Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS

D. Della Monica, A. Murano

Istituto Nazionale di Alta Matematica "F. Severi" (INdAM)

Università di Napoli "Federico II" Universidad Complutense de Madrid

dario.dellamonica@unina.it

FMLAMAS 2018 Stockholm, July 10, 2018

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- 4 Conclusions

Outline

- Introduction and motivations
- The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

Agents and coalitions

COALITION - modeling collective behaviors/strategies

Agents and coalitions

COALITION - modeling collective behaviors/strategies

Logical Formalisms

Coalition Logic (CL) and Alternating-time Temporal Logic (ATL)

Agents and coalitions

COALITION - modeling collective behaviors/strategies

Logical Formalisms

Coalition Logic (CL) and Alternating-time Temporal Logic (ATL)

Theorem (Goranko, TARK 2001)

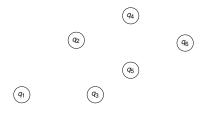
CL can be embedded into ATL

• **Syntax.** Formulae of ATL are given by the grammar:

$$\varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \bigcirc \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \Box \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \varphi$$

• **Syntax.** Formulae of ATL are given by the grammar:

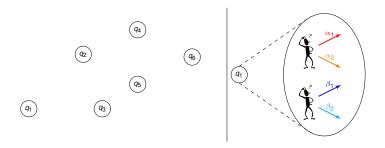
$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \bigcirc \varphi \mid \langle \langle A \rangle \rangle \Box \varphi \mid \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$$



- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

• **Syntax.** Formulae of ATL are given by the grammar:

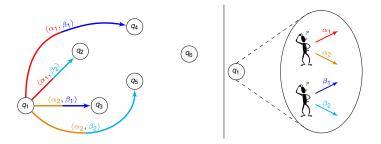
$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \bigcirc \varphi \mid \langle \langle A \rangle \rangle \Box \varphi \mid \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$$



- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

• **Syntax.** Formulae of ATL are given by the grammar:

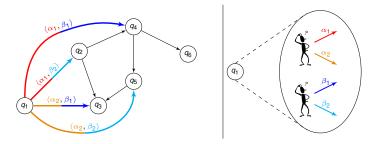
$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \bigcirc \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \Box \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \varphi$$



- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

• **Syntax.** Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \bigcirc \varphi \mid \langle \langle A \rangle \rangle \Box \varphi \mid \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$$



- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

$$\langle\langle {\it A}\rangle\rangle\bigcirc\varphi \qquad {\rm next}$$

$$\langle\langle A \rangle\rangle \bigcirc \varphi \qquad \text{next}$$

$$\langle\langle {\it A} \rangle\rangle\Box \varphi$$
 always

$$\begin{array}{ll} \langle\langle A\rangle\rangle\bigcirc\varphi & \text{next} \\ \\ \langle\langle A\rangle\rangle\Box\varphi & \text{always} \\ \\ \langle\langle A\rangle\rangle\varphi\mathcal{U}\psi & \text{until }\psi \end{array}$$

Collective strategy for the proponent team to guarantee φ holds

$$\begin{array}{ll} \langle\langle A\rangle\rangle\bigcirc\varphi & \text{next} \\ \\ \langle\langle A\rangle\rangle\Box\varphi & \text{always} \\ \\ \langle\langle A\rangle\rangle\varphi\mathcal{U}\psi & \text{until }\psi \end{array}$$

regardless of actions performed by other agents (opponent)

Motivations

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Motivations

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- \bullet n + m agents (*n* printers + *m* users/environment)
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

Motivations

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- \bullet n + m agents (*n* printers + *m* users/environment)
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

pe-ATL abilities

- avoid errors (i printers do print and queue only contains j < i jobs)
 - $(safety \mapsto coalition+temporal)$

queue is emptied infinitely often

- (Büchi → parity)
- users send infinitely many jobs ⇒ queue is filled up infinitely often
 - $(fairness \mapsto parity)$

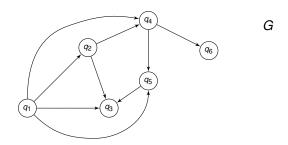
devices' turnover

(alternation → energy)

Outline

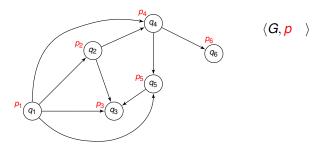
- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

- Syntax. The same as ATL
- Models. pe-CGS = CGS + parity + energy conditions



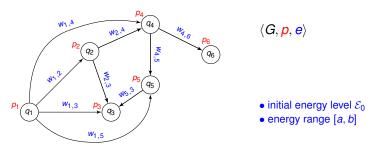
- vertices labeled by atomic propositions
- ▶ in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)
- parity condition
- energy condition

- Syntax. The same as ATL
- Models. pe-CGS = CGS + parity + energy conditions



- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)
- parity condition
- energy condition

- Syntax. The same as ATL
- **Models.** pe-CGS = CGS + parity + energy conditions



- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)
- parity condition
- energy condition

Collective (p, e)-strategy for the proponent team to guarantee φ holds

$$\begin{array}{ll} \langle\langle A\rangle\rangle\bigcirc\varphi & \text{next} \\ \\ \langle\langle A\rangle\rangle\Box\varphi & \text{always} \\ \\ \langle\langle A\rangle\rangle\varphi\mathcal{U}\psi & \text{until }\psi \end{array}$$

regardless of actions performed by other agents (opponent)

Collective (p, e)-strategy for the proponent team to guarantee φ holds

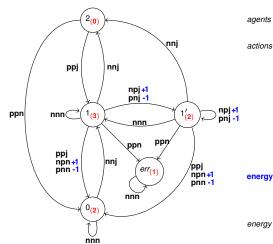
$$\langle\langle A \rangle\rangle \bigcirc \varphi$$
 next $\langle\langle A \rangle\rangle \Box \varphi$ always $\langle\langle A \rangle\rangle \varphi \mathcal{U} \psi$ until ψ

regardless of actions performed by other agents (opponent)

strategies must be (p, e)-strategies, i.e., they only produce plays satisfying parity and energy conditions

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions



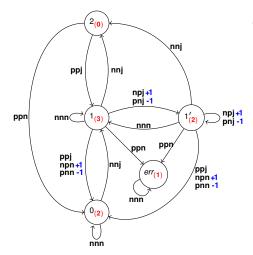
$$agents = \{p_1, p_2, u\}$$

	p_1	p_2	и	joint actions
0	n	n	nj	{nnn, nnj}
1	np	np	nj	{nnn, nnj, npn, npj, pnn, pnj, ppn, ppj}
1′	np	np	nj	$ \left\{ \begin{matrix} nnn, nnj, npn, npj, \\ pnn, pnj, ppn, ppj \end{matrix} \right\} $
2	р	р	nj	{ppn, ppj}
err	n	n	n	{nnn}

energy weights
$$w(\mathbf{nn}x) = w(\mathbf{pp}x) = 0$$

 $w(\mathbf{np}x) = +1$
 $w(\mathbf{pn}x) = -1$

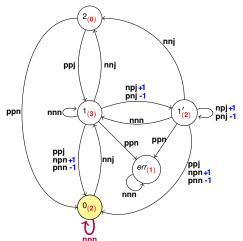
initial energy level $\mathcal{E}_0 = 0$



$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

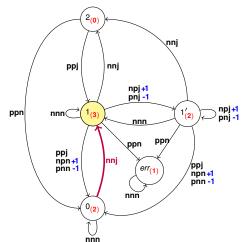


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$\mathbf{0}$$
 $\in [0,1]$

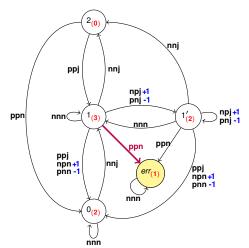


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

 $\textcolor{red}{0} \hspace{0.2in} \in [0,1]$

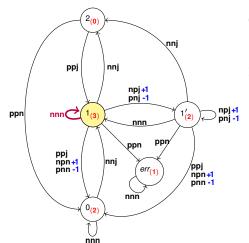


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

 $\mathbf{0}$ $\in [0,1]$

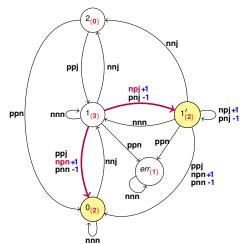


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
 - printers alternate (energy)

$$\textcolor{red}{0} \hspace{0.2in} \in [0,1]$$

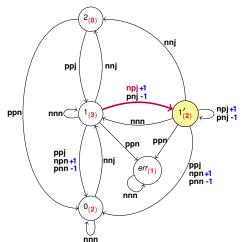


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

 \in [0, 1]

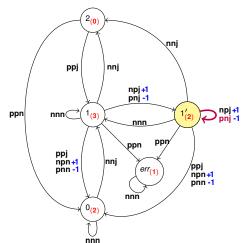


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

∈ [0, 1]

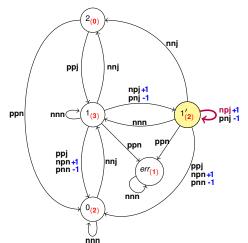


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

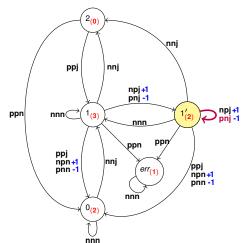
0 1 0



$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

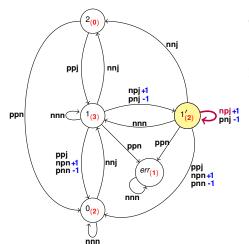


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$0 \ 1 \ 0 \ 1 \ 0$$
 $\in [0, 1]$

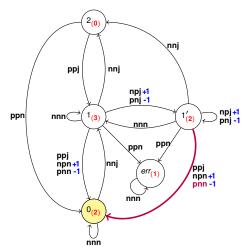


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

 $0 \ 1 \ 0 \ 1 \ 0 \ 1$ $\in [0, 1]$

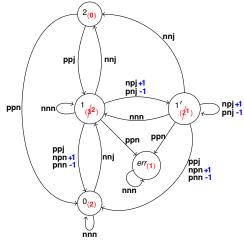


$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
 - printers alternate (energy)

 $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \in [0, 1]$



$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- if user sends infinitely many jobs, then queue is filled up infinitely often (parity)
- printers alternate (energy)

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

The model checking problem

Definition (pe-ATL model checking problem)

Given a pe-CGS $\mathcal{G}=\langle G,p,e\rangle$ and a pe-ATL formula φ , establish whether $\mathcal{G}\models\varphi$

Definition (p-ATL/e-ATL)

- p-ATL: relax the energy condition strategies fulfill parity condition only
- e-ATL relaxing the parity condition strategies fulfill energy condition only

Parity and energy conditions in isolation

Lemma

p-ATL/e-ATL model checking problem easily reduce to pe-ATL one

- spurious parity condition:
 - ▶ p(q) = 0 for all $q \in Q$ all parity are even and so is the smallest occurring infinitely often
- spurious energy condition:
 - weight is 0 for every transition
 - ▶ initial energy level is any value in the energy range, e.g., a

initial energy level is in range and never changes

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- 4 Conclusions

Unbounded energy range $[-\infty, +\infty]$

- Just ignore the energy condition (p-ATL instead of pe-ATL)
- Also, the problem easily reduces to the bounded case:
 - w(t) = 0 for all transitions
 - [a,b] = [0,0]
 - $\mathcal{E}^{init} = 0$

Bounded energy range [a, b]

• $a \neq -\infty$, $b \neq +\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range $(a, b \in \mathbb{Z})$
- integer initial energy level ($\mathcal{E}^{init} \in \mathbb{Z}$)
- weights over transitions are integers as well

Lemma (positional strategies)

- a (p, e)-strategy exists iff a uniform one exists (bounded instance)
- a (p, e)strategy exists iff a memoryless one exists (unbounded instance)

Bounded energy range [a, b]

• $a \neq -\infty$, $b \neq +\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range $(a, b \in \mathbb{Z})$
- integer initial energy level ($\mathcal{E}^{init} \in \mathbb{Z}$)
- weights over transitions are integers as well

Lemma (positional strategies)

- \bullet a (p, e)-strategy exists iff a uniform one exists (bounded instance)
- a (p, e)strategy exists iff a memoryless one exists (unbounded instance)

(Un)Bounded energy range [a, b]: Complexity

- uniform strategies: positional in $Q \times [a, b]$ (exponentially many positions (q, energy-level) when a and b are in binary—thanks to normalization)
- memoryless strategies: positional in Q (polynomially many positions q)

A non-deterministic algorithm:

- guess the strategy
- return false when a loop with odd parity or an out-of-range is detected
- no position is visited twice
- bounded case: exponential time
- unbounded case: polynomial time

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

Left-bounded energy range $[a, +\infty]$

(right-bounded energy range $[-\infty, b]$ is symmetric)

- Model-theoretic argument (technically quite involved)
- Difficulty: the space of positions (q, energy-level) is infinite
- We define suitable structures (witnesses
 - compact representations for strategies
 - bounded size
 - we prove it to be complete for strategies
- A non-deterministic algorithm guesses one such structure and check that it is indeed a witness for the desired strategy

• A witness (for a $\langle\langle A\rangle\rangle\Box\psi$ formula) is a pair of graphs

 (S_1, S_2)

Elements of such graphs are positions (q, energy-level)

 $(q, energy\text{-level}) \in S$ iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant ψ

Left-bounded range ensures monotonicity

a strategy exists from (q, energy-level) iff (q, E) for all $E \ge energy-leve$

• Thus, only the smallest energy level appears in S_1 and S_2 for each q

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

S₁ represents the strategy for parity and temporal goals
S₂ contains increasing loops to increase the energy level

• A witness (for a $\langle\langle A \rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(S_1, S_2)$$

Elements of such graphs are positions (q, energy-level)

```
(q, energy\text{-level}) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

```
a strategy exists from (q, energy-level) iff (q, E) for all E \ge energy-level
```

• Thus, only the smallest energy level appears in S_1 and S_2 for each q

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

S₁ represents the strategy for parity and temporal goals
S₂ contains increasing loops to increase the energy levels

• A witness (for a $\langle\langle A\rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(S_1, S_2)$$

Elements of such graphs are positions (q, energy-level)

```
(q, energy\text{-level}) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

```
a strategy exists from (q, energy-level) iff (q, E) for all E \ge energy-level
```

ullet Thus, only the smallest energy level appears in S_1 and S_2 for each q

$$|S_1| \leq |Q|, \qquad |S_2| \leq |Q|$$

• S_1 represents the strategy for parity and temporal goals S_2 contains increasing loops to increase the energy levels

• A witness (for a $\langle\langle A \rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(S_1, S_2)$$

Elements of such graphs are positions (q, energy-level)

```
(q, energy\text{-level}) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

```
a strategy exists from (q, energy-level) iff (q, E) for all E \ge energy-level
```

• Thus, only the smallest energy level appears in S_1 and S_2 for each q

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

S₁ represents the strategy for parity and temporal goals
S₂ contains increasing loops to increase the energy levels

• A witness (for a $\langle \langle A \rangle \rangle \Box \psi$ formula) is a pair of graphs

$$(S_1, S_2)$$

Elements of such graphs are positions (q, energy-level)

 $(q, energy-level) \in S$ iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant ψ

Left-bounded range ensures monotonicity

a strategy exists from (q, energy-level) iff (q, E) for all $E \ge energy-level$

• Thus, only the smallest energy level appears in S_1 and S_2 for each q

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

S₁ represents the strategy for parity and temporal goals
S₂ contains increasing loops to increase the energy levels

Alechina, Logan, Nguyen, Raimondi, JCSS (2017)

Model-checking for Resource-Bounded ATL with production and consumption of resources, p. 126–144

From witnesses to strategies

- internal constraints
 - e.g., elements of S_1 and S_2 satisfy the invariant ψ in a formula $\langle\langle A \rangle\rangle\Box\psi$
- diagonal constraints
 - e.g., elements of S₁ with low energy level also occur as (and can be merged with) elements of S₂
- the unfolding/merging of S₁ and S₂ corresponds to the outcome of a winning strategy for A

From strategies to witnesses

Witness construction (from the tree T of outcomes of a winning strategy for A)

- ullet q appears in the witness iff it appears in the tree ${\cal T}$
- ullet suitably cut tree ${\mathcal T}$ into a finite (not bounded) prefix
- for every q, a representative node in the cut of T is chosen
 - based on their topological order and their energy level in the tree
- energy level and outgoing transition for q in the witness are determined by its representative in the cut of \mathcal{T}

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Warming up: Parity and energy conditions in isolation
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

Conclusions

- pe-ATL: coalitional abilities to pursue temporal goals while satisfying qualitative (parity) and quantitative (energy) conditions
- pe-ATL model checking problem

Theorem

The model checking problem for pe-ATL is:

- in NEXPTIME if the energy range is bounded ([a, b])
- in NPTIME if the energy range is unbounded $([-\infty, +\infty])$
- in NPTIME if the energy range is left- or right-unbounded $([a + \infty] \text{ or } [-\infty] \text{ b})$

 $([a,+\infty] \text{ or } [-\infty,b])$

Future work

- establishing thigh complexity bounds (parity game complexity)
- to extend the proposed framework to ATL*
 - comparison of the expressive power with ATL* and other logics for strategic reasoning, e.g., SR
- different modeling choices
 - energy level evolves along the entire game
 - opponent must also act according to parity and energy conditions

Bulling & Farwer, ECAI 2010

On the (Un-)Decidability of Model Checking Resource-Bounded Agents, p. 567–572

The end

Thank you!