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Abstract

We discuss a family of modal logics for reasoning about iata struc-
tures of intervals over (usually) linear orders, with modpkrators asso-
ciated with the various binary relations between such vaier known as
Allen’s interval relations. The formulae of these logice avaluated at
intervals rather than points and the maiteet of that semantic feature is
substantially higher expressiveness and computatiomapkexity of the in-
terval logics as compared to point-based ones. Withoutgsting to pro-
vide a comprehensive survey of the field, we take the readerjtairney
through the main developments in it over the past 10 yearsatitdie some
landmark results on expressiveness and (un)decidabfliiyeosatisfiability
problem for the family of interval logics.

1 Introduction

Temporal reasoning is pervasive in many areas of computmaE and artificial
intelligence, such as, for instance, formal specificatioth\eerification of sequen-
tial, concurrent, reactive, real-time systems, temponavedge representation,
temporal planning and maintenance, theories of actiore)teyand fluents, tem-
poral databases, and natural language analysis and pragess

In most cases of temporal reasonitig)e instants (pointsare assumed to be
the basic ontological temporal entities. However, oftemradionless” time points
are not suitable to properly reason about real-world eyariteh have an intrinsic
duration Indeed, many practical aspects of temporality, occurriaginstance,
in hardware specifications, real-time processes, and @ssiye tenses in natural
language, are better modeled and dealt with if the undeyligmporal ontology
is based ortime intervals (periods)ather than instants, as the primitive entities.
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As an example, consider a typical safety requirement dficright systems at
road intersections as the following on€or every time interval | during which
the green light is on for the tyfic on either road at the intersection, the green
light must be continuouslyfoand the red light must be continuously on for the
traffic on the other intersecting road, for a time interval begimmstrictly before
and ending strictly after I.

The nature of time (in particular, the choice between tingants and time
intervals as the primary objects of temporal ontology) Hasgs been a hotly
debatable philosophical theme and the philosophical roitsterval-based tem-
poral reasoning can be dated back to Zeno and Aristotle M63ady Zeno noted
that in an interval-based setting, several of his paradokssppear’ [4], like the
flying arrow paradox (“if at eacmstantthe flying arrow stands still, how is move-
ment possible?”) and the dividing instant dilemma (“if thght is on and it is
turned df, what is its state at th@stantbetween the two events?”).

Of course, the two types of temporal ontologies are clossbted and tech-
nically reducible to each other: on the one hand, time igsrgan be determined
by pairs of time instantsbegin—engt on the other hand, a time instant can be
construed as a degenerated 'point interval’, whose leftrgit endpoints coin-
cide. While these reductions can be used to reconcile tiereint philosophical
and ontological standpoints, they do not resolve the maimaséic issue arising
when developing logical formalisms for capturing tempoealsoningshould for-
mulae in the given logical language be interpreted as rafgrito instants or to
intervals?

The possible natural answers to this question lead to (stf) l#aee reasonable
alternatives, respectively giving rise point-based logicsinterval-based logics
and mixedtwo-sorted logicswhere points and intervals are considered as sepa-
rate sorts on a par and formulae for both sorts are consttuttas exposition is
devoted exclusively to the second alternative. The litgeabn point-based tempo-
ral logics is abundant and will not be discussed here. Thieraa referred to [4]
for a detailed philosophical-logical comparative discoisof both approaches,
while a recent study and technical exploration of the twdesbapproach can be
found in [3].

One of the first applications of interval-based logical fatisms —to the speci-
fication and verification of hardware components — is Prajposl Interval Tem-
poral Logic PITL), introduced by Moszkowski irn_[45]. An extension BfTL,
calledDuration Calculus(DC), featuring the notion of duration of an event over
an interval of time in order to reason about specificationdagign of time-critical
systems, has been actively developed and studied sincarlyé30s [51]. While
DC is one of the most popular and applicable interval-basedabfprmalisms, its
semantics is essentially built on a point-based tempotalogy and thus we will



not discuss it here, but we refer the reader to the recem-sfathe-art references
on it [35,/50].

An important early work in the formal study pfirely interval-basetemporal
ontology and reasoning in Al i§][2], where Allen considers tamily of binary
relations arising between two intervals in a given lineaeoy subsequently called
Allen’s relations Besides these, the natural and important operatia@nopping
an interval into two subintervals, giving rise to the tegnaterval relation ‘chop’,
was proposed and studied in Moszkowski’'s work [45].

The systematidogical study of purely interval-based temporal reasoning
started with the seminal work of Halpern and Shoham [33]H{(weittended jour-
nal version([34]) introducing and analyzing a multi-modaic, that we will call
Halpern-Shoham logi¢HS for short), featuring one modality for each Allen’s re-
lation. Concurrently with [34], Venema introduced and &ddhe even more ex-
pressive interval logic CDT involving binary modal opematassociated with the
ternary relation Chop (C) and its two residual relations @ &j49]. Decidabil-
ity and finite axiomatizability issues for CDT fragments Bdoeen systematically
investigated in[[36].

Halpern and Shoham’s work initiated a stream of active mebean the family
¥ (HS) of fragments oHS, with the main technical issues arising in that research
being expressiveness, decidabjlitydecidability, and complexity of validity and
satisfiability. These will be the main themes of the presgpbsition.

While decidability has been widely assumed to be a standaddeapected
feature of most (point-based) modal and temporal logicdistland used in
computer science, it turned out thandecidabilityis ubiquitous in the realm
of interval-based logics. The first such undecidabilityufesswere obtained for
Propositional Interval Temporal LogRITL by Moszkowski already iri [45]. Fur-
thermore, so sweepingly general undecidability resultaiaidS are given in[[34]
that for a long time it was considered unsuitable for prattapplications and
attracted little interest amongst computer scientistspdrticular, Halpern and
Shoham proved that validity ddS formulae in any class of interval models on
linear orders satisfying very weak conditions, includihg tlasses of all linear
models, all discrete linear models, and all dense linearatsods undecidable.
Moreover, the validities oHS in any of the standard numerical orderings of the
natural numbers, integers, and reals (all being Dedekingptete) are not even
recursively axiomatizable. Subsequently, the techniguesing such undecid-
ability results were sharpened to apply to a multitude ofmetimes surprisingly
simple and inexpressive — fragmentHs, seel[8| 28, 37, 38].

The underlying technical reason for these undecidab#isylts can be found
in the very nature of purely interval-based temporal reamprwhere all atomic
propositions, and therefore all formulae, are interpretedrue or false on every



interval, rather than every point, in the model. Thus, thetlseoretic interpre-
tation of anHS formula in an interval model is a set of abstract intervaisit t
is, a set of pairs of points (ainary relation). Thus,HS formulae translate into
binary relations over the underlying linear orders, andseguiently the validity
(resp., satisfiability) problem fddS translates into the respective problem for the
universal (resp., existential) dyadic fragment of secordkr logic over linear
orders

As we already pointed out, for a long time these strong umiduxiity results
have discouraged both search for practical applicatiodSanther theoretical re-
search on purely interval-based temporal logics. Mearaylséveral semantic
modifications or restrictions, essentially reducing thterval-based semantics to
a point-based one, have been proposed to remedy the problérobaain de-
cidable systems. As an example, already.in [45] Moszkowls&ived that the
decidability of PITL can be recovered by constraining atomic propositions to be
point-wise and defining truth of an interval as truth of itsial point (thelocality
principle). The bleak picture started lightening up in the last fewrgegith the
discovery of several rather non-trivial cases of deciddtdgments ofHS; see
[16,[18,[23) 43] for some recent accounts and referencesdu@llg, it became
evident that the tradefibbetween expressiveness and computatiofiat@ability
in the family 7 (HS) is rather subtle and sometimes unpredictable, with the bor
der between decidability and undecidability cutting riglstoss the core of that
family.

The study and classification of decidable and undecidaatgrients oHS has
also invoked systematic and comparative analysis of thgiressivenes®©n the
one hand, that line of research has led to several correspordesults between
fragments oHS and natural fragments &O; on the other hand, it motivated the
classification of the family=(HS) with respect to expressiveness. By systematic
use of bisimulations between interval models, we have kskedal a complete set
of inter-definability equations between the modal opesatdHS, thus obtaining
a complete classification diS fragments with respect to expressiveness [29].
Using that result, we have found that there are exactly 13pressively diferent
such fragments out of thé2= 4096 subsets of modal operatordHs.

Finally, the strive for obtaining even more expressive,detidable interval
logics has naturally led to the recently-initiated studygofntitativeextensions
of HS fragments withmetric constraint®n the lengths of intervals, which will be
briefly discussed as well.

In this paper we mainly discuss the progress in the field @ruatl temporal
logics over the past 10 years with respect to the topics anelg@ments in which
we have been directly involved. It is not a survey but ratherdlers’ impressions
of a long journey, so we make no claim of being all-inclusive@mprehensive.



2 Preliminaries

2.1 Intervals and interval structures

Given a strict partial orderin® = (D, <), aninterval in D is an ordered pair
[do, d1] such thatdy, d; € D anddy < d;. A pointd belongs to an intervdldo, d]

if dp < d < d;. If dy < dy, then [do,d;] is called astrict, or proper, interval;
otherwise, it is called point interval The set of all intervals i, including both
strict and point intervals, is usually denoted I§»)*, while the set of all strict
intervals is denoted b¥(D)". By I(D) we will denote either of these. Finally, we
call a pair{D, I(D)) aninterval structure

2.2 Linear orders and interval structures

All interval structures considered here will be assumedetbriear, that is, every
two points in it are comparable. This restriction can usubé relaxed without
essential complications to partial orderings with linear interval property that
is, partial orderings in which every interval is linear. Eés the formal definition
in first-order logic:

YXVY(X <Y > VZVH(X<ZL < YAX< <Y > <D VZi =2V 2 <Z)),

In the figure below an interval structure with the linear it property is given
on the left and an interval structure violating that propéstgiven on the right.

—eo
Definition 1. A linear order, and the associated interval structure, iexk

e finite, if it has finitely many points;

e unbounded abover to right (resp.,belowor to left), if every point has a
successor (resp., predecessor);

e denseif between every pair of distinct points there exists aapgvint;

e discrete if every point with a successgipredecessor has an immediate
successof predecessor;

e Dedekind completeif every non-empty and bounded above set of points

has a least upper bound.

Besides interval logics interpreted in interval structurem the above classes,
we will consider interval logics interpreted in single intal structures over the
natural orderings of the numerical s@tsZ, Q, andR.



2.3 Allen’s interval relations

Depicted in Table]l (first two columns) are all possible byrr@lations between
two strict intervals on a linear order, known as Allen’s telas. Besides the
identity relationequal(=), these are (in Allen’s original terminologydefore(<),
meetqm), overlaps(0), finisheq f), during (d), starts(s), plus their inversekater
(>), met-by(mi), overlapped-by(oi), finished-by(fi), contains(di), started-by
(si). These 13 relations amautually exclusiveand jointly exhaustive meaning
that exactly one Allen’s relation holds between any givein pestrict intervals.

Each Allen’s relation gives rise to a corresponding unaryglahoperator with
Kripke semantics over that relation.

Remark 1. In [34], Halpern and Shoham have chosen #eatent notation for
Allen’s relations from the one used by Allen. For the sakelarfity, in Table[1
we briefly compare the two notations. Note that the semaatitise logicHS in
Halpern and Shoham’s paper is defined including point iraés\vout the relations
corresponding to the modal operatorsie§ are neither mutually exclusive nor
jointly exhaustive there. As an example, in the original &etics ofHS, both
relationsoverlapsand meetshold between two intervals, b] and[b, c] with a <

b < c; on the other hand, the interva)a, b] and|c, ¢, with b < c, are not related
by any of Allen’s relation.

While [34] adoptsnon-strictsemantics, with point intervals included in the
interval structure, in this paper we mainly focus on #tect semantics, where
these are excluded. This choice conforms to Allen’s definibf interval [2] and
it has at least two strong motivations. First, a number ofeggntation problems
arise when the non-strict semantics is adopted, due to #szpce of point inter-
vals, as pointed out in[2]. Second, when point intervalsrackided, there seems
to be no good definition for all interval relations that makiesm both pairwise
disjoint and jointly exhaustive (see the above remark). i@ndther hand, while
admitting point intervals in the semantics usually streegs the expressiveness
of the modal languages, all known results about decidglalid undecidability
are invariant with respect to the inclusion or exclusion@hpintervals.

An approach avoiding the problems arising in the non-sg@nantics was
proposed in[[B], where both sorts of points and intervalsiterival structures are
considered on a par, with all natural intra-sort and intet-gelations arising in
the two-sorted universe and the associated with them maeaators.

2.4 Syntax and semantics of Halpern-Shoham'’s logidS

The language dflS includes a set of propositional letteft, the classical propo-
sitional connectives: andV (all others, including the propositional constamts



Interval’s relations Allen’s notation HS notation
‘*—“ equals{=}
H——— | before{<}/ after {>} (L) /(L) (Laten)
*% meetgm} / met-by{mi} (A (A) (After)
i % overlaps{o} / overlapped-byoi} | (O)/(O) (Overlap$
i % finished-by{ fi} / finishes{ f} (E)/ (E) (Endg
i A i contains{di} / during {d} (D) / (D) (During)
% 3 started-by(si} / starts{s} (By/ (B) (Beging

Table 1: Relations between pairs of strict intervals.

and L, are assumed definable as usual), and a familgtefval temporal modal
operators (modalitiespf the form(X), one for each Allen’s relation. Formulae
are defined by the following grammar:

pu=ploeleVel (X

An interval modelis a pairM=(D, V), whereV : I(D) — 2™ is alabeling
assigning to each interval a set of atomic propositionsidensd true at it.

Thetruth of a formula over a given intervad, b] in an interval model Ms
defined below by structural induction on formulae. The dabéniapplies both to
the strict and the non-strict semantics; however, whentpaiervals are involved
some of Allen’s relations and the respective diamond opesdtivialize.

e M,[a b] + piff pe V([a b]), for all p e AP;
e M,[a b] -y iffitis not the case tha¥l, [a, b] I+ y;
e M,[a,b] oV yiff M,[a,b] ¢ orM,[ab] Iry;

e M,[a b] r (X)y iff there exists an intervat][d] such that & b] Ry [c, d],
andM, [c,d] ~ ¢, whereRy is the binary interval relation corresponding to
the modal operatafX) (Table[1).

More precisely, the semantics BiS is given via the following clauses for the
modalities, where referring to an interval p] automatically assumes that< b
in the case of strict semantics aag b in the non-strict one.



e M, [dy, di] IF (A)g iff M, [dy, d;] IF ¢ for somed;;

e M,[do, di] I (L)g iff M, [dy, d3] + ¢ for somed,, d; such thatd; < d;
e M, [dy, di] IF (B)g iff M, [do, dy] IF ¢ for somed, such that, < d;

o M, [dy, di] IF (E)gp iff M, [d,, d1] IF ¢ for somed, such that, < dy;

e M,[do, di] + (D)g iff M, [dy, d3] + ¢ for somed,, d; such thad, < d, and
d; < dy;

e M,[do,di] F (O)y iff M, [dy, d3] I ¢ for somed,, d; such thatdy < d, <
d]_ < d3,

o M, [do, ch] IF (A)g iff M, [dy, dg] - ¢ for somed,;

e M,[dy,di] I (Dcp iff M, [dy, d3] I+ ¢ for somed,, d; such thatds < dy;
o M,[do, dh] IF (B)g iff M, [do, dy] - ¢ for somed, such thatl, > d;

e M,[dy,di] I (E)cp iff M, [dy, di] I ¢ for somed, such that, < dy;

e M,[dy,di] - <5)¢ iff M, [dy, d3] I+ ¢ for somed,, d; such thad, < dy and
dl < d3;

o M,[do,d1] (O iff M, [dy, ds] I ¢ for somed,, ds such thatd, < dg <
d3 < dl.

For each of the above-defined diamond modalities, the quureing box modal-
ity is defined as a dual, e.gAJy = —=(A)—e.

Finally, when the non-strict semantics is assumed, it ignahto consider an
additionalmodal constant for point intervalslenotedr, with the following truth
definition:

o M,[do, ci] - 7 iff do= .

Validity and satisfiabilityare defined as usual, that is, a formylaf HS is
satisfiableif there exists an interval modé¥ and an interval 4, b] such that
M,[a,b] I+ ¢; ¢ is valid, denoted= ¢, if it is true on every interval in every
interval model. Two formulae andy areequivalentdenotedy = ¢, if E ¢ & .



2.5 Fragments ofHS

With every subseX = {(Xy),..., (Xs)} of the modal operators ¢fS we associate
thefragmentFy of HS denotedX, X, . . . Xy, with formulae built on the same set of
propositional lettersAP, but only using modal operators frafh The presence of
the superscript denotes that the modal constaris added, too. For exampleA
denotes the fragment involving the modalit{@g and(A) only, whileAA” denotes
the fragment involvingA), (A), andr. For any given fragment = X; X, ... Xy
and a modal operat@X), we write(X) € F if (X) € {(X1),...,{Xk)}. For any
given pair of fragment$; and¥,, we write¥; C 7, if (X) € F1 implies(X) € 7>,
for every modal operatqix).

3 Expressiveness

The study and comparative analysis of the expressivenessen¥al logics has
been a major research direction in the area. In particllamatural and important
problems arise to identify the mutual definabilities betwéee modal operators
of the logicHS and to classify the fragments BiS with respect to their expres-
siveness. We will discuss these problems here. In partionawill present the
complete classification of the fragmentsHs with respect to their expressiveness
in the strict semantics over the class of all linear ordeysidentifying a sound
and complete set ahter-definability equationbetween the modal operators of
HS, summarizing the results presentedin|[29].

3.1 Expressiveness dflS modalities: some examples

Due to their interval-based interpretation, the modal afmes inHS are rather
more expressive than what meets the eye. We will only givaugleoof testifying
examples here:

> Using the modalityD) corresponding to the sub-interval relation one can
express non-trivial combinatorial relationships betweedth and depth of an
interval, of the type:

d(n)
A<D>(pi A A<D>ﬂpj] - (D)"T

i=1 j#i

for a large enough(n).
Also, using(D) one can express quite special properties of the models, e.g.
the formula
(DXD)T A [D](D)T — (DXD)T A(D)[D]1)



has neither discrete nor dense models (in the strict seasynbut is satisfiable
e.g., in the Cantor space over

> As proved in [31] the fragmemA is suficiently expressive to define all
important classes of liner orders mentioned in he previeaian, for instance:
e The axioms (SPN{®"

(AXAYP — (AXAXAIP) & (KA[AIp — (AXAIAIP)
and its inverse (SPNE (with (A) and (A) swapped) define the class of
densestructures, extended with the 2-element linear ordering
(which cannot be separated in the languagamy.

e The axioms (SPN{")
[AI(PATAI=PATATP) — [AITAKAY((A=PATAITAIP) v (AT A[A[A] L)),
and its inverse (SPNt')

define the class dafiscretestructures.

e The axiom (SPNE)
(AXAATP A (AAI-[Alp — (AAA] [AlpA [A] (A)- [A] p)

defines the class @edekind completstructures.

3.2 Inter-definabilities betweenHS modalities

Some of theHS modalities are definable in terms of others and for each of the
strict and non-strict semantics, we can identify minimalginents that are ex-
pressive enough to define all other operators. For instance:

e In the strict semantics, the six modalitigs), (B), (E), (A), (B), (E) sufice
to express all others, as shown by the following equalid3: [

(D¢ = (AA)e, L)y = (A)(A)g,
(D)¢ = (BXE)¢, (D)¢ = (BXE)e,
(O)p = (EXB)o, (O)¢ = (B)E)e.

e In the non-strict semantics, the four modaliti&, (E), (B), (E) sufice to



express all others, as shown by the following equalitie$: [48

(Ayg = ([E]1L A (¢ V (B)g)) V(EX[E]L A (¢ V (B)p)),
(Ao = ([BlL A (¢ V (E)p)) V (B)[B]L A (¢ V (E)p))
(Lyp = (AKE)T A (A),

(L) = (AY(B)T A (A)g),

(D¢ = (BXE)e,

(D) = (BXE)e,

(O)p = (E)(E)T A (B)y),

(O)¢ = (B)((B)T A (E)p).

Also, the modal constantis definable in terms ofB) and(E), respectively
as B]L and [E]L.

Furthermore, the presence ofn the language readily embeds the strict se-
mantics into the non-strict one by means of the translation:

e 7(p) = p, for eachp € AP;
o 7(=¢) = ~7(¢);

o (¢ V) =1() vV T(¥);
o 7({X) ¢) = (X) (=7 A 7(9)), for each modality of the language.

3.3 Comparing the expressiveness of fragments &fS

Now, we introduce some formal notions used for comparingipressiveness of
logical languages, adapted to fragmentsist

Definition 2. A modal operatoxX) of HS is definablein an HS fragment¥,
denoted(X) <« F, if (X)p = ¢ for some formulay = y(p) of ¥, for any fixed
propositional variable p. In such a case, the equivale(€g = v is called an
inter-definability equation fo¢X) in 7.

Let 71, and¥, be any pair of fragments ¢{S. We say that:

e 7, is at least as expressive &5, denotedf; < %>, if every operatokX) €
¥ is definable inf>.

e 7 is strictly less expressivihan#,, denotedf; < %>, if 1 < ¥, but not
Fo < F1.



e F1 and¥, areequally expressivéor, expressively equivalentenotedr; =
Fo, If F1 < FrandF, < F7.

e F1 and¥, areexpressively incomparahldenotedr; # ¥, if neitherf; <
Fo NnorF, < F1.

In order to show tha¥#; < %>, it suffices to prove that every modality &
is definable inF>, while in order to show thaf; £ F>, we must show that some
modality in#7 is not definable .

To show non-definability of a given modal operator in a giveagient, we
use a standard technique in modal logic, based on the ndtibisionulationand
the invariance of modal formulae with respect to bisimolasi (see, e.g/, [5]). Let
¥ be anHS fragment. An¥ -bisimulation between two interval modeld =
{I(D), V) andM’ = (I(D"), V') over AP is a relationZ c I(D) x I(D’) satisfying
the following properties:

e local condition Z-related intervals satisfy the same propositional letters
overAP;

e forward condition if ([a,b],[&,b’]) € Z and (Ja, b], [c,d]) € Ry for some
(X) € F, then there existsc[,d’] such that (&,b’],[c,d]) € Rx and
([c.d],[c,d]) € Z;

e backward conditionlikewise, but fromM’ to M.

The important property of bisimulations, used here, is Hrat ¥ -bisimulation
preserves the truth @l formulae inF. Thus, in order to prove that an operator
(X) is not definable i, it suffices to construct a pair of interval modéfsand
M’ and an¥ -bisimulation between them, relating a pair of intervas] € M
and &, b’] € M’, such that\, [a, b]  (X)p, while M’, [&, b'] ¥ (X)p.

3.4 Expressiveness classification of the fragments B

As already discussed, in order to classify all fragmentd®fvith respect to their
expressiveness, it fiices to identify all definabilities of modal operatdps) in
fragmentsf, where(X) ¢ ¥. We say that a definabilityX) < F is optimal if
(X) <7 for any fragment¥” such thatF” < 7, a set of definabilities isptimalif

it consists of optimal definabilities. The rest of the sati®devoted to sketching
the proof of the following theorem.

Theorem 1(]29]). The set of inter-definability equations given in Table 2 issh
complete, and optimal.



(Lp =(AXAP (L) <A

Dp = AXAP (D) <A

(©O)p = (EXB)p (O)<BE
©)p=(BXE)p (O)<BE
(D)p = (EXB)p (D)<BE
D)p= EXB)p (D)<BE

(L)p = (B)[EBXE)Pp (L) <BE
(Lyp = (E)[BI(EXB)p | (L)<BE

Table 2: The complete set of inter-definability equations.

Most of the equations in Tablé 2 are known from the seminakwbHalpern
and Shohami [34], while the definabili¢lz) <BE and its symmetric on€|.) <BE,
are first obtained in[[29].

Lemma 1. The set of inter-definability equations given in Tdlle 2 isrgb

Proof. As already noted, we only need to prove the soundness foretventer-
definability equationLyp = (B)[E](B){E)p (the proof for the symmetric one
defining(L) is completely analogous, and thus omitted). First, we ptbedeft-
to-right direction. Suppose th, [a,b] - (L)p for some modeM and interval
[a, b]. This means that there exists an inten@t] such thab < candM, [c,d] I

p (see Figuréll). We exhibit an interval, |y], with y > b such that, for everx
(strictly) in betweera andy, the interval k, y] is such that there exist two poings
andx suchthay >y, x< X <y, and [x,y] satisfiesp. Lety be equal tae. The
interval [a, ], which is started by4, b], is such that for any of its ending intervals,
that is, for any interval of the formx|c|, with a < x, we have thak < ¢c < d
andM, [c,d] - p. As for the other direction, we must show tR&[E](B)(E)p
implies(L)p. To this end, suppose thit, [a, b] I (B)[E](B){E)p for a modelM
and an intervald, b]. Then, there exists an interva,[c], for somec > b such that
[E](B)E)p is true on B, c] (see Figuréll). As a consequence, the interbat][
must satisfB)(E)p, that means that there are two poirtandy such thaty > c,

b < x <y, and [, y] satisfiesp. Sincex > b, thenM, [a, b] I+ (L)p. O

Proving the completeness is the hard task; optimality iabdished together
with it. In the following, we provide a general overview ofetlproof idea. A
detailed sketch of the proof of Theorém 1 is presented_ih §2@] the complete
proof with all technical details can be found in_[28].

For eachHS operator X), we show thatX) is not definable in any fragment
of HS that does not contaitX) and does not contain as definable (according to
Table[2) all operators of some of the fragments in wkiXhis definable (accord-
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Figure 1:(Lyp = (B)[E](B)XE)p.

ing to Tablé 2). More formally, for eadHS operator X), the proof consists of the
following steps:

1. Using TabléR, identify all fragmen$§ such thatX) < 7.

2. Produce the lisMy, ..., My, of all c-maximal fragments oHS that con-
tain neither the operatdiX) nor any of the fragment#; identified by the
previous step;

3. For each fragment;, fori € {1,..., m}, provide a bisimulation foM; that
is not a bisimulation foi.

3.5 Expressiveness classification: summary

We have used the equations in Tdble 2 as the basis of a simpleuter program
that identifies and counts all expressivelfteiient fragments aflS with respect
to the strict semantics on the class of all linear orders.ngg¢hat program, we
have established that there are exactly 1347 expressiuédyeht such fragments
of HS, out of the 2? = 4096 subsets diS modalities.

We emphasize that not all inter-definability equationgtish Tablé 2, neither
the resulting classification, apply in the non-strict setitan For instance, as
shown in [48] that in the non-strict semanti@ (resp.(A)) can be defined iBE
(resp.BE). Moreover, the completeness of the set of equations irel&bked not
hold any longer if the semantics is restricted to specifiss#a of linear orders.
For instance, in discrete linear ordef&) can be defined iBE as follows:(Ayp =
¢(P)V(E)p(p), wherey(p) is a shorthand forif] L A(B) ([EI[E] L ACE)(pV(B)p));
likewise, (A) is definable iPBE. As another example, in dense linear ordéks,
can be defined iDO as(L)p = (O)({O) T A[O]({OypVv(D)pVv(D)O)p)); likewise,
(L) is definable irDO.



4 Deciding Satisfiability

Perhaps the currently most challenging, still open prollethe area of interval
temporal logics is to obtain a complete classification offthgments oHS with
respect to decidabilifyndecidability of their satisfiability problem. In partiew,
we are interested in identifying all maximally expressivet, decidable such frag-
ments. In this section, we outline the decidabijlitydecidability landscape in the
family of the fragments oHS and discuss the general techniques, used so far for
proving decidability and undecidability of satisfiabiliiyr these fragments.

A complete picture of the state of the art about the classificaof HS
fragments with respect to the satisfiability problem can dendl in [28, Ap-
pendix A]. Besides, a collection of web tools is available the website
http://itl.dimi.uniud.it/content/logic-hs, that can be used to iden-
tify the status (decidablendecidabl@inknown yet) of the satisfiability problem
of any specific fragment, over several classes of linearrsr@#, dense, discrete,
and finite) in both strict and non-strict semantics, as weltcacompare relative
expressive power of any pair bfS fragments.

4.1 Overview of decidability methods and results

The early decidability results about interval logics weasdd on radical restric-
tions of the interval-based semantics, essentially redyitito a point-based one.
Such restrictions includecality, according to which all atomic propositions are
evaluated point-wise, meaning that their truth over anruailes defined as truth
at its initial point, andhomogeneityaccording to which truth of a formula over
an interval implies truth of that formula over every subemil. By imposing
such constraints, decidability of interval logics can beved by embedding it
into a suitable point-based temporal logic, as'in [45, 48gciDability can also
be achieved by constraining the class of temporal strustower which the logic
is interpreted. This is the case widiplit-structures where any interval can be
“chopped” in at most one way. The decidability of variougmal logics, includ-
ing HS, interpreted over split-structures, has been proved byeeaibg them into
decidable first-order theories of time granularities [44].

For some simple fragments ofS, like BB and EE, decidability can be ob-
tained immediately and without any semantic restrictignyteans of direct trans-
lation to the point-based semantics and reduction to dbiigaof respective
point-based temporal logics [32]. In any of these logicse ohthe endpoints
of every interval related to the current one remains fixedrahy reducing the
interval-based semantics to the point-based one by magpiny interval of the
generated sub-model to its non-fixed endpoint. Consequeh#dse fragments
can be polynomially translated to the basic temporal logit Wuture and Past
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TL[F, P], thus proving their NP-completeness when interpretederctass of all
linearly ordered sets or on any §f Z, Q, andR [30,/32].

We note that most of the fragmentsta$ are sificiently expressive to force
infinity of an interval structure, and therefore the staddapproach to proving
decidability in modal logic based on recursive axiomat@aplus finite model
property is not applicable here. Automata-based methaasede.g. on Blchi
and Rabin theorems (implying decidability of MSO theoriésarious linear or-
ders and trees), do not apply either, because, as mentiamker,esatisfiability
and validity in interval logics areyadic not monadic, second-order properties.
Thus, new approaches for obtaining decidability resultsrigments oHS with
unrestricted and genuinely interval-based semanticsreducible to point-based
one, were needed.

The first such decidability results are obtained in the e20§0s by means of
suitabletranslationsto other logics, already known to be decidable over linear or
ders. Such a translation is constructed for the fragm@@nglso known a®ropo-
sitional Neighborhood Logi¢PNL) [31] into the two-variable fragment of first-
order logic with uninterpreted binary relations over line@mainsFO?[=, <].
Thus, decidability, in NEXPTIME, oPNL is obtained in[[17, 18] by reduction
to the NEXPTIME-complete decidability result f60?[=, <] due to Otto [47].
In fact, the satisfiability problem faPNL turns out to be NEXPTIME-complete,
too, by translation fronFO?[=, <] back toPNL” in the non-strict semantics, thus
implying that the latter logical language is expressivajyigalent to the former.
Otto’s results, and consequently the decidabilityPdfL, apply not only to the
class of all linear orders, but also to some natural subseksf it, such as the
class of all finite linear orders, the class of all well-foeddinear orders, any.

The so far most fruitful and widely applicable method foraibing decidabil-
ity results and decision procedures for fragment$i8fnot reducible to point-
based logics has been the methodsemantic tableauoften combined with a
(bounded) pseudo-model propertyhe method of semantic tableau consists in
developing sound, complete, and terminating procedurdsliteau-based search
of a finite, satisfying the input formula “pseudo-model”.eBdo-models are ab-
stract finite Hintikka-type structures that can be obtaifiech (possibly infinite)
interval structures by filtration-like constructions, sifie to the fragment under
consideration, that preserve truth of formulae from tregfnent, so that a formula
is satisfiable if and only if there is a pseudo-model thas§ias it.

This method has been successfully applied for instancetisalgmenD, with
modality associated with the (strict) sub-interval relatiinterpreted over dense
linear orderings([14, 15, 16]. In Figure 2 we illustrate aitgb pseudo-model
(on the left) for the fragmend that corresponds to an interval structure (on the
right) over the ordering of the rationald The irreflexive nodes of this pseudo-
model represent single intervals while the reflexive onpsagent infinite clusters
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Figure 2: An example of a finite pseudo-model fb(on the left) and its corre-
sponding intervab-structure (on the right) on the ordering of the ratior@ls

(layers, or ‘cushions’) of (strict) sub-intervals satisiy the same subformulae of
the input formula.

The method is subsequently extended to the (maximal ddeid&lagment
BBDDLL (and, by symmetnEEDDLL), interpreted ove® [40,41].

In order to establish upper complexity bounds, or sometieves to ensure
termination of the tableau method, a bound of the size of #tisfging pseudo-
model has to be established. A method for obtaining pseudldela of bounded
size consists in removing “redundant” points and interfias an initial finite,
or finitely presentable (e.g. periodic) pseudo-model. Ysableau-based method
and pseudo-model size-reducing techniques, the earlietiomed decidability
result forPNL is independently re-established and extended in [20, J1yn2tere
optimal tableau-based decision procedure$fdL and its future fragmerRPNL
are developed for severalfférent classes of orderings. More recent work extends
these decidability results taBBL [24,[26] (and tcAEEL by symmetry) and, on
finite linear orderings, tABBA (and, by symmetry, taAEEA) [42].

4.2 Overview of undecidability methods and results

The first undecidability results fafS validity and satisfiability come from the
original work of Halpern and Shoham [34] and cover almostédiresting classes
of linearly ordered sets:

Theorem 2 ([34]). The validity problem foHS is undecidable (r.e. hard) over
any class of linear orderings that contains at least onedmerdering with an
infinite ascending or descending sequence of points.

In particular, this result applies to all natural unbountet-flows such a#l,
Z, Q, andR. The proof is by reduction from the non-halting problem farrihg
machines, involving a quite ingenious encoding of Turinghiae configurations
into unbounded interval structures.

Under a natural additional assumption, Halpern and Shohaw shat the
undecidability can be much worse:



Theorem 3 ([34]). The validity inHS over any class of Dedekind complete or-
dered structures containing at least one with an infinitedgending sequence is
I13-hard.

In particular, the validity inHS over any of the orderings af, Z, andR
is not recursively axiomatizable. The proof is by reductfoom the problem
of existence of a computation of a given non-deterministiarig machine that
enters the initial state infinitely often to testing satisiligy in HS.

Later, Lodaya proved that the rather small fragn@tis suficiently expres-
sive to carry out Halpern and Shoham'’s idea of encoding Gunachine config-
urations and consequently, to yield undecidability [37].

More recently, a number of oth&fS fragments have been proved undecid-
able [8,9]11] 12, 28, 38, 39] by means of suitable reductiom known unde-
cidable problems. The most widely applied such reducti@ve lbeen constructed
from several variants of thtding problem theNxN tiling problem [&], the octant
tiling problem [8)9] 11], and the finite tiling problem [12].

In the following, we outline the idea underlying the redoatfrom the octant
tiling problem, which is the problem of establishing whethegiven finite set of
tile types7 = {t,...,t} can tile the 2nd octant of the integer plafe= {(i, j) :

I, e NAO < i < j}. This problem can be easily related to interval structures
because points i@ are naturally interpretable as intervalsi¥n

Now, the technical details. For every tile typec 7, let right(t;), left(t;),
up(t), anddowr(t;) be the colors of the corresponding sideg;ofTo solve the
problem, one must find a function: O — 7 such that

right(f(n,m)) = left(f(n+ 1, m))

and
up(f(n,m)) = down(f(n, m+ 1)).

The undecidability of the tiling problem fap is proved in[6] from that of the
tiling problem forZ x Z (known to be co-r.e. complete by a reduction from the
halting problem of a Turing machine), through the tiling fpiem forN x N, by
application of Konig’s Lemma.

Given an instance of the octant tiling problem OTR(where7 is the finite
set of tiles types, a reduction from OTP) to the satisfiability problem for a logic
L consists of the construction of a formug, parametric ir/” and belonging to
the language aof’, such thatdbs is satisfiable if and only i tilesO.

Let7 = {t,...,t} be an arbitrary finite set of tile types. We assume the set
of atomic propositionsAP to be finite (but arbitrary) and to contain, inter alia, the
following propositional variablesy, =, Id, tile, t4, ..., ty, andup_rel. The general
idea of the encoding is the following. First, for any giyé8 fragment, and any
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Figure 3: The encoding of the octant tiling problem: a) theesaan representa-
tion, and b) the corresponding interval representation.

starting interval & b], we consider a (possibly infinite) set of intervgs,,; that
can be ‘reached’ by means of the modalities/obtarting from p,b]. The set
Glan Can be viewed as the universe of intervals on which we workenThve
exploit the modalities of” to define aglobal modal operatofG] such that (5]¢
holds over the interval b] if and only if ¢ holds over each interval i@,

The proof is based on the following main steps:

e definition of theu-chairnt we set our framework by forcing the existence
of a unique infinite chain ob-intervals (-chain, for short) on the linear
ordering. They will be used as cells to arrange the tiling. alg® have to
provide a way to step from am-interval to its immediate successor in the
chain;

¢ definition of theld-chain the octant is encoded by means of a unique infi-
nite sequence db-intervals (d-chain, for short), each of them representing
arow of the octant. Aid-interval is composed by a sequenceohtervals;
eachu-interval is used either to represent a part of the plane separate
two rows. In the former case it is labelled wiile, while in the latter case
it is labelled withsx;

e encoding of theabove-neighbornd right-neighborrelations, connecting
each tile in the octant with, respectively, the one immesyadbove it and
the one at its right, if any. The encoding of such relationstie done
in such a way that the followingommutativity propertyolds: given any
twortile-intervals|c, d] and[e, f], if there exists aile-interval[d,, ], such
that [c, d] is right-connected t¢d,, e;] and[dy, €] is above-connected to
[e, f], then there also existstde-interval [dy, €] such thafc, d] is above-
connected tgd,, &] and[d,, &] is right-connected tde, f].

A generic encoding of the octant tiling problem is depicted&igure3.



tij = i-thtile of the j-th Id-interval
Idj =i-thld-interval
a) Cartesian representation b/f = backvxéa_rd forward Id-interval
e =up_rel’-interval
o = up_rel-interval
4th level Qd4) t]_,‘4 t214 t314 t4,4
e | o
3rd level (d3) '[1,‘3 '[2,‘3 t33
2nd level (dy) '[1(152 too
1stlevel (d1) t11
b) Interval representation
Idy, b Id,, f Id3, b Idg, f
@ €
€
last last last last
* =t1,1 x lip ilpp @ =t3,3 tog ifag | x T1g tog t34 =t4,4 * .

Figure 4: Theabove-neighborelation encoded in the fragmefo.

The above-described framework is basically the same fathallreductions
from variants of the tiling problem. The mainfiirence, and the mainfticulty
of the reduction, comes from the very limited expressiverdshe fragment un-
der consideration (a number of minimal undecidat®fragments featuring one
or two modalities have been identified). For eadfiedent fragment, specific tech-
nical tricks are needed, making use of additional propwsdi letters besides the
above-mentioned ones.

As an example, in Figurel 4, we show the encoding of the abeighbor
relation for the OTPY) in the HS fragmentAO, whose modalities correspond to
Allen’s relationsmeetsandoverlaps[9].

Lastly, strong and rather unexpected undecidability te$idve been obtained
in [39] and [38] for theHS fragmentsBD and D, respectively, by means of a
reduction from the halting problem for two-counter automat



5 Metric and spatial extensions

Both interval structures and interval logics are amenabl@atious natural exten-
sions. In this section, we briefly discuss two of them:

1. metric interval logics based on interval structures over linear orders en-
dowed with distance between points, and thus with a natwt@bm of in-
terval length and with language extended with arithmetic constraints on
interval length;

2. spatial interval logicsextending the one-dimensional interval structures to
two- and more- dimensional spatial structures.

5.1 Metric interval temporal logics

The idea of adding metric features to point-based tempomt$ has been ex-
plored in several ways, but metric extensions of purelyrvaiebased logics have
only been developed and investigated quite recently, seng&inly on interval
structures over the natural numbers.

In [19], Bresolin et al. introduce and study a family of metextensions of
the HS fragmentA, also known aRRightPNL (RPNL for short), with a special
attention to decidability and expressive completenessess Such a work has
been subsequently extended to the family of metric extessibthe fullPNL [7,
10]. The most expressive language in that family, calesdric PNL (MPNL, for
short) features a set of special atomic propositions reptex) integer constraints
(equalities and inequalities) on the length of the intesv@ler which they are
evaluated. In[[[7,_ 10]MPNL has been proved to be decidable in 2NEXPTIME,
and EXPSPACE-hard and particularly suitable for dealintpwietric constraints,
thus emerging as a viable alternative to existing logicateays for quantitative
temporal reasoning.

In [22], decidability ofMPNL has been extended to the class of interval struc-
tures over finite linear orders andZo Moreover, an optimal decision procedure
running in EXPSPACE is provided, thus proving that the §atidlity problem for
MPNL over finite linear orders (resp, Z) is EXPSPACE-complete.

5.2 Spatial generalization of metric interval logics

The transfer of formalisms, techniques, and results froentéimporal context to
the spatial one is quite common in computer science. Howév@tmost) never
comes for free: it usually involves a blow up in complexityat can possibly yield
undecidability.



The main goal of spatial formal systems is to capture comsense knowl-
edge about space and to provide a calculus of spatial intaymalnformation
about spatial objects may concern their shape and sizeidfaade between them,
their topological and directional relations. Dependingtlo& considered class of
spatial relations, we can distinguish betweepologicaland directional spatial
reasoning. While topological relations between pairs atigpobjects (viewed as
sets of points) are preserved under translation, scalimgratation, directional
relations depend on the relative spatial position of thectisj A comprehensive
and up-to-date survey on topological, directional, and lmoed constraint sys-
tems and relations can be found(in[[1] 27].

In [13], Bresolin et al. investigate a two-dimensional aatiof metricRPNL,
called the Directional Area CalculuBAC). DAC allows one to reason with ba-
sic shapes, such as lines, points, and rectangles, dmattigations, and (a weak
form of) areas. It features two modal operat@smewnhere to the normdsome-
where to the eastMoreover, by means of speciatomic propositionsit makes
it possible to constrain the length of the horizontal (resprtical) projections
of objects. Despite its simplicitypAC allows one to express meaningful spatial
properties. As an example, combining horizontal and vartength constraints,
conditions like the area of the current object is less than 4 square métzas
be expressed IDAC. The satisfiability problem foDAC has been proved to
be decidable in 2NEXPTIME_[13]. In the same paper, the astladso study a
proper fragment oDAC, called WealDAC (WDAC), which is expressive enough
to capture meaningful qualitative and quantitative spatiaperties. Decidability
of WDAC is proved by a decision procedure whose complexity is extaléy
lower than that foDAC. Optimality is an open issue for boBAC andWDAC.

6 Concluding remarks: the roads ahead

Despite the very substantial progress over the past 10 yetrs research area of
interval temporal logics, the field is still very rich withtaresting challenges and
unexplored paths. Here we will outline our present view @ tiain immediate
and long-term challenges in the field.

The main items in the current research agenda are:
e extending the expressiveness classification result forfahely of frag-

ments oHS from [29] to the non-strict semantics and to the most impdrta
classes of linear orders (e.qg., finite, discrete, densg; etc

e Obtaining a complete classification of the familyld$ fragments with re-
spect to decidabilityandecidability of their satisfiability problem, first on



the class of all interval structures over linear orders, taet on the impor-
tant subclasses of it. Currently, more than 90% of thesenfeays have al-
ready been classified (for a summary of the current stateeafiéissification,
see the web pagettps://itl.dimi.uniud.it/content/logic-hs),
but the remaining cases are expected to be the mitsiLdii to settle;

e extending the study of metric extensions of interval logrcsn PNL to
other important fragments &fS, and over other important metrizable linear
orders, notably.

The long-term research perspectives in the field include:

e quest for automata-based techniques for proving decitdabilinterval log-
icS;

¢ development of methods and algorithms for model-checkirfopitely pre-
sentable infinite interval structures, such as ultimatelyqulic ones.

¢ last but not least, identifying and developing major aggilens of interval
logics studied here, that would justify and reward the sosthresearch
investment presented here.
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