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Abstract. Interval temporal logics provide a natural framework for
temporal reasoning about interval structures over liyeadered do-
mains, where intervals are taken as the primitive ontoklgiatities.

In this paper, we identify all fragments of Halpern and Shmolsan-
terval temporal logic HS whose finite satisfiability problésrecid-
able. We classify them in terms of both relative expressiwegr and
complexity. We show that there are exactly 62 expressiddferent
decidable fragments, whose complexity ranges from NP-&ate o
non-primitive recursive (all other HS fragments have beleeady
shown to be undecidable).

1 Introduction

Interval temporal logics provide a natural framework fomporal
reasoning about interval structures over linearly (oripty) ordered
domains. They take time intervals as the primitive ontatabenti-
ties and define truth of formulas relative to time intervedgher than
time points. In the so-calledure (or strict) approach, which is the
one we focus on in this paper, intervals with coincident @iulg are
excluded from the semantics. Interval logic modalitiesrespond
to various relations between pairs of intervals. In patticuhe well-
known logic HS, introduced by Halpern and Shoham in [14}\fezs
a set of modalities that make it possible to express all Alemerval
relations [1]. Interval-based formalisms have been extehsused
in various areas of Al, such as, for instance, planning, ribecof
action and change, natural language processing, and aonsat-
isfaction. However, most of them make severe syntactic anths-
tic restrictions that considerably weaken their expresgiower. In-
terval temporal logics relax these restrictions, thusvatlg one to
cope with much more complex application domains and soesari
Unfortunately, many of them, including HS and the majorifyits
fragments, turn out to be undecidable (an up-to-date camepisve
survey can be found in [11]).

One of the few cases of a decidable interval logic with truly
interval-based semantics, that is, not reducible to poasted seman-
tics, is Propositional Neighborhood Logic, denotedA¥. It is the
fragment of HS with two modalities corresponding to Allersda-
tionsmeetsandmet by(the complete list of Allen’s relations can be
found in Fig. 1).AA has been intensively studied and its decidability
has been proved with respect to various classes of intetrvedtsres
(all, dense, and discrete linear orders, natural numheteggers, ra-
tionals) [5, 12].
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In this paper, we focus our attention on the class of all filiite
ear orders, that come into play in a variety of applicatiomdins.
Consider, for instance, planning problems. They consi§inding a
finite partially-ordered sequence of actions that, appieedn initial
world state, leads to a final state (the goal), within a bodradeount
of time, satisfying suitable conditions about which seaqéeof states
the world must go through. We give a complete picture of H§-fra
ments with respect to (un)decidability of their satisfidpiproblem
over finite linear orders, reviewing known results and paonwg miss-
ing ones. In particular, we identify the set of all expresbidifferent
decidable fragments, and we determine the exact complekésgch
of them. We will denote HS fragments by the set of their modal-
ities, in alphabetical order, and omitting those which agéréble
in terms of the others (in the considered fragment). As wései,
if we restrict our attention to decidable fragments, theyatefin-
able operators arélL) and (L), corresponding to Allen’s relations
after and before respectively:(L) can be defined aé4)(A), and
(L) by(A)(A). Moreover, thanks to the highly symmetrical structure
of the class of decidable fragments, all decidability resfdr frag-
ments involving modalitie$B) and(B) (for Allen’s relationsstarts
andstarted by can be immediately transferred to mirror fragments
involving modalities(E) and (E) (for Allen’s relationsfinishesand
finished by. More precisely, each HS fragment in Fig. 2 can be trans-
formed into its mirror image by reversing the time order agplac-
ing (A) by (4), (4) by (A), (L) by (L), (L) by (L), (B) by (E),
and(B) by (F). We will refer to the Hasse diagram obtained by re-
placing each fragment with its mirror image as the mirroigdsan.
Fig. 2 displays 35 different decidable fragments. If we gaém with
the fragments in the mirror diagram, we obtain a total of 6f2oént
decidable fragmentss fragments belong to both diagrams).

Most of the results reported in this paper were already known
BB (and thus also its fragmenB and B) is NP-complete [13];
AA and all its fragments featuring at least one betwédh and
(A) are NEXPTIME-complete [5, 7]AB, ABB, and ABBL are
EXPSPACE-complete [9, 18]JAAB AAB, and AABB are non-
primitive recursive [17]. In this paper, we complete thetpie by
proving the following new resultgi) NP-completeness (in partic-
ular, NP-membership) oBB can be lifted toBBLL and each of
its (other) fragments(ii) EXPSPACE-completeness (in particular,
EXPSPACE-hardness) diB can be adapted to prove thaB is
EXPSPACE-complete as wel(jii) non-primitive recursiveness of
AAB can be sharpened to bo#B and AB; and (iv) results in [10]
can be easily adapted to the case of finite linear orders sthusing
that the proposed classification of the considered fragmeith re-
spect to their expressive power is sound and complete.ngdiri)
with already known undecidability results, we can concltia# the
classification of HS fragments with respect to finite satisfity is
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Figure 1. Allen’s interval relations and the corresponding HS mdidi

now complete. In particular, we would like to point out thead-
mentsD andD, andO and O have been shown to be indecidable
in [16] and [6], respectively. Undecidability of any fragntenclud-
ing them immediately follows. Similarly, undecidability any frag-
ment includingBE, BE, BE, or BE has been shown in [3].

2 Preliminaries

LetD = (D, <) be a finite linearly ordered set. Anterval overD

is an ordered paifz, y|, wherez,y € D andxz < y (strict seman-
tics). There are 12 different non-trivial ordering relationgzdeding
equality) between any pair of intervals in a linear ordeteofcalled
Allen’s relations[1]: the six relations depicted in Fig. 1 and the in-
verse ones. We interpret interval structures as Kripkecsiras and
Allen’s relations as accessibility relations, thus assiieg a modal-
ity (X) with each Allen’s relationRx. For each operatofX), its
inverse(or transposg denoted by(X), corresponds to the inverse
relation Ry of Rx (thatis,Ry = (Rx)™").

{X1,...,Xs}. Given two fragments andF2, we write 71 C Fo
if (X) € F1implies(X) € F,, for every modality{ X).

Definition 1 AnHSmodality(X) is definablen an HS fragmentF,
denoted(X) < F, if (X)p = +(p) for some formulay(p) € F,
for any fixed proposition lettep. The equivalenceX)p = ¥(p) is
called aninter-definability equation fofX) in F.

In [14], Halpern and Shoham show that, according to striociese
tics, all HS modalities are definable in the fragment feamthe
modalities(A), (B), and (E), and their transpose&l), (B), and
(E) (in case non-strict semantics is assumed, the four moekaliti
(B), (E), (B), and (E) suffice, as shown in [21]). Given two HS
fragments#; and 7>, we say thatFs; is at least as expressive &
(F1 = Fo) if each operatofX') € Fi is definable inFz, and that
Fi is strictly less expressivihan F2, (F1 < Fa), if F1 = Fo, but
not 7> < Fi. Moreover, we say thaF; and 7. are expressively
incomparable(F1 # F2), if neither 71 < F» nor F2 < Fi.

In order to show non-definability of a given modality in a eént
fragment, we use the standard notiorb&dfimulation and the invari-
ance of modal formulas with respect to bisimulations (seg, E2]).
More precisely, we exploit the fact that a#¢bisimulation preserves
the truth ofall formulas inF. Thus, to prove that a modalityX ) is
not definable inF, it suffices to construct a pair of interval models
M and M’ and aF-bisimulation between them, relating a pair of
intervalsfa,b] € M and[a’,b'] € M’, such thatM, [a, b] IF (X)p,
while M’ [a’,b'] I (X )p.

To prove that Fig. 2 is sound and complete with respect toldssc
of finite linear orders (see Theorem 4 below), we focus o@ndtin
on AABB and its fragments showing théij each pair of fragments
which are not related to each other in Fig. 2 are expressinetym-
parablef{ii) an edge from a fragmerf; to a fragmentF, means that

Halpern and Shoham's logic HS is a multi-modal logic with-for z, _ 7, - and(iii) each fragment which is displayed neither in Fig. 2
mulas built on a se7> of proposition letters, the boolean connec- o i the mirror diagram is undecidable. It can be easilyshthat

tivesV and—, and a modality for each Allen’s relation. We denote by (jy and(ii) are immediate consequences of the following lemma.
X1 ... X, the fragment of HS featuring a modality for each Allen’s

relation in the subsefRx,,..., Rx,}. Formulas ofX; ... X are

: Lemma2 (L)p = (A){A)pand (L)p = (A)(A)p are all and only
defined by the grammar: =

the inter-definability equations fakABB over finite linear orders.
pr=plmelevel (Xiel... [ {(Xie. Proof. The soundness proof is straightforward. To prove that these

The other boolean connectives can be viewed as abbrevsationequations are the only possible ones, for each opergtdr €
and the dual operatorisX] are defined as usual, that isX]e = AABB, we show that(X) is not definable in the maximal frag-
—{X)—p. Given a formulap, its length denoted by|, is the num- ~ ment of AABB not containing(X) itself. This amounts to prove
ber of its symbols. The semantics of HS is given in termistgfrval  that: (1) (A) # ABBL and (A) # ABBL; (2) (B) # AAB and
modelsM = (I(D), V), wherel(D) is the set of all intervals over (B) #1 AAB; and(3) (L) # ABB and(L) 1 ABB.
DandV : AP — 2'® s avaluation functiorthat assigns to every ~ As for (1), let M1 = (I(D), V1) and M> = (I(D), V) be two
p € AP the set of interval/ (p) over whichp holds. Thetruthofa ~ models based o = {0, 1, 2}, with the usual orderingy; and V%
formula over a given intervdlr, y] in an interval modelM is defined ~ be such thati (p) = {[1,2]} andVa(p) = @, wherep is the only
by structural induction on formulas: (i) a proposition étp is true  proposition letter inAP, andZ be a relation between (intervals of)
over an intervalz, y] iff [x,y] € V(p); (ii) boolean connectives are M and M- defined asZ = {([0, 1], [0, 1]), ([0, 2], [0, 2]) }. It can
dealt with in the standard way; (iii) for each modaligX), it holds ~ be easily shown tha? is anABBL-bisimulation. The local property
that M, [z, y] IF (X ) iff there exists an intervale’, y'] such that  trivially holds, since allZ-related intervals satisfy:p. As for for-
[z,y]Rx[z’,vy'] and M, [z',y'] IF ¢, whereRx is the relation cor- ~ ward and backward conditions, starting from interjéall], modali-
responding tq X'). An HS-formulag is valid, denoted byt ¢, if it ties inABBL only allows one to reach intervll, 2] (and vice versa),
is true on every interval in every interval model. that in both models satisfiesp. Hence, sinc€[0, 1], [0,1]) € Z, it
holds thatM, [0, 1] IF ¢ iff M2, [0,1] IF <, for everys) € ABBL.
However, M1, [0,1] IF (A)p, but Ma, [0,1] I+ =(A)p. Therefore,
(A) 41 ABBL. A similar (reversed) argument works fad).

As for (2), let M; and M> be defined as in casd), the only
difference being thati(p) = {[0,2]} andVa(p) = 0, andZ =
{([0,1],]0,1]), ([1,2],[1,2])}. It can be easily shown tha is an

3 Expressiveness and Undecidability

In this section, we study the expressive power of HS fragment
over the class of finite linear orders. Given a fragmént =
X1Xz ... Xy and a modal operatdrX ), we write (X) € Fif X €
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3: NEXPTIME-complete
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Figure 2. Hasse diagram of all and only decidable fragments of HS onitefiinear orders.

AAB-bisimulation. The only interval that differentiates theotmod-
els (interval [0, 2]) is not reachable fron0, 1] by using modali-
ties in AAB. Since([0,1],[0,1]) € Z, M, [0,1] = (B)p, and
Mo, [0,1] IF =(B)p, we can conclude thgB) # AAB. As before,
a reversed argument works faB).

As for (3), let M (I(D), V1) and M2 = (I(D), V), where
D = {0,1,2, 3}, with the usual ordering, ant; and V> are such
that Vi(p) = {[0,1]} andVa(p) = 0. Z = {([2,3],(2,3])} is
an ABB-bismulation, as no interval is reachable fr¢23]. Since
Mi,[2,3] IF (L)p and My, [2, 3] IF —(L)p, it follows that (L) +#
ABB. A similar argument works fo(L) # ABB. [

Property(iii) can be proved by pairing Lemma 2 with known unde-
cidability results for HS fragments.

Lemma 3 EachHS fragment which is displayed neither in Fig. 2
nor in the mirror diagram is undecidable over finite lineaders.

Proof. First, observe that, by Lemma 2, Fig. 2 contains all
expressively-different fragments of HS featuring modeditfrom
the set{(A), (A), (B), (B), (L), (L)}. Now, by contradiction, sup-
pose that there exists a decidable fragmé&ntwhich is not in-
cluded in Fig. 2 or in the mirror diagram. By the previous abse
vation, F must contain at least one modality from the D), (D),
(0),(0), (E),(E)}. If it contains one modality from the set
{({D), (D), (0), (O)}, then itis undecidable, since all HS fragments
featuring one (and only one) of these modalities are alresie-
cidable [6, 16]. HenceF must contain at least one modality in
the set{(E), (E)}. This prevents modalitie&3) and(B) to be in-
cluded inF, as they would immediately yield undecidability [3].
Then, it follows thatF can contain only modalities from the set
{{A), (A),(E), (E), (L), (L)}, and thus it must belong to the mir-
ror diagram (contradiction). |

Theorem 4 The Hasse diagram in Fig. 2, together with the mirror
diagram, displays all and only decidable fragmentHS over the
class of finite linear orders, and their relative expresgposver.

4 NP-completeness

In this section, we prove that NP-completenessB& [13] can
be extended t&BLL. Since the satisfiability problem for proposi-
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tional logic is itself NP-completeBBLL and its fragments are NP-
hard. The core of this section is a membership proof, nanngpy,
membership. By a model-theoretic argument, we show thaefini
satisfiability of aBBLL-formula ¢ can be reduced to satisfiability
in a model whose domain has a cardinality lower than a cevtdire
which is polynomial in|¢|.

As a preliminary step, we show that satisfiability ofB8BLL-
formula ¢ in a finite modelM = (I({0,...,N}),V) can be re-
duced to satisfiability of the formula(y) = ¢ V (B)e V (L)p V
(LY(L)(¢ v (B)y) over the interval0, 1], that is, M, [z, y] IF ¢ if
and only if M, [0,1] I+ 7(¢). The reader can easily check that the
transformationr does not work wheneveN = 2 (resp.,N = 3)
andy is satisfied by the interval, 2] (resp., by[1, 3]). However, in
both cases, by a bisimulation argument, we can prove thes the
ists a modelM’ = (I({0,...,N'}), V), with N’ < N, such that
M',[0,1] I+ ¢. Thus, we can safely restrict our attention to the prob-
lem of satisfiability ovef0, 1] (initial satisfiability).

Given aBBLL-formula ¢, let Ci(y¢) be the set of all its sub-

formulas and of their negations, and l&f be a model such that
M,[0,1] I+ . For each pointz of the domain ofM, let Rz (z)
(resp.,R¢(x)) be the maximal subset 6fl(¢) consisting of all and
only (L)-formulas (resp.{L)-formulas) and their negations that are
satisfied over intervals ending (resp., beginning} at can be eas-
ily checked that all intervals ending (resp., beginningjhet same
point satisfy the saméL)-formulas (resp.{L)-formulas) and their
negations. LeR(z) = Rr(xz) U Ry (x). R(z) is consistent, as it
cannot contain a formula and its negation. Now,Rebe the subset
of Cl(y) that contains all possibléL)- and (L)-formula and their
negations|R| is polynomial (linear) in¢y|.
Lemma5 Lety be aBBLL-formula. Theny is initially satisfiable
M = (I({0,...,N}),V),withN < (mz + 1) -mp +mr + 2,
wherem = 2 - |R| andm g is the cardinality of the set of allB)-
and (B)-formulas inCl(yp).

Proof. One direction is trivial. As for the other, let us assume thast
initially satisfied over a finite model/ = (I({0, ..., N}), V), with
N > (mp+1)-mp+mr+2. Foreach) € Cl(p) suchthai L)y €
R(z), for somel < = < N, we choose an intervak? .., v%az)
such that it satisfieg and for each > z?,,, no interval starting at



satisfieg). We collect all such points into a set (bfblockedpoints)
Bl C {0,...,N}. Next, for eachy € Cl(¢) such that(L)y €
R(z), for somel < z < N, we choose an intervdk” . % 1
such that it satisfieg and for eackr < y,,. no interval ending at
satisfies). We collect all points:” .,y . into a set (ofZ-blocked
points) Bl C {0,...,N}. Let Bl = By U Bl;. It holds that
|Bl| < mr.

Now, let Bl = {z1 < 22 < ... < z,}. Foreachl <i < n, let
Bl; = {z|x; < x < xi4+1}; moreover, letBBlp = {z|0 < z < z1}
and Bl,, = {z|z, < = < N}. We prove that ify,y’ € Bl;, for
somel < i < n, thenR(y) = R(y’). Suppose, by contradiction,
that this is not the case, that is, assuRigy) # R(y'). If (Lyy €
R(y) and(L)y & R(y'), then, by definition[L]—y € R(y’'). This
implies thaty < ¥, as(L) is transitive. Now, consider the above-
defined intervalz?, ..., y%..]. TWo cases may arise: eithef,,, <
yorz¥,. > v Inthe former case, singd.)w € R(y), there must
be anintervaz”, y"'], with " > y, that satisfieg, thus contradict-
ing the definition ofc¥,, . In the latter casdl] ) ¢ R(y'), against
the hypothesis. The case in whi¢h)y € R(y) and(L)y & R(y')
can be proved in a similar way.

SinceN > (mr + 1) - mp + mr + 2, by a simple combi-
natorial argument, we can conclude that there must be a@&et
such that|Bl;| > mp. Let Z be the least point irBl;. We prove
that the modeldM’ = (1({0,...,N — 1}),V’), obtained from
M by deletingz and by replacingl” by a suitable adaptation of
it V', is such thatM’,[0,1] I+ . To this end, consideM” =
(I({0,..., N —1}),V"), whereV" is the projection of over the
intervals that neither start nor end at The replacement ol by
M" does not affect satisfaction of box-formulasGfi(,). The only
possible problem is the existence of diamond-formulas wkiere
satisfied inM and are not satisfied anymoref”.

Let [z,y], withy < Z, be such tha\, [z, y] IF (L)4. SinceM
is a model ofp, then there exists an intervil’, y'], with ' > y, in
M that satisfieg). Now, by definition ofBl, there exists an interval
[£% 0z, Yhas] SUCh thatry, oo, Ybue € Bl, [2¥ 00, Yihas] Satisfies
¢, andzl,,, > «’. Therefore,M”, [z, y] IF (L)y. A symmetric
argument can be applied to the case/bjv. Thus, the removal of
pointZ does not generate any problem with)- or (L)-formulas.

Now, let [y, z], with z < Z (resp.,y < Z < z), be such that
M, [y,z] = (B)y (resp.,M, [y, x] IF (B)%), for some formula
(BYy € Cl(p) (resp.,(B)y € Cl(y)), and[y, Z] is the only in-
terval in M, starting aty, that satisfieg). Sincez is the least point
in Bl;, M, [y, z;] - (B) (resp.,.M, [y, zi+1] IF (B)a) as well, by
transitivity of (B) (resp.,(B)).

Consider now the firstu g successors of: z + 1,...,T + mp.
Since|Bl;| > mg, all these points belong t&l;. We prove that
there exists at least one poinit- £ among them that satisfies the fol-
lowing properties(a) for every(B)¢ € Cl(p), if M, [y, z+k+1] Ik
(B)¢, thenM, [y, z+k] IF (B)¢, and(b) for every(B)¢ € Cl(p), if
M, [y,z+k—1]IF (B)¢, thenM, [y, z+ k] IF (B)¢. To this end, it
suffices to observe that, by transitivity @B), if M, [y, z+k+1] IF
(B)¢, then M, [y, z'] I+ (B)¢ for everyx’ > 7 + k + 1. Hence,
if Z + k does not satisfy propertfa) for (B)¢, then all its succes-
sors are forced to satisfy it fdiB)¢. Symmetrically, by transitivity
of (B),if M,[y,Z +k — 1] IF (B)¢, but M, [y, 7 + k] I (B)¢,
thenM, [y, z'] I (B)¢ for everyz’ > Z + k. Hence, all successors
of & + k trivially satisfy property(b) for (B)¢. Since the number of
(B)- and (B)-formulas is limited bym g, a point with the required
properties can always be found.

We fix the defect by defining the labeling as follows: for every
proposition letterp and1 < ¢ < k, we put[y,z + t] € V'(p) if

and only if[y, z + t — 1] € V(p); the labeling of the other intervals
remain unchanged. From the definition of the Bétit easily follows
that such a change in the labeling does not introduce nevetdedé
any kind.

By iterating such a procedure, we obtain the required madel B

Sincemr andmp are both polynomial ify|, we can state the
following theorem.

Theorem 6 The finite satisfiability problem foBBLL and all its
sub-fragments is NP-complete.

5 NEXPTIME-completeness

As we pointed out in Section 1, the subset of NEXPTIME-corgle
fragments has been already studied in its full detail. NEXFE-
membership oAA has been shown in [5]. NEXPTIME-hardness of
A, given in [8], holds also for finite satisfiability, and it che eas-
ily adapted to the case @&. NEXPTIME-hardness of any fragment
containing(A) or (A) immediately follows.

Theorem 7 The finite satisfiability problem fokA, AL, AL, A, and
Ais NEXPTIME-complete.

6 EXPSPACE-completeness

In this section, we study the computational complexitA&BL and
of its subfragments. EXPSPACE-membership ABBL has been
shown in [9]. EXPSPACE-hardness holds faB, as proved in [18].
In the following, we show that the reduction used in [18] wrk
also in the finite case, and it can be adapted\ﬁ) EXPSPACE-
hardness follows from a reduction of tl&-corridor tiling prob-
lem, which is known to be EXPSPACE-complete [15, Section 5.5].
Formally, an instance of the exponential-corridor tilingplgem is
atupleT = (T,to,t1,Tr,Tr,CH,Cv,n) consisting of a finite
setT of tiles, two tilesto,t1 € T, a set of left tilesT, C T, a
set of right tilesTr C T, two binary relationsC; and Cy over
T, and a positive natural number. The problem amounts to de-
ciding whether there exists a positive natural numband a tiling
f:{0,...,2" =1} x{0,...,l — 1} — T of the corridor of width
2™ and heightl, that associates the tilg to (0,0), the tile¢; to
(0,1 — 1), atile inTy (resp.,Tr) with the first (resp., last) tile of
every row of the corridor and that respects the followingizmntal
and vertical constraint€'y andCy: (i) for everyz < 2™ — 1 and
everyy < I, we havef(z,y) Cu f(z + 1,y); and(ii) for every
x < 2™ and everyy < [ — 1, we havef(z,y) Cv f(z,y+1).

Lemma 8 There exists a polynomial-time reduction from ttie-
corridor tiling problem to the satisfiability problem féB over finite
linear orders.

Proof. Consider an instanc& = (T,to,t1,11,Tr,CH,Cv,n)
of the 2™-corridor tiling problem, wherd” = {to, t1,...,tx}. We
guarantee the existence of a tiling functign {0,...,2" — 1} x
{0,...,1 — 1} — T that satisfiesT by means of a suitabl&B-
formula whose size is polynomial ifv'|. We usek + 1 proposi-
tion lettersto, t1, ..., tx to represent the tiles fror’, n proposi-
tion letterszo, ..., xn,—1 t0 represent the binary expansion of the
z-coordinate of a point in the corridor, and one propositideiter c
to identify those intervals that correspond to points (z, y) of the
corridor of width2™ and height. Such a correspondence is obtained
by ensuring that we interpret those proposition letters avervals



of the type[z + 2"y, = + 2"y + 1]. The valuation functior’ of the
model of the formula is then related to the tiling functigras fol-
lows: for each poinp = (z,y) € {0,...,2" —1} x {0,...,l -1}
and each tile; € T, if f(p) = t;, then[z + 2"y, z + 2"y + 1] €
V({e i,z }), where {ji,...,5n} € {0,...,n — 1}
andz = >, .. .42 Let theuniversalmodal operator[U]
be defined a$U]<p = ¢ A [A]e A [A][A]p. First, we associate
the proposition letter with all and only the intervals of the form
[z + 2"y, 4+ 2"y + 1]:

e = cAU((e A{AYT) = (A)e) A [U]~(B)e.

The tiling functionf is represented by associating a unique proposi-

tion lettert; with eachc-labeled interval:

o = [U](c—> \/ t,-)A[U](c—> A

0<i<k 0<i<j<k

(i A tj)).

Next, we associate a subset of the proposition lettgrs. ., xn—1,
that encodes the binary expansiorzofvith each interval of the form
[x + 2"y, z + 2"y + m]. Such a labeling can be enforced by the
conjunctiony, of the following three formulas:

Pz = ( N ﬂ:v) o5 = [U](Cﬂtp?nc),
0<i<n

— 01 A (@ o Bla) A (e o [Blw)).

0<i<n
wherey?,,. is defined as wheni = n, and as
)V (mm A (A)eAm) A,
otherwise. Similarly,’, is defined as” wheni = n, and as
((ac, AN(AY(cAmi)) V (mzi A (A)(c A ﬂxl))

otherwise. Finally, we establish a correspondence betiweervals
that represent vertically adjacent tiles by setting th@psition letter
CO:

i+1

(xi A <A>(C/\ _‘xz) A PLine

i+1
A Peq >

es = [Ul(co = ¢2) AUN((c A (B)py) = (B)co)A
[U]~(eq A (B)co).

To conclude the proof, we must enforce the horizontal antioaér

constraints”y andCy and the constraints on the border of the corri-

dor. This can be done by means of the following formulas (retrer

that, by definition of tilingto,t1 € T andTy, Tr C T):

wo1 = to A (A)(A) (C A /\ —x; At1 A ﬂ(E)CO)

YL = U](c/\ /.\;xi — \/tL),
YR = [U](c/\/\xi — \/tR),

en =01 N\ (GA@T =\ (a),
0<i<k (t;t;)ECH

ev =] N\ (> Blleo— \/ (A1)
0<i<k (t;,t;)ECY

The formulapT = Qe A Ape Apes Npor AL Apr N @H APy
is of polynomial size w.r.t{7| and is satisfiable if and only if is a
positive instance of th2"-corridor tiling problem. |

Theorem 9 The finite satisfiability problem foABBL, ABB, AB,
AB, ABL, andABL is EXPSPACE -complete.

7 Non-Primitive Recursiveness

In this last section, we focus our attention on the remairfiag-
ments. It will turn out that, although decidable, they arenoh-
primitive recursive complexity. From [17, 19], we know thiaere is
a reduction from the finite satisfiability problem fAAB and AAB
to the so-calledeachability problem for alossy (Minsky) counter
maching which is known to be non-primitive recursive [20]. Here,
we prove that such a reduction can be adapted to the cagdsanfid
AB, completing the picture. Due to space constraints, we limit
selves to sketch the proof for the caseld, referring the interested
reader to [19] for details.

A lossy counter machinis a triple of the formA = (Q, k, A),
where( is a finite set of control stateg, is the number of coun-
ters (whose values range ovl), and A is a function that maps
each statey € @ to a transition rule having one of the following
forms: (i) if A is at stateg, then increase the countérand move
to stateq’; (ii) if A is at stateg, then check the value of counter
i if it is equal to 0, then move to statg’, otherwise, decrement
the counteri and move to statg’”’. In addition, from each con-
figuration (¢,2) € Q x N*, a lossy counter machine can non-
deterministically activate an internal (lossy) transitand move to a
configuration(q, z’), with 2 < z (componentwise). Theachability
problem for a lossy counter machineconsists of deciding whether
or not there is a computation that takdgrom a given configuration
(gsource Zsource to a given configuration(gtarget. Ztarget)- AS
shown in [19], we can always assurBsource = Ztarget = 0, and
thatgtargetis a sink state, namely, the only state accessible from it is
gtargetitself. To encode a generic computati@, z1) ... (gn, Zn)
of A, we first introduce|Q| + & proposition letters that label in-
tervals of the formjz, z + 1]); the first|Q| proposition letters will
identify the control states Qfl, while the lastk proposition letters,
denoted here by, .., ¢k, will identify the k£ counters. We then di-
vide the underlying domaif® = {0,..., N} into exactlyn + 2
intervals|0, z1], [z1,x2], . . ., [Tn, Tnt1], [Tn+1, N]. Such intervals,
except for the first and the last one, will be used to encodedhe
figurations(qi1,z1) ... (gn, Zn), while the other two intervals will
be used to correctly move between the various configuratiarthe
modal operator¢A) and (B). Finally, the unit intervals which are
subinterval of a generifr:, z++1] will be labeled by proposition let-
ters inQ U {c1,...,cx} as follows: the subintervdls,, z; + 1] is
labeled by the control statg, and, for everyl < i < k, the number
of ¢;-labeled intervals of the forrfx, z + 1], with z; < = < 241,
coincides with the valug, (¢) of the countet. Notice that there may
exist different encodings of the same computationlof

Lemma 10 There exists a reduction from the satisfiability problem
for AB to the reachability problem for lossy counter machines.

Proof. According to the above-sketched schema, we now provide the
formulas which are needed to encode the reachability pnolide a
given lossy machinel = (Q, k, A) whose initial and final config-
urations have all counters set to 0. First, we introduce ¢Heviing
shorthands:

vae =\ an N\ ~(ard) =V ar A\ -@ra),
q€Q a#q’ q€Q T#q

Yac = \/c/\/\ =(cAg).
ceC c#c!

We denote by the proposition letteew(resp.,del) a counter which
has been incremented (resp., decremented) by one, whifgdpe-
sition letterconf uniquely identifies the interval corresponding to a
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