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Abstract. Interval temporal logics are quite expressive temporal log-
ics, which turn out to be difficult to deal with in many respects. Even
finite satisfiability of simple interval temporal logics presents non-trivial
technical issues when it comes to the implementation of efficient tableau-
based decision procedures. We focus our attention on the logic of Allen’s
relation meets, a.k.a. Right Propositional Neighborhood Logic (RPNL),
interpreted over finite linear orders. Starting from a high-level descrip-
tion of a tableau system, we developed a first working implementation
of a decision procedure for RPNL, and we made it accessible from the
web. We report and analyze the outcomes of some initial tests.

1 Introduction

Propositional interval temporal logics play a significant role in computer sci-
ence, as they provide a natural framework for representing and reasoning about
temporal properties in a number of application domains. This is the case, for
instance, with natural language understanding and processing, where significant
interval-based logical formalisms have been developed to represent and to rea-
son about tenses and temporal prepositions, e.g., [14,16]. As another example,
the possibility of encoding and reasoning about various constructs of imperative
programming languages in interval temporal logic has been systematically ex-
plored by Moszkowski [15]. Other meaningful applications of interval temporal
logics can be found in temporal knowledge representation and reasoning, systems
for temporal planning and maintenance, qualitative reasoning, theories of action
and change, specification, verification, and design of hardware components, con-
current real-time processes, event modeling, temporal aggregation in databases,
and computational linguistics [9,12].
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Interval logic modalities correspond to relations between (pairs of) intervals.
In particular, Halpern and Shoham’s modal logic of time intervals HS [13] fea-
tures a set of modalities that make it possible to express all Allen’s interval
relations [1]. HS turns out to be undecidable over all meaningful classes of linear
orders, including the class of finite linear orders we are interested in. Temporal
reasoning on finite linear orders comes into play in a variety of areas. This is the
case, for instance, with planning problems, which consist of finding a finite se-
quence of actions that, applied to an initial state of the world, leads to a goal state
within a bounded amount of time, satisfying suitable conditions about which se-
quence of states the world must go through. In the last years, a lot of work has
been done on (un)decidability and complexity of HS fragments. The complete
picture about finite linear orders is given in [6]: there exist 62 non-equivalent
decidable fragments of HS, partitioned into four complexities classes, ranging
from NP-complete to non-primitive recursive. For each decidable fragment, an
optimal decision procedure has been devised. Nevertheless, none of them is avail-
able as a working system (they are declarative procedures, which turn out to be
unfeasible in practice), with the only exception of the logic of subintervals D over
dense linear orders [3]. D has been implemented in LoTrec [10], a generic theo-
rem prover that allows one to specify the rules for his/her own modal/temporal
logic. Unfortunately, LoTrec is in general not suitable for interval logics (D over
dense linear orders is a very special case), because (i) it does not support the
management of world labels explicitly, and (ii) it does not admit closing condi-
tions based on the number of worlds generated in the construction of a tentative
model, but only closing conditions based on patterns and repetitions.

In this paper, we focus our attention on one of the simplest decidable frag-
ments of HS, namely, Right Propositional Neighborhood Logic (RPNL) [4,8,11],
interpreted on finite linear orders, whose satisfiability problem has been proved
to be NEXPTIME-complete. RPNL features a single modality corresponding to
Allen’s relation meets. We devised and implemented a working tableau-based
decision procedure for RPNL, based on the original (non-terminating) tableau
system given in [11], which exploits the small model theorem proved in [8] to
guarantee termination.

2 Syntax and semantics of RPNL

Let D = 〈D,<〉 be a finite linear order. An interval over D is an ordered pair
[x, y], with x, y ∈ D and x < y (strict semantics). We denote by I(D) the set of
all intervals over D. Formulas of RPNL are obtained from a countable set AP
of proposition letters by the following abstract syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈A〉ϕ | [A]ϕ

The other classical connectives can be defined as shorthands.
Formulas are interpreted on models M = 〈D, V 〉, where D is a finite linear

order and V : I(D) → 2AP is a valuation function that associates every interval
of D with the set of proposition letters that hold true on it. The satisfiability
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relation  is defined by the semantic clauses for propositional logic plus the
following ones:

– M, [x, y]  〈A〉ϕ iff M, [y, z]  ϕ, for some z such that z > y, and
– M, [x, y]  [A]ϕ iff M, [y, z]  ϕ, for every z such that z > y.

It can be easily checked that [A] is the dual of 〈A〉, that is, [A]ϕ is equivalent to
¬〈A〉¬ϕ, and vice versa. As shown in [8], satisfiability of RPNL-formulas can be
reduced to initial satisfiability, that is, satisfiability on the interval [0, 1]. Hence,
it holds that an RPNL-formula ϕ is satisfiable if and only if there is a model M
such that M, [0, 1]  ϕ.

The decidability proof given in [8] shows that any RPNL-formula ϕ is sat-
isfiable over finite linear orders if and only if it is satisfiable over a finite linear
order whose domain has cardinality strictly less than 2m ·m+1, where m is the
number of diamonds and boxes in ϕ. This provides a termination condition that
can be used to implement a fair decision procedure that exhaustively searches
for a model of size smaller than or equal to the bound. In this paper, we develop
and implement a tableau-based decision procedure for RPNL by tailoring the
general algorithm described in [11] to it and making use of the bound on the
size of the model to guarantee completeness.

3 A tableau system for RPNL

The abstract structure of a tableau for an RPNL formula ϕ is a rooted tree where
each node is labeled with an annotated formula of the form θ : [x, y], which states
that ψ holds over the interval [x, y] (on a finite domain D). A path from the root
to a leaf is called a branch. Every branch B of the tableau is associated with a
finite domain DB = {x0, x1, . . . , xN} and it represents a partial model for the
input formula ϕ.

At each step of the tableau construction, a branch B and a node n in it are
selected, and B is expanded by applying one of the expansion rules, which is
chosen on the basis of the formula in the label of n.

Before building the tableau, the formula ϕ to be checked for satisfiability is
transformed into an equivalent formula in negated normal form nnf(ϕ), that is,
a formula where negation can only occur immediately before proposition letters.
Since such a transformation does not change the number of diamonds and boxes,
it does not affect the bound on the maximum cardinality of the domain. For such
a reason, from now on we will assume that all the formulas are in negated normal
form, and thus we do not need to define an expansion rule for negation.

Let B be the selected branch and n, labeled with θ : [xi, xj ], be the selected
node on B. Expansion rules directly follow the semantics of RPNL (Fig. 1).

The rule (or), for disjunctions (θ is of the form ψ∨τ), expands the branch by
adding two disjoint children, each of which is labeled with one of the disjuncts.
Two new branches are thus created, which represent the two possible way to
satisfy a disjunction, that is, by satisfying either the first or the second disjunct.
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The rule (and), for conjunctions (θ is of the form ψ∧ τ), expands the branch
by first adding a child n′, labeled with ψ, and then by adding to n′ a child n′′

labeled with τ . Thus, only one new branch is created, which represents the only
possible way to satisfy a conjunction, that is, by satisfying both its conjuncts.

The rule (dia), for existentially quantified formulas (θ is of the form 〈A〉ψ),
explores all possible ways of satisfying the formula ψ (and, for each of them, it
generates a new branch): either it satisfies ψ on an existing interval [xj , xh], for
some xh ∈ D, with xj < xh, or a new point x′h, with xj < x′h, is added to the
domain and ψ is satisfied on the new interval [xj , x

′
h]. In the former case, a new

branch is generated by adding a node labeled with ψ : [xj , xh] to the current
branch; in the latter case, the new branch is obtained by adding a node labeled
with ψ : [xj , x

′
h] the current branch (see Fig. 1).

Finally, the rule (box), for universally quantified formulas (θ is of the form
[A]ψ), states that ψ must be true on every existing interval starting at xj : it
appends to the branch a node labeled with ψ : [xj , xh], for each interval [xj , xh]
beginning at xj .

(or)
ψ ∨ τ : [xi, xj ]

ψ : [xi, xj ] | τ : [xi, xj ]
(and)

ψ ∧ τ : [xi, xj ]

ψ : [xi, xj ], τ : [xi, xj ]

(dia)
〈A〉ψ : [xi, xj ]

ψ : [xj , xj+1] | . . . | ψ : [xj , xN ] | ψ : [xj , x′

j ] | . . . | ψ : [xj , x′

N ]

(box)
[A]ψ : [xi, xj ]

ψ : [xj , xj+1], . . . , ψ : [xj , xN ]

For each j ≤ h ≤ N , xh is a point in DB and x′

h is a new point added to DB and
placed immediately after xh and, when h < N , immediately before xh+1.

Fig. 1: Expansion rules.

It is worth noticing that point xi never occurs in the consequent of the rules,
meaning that the left endpoint of the interval does not play a role in the expan-
sion.

A branch B in the tableau is declared closed if either both p : [xh, xk] and
¬p : [xh, xk], for some p ∈ AP and interval [xh, xk], occur on it (contradictory
branch) or the cardinality of the domain DB is greater than the upper bound
on the size of models to be checked for satisfiability given by the small model
theorem (too long branch). Otherwise, B is considered open. Expansion rules are
applied only to open branches (closed branches are discarded).

Given a branch B, an annotated formula θ : [xi, xj ] is inactive on B if:

– θ is a literal;
– θ is of the form ψ ∨ τ , ψ ∧ τ , or 〈A〉ψ and the rule for θ has been already

applied to it on B;
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– θ is of the form [A]ψ and for each xh > xj there exists a node on B labeled
with ψ : [xj , xh].

The annotated formula θ : [xi, xj ] is active on B otherwise.
The branch-expansion strategy applied by the system is the simplest possi-

ble one: the first (top-down) active formula of the current branch is selected,
expanded, and deactivated5. Notice that if the application of the rule dia intro-
duces a new point in the domain, the rule box is reactivated. Whenever an open
branch with no active formulas is found, the procedure terminates with success
(the formula is satisfiable). If all branches are closed, the procedure terminates
with failure (the formula is unsatisfiable).

As an example of the application of the proposed tableau method, Fig. 2
shows a tableau for the formula ϕ = 〈A〉p ∧ [A](¬p ∨ 〈A〉p).

Since the formula ϕ is satisfiable, the tableau contains some open branches,
each of which defines (at least) one truth assignment for each proposition letter
over each interval. In fact, there may be some interval [xi, xj ] and some proposi-
tion letter p ∈ AP such that the truth value of p over [xi, xj ] is not specified. In
such a case, both truth values for p over [xi, xj ] are admissible. As an effect of
this underspecification, more than one model for ϕ can be, in general, associated
with the same open branch.

The left-most branch is closed as it is contradictory (it contains a node labeled
with p : [1, 2] and a node labeled with ¬p : [1, 2]). The right-most branch adds
a new element in the domain every three nodes, and thus will be closed when
the size of the domain exceeds the domain upper bound 2m · m. All the other
branches are open.

The following theorems, which directly follow from the results in [8,11], prove
the correctness of the proposed method.

Theorem 1 (termination). The proposed tableau method terminates.

Theorem 2 (soundness). Let ϕ be an RPNL-formula and T a tableau for ϕ.
If T contains an open branch, then ϕ is satisfiable.

Theorem 3 (completeness). Let ϕ be an RPNL-formula. If ϕ is satisfiable,
then there exists an open branch in every tableau for ϕ.

4 Implementation of the tableau system for RPNL

In this section, we illustrate the difficulties we encountered and the implemen-
tation choices we made to turn the tableau system described in Section 3 into
a computer program. The code of our implementation is written in C++ and
it makes no use of external libraries, except for the C++ Standard Library.

5 The identification of the current branch among all open branches depends on the
adopted priority policy. In Section 4, we will explore a number of alternative priority
policies.
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ϕ : [0, 1]

〈A〉p : [0, 1]

[A](¬p ∨ 〈A〉p) : [0, 1]

p : [1, 2]

¬p ∨ 〈A〉p : [1, 2]

¬p : [1, 2] 〈A〉p : [1, 2]

p : [2, 3]

¬p ∨ 〈A〉p : [1, 3]

¬p : [1, 3] 〈A〉p : [1, 3]

p : [3, 4]

¬p ∨ 〈A〉p : [1, 4]

¬p : [1, 4] 〈A〉p : [1, 4]

p : [4, 5]

¬p ∨ 〈A〉p : [1, 5]

¬p : [1, 5] 〈A〉p : [1, 5]

. . .

closed branch

contradictory

open branch

open branch

open branch

closed branch

too long

Fig. 2: A tableau for ϕ = 〈A〉p ∧ [A](¬p ∨ 〈A〉p).

There are two reasons behind our choice. On the one hand, C++ is an high-level
language designed for general-purpose programming and that guarantees very
good performances in terms of execution speed. On the other hand, the authors
were quite familiar with such a language, which means that no time overhead
was needed to learn a new programming language. We exploited suitable data
structures to represent formulas, nodes, and branches of the tableau, and we
developed a search procedure that keeps track of currently-open branches and
expands them by applying expansion rules according to the expansion strategy.
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Representation of formulas, nodes, and branches

Since in most applications the input formula ϕ encodes a set of requirements to
be jointly satisfied, e.g., those of a plan, we assume ϕ to be a logical conjunction,
whose conjuncts are entered as distinct lines of a text file. Then, ϕ is stored as
a syntactic tree, whose leaves are labeled with proposition letters and whose
internal nodes are labeled with Boolean connectives and modalities. In such a
way, each sub-formula of ϕ corresponds to a subtree of the syntactic tree. Nodes
of the tableau are represented by a structure with four components: a pointer
to the subtree representing the formula labeling the node, two integer variables
x and y, that identify the interval annotating the formula, and a Boolean flag,
which specifies whether the node is active or not. A branch B is implemented
as a list of nodes, enriched with two integer variables N and A representing
respectively the cardinality of the domain DB and the number of active nodes.

The search procedure

The search procedure stores the open branches to be expanded into a priority
queue. At the beginning, the queue contains only the single node initial branch
{ϕ : [0, 1]}. Then, the procedure operates as follows:

1. it extracts the branch B with the highest priority from the queue;
2. it checks whether B is closed or open; if B is closed, then it deletes the

branch and it restarts from 1;
3. it finds the closest-to-the-root active node ν in B; if there are no active nodes

in B, it terminates with success and it returns B as a model for ϕ;
4. it applies the appropriate expansion rule to ν, it deactivates ν, it inserts the

branches created by the rule into the queue, and it restarts from 1.

The expansion loop is repeated until either a model for ϕ is found or the queue
becomes empty. In the latter case, no model for ϕ can be found, and the formula
is declared unsatisfiable.

Priority policies

The priority policy of the queue determines the next branch to expand. We
implemented five different policies:

i) the standard FIFO (First In, First Out) policy;
ii) expand the branches with the smallest domain first (SDF);
iii) expand the branches with the largest domain first (LDF);
iv) expand the branches with the smallest number of active nodes first (SAN);
v) expand the branches with the greatest number of active nodes first (GAN).

By default, the queue follows the FIFO policy, but the user can easily opt for a
different one for a particular problem.

Notice that all the policies are complete: eventually, every branch will be
processed and the queue will be empty. The intuitive argument behind this claim
is based on the observation that the application of an expansion rule different
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from (box) to an active formula ϕ on a branch B may cause the generation of
a finite number of new branches, where ϕ is deactivated and will never become
active again. Moreover, the labels of the new nodes appended to the branch only
contain sub-formulas of ϕ. Thus, every formula is used only once for a branch
expansion and the overall complexity degree of the active formulas of the branch
(i.e., the sum of the sizes of the active formulas of the branch) decreases at every
expansion, unless the branch is expanded by means of a rule (box). However,
even if a rule (box) can be applied several time, it will not be applied infinitely
many times. To convince oneself that this is true, notice that, after the first
application and subsequent deactivation, the rule (box) can become active only
after the insertion of a new element in the domain. Since domains whose size
exceeds the upper bound 2m · m are closed and discarded, every rule (box) is
applied finitely many times only. Thus, since the overall complexity degree of a
branch will eventually decrease to 0, and since only finitely many branches are
created at each step, the thesis is a direct consequence of the König’s Lemma.

Branch expansion strategy

If the current branch B (extracted from the queue) is declared open at step 2
of the search procedure, nodes in B are scanned to determine the closest-to-the-
root active node ν. The expansion of B depends on the shape of the formula
labeling ν. Three cases are possible.

Boolean formula. Since formulas are assumed to be in negated normal form,
the only possible rules are the ∨-rule and the ∧-rule. Let ν be labeled with
ψ ∨ τ : [xi, xj ] (the case ψ ∧ τ : [xi, xj ] is similar and thus omitted). We must
distinguish four scenarios:

(i) both ψ : [xi, xj ] and τ : [xi, xj ] are already on B,
(ii) ψ : [xi, xj ] is on B, while τ : [xi, xj ] is not,
(iii) τ : [xi, xj ] is on B, while ψ : [xi, xj ] is not, and
(iv) neither of the two is on B.

In case (i), there is no need to apply the rule: ψ∨τ : [xi, xj ] is deactivated and B
is put back in the queue. In case (ii), a copy of the branch is generated and the
annotated formula τ : [xi, xj ] is added to it; then, ψ∨τ : [xi, xj ] is deactivated and
both B and its copy are added to the queue. Case (iii) is completely symmetric.
In case (iv), two copies of the branch are generated: one is expanded with the
annotated formula ψ : [xi, xj ], the other one with τ : [xi, xj ]. Then, ψ∨τ : [xi, xj ]
is deactivated, both copies of B are added to the queue, and the original B is
discarded.

Box formula [A]ψ : [xi, xj ]. The box rule is applied. First, we deactivate the
formula [A]ψ : [xi, xj ]; then, for each xj < xh ≤ xN , if ψ : [xj , xh] does not
belong to B, we add it; finally, the expansion of B is inserted into the queue.
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Diamond formula 〈A〉ψ : [xi, xj ]. The diamond rule is applied. First, we check
whether for some xh > xj the annotated formula ψ : [xj , xh] is on B. If this is the
case, we deactivate 〈A〉ψ : [xi, xj ] and we put B back in the queue. Otherwise,
we create a distinct copy of B for every possible way of satisfying ψ:

– N−j copies Bj+1, . . . , BN , with domain cardinalityN , that will be expanded
with the annotated formulas ψ : [xj , xj+1], . . . , ψ : [xj , xN ], respectively;

– N − j + 1 copies B′
j , . . . , B

′
N , with domain cardinality N + 1, that will be

expanded with the annotated formulas ψ : [xj , x
′
j ], . . . , ψ : [xj , x

′
N ], respec-

tively.

For each copy B′
h, the expansion of the domain is obtained as follows:

(i) every annotated formula τ : [xk, xl] such that xk > xh is replaced by the
annotated formula τ : [xk + 1, xl + 1]. If xk ≤ xh < xl, the annotated
formula is replaced by τ : [xk, xl + 1], while if xl ≤ xh, the annotated
formula remains unchanged;

(ii) we add a new node labeled with the annotated formula ψ : [xj , xh + 1];
(iii) we reactivate all annotated formulas [A]τ : [xk, xl] with xl ≤ xh.

To conclude the expansion, we deactivate 〈A〉ψ : [xi, xj ], we put all 2 ·(N−j)+1
copies of B in the queue, and we discard B.

Usage

The implementation described here has been made accessible at the web
page http://www.di.unisa.it/dottorandi/dario.dellamonica/tableaux/.
By means of a user-friendly web interface it is possible to check the satisfiability
of RPNL-formulas over finite linear orders. Formulas are provided in input by
means of plain-text files in the following format:

– the first line must contain the integer N , denoting the number of different
proposition letters occurring in the formula, followed by the list of such
letters, that must have the form p0 p1 p2 ... p<N-2> p<N-1>;

– the second line must contain the integerM , representing the number of lines
in the file the formula spreads out;

– each of the next M lines must contain an RPNL-formula: the program will
read such lines and will treat each line as a conjunct of the input formula.
Formulas must follow the following grammar:

f ::= p | NOT ( f ) | ( f OR f ) | ( f AND f ) | DIA ( f ) | BOX ( f )

p ::= p0 | p1 | p2 | . . . | p<N-2> | p<N-1>

A zip archive containing the problems used for the tests (see the next section)
is available at the above-mentioned web page. In Fig. 3, a sample input file is
shown.

In the main screen the user is asked to input the input file containing the
RPNL-formula to be checked for satisfiability. By clicking on the button “Next”
a new page is shown, where the user can select the following parameters:
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4 p0 p1 p2 p3

10

DIA ( p0 )

DIA ( p1 )

DIA ( p2 )

DIA ( p3 )

BOX ( NOT ( ( p0 AND p1 ) ) )

BOX ( NOT ( ( p0 AND p2 ) ) )

BOX ( NOT ( ( p0 AND p3 ) ) )

BOX ( NOT ( ( p1 AND p2 ) ) )

BOX ( NOT ( ( p1 AND p3 ) ) )

BOX ( NOT ( ( p2 AND p3 ) ) )

Fig. 3: Example of input file.

– the number of branches in the tableau under which the policy FIFO is applied
by default, thus ignoring a possible different choice made by the user (see
below);

– the maximum size of the domain: branches whose domain size exceeds the
value of this parameter are closed and discarded. The default value is the
upper bound 2m · m (where m is the number of modalities in the input
formula), which guarantees the completeness of the procedure. Anyway, the
user can select a different (smaller) value to improve the performance, at
risk of losing the completeness;

– the priority policy (see above): 0 for the FIFO policy (this is the default
value), 1 for the GAN policy, 2 for the SAN policy, 3 for the LDF policy,
and 4 for the SDF policy;

– finally, it is possible to choose to get a fully-detailed output, that means that
all the steps of the tableau construction will be displayed.

5 Experiments

We have tested our implementation against a benchmark of different problems,
divided into two classes. First, we tested the scalability of the program with
respect to a set of combinatorial problems of increasing complexity (COMBI-
NATORICS), where the n-th combinatorial problem is defined as the problem
of finding a model for the formula that contains n conjuncts, each one of the

type 〈A〉pi (0 ≤ i ≤ n), plus n(n+1)
2 formulas of the type [A]¬(pi ∧ pj) (i 6= j).

Then, we considered the set of 36 “easy” purely randomized formulas used in [5]
to evaluate an Evolutionary Computation algorithm for RPNL finite satisfiabil-
ity (RANDOMIZED). Table 1 summarizes the outcome of our experiments. For
each class of problems, the corresponding table shows, for each instance n, the
time necessary to solve the problem for each policy (FIFO, SDF, LDF, SAN,
GAN) and the size of the obtained model (or “unsat” if the instance was proved
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COMBINATORICS

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

1 0.004 0.004 0.004 0.004 0.004 4

2 0.004 0.008 0.004 0.004 0.008 5

3 0.008 0.15 0.03 0.008 0.03 6

4 0.01 – 30.07 0.01 30.29 7

5 0.012 – – 0.012 – 8

6 0.02 – – 0.03 – 9

7 0.07 – – 0.07 – 10

8 0.15 – – 0.16 – 11

9 0.3 – – 0.32 – 12

10 0.56 – – 0.59 – 13

11 0.99 – – 1.06 – 14

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

12 1.67 – – 1.79 – 15

13 2.73 – – 2.94 – 16

14 4.25 – – 4.55 – 17

15 6.56 – – 7.08 – 18

16 9.77 – – 10.82 – 19

17 14.42 – – 15.40 – 20

18 20.79 – – 22.20 – 21

19 29.28 – – 32.11 – 22

20 40.91 – – 44.09 – 23

21 – – – – – –

22 – – – – – –

RANDOMIZED

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

1 0.004 0.004 0.004 0.004 0.004 4

2 0.004 0.004 0.004 0.004 0.004 4

3 0.004 0.004 0.004 0.004 0.004 4

4 0.004 0.004 0.004 0.004 0.004 4

5 0.004 0.004 0.004 0.004 0.004 4

6 0.004 0.004 0.004 0.004 0.004 4

7 0.07 0.23 0.004 0.18 0.004 3 / 4

8 0.004 0.004 0.004 0.004 0.004 4

9 0.004 0.004 0.004 0.004 0.004 4

10 0.004 0.004 0.004 0.004 0.004 4

11 0.004 0.004 0.004 0.004 0.004 4

12 0.004 0.004 0.004 0.004 0.004 4

13 0.01 0.04 0.004 0.02 0.004 4

14 0.004 0.004 0.004 0.004 0.004 4

15 0.004 0.004 0.004 0.004 0.004 4

16 0.004 1.37 0.004 0.01 0.004 4

17 0.004 0.004 0.004 0.004 0.004 4

18 0.004 0.004 0.004 0.004 0.004 3

Policy (sec) Outcome

n FIFO SDF LDF SAN GAN (size)

19 1.66 45.43 0.68 1.91 0.02 3 / 4

20 0.02 0.004 0.03 0.03 0.004 2 / 4

21 0.004 0.004 0.004 0.004 0.004 4

22 0.74 14.08 0.004 1.04 0.004 4

23 0.004 0.004 0.004 0.004 0.004 4

24 0.004 0.004 0.004 0.004 0.004 4

25 – – – – – –

26 0.004 0.004 0.004 0.004 0.004 4

27 0.004 – 0.004 0.01 – 3 / 4

28 0.004 0.004 0.004 0.004 0.004 4

29 0.004 – 0.004 0.004 0.004 4

30 0.14 0.08 0.04 0.19 0.01 2 / 4

31 0.004 0.004 0.004 0.004 0.004 unsat

32 0.25 – 0.02 0.31 0.004 2 / 4

33 0.004 0.004 0.004 0.004 0.004 4

34 – – 0.02 0.004 0.02 2 / 4

35 0.004 – 0.004 – 0.004 2 / 4

36 – – – – 1.2 3

Table 1: Experimental results.

to be unsatisfiable). A time-out of 1 minute was used to stop instances running
for too long. All the experiments were executed on a notebook with an Intel Pen-
tium Dual-Core Mobile 1.6 Ghz CPU and 2 Gb of RAM, under Ubuntu Linux
11.04.

Despite being a prototypical implementation, our system runs reasonably well
on the COMBINATORICS benchmark, being able to produce a result in a short
time for formulas up to 20 conjuncts (and up to a model size of 23 points).
The results of the RANDOMIZED benchmark allows for a first comparison
with the Evolutionary algorithm in [5], and shows that the two algorithms have
similar performances on the considered formulas. The tableau system was able to
prove that problem 31 is unsatisfiable, while the evolutionary algorithm (being
incomplete) can only provide positive answers.
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6 Conclusions and future work

In this paper, we described a first working implementation of a decision proce-
dure for the logic of Allen’s relation meets, a.k.a. Right Propositional Neighbor-
hood Logic (RPNL), interpreted over finite linear orders. The proposed imple-
mentation of the tool, which has been made accessible at the web page http:

//www.di.unisa.it/dottorandi/dario.dellamonica/tableaux/, is based on
the original (non-terminating) tableau system given in [11] and it exploits the
small model theorem proved in [8] to guarantee termination.

At the best of our knowledge, there are no available benchmarks for RPNL or
any other interval temporal logic. Thus, the procedure has been tested against
(suitably adapted) benchmarks relative to different problems. In particular, we
were interested in testing the scalability of our software tool and in comparing
its efficiency with that of an existing Evolutionary Computation algorithm for
checking finite satisfiability of RPNL formulas [5]. The outcomes of such a testing
are presented and, despite being a prototypical implementation, they show that
the developed system runs reasonably well on the considered benchmark.

As for future work, we have set ourself to the goal of adapting some bench-
marks for the modal logic K [2] and the temporal logic LTL [17] to the interval
semantics to obtain a larger and more conclusive benchmark for RPNL. We are
also thinking of extending the current implementation along two different di-
rections. On the one hand, we are interested in developing a tool for deciding
RPNL over a number of classes of linear orders including (but not limited to)
the natural numbers, the class of dense linear orders, and the class of all linear
orders; on the other hand, we plan to generalize the decision procedure for RPNL
to full Propositional Neighborhood Logic (PNL), which adds a modality for the
Allen relation met-by (the inverse of the Allen relation meets) to RPNL [7].
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