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Abstract—Interval temporal logics are difficult to deal with in
many respects. In the last years, various meaningful fragments
of Halpern and Shoham’s modal logic of time intervals have
been shown to be decidable with complexities that range from
NP-complete to non-primitive recursive. However, even restricting
the attention to finite interval structures, the step from model-
theoretic decidability results to the actual implementations of
tableau-based decision procedures is quite challenging. In this
paper, we investigate the possibility of making use of automated
tableau generators. More precisely, we exploit the generator
M ETTEL2 to implement a tableau-based decision procedure for
the future fragment of the logic of temporal neighborhood over
finite linear orders. We explore and contrast two alternative
solutions: a concretetableau system, that operates on a concrete
interval structure explicitly built over a finite, linearly -ordered
set of points, and anabstract one, that operates on an interval
frame which is forced to be isomorphic to a concrete interval
structure by suitably constraining its accessibility relation.

Keywords–Interval temporal logics; satisfiability; tableaux; au-
tomated tableau generation.

I. I NTRODUCTION

In this paper, we make some initial steps towards the auto-
mated synthesis of tableau systems for interval temporal logics.
It is well-known that turning (optimal) declarative, tableau-
based systems for decidable temporal logics into effective
decision procedures is far from being trivial. Such a transition
turns out to be particularly complex in the case of interval
temporal logics. In the last years, it has been experimented
for two specific logics, namely, the temporal logic of sub-
intervalsD, interpreted over dense linear orders [1], and the
future fragment of the logic of temporal neighborhoodA,
interpreted over finite linear orders [2]. However, in both
cases the proposed solution is tailored to the logic under
consideration, and thus it lacks generality. In this paper,we
explore the possibility of exploiting a general tool for the
automated synthesis of tableau systems, namely, the generator
METTEL2, to deal with interval temporal logics. Even though
we will apply the proposed solution to the logicA only (this

makes it possible to compare the performance of the generated
system with that of the procedure given in [2]), there is no
any limitation that prevents its application to other interval
temporal logics.

Propositional interval temporal logics play a significant
role in computer science, as they provide a natural framework
for representing and reasoning about temporal properties in
a number of application domains [3]. This is the case, for in-
stance, of computational linguistics, where significant interval-
based logical formalisms have been developed to represent
and reason about tenses and temporal prepositions [4]. As
another example, the possibility of encoding and reasoning
about various constructs of imperative programming in in-
terval temporal logic has been systematically explored by
Moszkowski in [5]. Other meaningful applications of interval
temporal logics can be found in knowledge representation,
systems for temporal planning and maintenance, qualitative
reasoning, theories of action and change, specification andde-
sign of hardware components, concurrent real-time processes,
event modeling, and temporal databases. Modalities of interval
temporal logics correspond to binary relations between time
intervals. In particular, Halpern and Shoham’s modal logicof
time intervals HS [6] features one modality for each Allen’s
interval relation [7]. In [6], the authors showed that HS is
undecidable over all meaningful classes of linear orders. Since
then, a lot of work has been devoted to the study of HS
fragments, mainly to disclose their computational properties
and relative expressiveness. The classification of HS fragments
with respect to the status (decidable/undecidable) of their
satisfiability problem is now almost completed. In this paper,
we focus our attention on the class of finite linear orders, which
comes into play in a variety of application domains, e.g., in
planning problems. A complete classification of HS fragments
over finite linear orders is given in [8]. It shows that there are
62 non-equivalent (with respect to expressiveness) decidable
HS fragments, which can be partitioned into four complexity
classes, ranging from NP-complete to non-primitive recursive.
For each decidable fragment, an optimal, tableau-based de-



cision procedure has been devised. However, since each of
such procedures has been given a declarative formulation, no
one of them is available as a working system, apart from the
tableau-based decision procedure for the fragmentA reported
in [2]. The only attempt to apply a generic theorem prover to
an interval temporal logic can be found in [1], where a tableau-
based decision procedure for the fragmentD, interpreted over
dense linear orders, has been developed in LoTREC [9], [10].
LoTREC is a generic prover for modal and description logics
that can be used to prove validity and satisfiability of formulas.
Whenever a formula is satisfiable, it returns a model for it;
whenever a formula is not valid, it returns a counter-model
for it. In LoTREC, a tableau is a special kind of labeled
graph that is built, and possibly revised, according to a set
of user-specified rules. Every node of the graph is labeled
with a set of formulae and can be enriched by auxiliary
markings, if needed. Unfortunately, LoTREC, as well as most
generic theorem provers, cannot be exploited to deal with other
interval temporal logics because (i) they do not support the
management of world labels explicitly, and (ii) they support
closing conditions based on loop checks, but do not allow
explicit checks on the number of worlds generated during
the construction of a tentative model. Such limitations are
overcome by the current version of METTEL2 [11], which
provides the user with a flexible language for specifying
propositional syntaxes and tableau calculi.

In the following, we make use of METTEL2 to implement
a tableau-based decision procedure forA over finite linear
orders. We explore and contrast two alternative solutions:a
concretetableau system, that operates on a concrete interval
structure explicitly built over a finite, linearly-orderedset of
points, and anabstractone, that operates on an interval frame
which is forced to be isomorphic to a concrete interval struc-
ture by suitably constraining its accessibility relation (using
the specification language provided by METTEL2). The main
contributions of the paper can be summarized as follows:(i) it
is the first general attempt of using an automated generator
to synthesize a tableau system for an interval temporal logic
(D over dense linear orders is a very special case because,
due to its properties, it bears strong resemblance to standard
modal logic);(ii) while METTEL2 works perfectly on a variety
of other logics (see, e.g., [12] and Section III), it required
a small, but not trivial, modification to be able to formulate
closing conditions forA; (iii) the abstract version of the tableau
system, based on a suitable representation theorem, renewsthe
interest in the areas of temporal knowledge representationand
reasoning, and representation theorems [7], [13], [14].

The paper is structured as follows. In the next section, we
present the logicA; in Section III, we give the necessary
overview of the system METTEL2, and in Section IV we
present ourA-prover. Section V presents an account of the
results, and in Section VI we conclude the paper.

II. T HE INTERVAL TEMPORAL LOGIC A

Given a linearly ordered setD, a (strict) interval [a, b]
is a pair a < b, where a, b ∈ D. There are 12 different
relations (excluding the identity) between two intervals on a
linear order, often referred to asAllen’s relations[7]: the six re-
lations depicted in Fig. 1, namelyRA, RL, RB , RE , RD, RO,
and the inverse ones, defined in the standard way, that is,
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[a, b]RA[c, d] ⇔ b = c
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[a, b]RB[c, d] ⇔ a = c, d < b

[a, b]RE [c, d] ⇔ b = d, a < c

[a, b]RD[c, d] ⇔ a < c, d < b
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Figure 1. Allen’s interval relations and the correspondingHS modalities.

RX = (RX)−1, for eachX ∈ {A,L,B,E,D,O}. Intuitively,
an interval structure over a linear orderD consists of the set
of all the intervals onD, along with a set of Allen’s relations.
We treat interval structures as Kripke structures, where the
Allen’s relations play the role of the accessibility relations, and
we associate a modal operator〈X〉 with each Allen’s relation
RX . Given an operator〈X〉 associated to the relationRX ,
with X ∈ {A,L,B,E,D,O}, its transposeis the operator
〈X〉, corresponding to the inverse relationRX of RX .

Syntax and (Concrete) Semantics. Halpern and Shoham’s
logic HS [6] is a multi-modal logic with formulae built
from a finite, non-empty setAP of atomic propositions,
the propositional connectives∨ and ¬, and a set of modal
operators associated with all Allen’s relations. With every
subset{RX1

, . . . , RXk
} of these relations, we associate the

fragmentX1X2 . . .Xk of HS, whose formulae are defined by
the grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

wherep ∈ AP . The other propositional connectives and con-
stants (e.g.,∧, →, and⊤) can be derived in the standard way,
as well as the dual modal operators (e.g.,[A]ϕ ≡ ¬〈A〉¬ϕ). In
this paper, we will focus on the particular case of the fragment
A, so that for all purposes we can assume that formulae are
generated by the following restricted grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ.

The concrete semantics of HS is given in terms ofconcrete
interval models.

Definition 1: Let D be a linearly ordered set, andI(D)
be the set of all (strict) intervals overD. A concrete interval
structureis a pairS = 〈D, I(D)〉, and aconcrete interval model
is a pairM = 〈S, V 〉, whereS is a concrete interval structure,
andV is a valuation functionV : AP → 2I(D), which assigns
to every atomic propositionp ∈ AP the set of intervalsV (p)
on whichp holds.

The truth of a formula is evaluated with respect to a concrete
interval modelM and an interval[a, b] on it, by structural
induction on formulae as follows:

• M, [a, b]  p iff [a, b] ∈ V (p), for eachp ∈ AP ;
• M, [a, b]  ¬ψ iff it is not the case thatM, [a, b]  ψ;
• M, [a, b]  ϕ ∨ ψ iff M, [a, b]  ϕ or M, [a, b]  ψ;
• M, [a, b]  〈X〉ψ iff there exists an interval[c, d] such

that [a, b]RX [c, d] and M, [c, d]  ψ, for each modal
operator〈X〉.



For the purpose of the present paper, we explicitly instantiate
below the semantic clause for the modality〈A〉:

M, [a, b]  〈A〉ϕ iff there existsc > b s.t.M, [b, c]  ϕ.

Formulae of HS can be interpreted with respect to several
interesting classes of concrete interval models, depending on
the particular class of linear orders over which the models are
built. In this paper, we focus on the class of (concrete interval
models built over) finite linear orders, for which the following
small model theorem holds [15].

Theorem 1:Let ϕ be anyA-formula. Then,ϕ is finitely
satisfiable if and only if it is satisfiable on a model whose
domain has cardinality strictly less than2m ·m+ 1, wherem
is the number of diamonds and boxes inϕ.

The above result immediately provides a termination condition
that can be used to implement afair procedure that exhaus-
tively searches for a model of size smaller than the bound.

Abstract Semantics. As we have already pointed out,
METTEL2 is flexible enough to allow us to devise an alter-
native, abstractversion of tableau system forA, based on a
different, but equivalent, set of semantic conditions. To this
end, we first define a suitable class of interval frames forA,
called finite abstract intervalA-structures, whose distinctive
features are expressed by a set of first-order conditions, and
then we show that any such frame is isomorphic to a concrete
interval structure. It is worth noticing that such an abstract
semantics, that takes intervals as first-class citizens, isquite
common in the field of interval temporal logics, while modal
and point-based temporal logics do not present this duality.
In the AI community, the dualism between abstract and con-
crete interval structures is well-known since the early stages
of interval-based temporal reasoning. The variety of binary
relations between intervals in linear orders was first studied
systematically by Allen et al. [7], [13], [14], who exploredtheir
use in systems for time management and planning. Allen’s
work and its follows up are based on the assumption that time
can be represented as a dense line, and that points are excluded
from the semantics. As it has been shown in the early work of
Allen and Hayes [16] and van Benthem [17], interval temporal
reasoning can be formalized as an extension of first-order
logic with equality with one or more relations; the resulting
formalization will also depend on the choices for certain
semantic parameters, specifically, the class of linear orders
over which we construct our interval structures. Given the dual
nature of time intervals (i.e., they can be abstract first-order
individuals with specific characteristics, or they can be defined
as ordered pairs over a linear order), one of the problems
that have been studied is the so-calledrepresentation theorem.
Consider a class of linear orders: given a specific extensionof
first-order logic with a set of interval relations (such as, for
example,meetsand during), does there exist a set of axioms
in this language which constrain (abstract) models in this
signature to be isomorphic to concrete ones? In other words,
can we produce an isomorphism into concrete models whose
domain is the set of intervals over the considered linear order,
and whose relations are the concrete interval relations? Inthe
relevant literature, we find a number of representation theorems
for languages that include interval relations: van Benthem[17],
over rationals and with the interval relationsduringandbefore;
Allen and Hayes [16], for the dense unbounded case without

point intervals and for the relationmeets; Ladkin [18], for
point-based structures with a quaternary relation that encodes
meeting of two intervals; Venema [19], for structures with
the relationsstarts and finishes; Goranko, Montanari, and
Sciavicco [20], that generalize the results for structureswith
meetsandmet-by; and Coetzee [21], for dense structures with
overlapsandmeets.

In our specific case, we need a representation theorem
to suitably constrain a generic finite Kripke frame〈W,R〉.
Among all possible choices, we will consider only the relation
meets, in the line of the original result by Allen and Hayes [16].
Moreover, letRL, RB, . . . denote the first-order relations cor-
responding to the other Allen’s relations (so thatR = RA;
see Fig. 1). It is worth pointing out that our characterization is
fully general with respect to finite abstract vs. concrete interval
structures. Nevertheless, not all conditions are needed inthe
actual implementation, as explained at the end of this section.

Definition 2: LetW be a non-empty set, andR ⊆W ×W
be a binary relation on it. We call the pairS = 〈W,R〉 a
finite abstract intervalA-structureif and only if the following
conditions are respected:

1) ∀x¬(xRx) (irreflexivity);
2) ∀x, y(xRy ∧ yRx→ x = y) (antisymmetry);
3) ∀x, y(xRy → ∃z(∀t(tRz ↔ tRx) ∧ ∀t(zRt ↔ yRt)))

(composition);
4) ∀x, y, z, t((xRy∧yRt∧xRz∧zRt) → y = z) (linearity);
5) ∃x(∀y(¬(yRx))) (left-boundedness);
6) ∃x(∀y(¬(xRy))) (right-boundedness);
7) ∀x, y(x = y∨xRAy∨xRLx∨ . . .∨yRAx∨yRLx∨ . . .)

(joint exhaustivity).

The aim of our representation theorem is to prove that the
above conditions are enough to make sure that every finite
abstract interval structure is isomorphic to a finite concrete
one, and the other way around. Notice that condition 7 is
written in an extended language; in [16] it is proven that every
Allen’s relation can be expressed in the first-order language
by using onlyR = RA (originally, the result is stated under
the density and unboundedness condition, which are, in fact,
not necessary), so that condition 7 can be considered as a
shortcut for a longer formula. As we will not implement it in
the abstract tableau, this form of condition 7 is actually not a
problem. It is convenient to consider, here, concrete interval
structures of the typeS = 〈D, I(D), RA〉, that is, where the
relationRA that corresponds to our modal operator (meets)
is made explicit. Proving that every such concrete structure
respects the above conditions 1-7 is trivial; as for the other
direction, it is taken care of in the next theorem, whose proof
is omitted for space reasons.

Theorem 2:Every finite abstract intervalA-structure is
isomorphic to a finite concrete one.

In conclusion, every finite abstract interval structure is a
frame over which we can interpret the fragmentA. We can
easily re-define the notion of model forA as a pairM =
〈S, V 〉, whereS is a finite abstract intervalA-structure, and
V : AP 7→ 2W, so that the modal truth clause can be written
as:

M, i  〈A〉ψ iff there existsj ∈ W s.t. iRj andM, j  ψ.



As a final note, observe that, in fact, one can limit himself
to implement only conditions 1-4, paired with a suitable
cardinality constraint, that is, with a suitable interval version
of the concrete constraint that comes from Theorem 1. The
finiteness ofD (conditions 5 and 6) comes as a consequence
of such a constraint, and the joint exhaustivity of the Allen’s
relations (condition 7) is no longer essential: every branch is
limited in length by the number of different worldcomparable
with the starting one, and no incomparable world is ever
created.

III. A UTOMATED SYNTHESIS OFTABLEAU CALCULI AND
METTEL2

Tableau reasoning methods represent a powerful tool to
reason about logical formalisms. They have been extensively
used to devise decision procedures for description and modal
logics [22], [23], as well as for intuitionistic logics, con-
ditional logics, logics of metric and topology, and hybrid
logics. In [24], the authors devise a method for automatically
generating tableau calculi from a first-order specificationof a
formal semantics of a logic. The underlying idea is turning
such a specification into a set of inference rules giving riseto
a sound, complete, and terminating deduction calculus for the
logic, provided that the logic has the finite model property.

The tableau synthesis method introduced in [24] works as
follows. The user defines the formal semantics of the given
logic in a many-sorted first-order language so that certain
well-definedness conditions hold. The semantic specification
of the logic is then automatically reduced to Skolemised
implicational forms which are further transformed into tableau
inference rules. Combined with a set of default closure and
equality rules, the generated rules provide a sound and com-
plete calculus for the logic. Under certain conditions the set
of rules can be further refined [25]. If the logic has the
finite model property, then the generated calculus can be
automatically turned into a terminating calculus by addinga
suitable blocking mechanism.

The tableau prover generator METTEL2 has been im-
plemented to complement the theoretical tableau synthesis
framework [11]. METTEL2 produces Java code of a tableau
prover from specifications of a logical syntax and a tableau
calculus for given logic. It is intended to provide an easy-to-
use system for non-technical users and allow technical users
to extend the implementation of generated provers. METTEL2

has been successfully employed to produce tableau provers for
modal logics, description logics, epistemic logics, and temporal
logics with cardinality constraints. It is worth pointing out
that prior implementations of systems for automated synthesis
of tableau calculi already existed. We mention, for instance,
LoTREC [9], [10] and The Tableau Work Bench (TWB) [26],
that are prover engineering platforms most closely relatedto
METTEL2. Although METTEL2 does not give the user the same
possibilities for programming and controlling derivations as
these systems, its specification language is more expressive.
For example, Skolem terms are allowed both in premises and
conclusions of rules. The expressive specification language
also allows specifications of syntaxes of arbitrary propositional
logics and makes METTEL2 able to deal with the interval
temporal logicA (which we focus on in this paper) and
possibly with most of the other fragments of HS.

IV. TABLEAU PROVERS FORA

In this section, we describe specifications of two tableau
provers which are based on the concrete semantics and the
abstract semantics for the fragmentA.

The steps for obtaining the specifications are common
for both the provers and are as follows. First, we apply the
tableau synthesis framework [24] to the semantics ofA. We
notice that both concrete and abstract semantics forA consist
of connective definitions and the background theory. Thus
the well-definedness conditions for them in [24] are trivially
fulfilled. Therefore, the generated calculi are automatically
sound and (constructively) complete for the logicA. Next,
we apply the atomic refinement [25] to the rules of the
obtained calculi by moving negated atomic formulae in the
rule conclusions to its premises while changing their signs.
While retaining soundness and (constructive) completeness of
the calculi, this reduces branching factor of the rules and makes
tableau algorithms based on the calculi more efficient. Finally,
we extend the tableau languages with additional constructs
which replace the first-order predicates in the original calculi.
This further simplifies the calculi, makes them more readable
and specifiable in METTEL2.

The tableau specifications for the concrete and abstract
semantics ofA in METTEL2 specification language are listed
in Fig. 2. The symbol/ separates premises of a rule from its
conclusions and the symbol|| separates branches of the rule.
A priority value is assigned to each rule with the keyword
priority. The less the value the more eagerly the rule is applied
during derivation.

The tableau specification for the concrete semantics of
A is based on two logical sorts: the sort of points and the
sort of logical formulae. Disjunctionp ∨ q is represented in
the specification asp|q, negation¬p is represented as~p,
and<A> represents the modal operator〈A〉. Constructs which
are additional to the language of the logic are the ordering
predicate< on the sort of points (a < b is represented
as {a<b}), the equality predicate ({{a=b}} representsa = b),
a Skolem functionf for generating new terms of the sort
of points, and expressions of the form[a, b] : ϕ which are
formulaeϕ of A labeled by intervals[a, b] where a and b
are points. The rules on the lines 1–8 of the concrete tableau
enforce< to be a strict linear ordering. The rule on the line
10 ensures that all the intervals are not degenerative. The
remaining rules are standard for modal-like logics. It is worth
noting that the rules on the lines 1–8 and the line 15 are
obtained by the atomic refinement from the rules generated
by the tableau synthesis framework. For example, the rule
[a,b]:~(<A>p) {b < c} / [b,c]:~p is obtained by the refinement
from the generated rule[a,b]:~(<A>p) / ~{b < c} || [b,c]:~p. As
a consequence of the results in [25], the calculus is sound and
(constructively) complete for the standard interval semantics
of the fragmentA.

The tableau specification for the abstract semantics is also
based on two sorts: the sort of intervals and the sort of logical
formulae. The additional constructs are two Skolem functions
f andg, the equality predicate, and a binary relational symbol
R on the sort of intervals. The tableau operates on labeled
formulae@iϕ (@i p in the specification) whereϕ is a formula
of A andi is an interval. The lines 1–7 of the abstract tableau



1 {a < a} / priority 0;
2 {a < b} {b < c} / {a < c} priority 3;
3 {a < b} {c < d} /
4 {{c = a}} || {c < a} || {a < c} {c < b} ||
5 {{c = b}} || {b < c} priority 7;
6 {a < b} {c < d} /
7 {{d = a}} || {d < a} || {a < d} {d < b} ||
8 {{d = b}} || {b < d} priority 7;
9 [a,b]:p [a,b]:~p / priority 0;

10 [a,b]:p / {a < b} priority 1;
11 [a,b]:~(~p) / [a,b]:p priority 1;
12 [a,b]:(p|q) / [a,b]:p || [a,b]:q priority 5;
13 [a,b]:~(p|q) / [a,b]:~p [a,b]:~q priority 3;
14 [a,b]:<A>p / [b,f(b,p)]:p priority 9;
15 [a,b]:~(<A>p) {b < c} / [b,c]:~p priority 4;

1 R i i / priority 0;
2 R i j R j i / priority 0;
3 R i j R k g(i,j) / R k i priority 4;
4 R i j R k i / R k g(i,j) priority 10;
5 R i j R g(i,j) k / R j k priority 4;
6 R i j R j k / R g(i,j) k priority 10;
7 R i j R j k R i l R l k / {{ j = l }} priority 6;
8 @i p @i ~p / priority 0;
9 @i ~(~p) / @i p priority 1;

10 @i (p|q) / @i p || @i q priority 5;
11 @i ~(p|q) / @i ~p @i ~q priority 3;
12 @i <A>p / R i f(i,p) @f(i,p) p priority 9;
13 @i ~(<A>p) R i j / @j ~p priority 4;

Figure 2. Tableau specifications for concrete (left) and abstract (right) semantics.

define the theory of the relationR and correspond to the
conditions 1–4 in Definition 2. While the rest of the rules
are similar to standard rules for modal-like logics and can be
specified in tableau development platforms like LoTREC and
TWB, the four rules listed on the lines 3–6 are special. All
the four rules uses same Skolem functiong, and, moreover,
the rules on the lines 3 and 5 have the Skolem functiong in
their premises. Allowing specifications of tableau rules where
Skolem functions occur in the rule premises is a distinctive
feature of METTEL2 prover generator which demonstrate ex-
pressiveness of the METTEL2 specification language. Similarly
to the concrete tableau, the rules on the lines 1–7 and the
line 13 are obtained by the atomic refinement. Therefore,
the calculus is sound and (constructively) complete for the
relational semantics of the fragmentA.

Termination property of both the provers is achieved by
modification of the generated Java code to ignore branches
which exceed allowed limit of points or intervals (Theorem 1).

V. TESTING AND RESULTS

We have tested our implementations against the same
benchmark of problems used in [2], although the absolute
speed results cannot be immediately compared since the two
experiments used a different hardware. These problems are
divided into two classes. First, we tested the scalability of the
implementation with respect to a set of combinatorial problems
of increasing complexity (COMBINATORICS), where then-
th combinatorial problem is defined as the problem of finding
a model for a formula that containsn conjuncts, each one of
the form〈A〉pi (0 ≤ i ≤ n), plus n(n+1)

2 conjuncts of the form
[A]¬(pi∧pj) (i 6= j). (Notice that there aren(n+1) different
conjuncts of the pointed out form. However, a conjunct with
indicesi, j is equivalent to another one with indicesj, i. This is
why n(n+1)

2 is posed.) Then, we considered the set of 72 purely
randomized formulas used in [27] to evaluate an evolutionary
algorithm for the same fragment (RANDOMIZED). Table I
summarizes the outcome of the experiments. For each class
of problems, the corresponding table shows, for each instance
n, the time (in milliseconds) necessary to solve the problem
taking into account, when appropriate, the specific policy that
has been used; in particular, the concrete version has been
run under both the ‘breadth first’ and the ‘depth first’ (left
branch first) policies. A time-out of 1 minute was used to stop
instances running for too long.

At first sight, it is clear that the relational (abstract)
version of the tableau system is more (time) efficient than
the standard (concrete) one; however, the number of instances
that generated a memory error indicates that the latter uses
less memory, which can be considered an interesting result on
its own. All the experiments were executed on Java 1.7.025
OpenJDK 64-Bit Server VM under the Java heap size limit
of 3Gb on a hardware based on IntelR© CoreTM i7-880 CPU
(3.07GHz, 8Mb), with a total memory of 8Gb (1333MHz),
under the 64-bit Fedora Linux 17 operating system.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we described the outcomes of a first ex-
periment in automated generation of a tableau-based decision
procedure for an interval temporal logic, using the automatic
prover generator METTEL2. Thanks to its expressivity and
flexibility, we explored and contrasted two alternative imple-
mentations: a concrete and an abstract one (at the best of our
knowledge, this is the first tableau-based decision procedure
for interval temporal logics based on an abstract frame seman-
tics). Although the performance of the developed systems is
not particularly exciting, the use of generators like METTEL2

provides a general and effective way of implementing tableau
systems for interval temporal logics. We believe it possible
to make the concrete tableau system more efficient, provided
that we represent the linear order by a list of points. This
would remedy the exponential blow-up of inequality formulae
in the tableau derivation, but, unfortunately, lists cannot be
represented in the language of METTEL2 yet. The addition
of such a feature to METTEL2 and practical investigations of
its effects are left to future work. As for the abstract tableau
system, in principle, it allows us to compare more than one
(equivalent) version of the first-order constraints for thesame
fragment. Last but not least, we are going to validate the
proposed approach on other more expressive HS fragments.
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Table I. EXPERIMENTAL RESULTS(IN MILLISECONDS; ‘-’: “ OUT OF TIME”; ‘M’: “ OUT OF MEMORY”; ‘ Y ’: “ SATISFIABLE”; ‘ N’: “ UNSATISFIABLE”).

COMBINATORICS
CON ABS

n DF BF sat
1 10 10 0 y
2 60 100 0 y
3 270 420 10 y
4 920 1360 30 y
5 2930 4010 70 y

CON ABS
n DF BF sat
6 7890 9850 150 y
7 19420 23670 300 y
8 47220 51220 560 y
9 - - 1000 y
10 - - 1790 y

CON ABS
n DF BF sat
11 - - 3440 y
12 - - 4660 y
13 - - 7600 y
14 - - 11560 y
15 - - 17170 y

CON ABS
n DF BF sat
16 - - 25160 y
17 - - 35610 y
18 - - 50740 y
19 - - - -
20 - - - -

RANDOMIZED
CON ABS

n DF BF sat
1 - - - -
2 0 0 0 y
3 10 0 0 y
4 0 10 0 y
5 - - - -
6 0 10 0 y
7 - - - -
8 10 10 0 y
9 20 20 10 y
10 10 10 0 y
11 - - - -
12 10 10 0 y
13 10 10 0 y
14 10 10 0 y
15 - - - -
16 10 20 0 y
17 30 50 10 y
18 - - - -

CON ABS
n DF BF sat
19 30 50 0 y
20 - - - -
21 20 50 10 y
22 - - - -
23 - - - -
24 20 20 0 y
25 - - - -
26 - - - -
27 - - - -
28 - - - -
29 - - - -
30 - - - -
31 10 10 10 n
32 - - - -
33 - - M -
34 60 70 10 y
35 - - - -
36 - - - -

CON ABS
n DF BF sat
37 - - M -
38 - - M -
39 - - M -
40 - - M -
41 - - - -
42 - - - -
43 - - - -
44 - - - -
45 - - M -
46 - - - -
47 - - - -
48 - - - -
49 - - - -
50 - - M -
51 - - M -
52 - - - -
53 - - M -
54 - - - -

CON ABS
n DF BF sat
55 - - M -
56 - - M -
57 - - M -
58 - - - -
59 - - M -
60 - - M -
61 - M M -
62 - - - -
63 M - - -
64 - - - -
65 - - M -
66 - - - -
67 M - - -
68 - - - -
69 M - - -
70 - - M -
71 M M M -
72 - - - -

Extended Game Logics(A. Montanari), and the research grant
EP/H043748/1 of the UK EPSRC (D. Tishkovsky).
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