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on the Class of all Linear Orders: Complete Classification
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Interval reasoning naturally arises in various fields of pater science, including system verification, planningd; na
ural language analysis and processing, and constraisfaaton problems. Interval temporal logics formalizes@ang
about interval structures over ordered domains, whereititeevals, rather than time instants, are the primitiveotodi-
cal entities. The variety of binary relations between s in linear orders was first studied systematically byAl[1],
who explored their use in systems for time management amhiplg. The modal logic featuring modal operators corre-
sponding to Allen’s interval relations was introduced byip¢an and Shoham in [7]; we hereafter call that logi8.

In [7], it was shown that the satisfiability problem fdS is undecidable in all natural classes of linear orders. For a
long time, these sweeping undecidability results haveodisaged attempts for practical applications of intervagids.

A renewed interest in the area has recently been stimulatedebdiscovery of several interesting decidable fragments
of HS [3, 4, 5, 8, 9]. In that context, and for the purpose of idsfiti§ expressive interval logics for various intended
applications, the comparative analysis of the expresss®nf the variety of interval logics is a major research @b

in the area. In particular, the important problem arisesayze the mutual definabilities among the modal operatbrs o
the logicHS and to classify the fragments BIfS with respect to their expressiveness.

In the present paper we address and solve that problem, biifideg a complete set of inter-definability formulae
among the modal operatorstd§ and thus providing a complete classification of all fragreefitHS with respect to their
expressiveness for therict semantics (excl. point intervals) over the class of alldinerders. Using that result we have
found that there are exactly 1347 expressively differeabdtagments out o'? = 4096 sets of modal operators HS.

The choice of strict semantics, excluding point intervistead of including them (non-strict semantics), confetm
the definition of interval adopted by Allen in [1]. It has ah&t two strong motivations. First, a number of represemati
paradoxes arise when the non-strict semantics is adoptediodthe presence of point intervals, as pointed out in [1].
Second, when point intervals are included, there seems o buitive semantics for interval relations that makesnth
both pairwise disjoint and jointly exhaustive.

Definition 1. A modal operatofX) of HS is definablein an HS-fragment, denoted X) < &, if (X)p = { for some
formulalp = 1 (p) € F, for any fixed propositional variablg. In such a case, the equivalenf€p = 1 is called an
inter-definability equation fo¢X) in F.

Itis known from [7] that, in the strict semantics, all modalkerators irHS are definable in the fragment containing
the modalitiegA), (B), and(E), and their transpos€4\), (B), and(E) (in the non-strict semantics, the four modalities
(B, (E), (B), and(E) suffice, as shown in [10]).

In this paper, we compare and classify the expressivenesdkfedigments oHS on the class of all interval structures
over linear orders. Formally, |€f, andJ> be any pair of such fragments. We say that:

— Fyis at least as expressive &5, denotedf; < JF5, if every operatofX) € F; is definable ir,.

— J, is strictly less expressivihanJ,, denotedf; < Fo, if F; < Fs but notF, < F;.

— F, andJ, areequally expressivéor, expressively equivalendenotedr; = &, if F; < ¥ andF, < F;.
— F, andF, areexpressively incomparahldenotedr; # F,, if neitherd; < F5 norFy, < 7.

In order to show non-definability of a given modal operataa igiven fragment, we use a standard technique in modal
logic, based on the notion diisimulationand the invariance of modal formulae with respect to bisatiahs (see, e.g.,
[2]). Let F be anHS-fragment. AnF-bisimulation between two interval modeéid = (I(D), V) andM’ = (I(D’), V')
overAP is arelationZ C I(D) x I(D’) satisfying the following properties:

— local condition Z-related intervals satisfy the same propositional letbees AP;
— forward conditionif ([a,b], [a’,b’]) € Z and([a, b], [c, d]) € Rx for some(X) € F, then there existk’, d’] such

that([a’,b’],[c’,d’]) € Rx and([c, d], [c’,d']) € Z;

— backward conditionlikewise, but fromM’ to M.
The important property of bisimulations used here is thgtBibisimulation preserves the truthaif formulae inF. Thus,
in order to prove that an operatfX) is not definable ir¥, it suffices to construct a pair of interval modafsandM’ and
a F-bisimulation between them, relating a pair of intervialsb] € M and[a’,b’] € M’, such thatM, [a, b] IF (X)p,
while M/, [a’, b’ I (X)p.

In order to classify all fragments ¢S with respect to their expressiveness, it suffices to idgmtifdefinabilities of
modal operatoréX) in fragments¥, where(X) ¢ .



(Dp =AY A)p (D) <A

Dp = A)A)p T <A

(0)p = (E)(B)p (0)< BE
(O)p = (B){(E)p (0)< BE
(D)p = (E)(B)p (D)< BE
(Dyp = (E)(Byp. (D)< BE
(Dp = (B)EI(B)(E)p (L) <BE
(Dyp_= (E)[BI(E)(B)p (L) <BE

Table 1. The complete set of inter-definability equations

A definability (X) < J is optimalif (X) <7 F’ for any fragment’ such that¥’ < F. A set of such definabilities is
optimal if it consists of optimal definabilities.
The main result of the paper is the following theorem. Dstallout the proof can be found in [6]

Theorem 1. The set of inter-definability equations given in Table 1 isreh) complete, and optimal.

Most of the equations in Table 1 are known from [7], excepidbtinability (L) <t BE and its symmetric{L) <i BE,
which are new.

While proving the soundness of the given set of inter-deflitplequations is quite immediate, proving completeness
is the hard task; optimality will be established togethahviti. The completeness proof is organized as follows. Fohea
HS operator(X), we show thatX) is not definable in any fragment bfS that does not contain as definable (according to
Table 1) all operators of some of the fragments in whiXhis definable (according to Table 1). More formally, for each
HS operator(X), the proof consists of the following steps:

1. using Table 1, find all fragment§ such thatX) < F;

2. identify the listM;, . .., M, of all C-maximal fragments dflS that contain neither the operatf¢t) nor any of the
fragments¥; identified by the previous step;

3. for each fragmenit(;, withi € {1,..., m}, provide a bisimulation foM; which is not a bisimulation foX.

We have used the equations in Table 1 as the basis of a sinqgieapn that identifies and counts all expressively
different fragments oflS with respect to the strict semantics. Using that programhae found that, under our assump-
tions (strict semantics, over the class of all linear orfitrere are exactly 1347 genuine, that is, expressivelgifit,
fragments out o'? = 4096 different subsets dfiS-operators.

To sum up, in this paper, we have obtained a sound, comptet@imal set of inter-definability equations among all
modal operators iflS, thus providing a characterization of the relative exguegsower of all interval logics definable as
fragments oHS. Such a classification has a number of important applicatiées an example, it allows one to properly
identify the (small) set oHS fragments for which the decidability of the satisfiabilityoplem is still an open problem.

It should be emphasized that the set of inter-definabilityatigns listed in Table 1 and the resulting classification do
not apply if the non-strict semantics is considered. Alsthé semantics is restricted to specific classes of linedersy
the completeness of the set of equations in Table 1 is no tanggranteed. The classification of the expressiveness of
HS fragments with respect to the non-strict semantics, asagativer specific classes of linear orders, is currently under
investigation and will be reported in a forthcoming pubtioa.
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