —¢;))  exactly one state, letter, counter (3)
i#j i# i#j
exactly one placeholder per unit
[ /\ ($p == \/ %p’) interval “)
pefq,a,c,b} P'#P

After that, we encode a sequence of configurations as a (@iigfinite chain that starts at the ending
point of the interval where 4 is evaluated, making sure that the first configuration hasdhaters set to
zero. In order to guarantee the uniqueness of the chain gondcw configurations to neither contain nor
overlap to each other, we use the proposition lettetf’, that we make true over all and only suffixes
of a configuration:

first configuration has two in-
ternal points

confs form a chain with
space for state and letter

(A)(conf A (E)(E)T A[EJ[E][E] L) (5)

[U](conf — (A)conf A [E]=conf A(E){E)T) (6)

‘o ’
[U](conf — [Elconf’) A [U](conf’ — —conf) COT_LfS are finished byonf 7)
which is notconf

[Ul(({(A)conf” — —conf) A(conf’ — (A)conf A—(E)conf)) [C)(r)(i[)fe/rtles of conf and (8)

At this point, we are able to force configuration to have tightristructure, that is, making sure that
configuration starts with a state, which is followed by adetin turn, possibly followed by counters
proposition letters, while the last unit interval of a configtion is labeled by & Moreover, the first
configuration start withjo. The proposition lettersonf, conf,, andconf., (one for each type of
counter) are used in the following set of formulas for techhreasons. In fact, modaliti€s.) and (E)
do not allow us, in general, to refer to the subinterval of\vegiinterval. To overcome this problem,
we label the suffix of a configuration interval starting imrizéely after an interval labeled with a given
q (resp.,a, ci), with confq (resp.,confq, conf¢;). This allows us to have indirect access to the
components of a configuration by means of modaiy. For example, using such a technique, we can
force that every configuration has at most one state and phatadt symbol. Also, proposition lettels $
plays a central role here; we use it to guarantee that aldashe of each configuration can actually be
associated with its correspondingnfe..

the first configuration ©)
starts withqg

[UI(($q — (A)$a) A ($aV/$e — (A)($e\/$b)) A ($b — (A)gq)) 2 confs have the right )

(AYqo/\[U]((A)conf <+ (A)$q)

structure
[U]($q — [Al(conf’ — confq)) A[Ul(SaA[A](conf’ — confy)) gg?fq and conf, are (11)
[U]=(confq A(E)confq) A[Ul~(confq A (E)confy) E(r)c;f)firtles Okconfq and (12)
k -
u ) A ¢/ = confe, is set for each 13
[ ](i_/\l(cl—>[ J(conf’ — confc,))) oo (13)

A similar technical solution is used in the following set ofrhulas, where we introduce the propo-
sition lettersc 4. andcnew, together with the corresponding auxiliary propositiottdesconf .. and
confnew. INnparticular,cqec, that labels at most one counter elemgnof a given configuration, makes
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it possible to ensure that theh counter will be decreased by 1 as an effect of the nexsitian (when

A contains such a command). The increasing ofittiecounter by 1 is encoded by means of the proposi-
tion letterc, ¢, that, possibly, labels a (unique) added after the last transition (again, wierequires
S0):

(A (co— ($cA[Al(conf’ — confy))))  whenc, thenconf, (14)
le{new,dec}

[ul( /\ (($c A (A)confy) — cy)) whenconfy thency (15)
le{new,dec}

u P —(E P confpew andconfge. are unique 16

W A (confi——(E)conf)) inside aconf (16)

le{new,dec}

The following set of formulas axiomatizes the propertiea pfoposition lettecorr (andcorrcont),
which will be used to maintain counters’ values across sitiginsitions. Tw@orr-intervals might start
at the same point (but not end at the same point), and thiesepts the faulty behavior of that can
increment (but not decrease) the value of counters nomrdetistically:

[A]({(A)cnew — —(E)corr) new counters do not correspond to anyong17)
[U](($c AN—=Cgec) — (A)corr) non dec counters correspond to someone (18)

gs, as, anddec counters do not corre-
spond to anyone

[U](([E]LA(A)corr) — $¢) corr always starts with a counter (20)
[U](corr — [E]lcorr’ A (A)$c)

U(($qV$aVcgec) — [Al—corr) (19)

roperties ofcorr andcorr 21
AU((A)conf — [Al(corr’ = correons)) 7 cont D)
[UJ((A)correons — (A)conf) more propertiesorrcon s (22)
U]—(corr A (E)cor
W=feorreons A (E)correont) eachconf has a UNiQUEOTTcon (23)
AUl (corr — (E)corTcont)
k
[u( /\ (ci — [Al(corr — (A)cy))) eachcorr corresponds to some counter (24)
i=1
[U](corr — —(E)corr) corrs are unique for each counter (25)

We formalize the transition relatiod by making sure that if the automata has modifigidto q’ by
readinga and moving from one configuration to another one, then thieucson 1 of some transition
(q,a,1,q9") € A must have been applied.

\/ ((A) (@A (A)Ya) A(A)(confA(A)q A constraining (26)
(q.a(incilglea  (A)(confA(E)(confe, Aconfrew)))) instruction (inc, i)
\/ ((A) (@A (A)Ya) A (A)(confA(A)q A constraining
: : . (27)
(q.a,(dec,i),q/)€A (E)(confe, Aconfgec))) instruction (dec, 1)
V. ((AY@AA)a) A(A)(conf A (AYg' AlEl-confe,)) f&?f:g;g;”gh,n (28)

(q,a,(ifz,1),q")EA
[Ul((A)conf — ([26)V (27) V [29))) global constraining (29)
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Finally, we definep 4 as the conjunction of all above formulas plus the requirdrteat the infinite
computation passes through a final state infinitely often:

o4 =ON.. AEHN@DNANANA) \/ qr

qreF

It is straightforward to prove thap 4 is satisfiable if and only ifd accepts at least one infinite word]

4 NP-Completeness

In this section, we prove that NP-completenes8Bf shown in [14], can be extended BBLL. Since
the satisfiability problem for propositional logic is NPraplete, that for every proper fragment®BLL
including it is at least NP-hard. Unlike all other cases, ¢bee of this section is a membership proof
(namely, NP-membership): by a model-theoretic argumeshaws that satisfiability d8BLL-formulas
can be reduced to satisfiability in a periodic model wherdehgths of prefixes and periods have a bound
which is polynomial in the length of the original formula.

For the sake of simplicity, we consider the caseB&LL interpreted oveN. The generalization
to the whole class of strongly discrete linear orders isgtitborward. Moreover, it can be shown that
satisfiability of aBBLL-formula ¢ over N can be reduced to satisfiability of the formulap) = ¢
(BYo V (LYo V (L)(L)(¢ \V (B)p) over the interval0, 1, that is, M, [x,y] I- ¢ for some[x,y] if and
only M, [0, 1] I T(¢). Thus, we can safely restrict our attention to the problesatitfiability over0, 1]
(initial satisfiability). As a preliminary step, we introduce somefuknotation and notions, including
the definition of periodic model.

Definition 3. An interval modeM = (I(N), V) is ultimately periodic with prefire and periodPer if,
for every intervallx,y] € I(N) and every proposition lettgs € AP, (i) if x > Pre, then[x,y] € V(p) iff
[x + Per,y + Per] € V(p) and (ii) if y > Pre, then[x,y] € V(p) iff [x,y + Per] € V(p).

Now, consider @8BLL-formula ¢, and defineCl(¢) as the set of all its subformulas and their nega-
tions. LetM be a model such thatt, [0, 1] I ¢. For each poink of the model, we can identify the max-
imal subsetRy (x) (resp.,R¢(x)) of Cl(¢) consisting of all and onlyL)-formulas (resp.(L)-formulas)
and their negations that are satisfied over intervals engiggp., beginning) at. Notice that all in-
tervals ending (resp., beginning) at the same point satiefysame/L)-formulas (resp.{L)-formulas).
Let R(x) = R (x) UR(x). R(x) must be consistent, as it cannot contain a formula and itatioeg
Now, letR be the subset of1(¢) that contains all possibld_)- and (L)-formula. It is easy to see that
|R| < 2|¢]|. In the following we need also to compare intervals with eg$fo satisfiability of(B)- and
(B)-formulas. Given a mode\1, we say that two intervalg,y] and[x’,y’] are B-equivalent (denoted
[x,yl =g [x,y’]) when, for everyB)1b € Cl(@), M, [x,y] IF (B) iff M, [x’,y’] I (B)W and, for every
(B)W € Cl(o), M, [x,y] IF (B iff M,[x",y’] IF (B)W. We fix mg to be the number of alB)- and
(B)-formulas inCl(¢). To prove that satisfiability problem f&BLL is in NP we first prove that every
satisfiable formulap has an ultimately periodic model, and then we show how torachsuch model to

a smaller one whose prefix and period are polynomial in thgtheaf ¢.

Lemma 3. Let @ be aBBLL-formula andM = (I(N), V) be a model such that1, [0, 1 I ¢. Then, there
exists an ultimately periodic model* = (I(N), V*) that satisfiesp.

Proof. Let M = (I(N), V) be a model such tha, [0, 1 IF . If M is not ultimately periodic, we turn it

into an ultimately periodic one as follows. First of all, hettransitivity of(L) and(L), it is easy to see
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that there must exists a point> 1 such thafR(y) = R(x) for everyy > x. We fix the prefixPre of the
model to be equal te. Then, to define the periodic part of the model we chooBera> mp respecting
the following properties(i) for every pointx < x and every formuldL){ € R(x) there exists an interval
[y, Yyl such thatM, [xy,,yy,] IF P andx < xy < yy < Pre+Per; (i) for every intervallx,y] such
thatx < Pre andy > Pre + Per and for every formulgB)y such thatM, [x,y] I- (B)W there exists an
interval [x,yy,] such thatx,y] =g [x,yy), M, [x,yy] IF P andPre < yy < Pre+Per. The transitivity

of (B) and(B) guarantees that suchPar can be found. To guarantee periodicity of the model, we must
enforce the following additional propertyiii) for every intervallx,y] such thatPre < x < Pre 4 Per
andy > Pre + 2Per and for every formulaB)y such thatM, [x,y] I (B){ there exists an interval
[x,yy] such thatx,y] =g [x,yy], M, [x,yy] IF P andyy, < Pre+ 2Per. If this not the case, we can
modify the valuatiorV to guarantee that propertyi) holds as follows. Letx,y] be an interval that does
not respectiii) : we choose a finite set of “witness point§j; < ... < yi} such that for every interval
[x,y’] and every formulgB), if M, [x,y’] I (B} then there exists a witness poik y; <y’ such
that M, [x,yi] IF ¥, and for every formulaB), if M, [x,y’] IF (B)\ then there exists a witness point
yj such thatM, [x,y;] I-  and eithery; >y’ or [x,y;] =g [x,y’]. By the transitivity of(B) and (B),
and by the fact that the number @)- and (B)-formulas inCl(¢) is bounded, it is easy to see that the
number of witness points is less or equahtg. Now, we concentrate our attention only on those witness
points{y; < ... <y} that are greater thafre + Per, and we turnV into a new valuatio/’ where all
intervals starting irx respectiii) as follows:(1) for everyx <y’ < Pre+ Per, we put[x,y’] € V/(p) iff
[x,y’l € V(p); (2) for everyj < i < k, we put[x,Pre+Per+1] € V/(p) iff [x,yi] € V(p); (3) for every

x + Pre+Per+k <y’ <y, we putlx,y’] € V/(p) iff [x,yx] € V(p); (4) the valuation of all other
intervals is unchanged. Note that after this procedure herantervallx,y’] starting atx can falsify
property(iii) . By repeating the above procedure a sufficient number ofstiwwecan obtain a model for
the formula respecting all the required properties.

We are now ready to build the required ultimately periodicdeid* = (I(N), V*). First we define
the valuation functior/* for some of the intervals in the prefix and in the first occuceenf the period:
(1) for everyp € AP and for evenyix,y] such thay < Pre+ Per, [x,y] € V*(p) iff [x,y]l € V/(p); (2) for
everyp € AP and for everylx,y] such thatPre < x < Pre+ Per andy < x + Per, [x,y] € V*(p) iff
[x,yl € V/(p). Then, we extend* to cover the entire mode(1) for everyp € AP and for everyix, y]
such thak < Pre andy > Pre+ Per, [x,y] € V*(p) iff [x,y—Per] € V*(p); (2) for everyp € AP and for
every([x,y] such thaPre < x < Pre+Per andy > x+Per, [x,y] € V*(p) iff [x,y—Per] € V*(p); (3) for
everyp € AP and for every(x,y] such that > Pre+ Per, [x,y] € V*(p) iff [x—Per,y—Per] € V*(p).

It is straightforward to prove thavl*,[0, 1 IF ¢ and thus thaiM* is the ultimately periodic model we
were looking for. O

By applying a point-elimination technique similar to theearsed in[[7] to prove NP-membership of
BBLL over finite linear orders, we can reduce the length of thexpeefil period of an ultimately periodic
model to a dimension polynomial in the lengthf as proved in the following lemma.

Lemma 4. Let ¢ be aBBLL-formula. Theny is initially satisfiable over the natural numbers if and
only if it is initially satisfiable over an ultimately pericdmodel modeM = (I(N), V) with prefixPre
and periodPer such thatPre 4+ Per < (my +2)mg +my +4, wherem; = 2|R|.

Proof. By Lemmal3 we can assume thatis initially satisfied over an ultimately periodic model =
(I(N), V). If Pre+Per > (my +2)mp +my +4, we proceed as follows. Consider all points<1
x < Pre+ 2Per: for each € Cl(¢) such that{L)1p € R(x) for somex, choose a point & x‘#mx <
Pre + Per and a pointyiax < Pre+ 2Per such that the intervalx™qx, Yt o] satisfiesy and that
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for eachxm(1X < x < Pre+ Per no interval starting ak satisfiesip. Collect all such points into a set
(of L-blockedpoints) Bl C {0 Pre+2Per}. Then, for eachp € Cl(¢) such thatL)\p € R(x) for
somex, choose an interva v satisfyingx]) and such that for each < y%, no interval

mln’ymln _
ending aty satisfies. Put all pointx¥ . ,y¥. into a set (ofL-blockedpoints) Bl C {0, ... Pre}.
DefineBl = Bl UBL;U{Pre,Pre+ Per}. Obviously,[Bl| < mp +2. Now, suppos@l = {x; < x» <
..< xn}. Foreach O< i< mn, call Bly = {x|xi < x < xi1}; similarly, let Blp = {x|0 < x < x1} and
Bl, ={x[xn <x < Pre+2Per}. We prove thatify,y’ € Bl;, for somet, thenR(y) = R(y’). Proceed by
contradiction, that is, assuni®y) # R(y’). By the definition of ultimately periodic model, this impdie
that at least one betweepandy’ must belong to the prefix d¥1. If (L)1 € R(y) and(L)} & R(y’)
then, by definition[L]—y € R(y’). This implies thayy < y’, as(L) is transitive, and hence that< Pre.
Now, consider the interva{bc;bmx,y";mx] defined above. Two cases may arise: eit:ld#lr(1X <y, or
x‘#mx >y’. In the former case, sincg )\ € R(y), there must exists an interved”,y”’] satisfying
and such that¥, ., < x” < y’, in contradiction with the definition of® ... In the latter case, we have
[L]— ¢ R(y”), in contradiction with the hypothesis. The cases in wiichp € R(y) and(L){ ¢ R(y
can be proved in a similar way. Since we assumedRhat- Per > (mp +2)mg +m +4, by a S|mple
combinatorial argument there must exist aBgt, for somex; ;1 < Pre+ Per, such thatBl;| > mpg:
let x be the first point in such &1;. We now prove that the mod&1’ = (I(N\ {x}),V’), wherex
has been eliminated and whevé is a suitable adaptation &f, is such thatM’,[0,1] I- ¢. Consider
M = (I(N\ {x}),V"), whereV" is the projection ofV over the intervals that do not start nor end
with x. The satisfaction of box-formulas (frofl(¢)) has not been affected anywhere in the model, by
definition. The only potential problem is the presence of saliamond-formulas which were satisfied
in M and are not satisfied anymore M”. Let [x yl, wherey < x, such thatM, [x,y] IF (L)1p. By
definition of B1, there exists an mtervaikmax,ym(1X satisfyingy and such thatcﬂn’mx,yﬁfu1X € B,
X ax < Pre+ Per, and that there exists no intenial,y’] satisfyingi, with x\ qx < x < Pre -+ Per.
Then, eitherxﬂn’1c1X >y or there exists an interv@k’,y/] such thatM, [x’,y’] IF ¥ andx’ > Pre + Per.
Therefore,M”,[x,y] I- (L)1p. The same argument, in a symmetric way, applies to the cage)of,
and thus, diamond-formulas of the tyge)d or (L) never generate problems after the elimination.
Assume now that, for somg < x < x (resp.,y < x < x) and some formuldB)1 € Cl(¢) ((B) €
Cl(@)), itis the case tha, [y,x] IF (B)} (resp.,M, [y,x] IF (B)\) and thatly,x] was the only interval
starting aty (in M) that satisfied)p. Sincex is the first point inBl;, we have that, [y,x;] IF (B)(
(resp.,M, [y, xi+1] IF (B)) by transitivity of (B) (resp.,(B)). Consider now the firstng successors
of x: x+1,..x+mg. Since/Bl;| > mg, we have that all those points belongRBo;. It is possible
to prove that there exist at least one point k that satisfies the following propertiegi) for every
(B)E € Cl(o), if M,[y,x+k+1]I- (B)E, thenM, [y, x+ k] I (B)&, and(ii) for every(B)( € Cl(¢g),
if M,[y,x+k—1]IF (B)¢, thenM,[y,x+k] I- (B)C. One can convince himself that this is the case
by observing that, by the transitivity @B), if M, [y,x+k+ 1] I- (B)& thenM, [y,x’] I+ (B)& for every
x’ > x+k+1. Hence, ifx + k does not respect property for &, all its successors are forced to respect
it for (B)&. Symmetrlcally, by the transitivity ofB), if M, [y,x+k—1] I (B){ butM, [y, x+k] If* (B),
thenM, [y,x/] 1} (B) for everyx’ > x+k. Hence, all successorsof-k trivially respect propertyii) for
(B)¢. Since the number d)- and(B)-formulas is limited bymg, a point with the required properties
can always be found. We fix the defect by defining the labelih@s follows: we puty,x+t] € V/(p)
if and only if [y,x+t—1] € V(p), for every proposition lettegp and 1< t < k. The labeling of the other
intervals remain unchanged. From the definition of theéB$eit follows that this change of labeling does
not introduce new defects of any kind. By iterating the abdescribed procedure, we obtain a model
M = (I(N), V) wherePre + Per < (m + 2)mg +mp +4. However, since we modified only the finite
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portion of the model included between 0O aPwk + 2Per, to conclude the proof we must propagate the
changes to the remaining infinite suffix. We do so as in thefppbthe previous lemma, and build an
ultimately periodic modeM* = (I(N),V*) as follows: (i) for everyp € AP and for everylx,y] such
thaty < Pre + Per, [x,yl € V*(p) iff [x,y] € V(p); (ii) for everyp € AP and for every[x,y] such
that Pre < x < Pre+ Per andy < x + Per, [x,y] € V*(p) iff [x,y] € V(p); (iii) for everyp € AP and

for every[x,y] such thatx < Pre andy > Pre+ Per, [x,y] € V*(p) iff [x,y—Per] € V*(p); (iv) for
everyp € AP and for everylx,y] such thatPre < x < Pre+ Per andy > x + Per, [x,y] € V*(p) iff
[x,y — Per] € V*(p); (v) for everyp € AP and for everyix,y] such thatx > Pre + Per, [x,y] € V*(p)

iff [x —Per,y—Per] € V*(p). This concludes the proof. O

5 NEXPTIME- and EXPSPACE-Completeness

As pointed out in the introduction, NEXPTIME-complete andFESPACE-complete decidable frag-
ments are already known. Let us briefly summarize here thatgin. NEXPTIME-membership &fA
has been proved in|[5]. NEXPTIME-hardnessAgfshown in [9], holds also for the class of strongly
discrete linear orders, and it can be easily adapted to e af\, thus proving NEXPTIME-hardness
of any fragment includingA) or (A). As for EXPSPACE-complete fragments, we know froml [10] that
ABBL is EXPSPACE-complete. Hardness for this class is claimaddérsame paper for the fragments
ABB andAB. This can be proved by a reduction from the exponentialigorrtiling problem, which is
known to be EXPSPACE-complete [20]. In [7], it has been pdotret this reduction can be modified
in a suitable way to coveAB, and both reductions fohB and AB immediately apply to the case of
strongly discrete linearly ordered sets. Given a tupte (T,t,,tt,H, V,n) consisting of a finite set
T of tiles, a bottom tilet; € T, a top tilet+ € T, two binary relationdH andV overT (specifying the
horizontal and vertical constraints), the problem cossistdeciding whether there exists a tiling func-
tion f from a discrete corridor of exponential heightrirto T that associates the titg. (resp.,t+) with
the bottom (resp., top) row of the corridor and that respéngorizontal and vertical constrairitsand
V.The reduction exploits the correspondence between thspioiside the corridor and the intervals of
the model, andT| proposition letters to represent the tiling functitnThe coordinates of each row of
the corridor are represented in binary by means of additimmmgosition letters. Modalities allow one to
enforce the local constrains over the tiling functibn

6 Decidability and Complexity over N

In this last section, we focus our attention on the domainatfiral numbers. As already pointed in
the introduction, the asymmetry &f-models, which are left-bounded and right-unboundedpthices
an asymmetry in the computational behavior of (some of) thgrients oAABB and its mirror image
AAEE. More precisely, such an asymmetrydimodels has the following consequenc@sAB, but not
AE, becomes decidable (non-primitive recursive) [18); AB and ABB, but notAE nor AEE, become
decidable (this can be shown by a suitable adaptation ofrtheraent given in[[18])(iii) ABL andABL
remain undecidable, but the undecidability proof given[18][must be suitably adapted.

Theorem 2. The Hasse diagram in Figufé 3 correctly shows all the dedelfitagments oHS overN,
their relative expressive power, and the precise completétss of their satisfiability problem.

The main ingredients of the decidability proof #®BB (and thus foAB andAB) can be summarized
as follows. Letyp be a satisfiabl&BB-formula and leM = (I(N), V) be a model such thatl, [x,,y ] I
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Complexity class:

1: Undecidable ) )
AABB AAEE

: Non primitive recursive

: EXPSPACE-complete

: NEXPTIME-complete
J ABBL® ‘ J ABBL! ‘ ‘ AAB! ‘ ‘ ARB* ‘ ‘ AAE ‘ ‘ AAE! ‘ ‘ AEEL*

o W

’ABB H BBLL® | | ABB ’ABE

a B2 w N

Figure 3: Hasse diagram of all fragmentsAg¥BB and AAEE over the natural numbers.

@ for some intervalx,y,]. It can be easily checked that modalitigs), (B), and(B) do not allow
one to access any interved,y], with x > x,, starting from intervalx,,y,]. Hence, the valuation of
such intervals can be safely ignored, as it does not affedrthh value of the formula.

By exploiting such a limitation oABB modalities, we can reduce the search for a modep of
to the set of ultimately periodic models only, as it is poksito prove that for each satisfiabhB8B-
formula there exist an ultimately periodic model* = (I(N),V*) and an intervalx,y,] such that
M, [xp,Yel IF @, yo < Pre, andPer < mg (it can be easily shown that the length of the period is
bounded by the numbeng of all (B)- and(B)-formulas inC1(¢)).

We can exploit the algorithm for satisfiability checkingAABB formulas over finite linear orders
given in [18] to guess the non-periodic part of the model. T hie algorithm for satisfiability checking
of ABB formulas can be exploited to check whether the guessed mafisbe extended to a complete
model ovell(N) by guessing the valuation of intervdisy] such thak < Pre andPre <y < Pre+ Per.

To prove termination of the algorithm, it suffices to obseihvat if the guessed prefix is notinimal
in the sense of [18], we can shrink it into a smaller one thésféas the minimality condition (see
Proposition 2 and Figure 3 in_[18]). Since the number of maldiprefix models is bounded, and the
length of the period is bounded as well, we can conclude Heasatisfiability problem foABB overN
is decidable. Non-primitive recursiveness has been ajreadwn in [7].

In a very similar way, it is not difficult to adapt the reductigiven in [18] to prove the undecidability
of ABL andABL overN. In this case, we reduce the structural termination prodtemtossy counter
automata [17] to the satisfiability problem fABL and forABL. Since the universal modalifyl] can be
expressed iMBL andABL as[Ule = @ A[L]([A]le A[A][A]l@), one can repeat the entire construction
developed in[[18] to encode an infinite computation of theyosounter automata, usif@) to impose
the required properties on final states.
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