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Interval temporal logics provide a natural framework for reasoning about interval temporal structures over
linearly (or partially) ordered domains. They take time intervals, instead of time points, as the primitive onto-
logical entities over which truth of formulae is defined. Modal operators of interval logics correspond to various
relations between pairs of intervals. In particular, Halpern and Shoham’s modal logic of time intervals (HS) [8]
features a set of modal operators that makes it possible to express all Allen’s interval relations [1]. Interval-based
formalisms have been extensively used in various areas of computer science and artificial intelligence. However,
most of them are subjected to severe syntactic and semantic restrictions that considerably weaken their expres-
sive power. Interval temporal logics relax these restrictions, thus allowing one to cope with much more complex
application domains. Unfortunately, many of them, including HS and the majority of its fragments, turn out to
be undecidable [3]. One of the few cases of decidable interval logic is Propositional Neighborhood Logic (PNL),
interpreted over various classes of interval structures (all, dense, and discrete linear orders, integers, natural
numbers) [7]. PNL is a fragment of HS with only two modalities, corresponding to Allen’s relations meets and
met by. The satisfiability problem for PNL has been addressed by Bresolin et al. in [5]. NEXPTIME-completeness
with respect to various classes of linearly ordered domains has been proved via a reduction to the satisfiability
problem for the two-variable fragment of first-order logic for binary relational structures over ordered domains
[14].

Various metric extensions to point-based temporal logics have been proposed in the literature. They include
Alur and Henzinger’s Timed Propositional Temporal Logic [2], Montanari and de Rijke’s two-sorted metric
temporal logics [12], Hirshfeld and Rabinovich’s Quantitative Monadic Logic of Order [9], and Owakine and
Worrell’s Metric Temporal Logic [15], which refines and extends Koymans’ Metric Temporal Logic [11]. Little
work has been done in the interval setting. Among the few contributions, we mention Kautz and Ladkin’s
extension of Allen’s Interval Algebra with a notion of distance [10]. The most important quantitative interval
logic is Duration Calculus (DC) [17], based on Moszkowski’s ITL [13]. DC is quite expressive, but undecidable
with respect to most classes of interval structures. A number of variants and fragments of DC have been
proposed in the literature to model and to reason about real-time processes and systems. Many of them recover
decidability by imposing semantic restrictions, such as the locality principle, that essentially reduce the logic to
a point-based one.

CDT FO3
2[=, <]

≡

≺ ≺

MPNL+ FO2[N,=, <, s]

MPNL FO2
r[N,=, <, s]

≡

≡

≺ ≺

PNL FO2[N,=, <]
≡

≺ ≺

Fig. 1. Expressive completeness results for interval
logics.
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Fig. 2. Relative expressive power of MPNL fragments. Frag-
ments inside the boxes are not expressive enough to capture
PNL.

In this work, we present a family of non-conservative metric extensions of PNL, which allow one to express
metric properties of interval structures over natural numbers. Two different ways of extending PNL are con-
sidered: adding a metric dimension to PNL modalities or introducing integer constraints on interval length.



The most expressive extension is Metric PNL (MPNL, for short). MPNL features a family of special atomic
propositions of the form len

∼k, with ∼ ∈ {<,≤,=, >,≥} and k ∈ N. They can be used to constrain the length of
the intervals over which they are evaluated. The right-neighbor (future) fragment of MPNL has been introduced
and studied in [6]. Decidability of its satisfiability problem is proved by showing a bounded model property with
respect to ultimately periodic models. In addition, an EXPSPACE procedure for satisfiability checking and a
proof of EXPSPACE-hardness by a reduction from the exponential corridor tiling problem are given. We prove
the decidability of full MPNL by devising a double exponential time nondeterministic procedure for checking
satisfiability (see [4]). The exact complexity of the problem is still an open question (a lower bound immedi-
ately follows from the result for its future fragment). Then, we prove the expressive completeness of MPNL
with respect to FO2

r
[N,=, <, s], a syntactic fragment of the two-variable fragment FO2[N,=, <, s] of FOL with

equality, linear order, successor, and any family of uninterpreted binary relations, interpreted on natural num-
bers. We also define an extension of MPNL, called MPNL+, which is expressively complete with respect to
full FO2[N,=, <, s]. Undecidability of full FO2[N,=, <, s] can be proved by a reduction from the octant tiling
problem (undecidability of MPNL+ immediately follows). Expressive completeness results for interval temporal
logics are summarized in Figure 1. In [16], Venema defines a proper extension of HS, called CDT, and he proves
its expressive completeness with respect to FO3

2[=, <] (the three-variable fragment of FOL, with equality, linear
order, and any family of uninterpreted binary relations, where at most two variables occur free). In [5], Bresolin
et al. prove the expressive completeness of PNL with respect to FO2[=, <] (the two-variable fragment of FOL
with equality, linear order, and any family of uninterpreted binary relations). The results about MPNL and its
undecidable extension MPNL+ provide a finer characterization of the decidability/undecidability border with
respect to the class of FOL fragments. Finally, we classify the considered metric extensions of PNL with respect
to their relative expressive power. The outcomes of such a classification are summarized in Figure 2, where an
arrow from L1 to L2 means that L1 is strictly less expressive than L2 (according to the notation given in [4],
superscripts collect the modal operators featured by the logics, while the subscript l identifies all and only the
logics with atomic propositions for length constraints).
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