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Abstract

We discuss a family of modal logics for reasoning about relational struc-
tures of intervals over (usually) linear orders, with modaloperators asso-
ciated with the various binary relations between such intervals, known as
Allen’s interval relations. The formulae of these logics are evaluated at
intervals rather than points and the main effect of that semantic feature is
substantially higher expressiveness and computational complexity of the in-
terval logics as compared to point-based ones. Without purporting to pro-
vide a comprehensive survey of the field, we take the reader toa journey
through the main developments in it over the past 10 years andoutline some
landmark results on expressiveness and (un)decidability of the satisfiability
problem for the family of interval logics.

1 Introduction

Temporal reasoning is pervasive in many areas of computer science and artificial
intelligence, such as, for instance, formal specification and verification of sequen-
tial, concurrent, reactive, real-time systems, temporal knowledge representation,
temporal planning and maintenance, theories of actions, events, and fluents, tem-
poral databases, and natural language analysis and processing.

In most cases of temporal reasoning,time instants (points)are assumed to be
the basic ontological temporal entities. However, often “durationless” time points
are not suitable to properly reason about real-world events, which have an intrinsic
duration. Indeed, many practical aspects of temporality, occurring, for instance,
in hardware specifications, real-time processes, and progressive tenses in natural
language, are better modeled and dealt with if the underlying temporal ontology
is based ontime intervals (periods), rather than instants, as the primitive entities.
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As an example, consider a typical safety requirement of traffic light systems at
road intersections as the following one:’For every time interval I during which
the green light is on for the traffic on either road at the intersection, the green
light must be continuously off and the red light must be continuously on for the
traffic on the other intersecting road, for a time interval beginning strictly before
and ending strictly after I.

The nature of time (in particular, the choice between time instants and time
intervals as the primary objects of temporal ontology) has always been a hotly
debatable philosophical theme and the philosophical rootsof interval-based tem-
poral reasoning can be dated back to Zeno and Aristotle [46].Already Zeno noted
that in an interval-based setting, several of his paradoxes’disappear’ [4], like the
flying arrow paradox (“if at eachinstantthe flying arrow stands still, how is move-
ment possible?”) and the dividing instant dilemma (“if the light is on and it is
turned off, what is its state at theinstantbetween the two events?”).

Of course, the two types of temporal ontologies are closely related and tech-
nically reducible to each other: on the one hand, time intervals can be determined
by pairs of time instants (begin–end); on the other hand, a time instant can be
construed as a degenerated ’point interval’, whose left andright endpoints coin-
cide. While these reductions can be used to reconcile the different philosophical
and ontological standpoints, they do not resolve the main semantic issue arising
when developing logical formalisms for capturing temporalreasoning:should for-
mulae in the given logical language be interpreted as referring to instants or to
intervals?

The possible natural answers to this question lead to (at least) three reasonable
alternatives, respectively giving rise topoint-based logics, interval-based logics,
and mixed,two-sorted logics, where points and intervals are considered as sepa-
rate sorts on a par and formulae for both sorts are constructed. This exposition is
devoted exclusively to the second alternative. The literature on point-based tempo-
ral logics is abundant and will not be discussed here. The reader is referred to [4]
for a detailed philosophical-logical comparative discussion of both approaches,
while a recent study and technical exploration of the two-sorted approach can be
found in [3].

One of the first applications of interval-based logical formalisms – to the speci-
fication and verification of hardware components – is Propositional Interval Tem-
poral Logic (PITL), introduced by Moszkowski in [45]. An extension ofPITL,
calledDuration Calculus(DC), featuring the notion of duration of an event over
an interval of time in order to reason about specification anddesign of time-critical
systems, has been actively developed and studied since the early ’90s [51]. While
DC is one of the most popular and applicable interval-based logical formalisms, its
semantics is essentially built on a point-based temporal ontology and thus we will



not discuss it here, but we refer the reader to the recent state-of-the-art references
on it [35, 50].

An important early work in the formal study ofpurely interval-basedtemporal
ontology and reasoning in AI is [2], where Allen considers the family of binary
relations arising between two intervals in a given linear order, subsequently called
Allen’s relations. Besides these, the natural and important operation ofchopping
an interval into two subintervals, giving rise to the ternary interval relation ‘chop’,
was proposed and studied in Moszkowski’s work [45].

The systematiclogical study of purely interval-based temporal reasoning
started with the seminal work of Halpern and Shoham [33] (with extended jour-
nal version [34]) introducing and analyzing a multi-modal logic, that we will call
Halpern-Shoham logic(HS for short), featuring one modality for each Allen’s re-
lation. Concurrently with [34], Venema introduced and studied the even more ex-
pressive interval logic CDT involving binary modal operators associated with the
ternary relation Chop (C) and its two residual relations D and T [49]. Decidabil-
ity and finite axiomatizability issues for CDT fragments have been systematically
investigated in [36].

Halpern and Shoham’s work initiated a stream of active research on the family
F (HS) of fragments ofHS, with the main technical issues arising in that research
being expressiveness, decidability/undecidability, and complexity of validity and
satisfiability. These will be the main themes of the present exposition.

While decidability has been widely assumed to be a standard and expected
feature of most (point-based) modal and temporal logics studied and used in
computer science, it turned out thatundecidabilityis ubiquitous in the realm
of interval-based logics. The first such undecidability results were obtained for
Propositional Interval Temporal LogicPITL by Moszkowski already in [45]. Fur-
thermore, so sweepingly general undecidability results aboutHS are given in [34]
that for a long time it was considered unsuitable for practical applications and
attracted little interest amongst computer scientists. Inparticular, Halpern and
Shoham proved that validity ofHS formulae in any class of interval models on
linear orders satisfying very weak conditions, including the classes of all linear
models, all discrete linear models, and all dense linear models, is undecidable.
Moreover, the validities ofHS in any of the standard numerical orderings of the
natural numbers, integers, and reals (all being Dedekind complete) are not even
recursively axiomatizable. Subsequently, the techniquesproving such undecid-
ability results were sharpened to apply to a multitude of – sometimes surprisingly
simple and inexpressive – fragments ofHS, see [8, 28, 37, 38].

The underlying technical reason for these undecidability results can be found
in the very nature of purely interval-based temporal reasoning, where all atomic
propositions, and therefore all formulae, are interpretedas true or false on every



interval, rather than every point, in the model. Thus, the set-theoretic interpre-
tation of anHS formula in an interval model is a set of abstract intervals, that
is, a set of pairs of points (abinary relation). Thus,HS formulae translate into
binary relations over the underlying linear orders, and consequently the validity
(resp., satisfiability) problem forHS translates into the respective problem for the
universal (resp., existential) dyadic fragment of second-order logic over linear
orders.

As we already pointed out, for a long time these strong undecidability results
have discouraged both search for practical applications and further theoretical re-
search on purely interval-based temporal logics. Meanwhile, several semantic
modifications or restrictions, essentially reducing the interval-based semantics to
a point-based one, have been proposed to remedy the problem and obtain de-
cidable systems. As an example, already in [45] Moszkowski showed that the
decidability ofPITL can be recovered by constraining atomic propositions to be
point-wise and defining truth of an interval as truth of its initial point (thelocality
principle). The bleak picture started lightening up in the last few years with the
discovery of several rather non-trivial cases of decidablefragments ofHS; see
[16, 18, 23, 43] for some recent accounts and references. Gradually, it became
evident that the trade-off between expressiveness and computational affordability
in the familyF (HS) is rather subtle and sometimes unpredictable, with the bor-
der between decidability and undecidability cutting rightacross the core of that
family.

The study and classification of decidable and undecidable fragments ofHS has
also invoked systematic and comparative analysis of theirexpressiveness. On the
one hand, that line of research has led to several correspondence results between
fragments ofHS and natural fragments ofFO; on the other hand, it motivated the
classification of the familyF (HS) with respect to expressiveness. By systematic
use of bisimulations between interval models, we have established a complete set
of inter-definability equations between the modal operators of HS, thus obtaining
a complete classification ofHS fragments with respect to expressiveness [29].
Using that result, we have found that there are exactly 1347 expressively different
such fragments out of the 212 = 4096 subsets of modal operators inHS.

Finally, the strive for obtaining even more expressive, yetdecidable interval
logics has naturally led to the recently-initiated study ofquantitativeextensions
of HS fragments withmetric constraintson the lengths of intervals, which will be
briefly discussed as well.

In this paper we mainly discuss the progress in the field of interval temporal
logics over the past 10 years with respect to the topics and developments in which
we have been directly involved. It is not a survey but rather travelers’ impressions
of a long journey, so we make no claim of being all-inclusive or comprehensive.



2 Preliminaries

2.1 Intervals and interval structures

Given a strict partial orderingD = 〈D, <〉, an interval in D is an ordered pair
[d0, d1] such thatd0, d1 ∈ D andd0 ≤ d1. A point d belongs to an interval[d0, d1]
if d0 ≤ d ≤ d1. If d0 < d1, then [d0, d1] is called astrict, or proper, interval;
otherwise, it is called apoint interval. The set of all intervals inD, including both
strict and point intervals, is usually denoted byI(D)+, while the set of all strict
intervals is denoted byI(D)−. By I(D) we will denote either of these. Finally, we
call a pair〈D, I(D)〉 an interval structure.

2.2 Linear orders and interval structures

All interval structures considered here will be assumed to be linear, that is, every
two points in it are comparable. This restriction can usually be relaxed without
essential complications to partial orderings with thelinear interval property, that
is, partial orderings in which every interval is linear. Here is the formal definition
in first-order logic:

∀x∀y(x < y→ ∀z1∀z2(x < z1 < y∧ x < z2 < y→ z1 < z2 ∨ z1 = z2 ∨ z2 < z1)),

In the figure below an interval structure with the linear interval property is given
on the left and an interval structure violating that property is given on the right.

Definition 1. A linear order, and the associated interval structure, is called:

• finite, if it has finitely many points;

• unbounded aboveor to right (resp.,belowor to left), if every point has a
successor (resp., predecessor);

• dense, if between every pair of distinct points there exists another point;

• discrete, if every point with a successor/ predecessor has an immediate
successor/ predecessor;

• Dedekind complete, if every non-empty and bounded above set of points
has a least upper bound.

Besides interval logics interpreted in interval structures from the above classes,
we will consider interval logics interpreted in single interval structures over the
natural orderings of the numerical setsN, Z, Q, andR.



2.3 Allen’s interval relations

Depicted in Table 1 (first two columns) are all possible binary relations between
two strict intervals on a linear order, known as Allen’s relations. Besides the
identity relationequal(=), these are (in Allen’s original terminology):before(<),
meets(m), overlaps(o), finishes( f ), during(d), starts(s), plus their inverseslater
(>), met-by(mi), overlapped-by(oi), finished-by( f i), contains(di), started-by
(si). These 13 relations aremutually exclusiveand jointly exhaustive, meaning
that exactly one Allen’s relation holds between any given pair of strict intervals.

Each Allen’s relation gives rise to a corresponding unary modal operator with
Kripke semantics over that relation.

Remark 1. In [34], Halpern and Shoham have chosen a different notation for
Allen’s relations from the one used by Allen. For the sake of clarity, in Table 1
we briefly compare the two notations. Note that the semanticsof the logicHS in
Halpern and Shoham’s paper is defined including point intervals, but the relations
corresponding to the modal operators ofHS are neither mutually exclusive nor
jointly exhaustive there. As an example, in the original semantics ofHS, both
relationsoverlapsandmeetshold between two intervals[a, b] and [b, c] with a<
b < c; on the other hand, the intervals[a, b] and[c, c], with b< c, are not related
by any of Allen’s relation.

While [34] adoptsnon-strictsemantics, with point intervals included in the
interval structure, in this paper we mainly focus on thestrict semantics, where
these are excluded. This choice conforms to Allen’s definition of interval [2] and
it has at least two strong motivations. First, a number of representation problems
arise when the non-strict semantics is adopted, due to the presence of point inter-
vals, as pointed out in [2]. Second, when point intervals areincluded, there seems
to be no good definition for all interval relations that makesthem both pairwise
disjoint and jointly exhaustive (see the above remark). On the other hand, while
admitting point intervals in the semantics usually strengthens the expressiveness
of the modal languages, all known results about decidability and undecidability
are invariant with respect to the inclusion or exclusion of point intervals.

An approach avoiding the problems arising in the non-strictsemantics was
proposed in [3], where both sorts of points and intervals in interval structures are
considered on a par, with all natural intra-sort and inter-sort relations arising in
the two-sorted universe and the associated with them modal operators.

2.4 Syntax and semantics of Halpern-Shoham’s logicHS

The language ofHS includes a set of propositional lettersAP, the classical propo-
sitional connectives¬ and∨ (all others, including the propositional constants⊤



Interval’s relations Allen’s notation HS notation

equals{=}

before{<} / after {>} 〈L〉 / 〈L〉 (Later)

meets{m} /met-by{mi} 〈A〉 / 〈A〉 (After)

overlaps{o} / overlapped-by{oi} 〈O〉 / 〈O〉 (Overlaps)

finished-by{ f i} / finishes{ f } 〈E〉 / 〈E〉 (Ends)

contains{di} / during {d} 〈D〉 / 〈D〉 (During)

started-by{si} / starts{s} 〈B〉 / 〈B〉 (Begins)

Table 1: Relations between pairs of strict intervals.

and⊥, are assumed definable as usual), and a family ofinterval temporal modal
operators (modalities)of the form〈X〉, one for each Allen’s relation. Formulae
are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ

An interval modelis a pairM= 〈D,V〉, whereV : I(D) → 2AP is a labeling
assigning to each interval a set of atomic propositions considered true at it.

The truth of a formula over a given interval[a, b] in an interval model Mis
defined below by structural induction on formulae. The definition applies both to
the strict and the non-strict semantics; however, when point intervals are involved
some of Allen’s relations and the respective diamond operators trivialize.

• M, [a, b] 
 p iff p ∈ V([a, b]), for all p ∈ AP;

• M, [a, b] 
 ¬ψ iff it is not the case thatM, [a, b] 
 ψ;

• M, [a, b] 
 ϕ ∨ ψ iff M, [a, b] 
 ϕ or M, [a, b] 
 ψ;

• M, [a, b] 
 〈X〉ψ iff there exists an interval [c, d] such that [a, b] RX [c, d],
andM, [c, d] 
 ψ, whereRX is the binary interval relation corresponding to
the modal operator〈X〉 (Table 1).

More precisely, the semantics ofHS is given via the following clauses for the
modalities, where referring to an interval [a, b] automatically assumes thata < b
in the case of strict semantics anda ≤ b in the non-strict one.



• M, [d0, d1] 
 〈A〉ϕ iff M, [d1, d2] 
 ϕ for somed2;

• M, [d0, d1] 
 〈L〉ϕ iff M, [d2, d3] 
 ϕ for somed2, d3 such thatd1 < d2;

• M, [d0, d1] 
 〈B〉ϕ iff M, [d0, d2] 
 ϕ for somed2 such thatd2 < d1;

• M, [d0, d1] 
 〈E〉ϕ iff M, [d2, d1] 
 ϕ for somed2 such thatd0 < d2;

• M, [d0, d1] 
 〈D〉ϕ iff M, [d2, d3] 
 ϕ for somed2, d3 such thatd0 < d2 and
d3 < d1;

• M, [d0, d1] 
 〈O〉ϕ iff M, [d2, d3] 
 ϕ for somed2, d3 such thatd0 < d2 <

d1 < d3;

• M, [d0, d1] 
 〈A〉ϕ iff M, [d2, d0] 
 ϕ for somed2;

• M, [d0, d1] 
 〈L〉ϕ iff M, [d2, d3] 
 ϕ for somed2, d3 such thatd3 < d0;

• M, [d0, d1] 
 〈B〉ϕ iff M, [d0, d2] 
 ϕ for somed2 such thatd2 > d1;

• M, [d0, d1] 
 〈E〉ϕ iff M, [d2, d1] 
 ϕ for somed2 such thatd2 < d0;

• M, [d0, d1] 
 〈D〉ϕ iff M, [d2, d3] 
 ϕ for somed2, d3 such thatd2 < d0 and
d1 < d3;

• M, [d0, d1] 
 〈O〉ϕ iff M, [d2, d3] 
 ϕ for somed2, d3 such thatd2 < d0 <

d3 < d1.

For each of the above-defined diamond modalities, the corresponding box modal-
ity is defined as a dual, e.g., [A]ϕ ≡ ¬〈A〉¬ϕ.

Finally, when the non-strict semantics is assumed, it is natural to consider an
additionalmodal constant for point intervals, denotedπ, with the following truth
definition:

• M, [d0, d1] 
 π iff d0 = d1.

Validity andsatisfiabilityare defined as usual, that is, a formulaϕ of HS is
satisfiableif there exists an interval modelM and an interval [a, b] such that
M, [a, b] 
 ϕ; ϕ is valid, denoted|= ϕ, if it is true on every interval in every
interval model. Two formulaeϕ andψ areequivalent, denotedϕ ≡ ψ, if |= ϕ↔ ψ.



2.5 Fragments ofHS

With every subsetX = {〈X1〉, . . . , 〈Xk〉} of the modal operators ofHS we associate
thefragmentFX of HS denotedX1X2 . . .Xk, with formulae built on the same set of
propositional lettersAP, but only using modal operators fromX. The presence of
the superscriptπ denotes that the modal constantπ is added, too. For example,AA
denotes the fragment involving the modalities〈A〉 and〈A〉 only, whileAA

π
denotes

the fragment involving〈A〉, 〈A〉, andπ. For any given fragmentF = X1X2 . . .Xk

and a modal operator〈X〉, we write 〈X〉 ∈ F if 〈X〉 ∈ {〈X1〉, . . . , 〈Xk〉}. For any
given pair of fragmentsF1 andF2, we writeF1 ⊆ F2 if 〈X〉 ∈ F1 implies〈X〉 ∈ F2,
for every modal operator〈X〉.

3 Expressiveness

The study and comparative analysis of the expressiveness ofinterval logics has
been a major research direction in the area. In particular, the natural and important
problems arise to identify the mutual definabilities between the modal operators
of the logicHS and to classify the fragments ofHS with respect to their expres-
siveness. We will discuss these problems here. In particular, we will present the
complete classification of the fragments ofHS with respect to their expressiveness
in the strict semantics over the class of all linear orders, by identifying a sound
and complete set ofinter-definability equationsbetween the modal operators of
HS, summarizing the results presented in [29].

3.1 Expressiveness ofHS modalities: some examples

Due to their interval-based interpretation, the modal operators inHS are rather
more expressive than what meets the eye. We will only give a couple of testifying
examples here:

⊲ Using the modality〈D〉 corresponding to the sub-interval relation one can
express non-trivial combinatorial relationships betweenwidth and depth of an
interval, of the type:

d(n)
∧

i=1

〈D〉

















pi ∧
∧

j,i

〈D〉¬p j

















→ 〈D〉n⊤

for a large enoughd(n).
Also, using〈D〉 one can express quite special properties of the models, e.g.

the formula
〈D〉〈D〉⊤ ∧ [D](〈D〉⊤ → 〈D〉〈D〉⊤ ∧ 〈D〉[D]⊥)



has neither discrete nor dense models (in the strict semantics), but is satisfiable
e.g., in the Cantor space overR.

⊲ As proved in [31] the fragmentAA is sufficiently expressive to define all
important classes of liner orders mentioned in he previous section, for instance:

• The axioms (SPNLder)

(〈A〉〈A〉p→ 〈A〉〈A〉〈A〉p) & ( 〈A〉[A]p→ 〈A〉〈A〉[A]p)

and its inverse (SPNLdel) (with 〈A〉 and 〈A〉 swapped) define the class of
densestructures, extended with the 2-element linear ordering
(which cannot be separated in the language ofAA).

• The axioms (SPNLdir )

[A](p∧ [A]¬p∧ [A]p) → [A][A]〈A〉((〈A〉¬p∧ [A][A]p)∨(〈A〉⊤∧ [A][A]⊥)),

and its inverse (SPNLdil)

define the class ofdiscretestructures.

• The axiom (SPNLc)

〈A〉〈A〉[A]p∧ 〈A〉[A]¬[A]p→ 〈A〉(〈A〉[A] [A]p∧ [A] 〈A〉¬ [A] p)

defines the class ofDedekind completestructures.

3.2 Inter-definabilities betweenHS modalities

Some of theHS modalities are definable in terms of others and for each of the
strict and non-strict semantics, we can identify minimal fragments that are ex-
pressive enough to define all other operators. For instance:

• In the strict semantics, the six modalities〈A〉, 〈B〉, 〈E〉, 〈A〉, 〈B〉, 〈E〉 suffice
to express all others, as shown by the following equalities [34]:

〈L〉ϕ ≡ 〈A〉〈A〉ϕ, 〈L〉ϕ ≡ 〈A〉〈A〉ϕ,
〈D〉ϕ ≡ 〈B〉〈E〉ϕ, 〈D〉ϕ ≡ 〈B〉〈E〉ϕ,
〈O〉ϕ ≡ 〈E〉〈B〉ϕ, 〈O〉ϕ ≡ 〈B〉〈E〉ϕ.

• In the non-strict semantics, the four modalities〈B〉, 〈E〉, 〈B〉, 〈E〉 suffice to



express all others, as shown by the following equalities [48]:

〈A〉ϕ ≡ ([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)) ∨ 〈E〉([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)),

〈A〉ϕ ≡ ([B]⊥ ∧ (ϕ ∨ 〈E〉ϕ)) ∨ 〈B〉([B]⊥ ∧ (ϕ ∨ 〈E〉ϕ)),

〈L〉ϕ ≡ 〈A〉(〈E〉⊤ ∧ 〈A〉ϕ),

〈L〉ϕ ≡ 〈A〉(〈B〉⊤ ∧ 〈A〉ϕ),

〈D〉ϕ ≡ 〈B〉〈E〉ϕ,

〈D〉ϕ ≡ 〈B〉〈E〉ϕ,

〈O〉ϕ ≡ 〈E〉(〈E〉⊤ ∧ 〈B〉ϕ),

〈O〉ϕ ≡ 〈B〉(〈B〉⊤ ∧ 〈E〉ϕ).

Also, the modal constantπ is definable in terms of〈B〉 and〈E〉, respectively
as [B]⊥ and [E]⊥.

Furthermore, the presence ofπ in the language readily embeds the strict se-
mantics into the non-strict one by means of the translation:

• τ(p) = p, for eachp ∈ AP;

• τ(¬φ) = ¬τ(φ);

• τ(φ ∨ ψ) = τ(φ) ∨ τ(ψ);

• τ(〈X〉 φ) = 〈X〉 (¬π ∧ τ(φ)), for each modality of the language.

3.3 Comparing the expressiveness of fragments ofHS

Now, we introduce some formal notions used for comparing theexpressiveness of
logical languages, adapted to fragments ofHS.

Definition 2. A modal operator〈X〉 of HS is definablein an HS fragmentF ,
denoted〈X〉 ⊳ F , if 〈X〉p ≡ ψ for some formulaψ = ψ(p) of F , for any fixed
propositional variable p. In such a case, the equivalence〈X〉p ≡ ψ is called an
inter-definability equation for〈X〉 in F .

LetF1 andF2 be any pair of fragments ofHS. We say that:

• F2 is at least as expressive asF1, denotedF1 � F2, if every operator〈X〉 ∈
F1 is definable inF2.

• F1 is strictly less expressivethanF2, denotedF1 ≺ F2, if F1 � F2 but not
F2 � F1.



• F1 andF2 areequally expressive(or,expressively equivalent), denotedF1 ≡

F2, if F1 � F2 andF2 � F1.

• F1 andF2 areexpressively incomparable, denotedF1 . F2, if neitherF1 �

F2 norF2 � F1.

In order to show thatF1 � F2, it suffices to prove that every modality ofF1

is definable inF2, while in order to show thatF1 � F2, we must show that some
modality inF1 is not definable inF2.

To show non-definability of a given modal operator in a given fragment, we
use a standard technique in modal logic, based on the notion of bisimulationand
the invariance of modal formulae with respect to bisimulations (see, e.g., [5]). Let
F be anHS fragment. AnF -bisimulation between two interval modelsM =

〈I(D),V〉 andM′ = 〈I(D′),V′〉 overAP is a relationZ ⊆ I(D) × I(D′) satisfying
the following properties:

• local condition: Z-related intervals satisfy the same propositional letters
overAP;

• forward condition: if ([ a, b], [a′, b′]) ∈ Z and ([a, b], [c, d]) ∈ RX for some
〈X〉 ∈ F , then there exists [c′, d′] such that ([a′, b′], [c′, d′]) ∈ RX and
([c, d], [c′, d′]) ∈ Z;

• backward condition: likewise, but fromM′ to M.

The important property of bisimulations, used here, is thatanyF -bisimulation
preserves the truth ofall formulae inF . Thus, in order to prove that an operator
〈X〉 is not definable inF , it suffices to construct a pair of interval modelsM and
M′ and anF -bisimulation between them, relating a pair of intervals [a, b] ∈ M
and [a′, b′] ∈ M′, such thatM, [a, b] 
 〈X〉p, while M′, [a′, b′] 6
 〈X〉p.

3.4 Expressiveness classification of the fragments ofHS

As already discussed, in order to classify all fragments ofHS with respect to their
expressiveness, it suffices to identify all definabilities of modal operators〈X〉 in
fragmentsF , where〈X〉 < F . We say that a definability〈X〉 ⊳ F is optimal if
〈X〉 6⊳F ′ for any fragmentF ′ such thatF ′ ≺ F ; a set of definabilities isoptimalif
it consists of optimal definabilities. The rest of the section is devoted to sketching
the proof of the following theorem.

Theorem 1([29]). The set of inter-definability equations given in Table 2 is sound,
complete, and optimal.



〈L〉p ≡ 〈A〉〈A〉p 〈L〉⊳A
〈L〉p ≡ 〈A〉〈A〉p 〈L〉⊳A
〈O〉p ≡ 〈E〉〈B〉p 〈O〉⊳BE
〈O〉p ≡ 〈B〉〈E〉p 〈O〉⊳BE
〈D〉p ≡ 〈E〉〈B〉p 〈D〉⊳BE
〈D〉p≡ 〈E〉〈B〉p 〈D〉⊳BE
〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p 〈L〉⊳BE
〈L〉p ≡ 〈E〉[B]〈E〉〈B〉p 〈L〉⊳BE

Table 2: The complete set of inter-definability equations.

Most of the equations in Table 2 are known from the seminal work of Halpern
and Shoham [34], while the definability〈L〉⊳BE and its symmetric one,〈L〉⊳BE,
are first obtained in [29].

Lemma 1. The set of inter-definability equations given in Table 2 is sound.

Proof. As already noted, we only need to prove the soundness for the new inter-
definability equation〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p (the proof for the symmetric one
defining〈L〉 is completely analogous, and thus omitted). First, we provethe left-
to-right direction. Suppose thatM, [a, b] 
 〈L〉p for some modelM and interval
[a, b]. This means that there exists an interval [c, d] such thatb < c andM, [c, d] 

p (see Figure 1). We exhibit an interval [a, y], with y > b such that, for everyx
(strictly) in betweena andy, the interval [x, y] is such that there exist two pointsy′

andx′ such thaty′ > y, x < x′ < y′, and [x′, y′] satisfiesp. Lety be equal toc. The
interval [a, c], which is started by [a, b], is such that for any of its ending intervals,
that is, for any interval of the form [x, c], with a < x, we have thatx < c < d
andM, [c, d] 
 p. As for the other direction, we must show that〈B〉[E]〈B〉〈E〉p
implies〈L〉p. To this end, suppose thatM, [a, b] 
 〈B〉[E]〈B〉〈E〉p for a modelM
and an interval [a, b]. Then, there exists an interval [a, c], for somec > b such that
[E]〈B〉〈E〉p is true on [a, c] (see Figure 1). As a consequence, the interval [b, c]
must satisfy〈B〉〈E〉p, that means that there are two pointsx andy such thaty > c,
b < x < y, and [x, y] satisfiesp. Sincex > b, thenM, [a, b] 
 〈L〉p. �

Proving the completeness is the hard task; optimality is established together
with it. In the following, we provide a general overview of the proof idea. A
detailed sketch of the proof of Theorem 1 is presented in [29]and the complete
proof with all technical details can be found in [28].

For eachHS operator〈X〉, we show that〈X〉 is not definable in any fragment
of HS that does not contain〈X〉 and does not contain as definable (according to
Table 2) all operators of some of the fragments in which〈X〉 is definable (accord-
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〈L〉p
〈B〉[E]〈B〉〈E〉p

c d
p

[E]〈B〉〈E〉p

Figure 1:〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p.

ing to Table 2). More formally, for eachHS operator〈X〉, the proof consists of the
following steps:

1. Using Table 2, identify all fragmentsFi such that〈X〉 ⊳ Fi.

2. Produce the listM1, . . . ,Mm of all ⊆-maximal fragments ofHS that con-
tain neither the operator〈X〉 nor any of the fragmentsFi identified by the
previous step;

3. For each fragmentMi, for i ∈ {1, . . . ,m}, provide a bisimulation forMi that
is not a bisimulation forX.

3.5 Expressiveness classification: summary

We have used the equations in Table 2 as the basis of a simple computer program
that identifies and counts all expressively different fragments ofHS with respect
to the strict semantics on the class of all linear orders. Using that program, we
have established that there are exactly 1347 expressively different such fragments
of HS, out of the 212 = 4096 subsets ofHS modalities.

We emphasize that not all inter-definability equations listed in Table 2, neither
the resulting classification, apply in the non-strict semantics. For instance, as
shown in [48] that in the non-strict semantics〈A〉 (resp.,〈A〉) can be defined inBE
(resp.,BE). Moreover, the completeness of the set of equations in Table 2 need not
hold any longer if the semantics is restricted to specific classes of linear orders.
For instance, in discrete linear orders,〈A〉 can be defined inBE as follows:〈A〉p ≡
ϕ(p)∨〈E〉ϕ(p), whereϕ(p) is a shorthand for [E]⊥∧〈B〉([E][E]⊥∧〈E〉(p∨〈B〉p));
likewise,〈A〉 is definable inBE. As another example, in dense linear orders,〈L〉
can be defined inDO as〈L〉p ≡ 〈O〉(〈O〉⊤∧[O](〈O〉p∨〈D〉p∨〈D〉〈O〉p)); likewise,
〈L〉 is definable inDO.



4 Deciding Satisfiability

Perhaps the currently most challenging, still open problemin the area of interval
temporal logics is to obtain a complete classification of thefragments ofHS with
respect to decidability/undecidability of their satisfiability problem. In particular,
we are interested in identifying all maximally expressive,yet decidable such frag-
ments. In this section, we outline the decidability/undecidability landscape in the
family of the fragments ofHS and discuss the general techniques, used so far for
proving decidability and undecidability of satisfiabilityfor these fragments.

A complete picture of the state of the art about the classification of HS
fragments with respect to the satisfiability problem can be found in [28, Ap-
pendix A]. Besides, a collection of web tools is available onthe website
http://itl.dimi.uniud.it/content/logic-hs, that can be used to iden-
tify the status (decidable/undecidable/unknown yet) of the satisfiability problem
of any specific fragment, over several classes of linear orders (all, dense, discrete,
and finite) in both strict and non-strict semantics, as well as to compare relative
expressive power of any pair ofHS fragments.

4.1 Overview of decidability methods and results

The early decidability results about interval logics were based on radical restric-
tions of the interval-based semantics, essentially reducing it to a point-based one.
Such restrictions includelocality, according to which all atomic propositions are
evaluated point-wise, meaning that their truth over an interval is defined as truth
at its initial point, andhomogeneity, according to which truth of a formula over
an interval implies truth of that formula over every sub-interval. By imposing
such constraints, decidability of interval logics can be proved by embedding it
into a suitable point-based temporal logic, as in [45, 48]. Decidability can also
be achieved by constraining the class of temporal structures over which the logic
is interpreted. This is the case withsplit-structures, where any interval can be
“chopped” in at most one way. The decidability of various interval logics, includ-
ing HS, interpreted over split-structures, has been proved by embedding them into
decidable first-order theories of time granularities [44].

For some simple fragments ofHS, like BB andEE, decidability can be ob-
tained immediately and without any semantic restriction, by means of direct trans-
lation to the point-based semantics and reduction to decidability of respective
point-based temporal logics [32]. In any of these logics, one of the endpoints
of every interval related to the current one remains fixed, thereby reducing the
interval-based semantics to the point-based one by mappingevery interval of the
generated sub-model to its non-fixed endpoint. Consequently, these fragments
can be polynomially translated to the basic temporal logic with Future and Past

http://itl.dimi.uniud.it/content/logic-hs


TL[F,P], thus proving their NP-completeness when interpreted on the class of all
linearly ordered sets or on any ofN, Z, Q, andR [30, 32].

We note that most of the fragments ofHS are sufficiently expressive to force
infinity of an interval structure, and therefore the standard approach to proving
decidability in modal logic based on recursive axiomatization plus finite model
property is not applicable here. Automata-based methods, based e.g. on Büchi
and Rabin theorems (implying decidability of MSO theories of various linear or-
ders and trees), do not apply either, because, as mentioned earlier, satisfiability
and validity in interval logics aredyadic, not monadic, second-order properties.
Thus, new approaches for obtaining decidability results for fragments ofHS with
unrestricted and genuinely interval-based semantics, non-reducible to point-based
one, were needed.

The first such decidability results are obtained in the early2000s by means of
suitabletranslationsto other logics, already known to be decidable over linear or-
ders. Such a translation is constructed for the fragmentAA, also known asPropo-
sitional Neighborhood Logic(PNL) [31] into the two-variable fragment of first-
order logic with uninterpreted binary relations over linear domainsFO2[=, <].
Thus, decidability, in NEXPTIME, ofPNL is obtained in [17, 18] by reduction
to the NEXPTIME-complete decidability result forFO2[=, <] due to Otto [47].
In fact, the satisfiability problem forPNL turns out to be NEXPTIME-complete,
too, by translation fromFO2[=, <] back toPNLπ in the non-strict semantics, thus
implying that the latter logical language is expressively equivalent to the former.
Otto’s results, and consequently the decidability ofPNL, apply not only to the
class of all linear orders, but also to some natural sub-classes of it, such as the
class of all finite linear orders, the class of all well-founded linear orders, andN.

The so far most fruitful and widely applicable method for obtaining decidabil-
ity results and decision procedures for fragments ofHS not reducible to point-
based logics has been the method ofsemantic tableau, often combined with a
(bounded) pseudo-model property. The method of semantic tableau consists in
developing sound, complete, and terminating procedures for tableau-based search
of a finite, satisfying the input formula “pseudo-model”. Pseudo-models are ab-
stract finite Hintikka-type structures that can be obtainedfrom (possibly infinite)
interval structures by filtration-like constructions, specific to the fragment under
consideration, that preserve truth of formulae from that fragment, so that a formula
is satisfiable if and only if there is a pseudo-model that satisfies it.

This method has been successfully applied for instance to the fragmentD, with
modality associated with the (strict) sub-interval relation, interpreted over dense
linear orderings [14, 15, 16]. In Figure 2 we illustrate a typical pseudo-model
(on the left) for the fragmentD that corresponds to an interval structure (on the
right) over the ordering of the rationalsQ. The irreflexive nodes of this pseudo-
model represent single intervals while the reflexive ones represent infinite clusters
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Figure 2: An example of a finite pseudo-model forD (on the left) and its corre-
sponding intervalD-structure (on the right) on the ordering of the rationalsQ.

(layers, or ‘cushions’) of (strict) sub-intervals satisfying the same subformulae of
the input formula.

The method is subsequently extended to the (maximal decidable) fragment
BBDDLL (and, by symmetry,EEDDLL), interpreted overQ [40, 41].

In order to establish upper complexity bounds, or sometimeseven to ensure
termination of the tableau method, a bound of the size of the satisfying pseudo-
model has to be established. A method for obtaining pseudo-models of bounded
size consists in removing “redundant” points and intervalsfrom an initial finite,
or finitely presentable (e.g. periodic) pseudo-model. Using tableau-based method
and pseudo-model size-reducing techniques, the earlier mentioned decidability
result forPNL is independently re-established and extended in [20, 21, 25], where
optimal tableau-based decision procedures forPNL and its future fragmentRPNL
are developed for several different classes of orderings. More recent work extends
these decidability results toABBL [24, 26] (and toAEEL by symmetry) and, on
finite linear orderings, toABBA (and, by symmetry, toAEEA) [42].

4.2 Overview of undecidability methods and results

The first undecidability results forHS validity and satisfiability come from the
original work of Halpern and Shoham [34] and cover almost allinteresting classes
of linearly ordered sets:

Theorem 2 ([34]). The validity problem forHS is undecidable (r.e. hard) over
any class of linear orderings that contains at least one linear ordering with an
infinite ascending or descending sequence of points.

In particular, this result applies to all natural unboundedtime-flows such asN,
Z, Q, andR. The proof is by reduction from the non-halting problem for Turing
machines, involving a quite ingenious encoding of Turing machine configurations
into unbounded interval structures.

Under a natural additional assumption, Halpern and Shoham show that the
undecidability can be much worse:



Theorem 3 ([34]). The validity inHS over any class of Dedekind complete or-
dered structures containing at least one with an infinitely ascending sequence is
Π1

1-hard.

In particular, the validity inHS over any of the orderings ofN, Z, andR
is not recursively axiomatizable. The proof is by reductionfrom the problem
of existence of a computation of a given non-deterministic Turing machine that
enters the initial state infinitely often to testing satisfiability in HS.

Later, Lodaya proved that the rather small fragmentBE is sufficiently expres-
sive to carry out Halpern and Shoham’s idea of encoding Turing machine config-
urations and consequently, to yield undecidability [37].

More recently, a number of otherHS fragments have been proved undecid-
able [8, 9, 11, 12, 28, 38, 39] by means of suitable reductionsfrom known unde-
cidable problems. The most widely applied such reductions have been constructed
from several variants of thetiling problem: theN×N tiling problem [8], the octant
tiling problem [8, 9, 11], and the finite tiling problem [12].

In the following, we outline the idea underlying the reduction from the octant
tiling problem, which is the problem of establishing whether a given finite set of
tile typesT = {t1, . . . , tk} can tile the 2nd octant of the integer planeO = {(i, j) :
i, j ∈ N ∧ 0 ≤ i ≤ j}. This problem can be easily related to interval structures
because points inO are naturally interpretable as intervals onN.

Now, the technical details. For every tile typeti ∈ T , let right(ti), le f t(ti),
up(ti), anddown(ti) be the colors of the corresponding sides ofti. To solve the
problem, one must find a functionf : O → T such that

right( f (n,m)) = le f t( f (n+ 1,m))

and
up( f (n,m)) = down( f (n,m+ 1)).

The undecidability of the tiling problem forO is proved in [6] from that of the
tiling problem forZ × Z (known to be co-r.e. complete by a reduction from the
halting problem of a Turing machine), through the tiling problem forN × N, by
application of König’s Lemma.

Given an instance of the octant tiling problem OTP(T ), whereT is the finite
set of tiles types, a reduction from OTP(T ) to the satisfiability problem for a logic
L consists of the construction of a formulaΦT , parametric inT and belonging to
the language ofL, such thatΦT is satisfiable if and only ifT tilesO.

Let T = {t1, . . . , tk} be an arbitrary finite set of tile types. We assume the set
of atomic propositionsAP to be finite (but arbitrary) and to contain, inter alia, the
following propositional variables:u, ∗, Id, tile, t1, . . . , tk, andup_rel. The general
idea of the encoding is the following. First, for any givenHS fragmentL and any
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Figure 3: The encoding of the octant tiling problem: a) the cartesian representa-
tion, and b) the corresponding interval representation.

starting interval [a, b], we consider a (possibly infinite) set of intervalsG[a,b] that
can be ‘reached’ by means of the modalities ofL starting from [a, b]. The set
G[a,b] can be viewed as the universe of intervals on which we work. Then, we
exploit the modalities ofL to define aglobal modal operator[G] such that [G]ϕ
holds over the interval [a, b] if and only if ϕ holds over each interval inG[a,b] .

The proof is based on the following main steps:

• definition of theu-chain: we set our framework by forcing the existence
of a unique infinite chain ofu-intervals (u-chain, for short) on the linear
ordering. They will be used as cells to arrange the tiling. Wealso have to
provide a way to step from anu-interval to its immediate successor in the
chain;

• definition of theId-chain: the octant is encoded by means of a unique infi-
nite sequence ofId-intervals (Id-chain, for short), each of them representing
a row of the octant. AnId-interval is composed by a sequence ofu-intervals;
eachu-interval is used either to represent a part of the plane or toseparate
two rows. In the former case it is labelled withtile, while in the latter case
it is labelled with∗;

• encoding of theabove-neighborand right-neighborrelations, connecting
each tile in the octant with, respectively, the one immediately above it and
the one at its right, if any. The encoding of such relations must be done
in such a way that the followingcommutativity propertyholds: given any
two tile-intervals[c, d] and [e, f ], if there exists atile-interval [d1, e1], such
that [c, d] is right-connected to[d1, e1] and [d1, e1] is above-connected to
[e, f ], then there also exists atile-interval [d2, e2] such that[c, d] is above-
connected to[d2, e2] and[d2, e2] is right-connected to[e, f ].

A generic encoding of the octant tiling problem is depicted in Figure 3.



a) Cartesian representation

b) Interval representation
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Figure 4: Theabove-neighborrelation encoded in the fragmentAO.

The above-described framework is basically the same for allthe reductions
from variants of the tiling problem. The main difference, and the main difficulty
of the reduction, comes from the very limited expressiveness of the fragment un-
der consideration (a number of minimal undecidableHS fragments featuring one
or two modalities have been identified). For each different fragment, specific tech-
nical tricks are needed, making use of additional propositional letters besides the
above-mentioned ones.

As an example, in Figure 4, we show the encoding of the above-neighbor
relation for the OTP(T ) in theHS fragmentAO, whose modalities correspond to
Allen’s relationsmeetsandoverlaps[9].

Lastly, strong and rather unexpected undecidability results have been obtained
in [39] and [38] for theHS fragmentsBD and D, respectively, by means of a
reduction from the halting problem for two-counter automata.



5 Metric and spatial extensions

Both interval structures and interval logics are amenable to various natural exten-
sions. In this section, we briefly discuss two of them:

1. metric interval logics, based on interval structures over linear orders en-
dowed with distance between points, and thus with a natural notion of in-
terval length, and with language extended with arithmetic constraints on
interval length;

2. spatial interval logics, extending the one-dimensional interval structures to
two- and more- dimensional spatial structures.

5.1 Metric interval temporal logics

The idea of adding metric features to point-based temporal logics has been ex-
plored in several ways, but metric extensions of purely interval-based logics have
only been developed and investigated quite recently, so farmainly on interval
structures over the natural numbers.

In [19], Bresolin et al. introduce and study a family of metric extensions of
the HS fragmentA, also known asRight PNL (RPNL for short), with a special
attention to decidability and expressive completeness issues. Such a work has
been subsequently extended to the family of metric extensions of the fullPNL [7,
10]. The most expressive language in that family, calledMetric PNL (MPNL, for
short) features a set of special atomic propositions representing integer constraints
(equalities and inequalities) on the length of the intervals over which they are
evaluated. In [7, 10],MPNL has been proved to be decidable in 2NEXPTIME,
and EXPSPACE-hard and particularly suitable for dealing with metric constraints,
thus emerging as a viable alternative to existing logical systems for quantitative
temporal reasoning.

In [22], decidability ofMPNL has been extended to the class of interval struc-
tures over finite linear orders and toZ. Moreover, an optimal decision procedure
running in EXPSPACE is provided, thus proving that the satisfiability problem for
MPNL over finite linear orders (resp.,N, Z) is EXPSPACE-complete.

5.2 Spatial generalization of metric interval logics

The transfer of formalisms, techniques, and results from the temporal context to
the spatial one is quite common in computer science. However, it (almost) never
comes for free: it usually involves a blow up in complexity, that can possibly yield
undecidability.



The main goal of spatial formal systems is to capture common-sense knowl-
edge about space and to provide a calculus of spatial information. Information
about spatial objects may concern their shape and size, the distance between them,
their topological and directional relations. Depending onthe considered class of
spatial relations, we can distinguish betweentopologicalanddirectional spatial
reasoning. While topological relations between pairs of spatial objects (viewed as
sets of points) are preserved under translation, scaling, and rotation, directional
relations depend on the relative spatial position of the objects. A comprehensive
and up-to-date survey on topological, directional, and combined constraint sys-
tems and relations can be found in [1, 27].

In [13], Bresolin et al. investigate a two-dimensional variant of metricRPNL,
called the Directional Area Calculus (DAC). DAC allows one to reason with ba-
sic shapes, such as lines, points, and rectangles, directional relations, and (a weak
form of) areas. It features two modal operators:somewhere to the northandsome-
where to the east. Moreover, by means of specialatomic propositions, it makes
it possible to constrain the length of the horizontal (resp., vertical) projections
of objects. Despite its simplicity,DAC allows one to express meaningful spatial
properties. As an example, combining horizontal and vertical length constraints,
conditions like “the area of the current object is less than 4 square meters” can
be expressed inDAC. The satisfiability problem forDAC has been proved to
be decidable in 2NEXPTIME [13]. In the same paper, the authors also study a
proper fragment ofDAC, called WeakDAC (WDAC), which is expressive enough
to capture meaningful qualitative and quantitative spatial properties. Decidability
of WDAC is proved by a decision procedure whose complexity is exponentially
lower than that forDAC. Optimality is an open issue for bothDAC andWDAC.

6 Concluding remarks: the roads ahead

Despite the very substantial progress over the past 10 yearsin the research area of
interval temporal logics, the field is still very rich with interesting challenges and
unexplored paths. Here we will outline our present view of the main immediate
and long-term challenges in the field.

The main items in the current research agenda are:

• extending the expressiveness classification result for thefamily of frag-
ments ofHS from [29] to the non-strict semantics and to the most important
classes of linear orders (e.g., finite, discrete, dense, etc.);

• obtaining a complete classification of the family ofHS fragments with re-
spect to decidability/undecidability of their satisfiability problem, first on



the class of all interval structures over linear orders, andthen on the impor-
tant subclasses of it. Currently, more than 90% of these fragments have al-
ready been classified (for a summary of the current state of the classification,
see the web pagehttps://itl.dimi.uniud.it/content/logic-hs),
but the remaining cases are expected to be the most difficult to settle;

• extending the study of metric extensions of interval logicsfrom PNL to
other important fragments ofHS, and over other important metrizable linear
orders, notablyQ.

The long-term research perspectives in the field include:

• quest for automata-based techniques for proving decidability of interval log-
ics;

• development of methods and algorithms for model-checking in finitely pre-
sentable infinite interval structures, such as ultimately periodic ones.

• last but not least, identifying and developing major applications of interval
logics studied here, that would justify and reward the sustained research
investment presented here.
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