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Abstract Decidability and complexity of the satisfiability problerarfthe logics of time
intervals have been extensively studied in the recent y&aen though most interval log-
ics turn out to be undecidable, meaningful exceptions egisth as the logics of temporal
neighborhood and (some of) the logics of the subintervatie. In this paper, we explore
a different path to decidability: instead of restricting thet of modalities or imposing se-
vere semantic restrictions, we take the most expressieevailttemporal logic studied so
far, namely, Venema’s CDT, and we suitably limit the negatitepth of modalities. The
decidability of the satisfiability problem for the resutiifragment, called CDds, over the
class of all linear orders, is proved by embedding it into #-kown decidable quantifier
prefix class of first-order logic, namely, Bernays-Schdirclass. In addition, we show
that CDTgs is in fact NP-complete (Bernays-Schonfinkel class is NEWFH-complete),
and we prove its expressive completeness with respect tgableufragment of Bernays-
Schonfinkel class. Finally, we show that any increase im#gation depth of CDds modal-
ities immediately yields undecidability.

Keywords Interval temporal logic Tableau methodsDecidability- Complexity

1 Introduction

In the recent years, the study of temporal reasoning viavakdased (logical) approaches
has been very intensive. Since the seminal work by HalpedhStoham [18] and Ven-
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ema [33], a series of papers on interval temporal logics kas published, e.g., [5,6,9-11,
23,24,29]. As an effect, the problem of classifying all ‘Umatl”, genuinely interval-based
(that is, all intervals over a linear order are considered, @0 projection principle is ap-
plied [17]) logics with respect to their expressive and catafional power has been exten-
sively studied and almost completely solved.

Propositional interval temporal logics are modal logicgeipreted over linearly- or
partially-ordered sets, whose proposition letters aréuated over intervals instead of over
points. They differ from each other in the number and typeasidrelations between inter-
vals that are captured by their modalities, by the lineaedg over which they are inter-
preted, and by the inclusion or exclusion of point-intesv@htervals with coincident end-
points). In the hierarchy of existing interval temporalitxgbased on their expressive power,
the top element is Venema’s CDT [33], whose language featilmee binary modalities,
corresponding to the three possible ways to place a poihtmegpect to the two endpoints
of a given interval, and a modal constant, that identifiestpioitervals. The second-highest
logic in the hierarchy is Halpern and Shoham’s HS [19], wHeditures one unary modality
for each Allen’s relation between pairs of intervals [1].tBan CDT and in HS, satisfia-
bility turns out to be undecidable, no matters what classnefr orders is considered (all,
discrete, dense, finite, the linear order of natural numtzerd so on) [19].

In the recent years, some fragments of HS with a better caatipntl behavior have
been identified. Meaningful examples include, but are moitéid to, AA (a.k.a. Proposi-
tional Neighborhood Logic, PNL), which features two motlasi for Allen’s relationsneets
andmet by and is decidable over all meaningful classes of linearrsr{& 16]; its exten-
sionAABB [28], that includes modalities for Allen’s relatiorésartsandstarted by and its
mirror imageAAEE, with additional modalities for Allen’s relationinishesand finished
by, which are decidable over the class of finite linear order$ wmdecidable everywhere
else; andBBDDLL (and its mirror imageEEDDLL), with modalities for Allen’s relations
starts started by during, contains before andafter, which is decidable over dense linear
orders [27] and undecidable over finite and (weakly) digcheiear orders (as a matter of
fact, one-modality logic® andD are already undecidable over the classes of finite and
discrete linear orders [23])

The situation with classical first-order logic is somehomifar. Since it has been shown
that satisfiability for the full language is undecidable raaj effort has been made in order
to identify more and more expressive decidable fragmeritkeast three different strategies
have been pursued: (i) limiting the number of variables efldmguage, (i) limiting the type
of formulas allowed by relativizing quantificatiogyarded fragmenjsand (iii) limiting the
structure and the shape of the quantifier prefix.

First-order logics with a restriction on the number of vakés have been already stud-
ied in connection with interval temporal logics. Most ndyatAA has been proved to be
expressively equivalent to the two-variable fragment aftforder logic over linear orders.
Such a fragment of first-order logic has been shown to be NEMEfcomplete over var-
ious classes of linear orders in [30]. Decidability /A over the same classes of orders
immediately follows. Guarded fragments of first-order égee [2] for an introduction)
have been shown to be quite useful to explain the good cortiquogd properties of modal
logics, but, to the best of our knowledge, they have neven lwemsidered in the frame-
work of interval temporal logics. As a matter of fact, magpinterval temporal logics into
guarded fragments of first-order logic would require (i) tls® of a relation in the guards

1 In all these cases, including or excluding point-intervakskes no difference.
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which is (or can be forced to behave as) a linear order, (ii@ast three distinct variables,
(i) uninterpreted predicates which are at least binamg @v) quantifications with Boolean
combinations of atomic formulas as guards. Such require&sreme not met by known de-
cidable guarded fragments of first-order Idgic

In this paper, we explore an original path to decidabilityirterval temporal logics,
which follows the third strategy: we look for meaningful éméal temporal logics that can
be embedded into decidable quantifier prefix classes ofdidgr logics. The decidability
of the latter family of logics does not depend on the shapé®ftjuantifier prefix only, but
also on the number and the arity of predicate and functiorbsysrthat are allowed in the
formulas, and on the presence/absence of equality. Sefferedi decidable classes have
been identified in the literature (a survey on quantifier greffasses of first-order logic can
be found in [4]).

We focus our attention on the prefix vocabulary class idextifiy Bernays and Schon-
finkel in 1928 (a.k.a. Bernays, Schonfinkel, and RamsegctasRamsey proved that decid-
ability is preserved even when equality is included) [4Edbsists of all and only formulas
in prenex form whose quantifier prefix is of the foer; ... 3x,Vy1 ... Vyy and whose ma-
trix may include predicate symbols of any arity (but no fumectsymbols) and, possibly,
equality. It is well known that Bernays-Schonfinkel fragmef first-order logic is expres-
sive enough to model a linear order devoid of specific progeiduch as discreteness or
density. Moreover, it can express simple frame propertiesymonly studied in the interval
temporal logic literature, like, for instance, boundednes

We identify a syntactic fragment of CDT [33], called CBxl whose standard transla-
tion fits into Bernays-Schonfinkel class, by limiting thegagon depth of the modalities to
one, that is, by constraining temporal operators to occtinénscope of at most one nega-
tion. Decidability of CDTgs, over the class of all linear orders, immediately followkem,

a precise characterization of CBJ expressive power is given by showing that it is ex-
pressively complete with respect to a suitable fragmenterhBys and Schonfinkel class.
A decision procedure for CDsE is then obtained by tailoring the non-terminating tableau-
based deduction system for CDT developed in [15] to it. As-@imduct, we prove that the
satisfiability problem for CDgs is NP-complete, in sharp contrast with that of Bernays-
Schonfinkel class, which is NEXPTIME-complete, when iielatsymbols of unbounded
arity are allowed, and PSPACE, when relation symbols havaded arity, e.g., only binary
relations are allowed, as it is the case for interval logiisally, we show that any increase
in the negation depth of COsE modalities immediately yields undecidability.

The paper is structured as follows. In Section 2, we providekground knowledge
about Bernays and Schonfinkel fragment of first-order loigiGSection 3, we define syntax
and semantics of CDsk, and we define its standard translation. Decidability imianiedly
follows from the inclusion of the resulting set of formulasBernays and Schonfinkel class.
Next, in Section 4, we prove the expressive completenesBdgwith respect to a suitable
fragment of such a class. In Section 5, we devise a sound,letenpnd terminating tableau
method for CDRs. Finally, in Section 6, we show that fairly natural extemsi@f CDTgs
do not preserve decidability. An assessment of the work dmepossible future research
directions are given in Section 7.

2 Extended guarded fragments includes loosely guarded fragmwhich allow guards to be more com-
plex than simple atoms [3], and guarded fragments with ttigagguards (in general, transitivity cannot be
expressed as a guarded formula) [31].
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2 Bernays-Sclonfinkel class

Bernays-Schonfinkel prefix vocabulary class, denoted bgréQOss, consists of all and
only those first-order formulas, making use of any relatiegyanbol of any arity, including
equality, that can be put in prenex form by using a quantifiefiyp of the form3xVy,
wherex =x1...X, andy =y ...yn are (possibly empty) vectors of first-order variables. It is
well known that the satisfiability problem for lEQis NEXPTIME-complete [4]. Moreover,
FOgs is closed under conjunction and disjunction, since alldatsfulas can be thought of as
sentences (free variables can be existentially quantified)it is not closed under negation.

To simplify the proofs of the results given in the paper, wigdduce an alternative
definition of FGss via the following abstract grammar:

a:=asglaAa|aVval|3Ixa|-asfor asof the form3x.ag 1)
ag .= A(X) ‘ —\A(X) ‘ [P EWAN E] ‘ a3Vag ‘ dx.as (2)
A(x) ::= any relational symbol of arbitrary arity, including equli 3)

Grammar (1) generates a fragment of first-order logic ctingi®f all and only those for-
mulas where existential quantifiers can occur in the scops ofost one negatiorwhile

any prenex formula of the formx vy 3 can be generated by grammar (1), the converse is not
true, since grammar (1) can generate also formulas whichaine prenex form. However,

it is not difficult to show that any formula generated by graanifl) can be transformed into
an equivalent prenex formula of the correct form, as showthbyollowing proposition.

Proposition 1 Any formula generated by grammét) can be transformed into a prenex
formula of the formaxvy3, with 3 quantifier-free.

Proof Leta be aformula generated by grammar (1). We show that thersexiequivalent
formulat (o) of the required form by structural induction. We start witle set of formulas
generated by the sub-grammar fof, and we show that each of them can be transformed
into a formula of the formdx3, with B quantifier-free. The case in whidh is a relation
or the negation of a relation is trivial. Consider now theeca$ formulasa = a5 A a.
By inductive hypothesist(a3) = 3z8 andt(a%) = 3wp’, for some quantifier-fre@ and
B’. Without loss of generality, we can assumew = 0 (if this is not the case, we can
apply a suitable variable substitution), and tiouis equivalent tadzw(S A B'). The case of
disjunction is similar, and thus omitted. Consider now theecof formulasr = 3x.a5. By
inductive hypothesist (a5) = 3wp, for some quantifier-fre@, with x ¢ w, and thusa is
equivalent todx3wp. Let us consider now an arbitrary formula generated by gran(t).
The only interesting case is the one for the negation of exi&l quantifiers. Letr =
—3x.03. By inductive hypothesist (3x.a3) = Ix3w, for some quantifier-fre@, with x ¢
w. Hencea is equivalent to the formula (in prenex foriviyvw—p. ad

Thanks to the above result, from now on we will assume thatF®ys-formula has been
generated by grammar (1).
3 Decidability of the logic CDTgs over the class of all linear orders

Interval temporal logics are usually interpreted over aditly ordered seéb = (D, <). In
this setting, afntervalonD is an ordered paii;, d;] with d; < d; (we refer to such a case as
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Fig. 1 The ternary relatiothop splitting the intervald;, d;] into the subintervalgd;, di] and|dy,d;].

thenon-strictsemantics, in contrast with thstrict one, that excludes degenerate intervals of
the form[d;, d;]). The set of all intervals of¥ is denoted byi(DD). The variety of all possible
relations between any two intervals has been studied by Allp who identified 12 distinct
binary relations plus the equality relation. Halpern an@t&m modal logic of intervals,
abbreviated HS, can be viewed as the modal logic of Allerlatians as it features one
modality for each such relation. As we already mentioned tiiSs out to be undecidable
over any meaningful class of linear orders [19]. In [33], trmary relatiorchop depicted in
Figure 1, has been taken into consideration. The correspgihary modalityC, together
with the two conjugated modalitie3 (dong andT (to dg, and the modal constamt for
point-intervals define the interval temporal logic CDT. &ncbe easily shown that CDT
subsumes HS (in fact, it is strictly more expressive than, 8y thus it is undecidable
whenever HS is. In [20], Hodkinson et al. systematicallyestigate the three fragments
of CDT with only one binary modality eaclC( D, or T), showing that each of them is
undecidable.

Formulas of CDT are built on a set of proposition lettefs” = {p,q,...}, the Boolean
connectives- andv, the three binary modalitieS, D, andT, and the modal constart by
the following abstract grammar [33]:

¢pu=p|m[-d[dVd[dCo oD [HT4.

The other Boolean connectives can be viewed as suitablé feors, as usual. Similarly,
universal counterparts of the existential modali@e®, andT can be defined by means of
negation in the standard way; CDT has not any special not&icthem.

The semantics of CDT-formulas can be given in terms of cdaen@delsof the form
M = (I(D),V), whereV : o7 & — 2P) is avaluation functionas follows:

— M, [di,dj] I- pif and only if [d;,d;] € V(p),

— M, [di,dj] I mif and only if d; = d,

— M, [di,dj] I =¢ if and only if M, [di, d;] I ¢,

— M, [di,dj] I ¢ v ifand only if M, [d,dj] I ¢ or M, [d;,d;] IF ,

- M [di,dj} I- ¢ Cy if and only if there exists} < di < d; such thatM, [d;,d] I- ¢ and
thatM, [dy, d;] I @,
- M, ,,d,} I+ ¢ D y if and only if there existgl < di such thatM, [d,di] I ¢ and that
M, [dk,dj] IF o,
- M, [d.,d,} I-¢ T ¢ if and only if there existsl, > d; such thatM, [d;,dy] I- ¢ and that
M, [k, di] IF .

The standard translatioris the usual way to express the semantics of a modal or tem-
poral formula in first-order logic. Lep be a CDT-formula and, for every € &7 &2, let us
denote by the same symbplthe corresponding binary relation. The standard tramslati
functionST(¢)[x,y] is defined as follows:

- ST(¢)[X7y} =X<YA ST(¢)[X7y]7
wherex,y are two first-order variables ar®1l" (¢)[x, Y] is inductively defined as follows:

- ST’(p) [va] = p(xvy)a
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yl =-ST(¢)xY],

V)XYl =ST(d)[xy VST ()XYl
CyY)[xyl=Iz(x<z<yAST($)[x,ZAST(¥)[zy]),
)XYl = 32z2<XAST(9)[zX AST(¥)[2,Y]),

- ST($T Y)[x,yl =32y < zAST(9)[y,Z AST(¢)[x,2)).

As a general rule, the standard translation makes it pestilyeduce the satisfiability prob-
lem for a modal logic to a first-order satisfiability probleanmodal formulap is satisfiable

if and only if its standard translation, evaluated on a papantsx,y, is (first-order) sat-
isfiable. Now, we ask ourselves the following question: Wh@DT-formulas are such that
their satisfiability problem can be reduced to a first-ordgis§iability problem in Bernays-
Schonfinkel class? To answer this question, we define anaabgframmar that generates
only CDT-formulas suitably limited in the negation depthnabdalities:

¢=0¢3|0ND |9V |9Co|9DP|dT9 | 4
—(¢3C¢3) | ~(¢3D ¢3) | ~(¢3T ¢3)
=1 p[-p| P3NP | d3V P3| ¢sC o3| 9D 3| @3 T ¢5 (5)

The above grammar generates a fragment of CDT, that we cdlkgRvhich consists
of all and only those formulas where the modaliti@<, andT can occur in the scope of
at most one negationThe next lemma shows that the above-defined standard atems|
maps CDBs-formulas into Bernays-Schonfinkel class. It is easy takhbat the syntactic
limitations of CDTgs do not prevent it from expressing all HS modalities (it onbnstrains
the way in which they can be composed). As an exam{Be¢ is captured byp C -1t
Similar encodings can be given for the other HS modaliti€$.[3

Lemma 1 For everyCDTgs-formula ¢, its standard translation S )[x,y] is an FOgs-
formula, with free variables x and y.

Proof The proof is by structural induction. We start with the sefayfnulas generated by
the sub-grammar faps, and we show that the standard translation of each of theswifas
belongs to the sub-grammar fag and it has¢,y as its free variables.

As for the base case, l¢t; = p, for some proposition lettgs. By definition,ST(p)[X, Y]
=X < YA p(xYy); the thesis immediately follows. The cases, i1, and -t are similar,
and thus omitted. As for the case of conjunction,diet= ¢ A ¢7. By definition, ST(¢; A

DXy =x<yAST(94)[x Y] AST (¢5)[x,y]. By inductive hypothesis, botBT(¢})[x,y]
andST(¢4)[x,y], and thusST (¢5)[x,y] andST (¢5)[x,y], belong to the sub-grammar for
a5 and havex,y as their free variables. It immediately follows tH&E( ¢4 A ¢5)[x,y] has the
required form. The case of disjunction is similar, and thomtted.

Now, let¢s = ¢C¢Z. By definition,ST(¢,C dJ)[x,y] =X <yATzZ(x< z<yAST (¢2)
[X,Zl AST (¢5)[z,y]). By inductive hypothesisST (¢4)[x, 7] is anaz-formula withx, zas its
free variables, an&T (¢4)[zy] is anas-formula withzy as its free variables. Hence, the
formulax <yA3z(x<z<yAST(¢%)[x,Z2 AST(¢5)[zy]) is anag-formula withx,y as its
free variables. The other two casesbandT can be dealt with in a similar way.

Let us consider now an arbitrary formula generated by thengrar. The only in-
teresting cases are those for the negation of modalitiesgl-e —(¢5 C ¢%). By defini-
tion, ST(~(¢4C 92))[x.y] = x < yA~ST(¢,C¢")[xyl, andST (¢} C ¢)[x.y] = 3z(x <
z<yAST(¢L)[x,Z AST(¢%)[zy]). We have already shown that boT"(¢2)[x, 2] and
ST (¢4)[zy] areas-formulas withx,z andz,y as their free variables, respectively. Hence,
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Jz(x<z<yAST(¢4)[x,Z AST (¢5)[zY]) is anas-formula withx, y as its free variables. It
immediately follows that-ST (¢, C ¢2)[x,y] is ana-formula withx,y as its free variables,
and thus the thesis, as the conjunction of wwdormulas is ano-formula. The other two
cases can be dealt with in a similar way. ad

In order to prove the main theorem, it suffices to observettialinear ordek is captured
by the following axioms [4], whose conjunctiah belongs to F@s:

1. VX (X < X);

2. VX, Y(X<y— Yy < X);

3. XY, Z(X<YAY < Z— X< 2);
4. VX, Yy(X=YVX<YVY<X).

Theorem 1 The satisfiability problem fo€DTgs over the class of all linear orders is de-
cidable.

Proof By Lemma 1, if¢ is a CDTgs-formula, therdx, yST(¢)[x,y] (the existential closure
of ST(¢)[x,y]) belongs to Bernays-Schdnfinkel class. Satisfiability @an thus be reduced
to satisfiability of the F@s-formula ® A 3x,yST(¢)[x,y]. Since the satisfiability problem
for FOgs is decidable, decidability of CDgs immediately follows. a

The satisfiability problem for Fgx has been shown to be NEXPTIME-complete. The
proof relies on the observation that an ggformula is satisfiable if and only if it has a
model with a number of elements bounded by the number ofesxisl quantifiers [4, Propo-
sition 6.2.17]. This immediately leads to a nondetermiaiskponential-time procedure for
satisfiability checking. However, when we restrict our iatiten to formulas where the arity
of relational symbols is bounded (to two, in our case), thmmexity of such a procedure
becomes PSPACE, since in this case a candidate model foortimeil can be represented
using only a polynomial amount of memory. Hence, Theorenvégjus a PSPACE upper-
bound to the complexity of CDgs. In Section 5, we will show that this bound is not tight,
by providing an NP decision procedure for the satisfiabdftCDTgs.

4 Expressive completeness of CDsk

In Section 3, we showed that CIpd formulas can be translated into Bernays-Schonfin-
kel class FQ@s of first-order logic with equality, thanks to the fact thatthinear order
< can be expressed in this fragment. Inspired by the obserwvétiat the translation uses
only binary predicates, we now ask ourselves the followingstion: for every formula in
Bernays-Schonfinkel class of first-order logic, interpdatver the linear order and limited
to binary predicates, is there an expressively equival@gg-formula? Similar expressiv-
ity comparison issues have been already investigated fayusapoint- and interval-based
logics. A partial list includes basic results about the ctatgness of LTL with respect to
the first-order fragment of monadic second-order logic @edekind-complete linear or-
ders and generalizations (Kamp’s Theorem and its extes$id-14,21,22,25]), the com-
pleteness of CDT with respect to the three-variable fragrogfirst-order logic over linear
orders, where at most two variables are free [33], the compéss ofAA with respect to
two-variable first-order logic over linear orders [8], até ttompleteness of its metric ex-
tension, called MPNL, with respect to a fragment of two-ahke first-order logic extended
with a successor function ov&r|[7].
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We focus our attention on first-order logic interpreted dierlinear ordek and limited
to binary predicates, denoted by RQ[ We will denote by FO™[<] then-variable fragment
of FO[<], where at mosin variables are free, and by F&'[<] the fragment of FOf] with
a denumerable set of variables, where at moate free. Since interval logics are interpreted
over intervals (represented as pairs of points), the stdrtdanslation of any interval logic
formula is a formula with two free variables, and thus it ngle to FG*2[<]. By analogy
with the case of other interval logics, e.g., [8,33], to bBth an expressive completeness
result for CDTgs, we will limit the number of variables of the correspondingffiorder frag-
ment. We denote by FiY'[<] (resp., F2"[<]) then-variable fragment (resp., the fragment
with a denumerable set of variables) of the language defipegldonmar (1), where at most
m variables occur free.

In the following, we compare interval and first-order logweith respect to their ability
of expressing properties of a given interval in a model. Viginljuish three cases: (i) the
comparison of two interval logics, (ii) the comparison obtivtagments of first-order logic,
and (iii) the comparison of an interval logic and a fragmeffirst-order logic.

Given two interval logics (resp., fragments of first-ordegit) L and L', we say that
L' is at least as expressive das denoted by L=< L', if there is an (effective) translation
T from L to L’ such that for every modeW, interval [d;,d;] (resp., pair of points}, d;)
in M, and formula¢ of L, M, [d;,d;] I- ¢ iff M,[d;,d;] I-T(¢) (resp.,M |= ¢(d;,d;) iff
M = 7(¢)(d;,dj)). Furthermore, we say that L' &s expressive ds, denoted by L=L, if
both ' <L and L=< L', and we say that L istrictly more expressive thdn denoted by
L=<LifL=<L"andl AL.

To compare the expressive power of an interval logic andgnfemt of first-order logic,
we must cope with a technical problem: interval models gairstnterval logic formulas
to be evaluated on ordered pajds, d;], with d; < d;, only, while relational models do not
impose such a constraint. To solve it, we map each binaryioelg of the considered
fragment of first-order logic into two distinct proposititettersp< and p= of the interval
logic. From [8], we borrow the following definition.

Definition 1 LetM = (I(D),V\u) be an interval model. The corresponding relational model
n(M) is the pair(D, Vi, (m)), Where, for every proposition letter V, ) (p) = {(a,b) € D x
D:[ab] € Vm(p)}. Conversely, leM = (D,V\) be a relational model. The corresponding
interval modek (M) is the pair(I(DD), Vzw)), where, for every binary relatiopand interval

[0, dj], [ch, dj] € V) (p=) iff (di,dj) € Vi (p) and(di, dj] € Vg (p=) iff (dj,di) € Vi ().

Given an interval logic Land a fragment of first-order logig-l, we say that ko is at least
as expressive ds;, denoted by L= Lgo, if there exists an effective translatierfrom L, to
Lo such that for any interval mod, interval[d;, d;], and L -formula¢, M, [d;, d;] I- ¢ iff
n(M) = 1(¢)(di, dj). Conversely, we say tha lis at least as expressive &% o, denoted
by Lro =< L,, if there exists an effective translatian from Lgo to L, such that, for any
relational modeM, pair of points(d;,d;), and Lro-formula¢, M = ¢ (d;, d;) if and only if
(M), [di,dj] IF T(¢), if d <dj, or{(M),[d;,di] IF T'(¢), otherwise. L = Lro, L < Lo,
and Lro < L, are defined as usual.
In [32], Venema shows that the hierarchy of fragment$-#@Q], for n > 2, is strict.

Theorem 2 For every n> 2, FO"?[<] < FO"12[<] (over the class of all linear orders).

The expressive completeness of the interval logic of tealpmighborhood\A with respect
to FO??[<] and of CDT with respect to F&¥[<] have been proved by Bresolin et al. in [8]
and by Venema in [33], respectively.
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x=x) =1 T (=a(x,%)) = =" (a(%,)))

TI"J'(XJ' =X)=T B B B

™x=x)=T ™ (a (%, %)) AB(Xi, X)) = T (a (i, %)) AT (B4, %))

™xj=xj)=T - . .

(% <xj) = -1 I (a (%, %) VB, X)) = T (a(%,%))) VT (B(%,X))
(% <x) =L . . .

TG <x) =L T (3@ (%, %) A B (X6, %1))) = T8 (@ (%, %)) DT (B(x, X))V
™i(xj <xj) =1 (0 (%, %)) C T (B(%, %))V
i (p(x,x))) = p= THR(B (X)) T T (ar (%, %¢))
™ (p(x),%)) = p~
) (p(x,%)) = (TAP=)CT
T (p(x;,%)) = TC(Tf/\ p<)

Table 1 The mapping of Fé)z[<] into CDTgs: translation rules.

Theorem 3 AA = FO??[<].
Theorem 4 CDT = FO?*?[<].

The proof of Theorem 2 shows that for any given> 2, there exist two modelsi; and
M, such thatM; and M, satisfy the same set of Fﬂé[<]-formulas, and there exists an
Fd‘+1’2[<]-formula which is satisfied byvl; and not byM,. Equivalence oM; and M,
with respect to FO?[<]-formulas is established by a game-theoretic argumentevhé
FO'"12[<]-formula that differentiates the two models is the follog/ione:

Hxﬁxz...Elanlan( N ﬁp(xi,xj)). (6)
X 7#Xj
Since such a formula belongs to Bernays-Schonfinkel fragofefirst-order logic, the very
same argument can be used to prove the@ﬁf@ | < FOE+12 , for anyn > 2. Moreover,
by Theorem 4, it holds that I’—@é ~< FO™?[<], for everyn > 3: on the one hand, it
trivially holds that FG2[<] < FO”Z[ <J; on the other hand, decidability of 3[<] and
undecidability of CDT |mply that FO?[<] £ FOR3[<]. Finally, we have that, for every
n> 3, FO'?[<] and FQl£"?[<] are incomparable: on the one hand &7 [<] £ FO"?[<],
as formula (6) belongs to F@lz and there is not an equivalent formula in <]
on the other hand, FR (<] is decidable, while F&?[<] is not, and thus F®?[<] £
Fog§1’2[<]. Hence, the following theorem holds.

Theorem 5 For every n> 3, it holds that:

L FOhe**[<] < FOBg[<l;

2. FOR3[<] < FOM2[<;

3. FO"?[<] andFO}5"?[<] are incomparable

(over the class of all linear orders).

We conclude the section by showing that GigTis expressively complete with respect
to Foé’ék]. One direction is straightforward: since the standardsietion of CDTgs-
formulas given in Section 3 makes use of 3 variables onlyliddithat CDEs < FO§§[<].

We now show that the converse holds as well, that i%’é—‘t@} = CDTgs. By analogy
to the case of the mapping from B&j<] to CDT defined by Venema [33], as a preliminary
step, we provide a suitable characterization oﬁ‘EQ]-formulas.
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Definition 2 Let {i, j,k} C {1,2,3}. The language F?,gz[q is defined by the following
abstract grammar:

B(xi,xj) = B3 (%, %j) | BOGXj) ABGXj) | B, Xj) V B(%i, X)) |
(B (X, %) A B (X Xj)) | =Ba(xi, %) for B3 (X, %) )
of the form3xic(B3 (X, %) A Ba (X, X))

B3 (%, %) 1= A%, X)) [ 2ACGXG) [ B (%, X)) A B3 (%, ) | Ba(Xi, X)) V B3 (i, Xj) |
(B3 (%, %) A B3 (X, X))

AKX S= X =X X=X X% =X X=X [ X <Xj [ X <X | X <X |X <X |
P, Xj) | P(Xj,%) | P0G, %) | P(Xj, X))

(8)
9)

Lemma 2 For every formula imo§§[<], there is an equivalent formula Fog'pz[d.

Proof We prove the following stronger claim on the 3-variable fresmt chgk], which
includes formulas where all three variables occur free:

for every formulaa in FO§§[<] there is equivalent formula(a), which is a
Boolean combination d¥O§,‘f[<]-formuIas, with the same free variables@s

The proof is by structural induction.

The base casesi(is an atomic formula oo is the negation of an atomic formula)
and the case of logical connectivas s a conjunction or a disjunction of formulas) are
straightforward. In particular, as for the base case, ficag to remind that we restricted our
attention to fragments of first-order logic with binary picades only.

Let a be of the form3Ixcy(xi, X}, ). By the inductive hypothesig(x;,X;, %) is equiv-
alent to a formular (y(x,xj, X)), that we may assume, without loss of generality, to be a
disjunction of conjunctions of formulas in r:;*é[<]. By distributing the existential quan-
tifier 3x over disjunctions, we obtain a formula of the foify_; Ixicvh (%, X}, X), where
eachy, (X, Xj,X) is a conjunction of formulas. Since only binary predicates @lowed,
we can rewrite eackhh (X, Xj, %) asén(Xi,X;j) A &n(Xi, %) A &n(Xj, Xk). Since variable does
not occur free inéu(x;,Xj), we can rewritedxh(Xi, Xj, Xc) as &n(Xi,Xj) A Ix(En(Xi, %) A
&n(Xj,%)). This latter formula is a conjunction of I—ﬁ@[d-formulas with the same free
variables a%r.

The case in whiclw is of the form—3xy(x;,X;j,Xc) can be dealt with in a very similar
way. O

We are now ready to define the translatiofrom FOz'pz[<] to CDTgs. For the sake of
brevity, we writet") for 7[x;,X;j], with x; < x;. Translation rules for atomic and complex
formulas are given in Table 1.

Lemma 3 Let a(x,X;) be an Fog’pz[<]-formula. Then, for every pair of point,d;),
M | a(di,d;) if and only if d < d; and {(M),[d;,d;] I- t"/(a(x,X;)), or dj < d and
{(M), [dj,di} IF TH(a (xi,Xj)).-

Proof The proof is by induction on the structure @{x;, X;j). The cases of atomic formulas
and Boolean connectives are straightforward.
Once more, the only interesting case is the one of existemqiiantifiers. Leta (x;,X;) be

the formuladx (B (X, %) A ¥(%Xj)) andd; < d;. By the semantic clauses for é‘ﬁk}, it
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FO»2[<]
/ N\
/ FOgS (<]
FO*2[<] /
SN/
CDT = FO*?[<] FORSI<]
SN T
PNL = FO??[<] FO33[<] = CDTes

Fig. 2 A classification of the considered interval logics and fragis of first-order logic with respect to their
expressive power.

holds thatM = 3x(B(di, k) A y(X, d;j)) if and only if there exists a poirt such that |=
B(di,dy) andM [= y(dk,d;j). Since we are interpreting our formulas over a linear orttiere
are three possible ways to pladewith respect tal; andd;: eitherdy < d;, ord; < dg < dj,
ord; < dk. By the inductive hypothesis, we have thét= a (d;,d;) if and only if:

(€M) [dke e} 1= T (BOx. %)) and Z(M), a0 - 49 (V%)) )
or (Z(M),[di,ck] I T(B(x, %)) and (M), [ck,dj] I 71 (v(xx;)) )
or (2 (M), [, o - T (y(xx})) and Z(M), [d:, o] I T(B(x, %)) ).

By the semantics of th@ D, andT operators, we can conclude thdt= a(d;,d;) if and
only if (M), [di,d;] I T (a (xi,X;)), as required. O

Theorem 6 CDTgs is as expressive a§o§§[<].

Proof By Lemma 2 and Lemma 3, I'%ék] = Fo§§[<] = CDTgs. Moreover, by Lemma
1, CDTgs < FOZ3[<]. Hence, CDBs = FOR3[<]. O

Figure 2 gives a graphical account of the relationships antbe considered logics
(interval logics and fragments of first-order logic) in termwf their expressive power (the
contributions of the present work are in boldface).

5 A tableau method for CDTgs

In [15], Goranko et al. propose a tableau method for CDT prtted over partial orders with
the linear interval property, that is, partial orders in gfhivery interval is linear (BCDT
for short). The method provides a semi-decision procecar8€DT™ (it is not guaranteed
to terminate). This does not come as a surprise as BCiBTundecidable. In this section,
we show how to turn the method into an NP decision procedur&ggDn particular, we
show how to exploit BCDT syntactic restrictions to guarantee termination.

Let us start with some basic terminology.fiftite treeis a finite directed acyclic graph
in which every node, apart from one (ttaot), has exactly one incoming edge séiccessor
of a noden is a noden’ such that there is an edge framto n’. A leafis a node with no
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successors. A path is a sequence of nages ., ng such that, forall =0...k—1,nj, 1 is

a successor dfi; a branchis a path from the root to a leaf. Theeightof a noden is the
maximum length (number of edges) of a path frono a leaf, while itsdepthis the length
of the (unique) path from the root to it. If two nodasandn’ belong to the same branch
and the height of is less than (resp., less than or equal to) the height, @ie writen < n’
(resp.,n=n').

Definition 3 LetD be a finite linear order. Aabeled formula ovel is a pair(y, [d,d;]),
wheret € CDTgs and[d;, dj] € I(D).

Definition 4 Let.7 be a (finite) tree and let be a node of7. Thedecorationv(n) of nis
atuple(y,[d,d;],D, p,u), whereD is a finite linear ordery, [d;,d;]) is a labeled formula
overD, p € {0,1}, andu is alocal flag functionwhich associates the values 0 or 1 with
every branchB containingn.

Definition 5 A decorated treés a finite tree.7 enriched with a decoration(n) for each
noden of .7, apart from the root.

The tableau construction described below generates aatedareeZ . Given a branctB
and a nod@ belonging to it, with decoration(n), u(B) = 1 means that can be expanded on
B. Given a branciB, B- (ny - ...-ny) is the result of the expansion Bfwith the sequence of
nodes; -...-ny (for h=1, we simply writeB-n), whileB- (ng 1-...-nyp)| ... [(MNk1-...-Nkh)
is the result of the expansion Bfwith k sequences di nodes (forh = 1, we simply write
B-ni|...|nk). The auxiliary flagp has been added to simplify termination and complexity
proofs. It records the nature of formuja if  is a¢s-formula, thenp = 0; otherwisep=1.
Finally, if nis the leaf of a brancB, we denote byDg the finite linear order iv(n).

Since in CDgs negation can occur only in front of proposition letters ordalities, we
need to introduce the notion dfial formulaof a formulag, denoted byp. It is inductively
defined as follows:

— p=-pand=p=p, foreveryp € &/ Z U {m};

—OVU=977;
-9 AY=9VT;

- Ry =—(¢Ry),forRe {C,D,T};
- ~(pRY) =9 Ry, forRe {C,D,T}.

Notice that the dual of a generic Clgd-formula does not necessarily belong to GigT
This is the case, for instance, with the formpl€—(qC r). However, the following lemma
guarantees that dual formulas¢nf-formulas are CDgs-formulas. Such a lemma will play
a crucial role in the proof of correctness of the tableau wakth

Lemma 4 Let¢ be a¢s-formula. Thengp is aCDTgs-formula.

Proof The cases of proposition letters and Boolean connectivebearoved by a straight-
forward structural induction. To prove that the thesis baltbo for modalities, let us assume
¢ = YCr to be ag3-formula. By definition, the dual formul@ is =(¢/C1). Sincey, T are
¢3-formulas, we can conclude thatis a CDTgs-formula. The other cases can be dealt with
in a similar way. ad

The construction of a tableau for a CRformula ¢ to be checked for satisfiability starts
from a three-node treén(tial tableau) consisting of a root and two leaves with decorations
(¢, [do, do],{do},1,1) and(@, [do,d1],{do < d1 },1,1), respectively. The procedure exploits
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a set of expansion rules, adapted from those given in [154dtb new nodes to the tree.
In particular, the original rules for modalities have beewised to restrict the search for
possible models to linear orders only.

Definition 6 Given atree7, abranctBin .7, and a node € B with decoration(y, [d;, d;],
D, pn, Un) such that,(B) = 1, thebranch-expansion ruléor B andn is defined as follows
(in all considered cases, (B') = 1 for all new nodes’ and brancheB').

R1 If Y =¢&oA &1, then expandtoB-ng-ny, whereng is decorated with{&o, [di, d;], Dg, pn,
Uny) @ndny is decorated with{&y, [di, d;j], Dg, pn, Un, ).

R2 If Y =&oV &1, then expandto B-ng | ni, whereng is decorated with{&o, [d;, d;], Dg, pn,
Un,) @ndn; is decorated with{&y, [di, d;], Dg, pn, Un, ).

R3 If ¢ =—(&Cé&1) andd is a point inDg, with d < d < dj, which has not been
used yet to expand in B, then expand to B np|n;, whereng is decorated with
(&0, [di,d],Dg, 0, uny) andny is decorated with&y, [d, d;], Dg, 0, Un, ).

R4 If ¢y =-(&Dé1), andd is a point inDg, with d < d;, which has not been used yet to ex-
pandn in B, then expandB to B- ng|ny, whereng is decorated With@%, [d,d],Dg,0, Un,)
andny is decorated witl{€1, [d, d;], Dg, 0, Un, ).

R5 If ¢y =—(&oT é1), andd is a point inDg, with dj < d, which has not been used yet to ex-
pandnin B, then expandB to B- ng|n;, whereny is decorated Witmg, [dj,d],Dg,0, Un,)
andny is decorated witi{1, [d;, d], Dg, 0, Un, ).

R6 If ¢ = & C &1, then expandB to B- (- my)]...|(n; 'mj)‘(ni/~M)‘...‘(n371~%71),
where:

(@) foralli <k< j, nis decorated witi{&o, [d;, di], DB, Pn, Un,) andmy is decorated
with (&1, [d, dj], Dg, pn, Um,);

(b) foralli <k< j—1,D is the linear ordering obtained frofbg by inserting a new
pointd betweendy anddy. 1, nj is decorated witi{&o, [d;, d], Dy, pn, unfk) andm, is
decorated wit{ &1, [d, dj], D, pn, um{(>.

R7 If ¢ =& D& anddp is the least point oDg, then expand to B- (ng - my)|...|(n; -
m)| (- )| ... (n{ - ), where:

(@) forall 0< k <, ng is decorated wit{ &p, [dk, di], DB, Pn, Un,) andmy is decorated
with <£17 [dkadj]v]D)Ba Pn, Um(>,

(b) forall0< k< i, Dy is the linear ordering obtained frofg by inserting a new point
d betweert_; anddy (for k=0, d is placed immediately befoi), n is decorated
with <£07 [dvdiLDka Pn, un{(> andn‘( is decorated Wltméla [dadjLDkv Pn, un‘<>

R8 If =& T &1 anddy is the greatest point dg, then expands to B- (nj-mj)|...[(nn -
)| (NG - ). [(nyy - MYy ), where:

(@) forall j <k<N,nis decorated with{éo, [d;, dk], Dg, pn, Un,) andmy is decorated
with (&1, [d;, dk], DB, Pn, Um,);

(b) forall j <k<N,Dyisthe linear ordering obtained frol’s by inserting a new point
d betweertdy andd, 1 (for k=N, d is placed immediately aftely), n is decorated
with (o, [d;, d], Dk, pn, un/k> andm is decorated with{&q, [d;, d], Dy, pn, um{(>.

Finally, for each branctB’ extendingB, let un(B') = um(B), for each nodemn # n in B,
and letu,(B') = 0, unlessp = —(&oC¢&1), Y = —(&DE&1), or Y = =(&T &) (in such cases
Un(B/) = 1).
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We briefly explain the behavior of the branch-expansion imleasesR6 (§,C &1) andR3
(—=(&0C&1)). The corresponding cases for modalitizandT are similarR6 deals with two
possible scenarios: either there exitss Dg such thatfy holds over[d;, di] and&; holds
over [dg,d;j], or such a point must be added Bg. The successor&y - my)|...|(nj - m;)
created by the rule cover the former case, while the sucregsont)|...|(n|_, -mj_,)
cover the latter case. As f&®3, the formula—(éoC &) states that, for alth < d < dj,
either&, holds over{d;,d] or & holds over{d, d;]. R3imposes such a condition for a single
pointd € Dg and keeps the flag equal to 1. In such a way, all pointSdrare eventually
considered, including those points that will be added inssgbient steps of the tableau
construction.

Definition 7 A branchB is closedif one of the following conditions holds:

1. there are two nodes,r’ in B such thatv(n) = (¢,[d;,d;],D,p,u) and v(n') =
(@,[d;,d;],', p’, ') for some formulay andd;,d; € D;

2. there is a node n such thatn) = (, [, dj], D, p,u) andd; # d;;

3. there is a node n such thatn) = (-, [d;,d;],D, p,u) andd; = d;;

If none of the above conditions hold, the brancbien

Definition 8 The branch-expansicstrategyfor a branchB in a decorated treg’ is defined
as follows:

1. apply the branch-expansion rule to a braBatmly if it is open;

2. if B is open, apply the branch-expansion rule to the closesteadbt noden such
thatun(B) = 1 and the application of the rule generates at least one ndtleawnew
decoration (if any).

Definition 9 A tableau.7 is any decorated tree obtained from the initial tableau ey th
application of the branch-expansion strategy.

We say that a tablead’ is closedif and only if all its branches are closed, otherwise it is
open

We conclude the section by giving a couple of examples of fi@ation of the pro-
posed method. As a first example, we consider the satisfiabtefa¢ = (-nD—-m)C .
A portion of a tableau forp is given in Figure 3, where thick edges highlights an open
branch representing a four-point model for the formula. Ageond example, lep be the
unsatisfiable formula T —(T C p). A closed tableau fog is given in Figure 4. It is worth
pointing out that there is an abuse of notation in the lastpmmrent of the node decorations:
while it is formally defined as a function from a set of brarete{0, 1}, in the pictures it
is represented as a constant (either 0 or 1). The reasort istee proposed examples the
function is constant for each node, that is, for eaate have that the value of the function
un(B) is the same for every bran@&hcontainingn.

In the following, we will show that to establish the satisfigy of a CDTgs-formula
¢ it is sufficient to start with the initial tableau faF, and keep expanding it for as long
as it is possible: if the resulting tableau is open, tigeis satisfiable, otherwise it is not.
Moreover, we will prove that this expansion procedure teateés and it can be executed by
a nondeterministic machine that uses only a polynomial arofitime.
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root

<(“7TD“7T)C“7T, [do,do],{do}‘1,0> <(“T[D“T[ C“T[ do d1 {do < dl} 1, O

|
<ﬂ7TD -7, [dodo] {do},l. l>
|
<—‘TT. [do,do]. {do}, 1, l>

X <ﬁ7TDﬁTl' [do,dl] {do < d1} 1, l> <ﬁTl’DﬁT( do d2 {do < dz < dl} 1, O>

<‘\7TD“T[, [do,do],{do < dl},l,1> <‘\7T [dl dl] {d[) < dl} 1, l> <“T[ dgydl] {do < dz < dl},l, 1>

<—‘T[, [do,dl], {do < dl},l,1> X
<—\T[, [do,dz],{d0<d2<d1},1,l> <—‘T[, [dg,do],{d3 <d0<d2<d1},l,l>

<“T[, [do,do], {do <dy < dl},1,1> <“7T, [dg,dz], {d3 <dy<dy< dl},l, l>

X

Fig. 3 A portion of an open tableau for the formutarrD —~m) C —1t.

5.1 Soundness

In this subsection, we prove that the proposed tableau mdthsound, that is, given a
formula ¢ and a tableauw” for it, if .7 is closed, thenp is not satisfiable. In the next
subsection, we will show that the method is also complete.

Lemma5 (Soundness)et ¢ be aCDTgs-formula and.7 be a tableau for it. If.7 is
closed, therp is not satisfiable.

Proof Letnbe a node in the tablea#, and letD, = {dp < ... < ds} be the linear ordering
from v(n). We will prove the following claim by induction on the heighbf the node:

if every branch including n is closed, then the s@t)®f all labeled formulas in the
decorations of the nodes between n and the root is neithé&fisée inI(Dy) nor
in any extension of it.

If h=0, thennis a leaf and the unique bran&containingn is closed. Then, either
S(n) contains both the labeled formulég, [dy,d|]) and (-, [dk,d|]), for some CDEs-
formula ¢ and dy,d, € Dy, or the labeled formuldrm,[dy,d]), for somedy # d, or the
labeled formula(—1t, [d,d;]), for somedyx = d;. Take any modeM = (I(D’),V), where
D' extendsDy,. It holds thatM, [dy, d] I ¢ if and only if M, [dk,di] I =y, and, therefore,
(Y, [dk,d]) and (-, [dk,d|]) cannot be jointly satisfied. Similarly, [dk,d|] IF 7T (resp.,
M, [dk,d|] IF —m) if and only if d¢ = d; (resp.,dk # d|), and thereforgm, [d,d|]) (resp.,
(-1, [dk,d])) cannot be satisfied whely # d, (resp.,dx = dy).

Now, suppose that > 0. Then, eithen has been generated as one of the successors,
but not the last one, when applying cagdks R6, R7, or R8 of the branch-expansion rule,
or the branch-expansion rule has been applied to some thfwtaula (y, [dy,d]) € S(n)
\{1}, wherert is the labeled formula in the decoratiorin), to extend the branch at We
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root

(PT—(TCp),[do,do], {do},1,0)

/

(p,[do,do],{do},1,1)

(~(TCp),[do, o], {do},1,2)
/
(L,[do,do],{do},0,1) {=p,[do,do],{co},0,1) (p,[do,ch],{do < d1},1,1)
| |
X X (=(TCp),[do,da], {do < d1},1,1)
——

<L,[d0,d1],{do < di},0, l> <ﬁp, [do,d1],{do < d1},0, l>

X X <pTﬁ(TC p),[d07d1]7{d0<d1}7170>

N

(p, [0, 4], {do < d1},1,1)

<—‘(TC p),[do,d1],{do < d1},1, l>

/

<L,[do,d1],{do < dl},o, l> <—‘p7 [dl.,dl].,{do < dl}.,O., l> <p., [dl,dz],{do < d1 < dz}.,l., 1>

X X <—\(TC p).,[do,dg],{do<d1<d2}.,l.,l>

_— |

<L,[d0,d1},{do < d]_ < dz},o, 1> <—\p., [dl,dz],{do < d]_ < C|2}.,0., l>

X X

Fig. 4 A closed tableau for the formulaT —(T C p).

detail the latter case; the former one can be dealt with irsémee way, and thus its analysis
is omitted. First, we observe that every branch passingitfir@any successor ofmust be
closed. It immediately follows that the inductive hypotisegpplies to all successors of
We consider the possible cases for the application of thechraxpansion rule to extend the
branch an, restricting our attention to the conceptually differenes only (the other cases
can be dealt with in a similar way):

— If ¢ =& A &1, R1 has been applied. Then, there are two natgs; such thatv(ng)
= (&o, [dk,di], D, po, Uo), v(n1) = (&1,[dk,d], D, p1, u1). Without loss of generality, we
can assumag to be the successor nfandn; to be the successor of. Since each branch
containingnis closed, then each branch containimds closed as well. By the inductive
hypothesistf; < n), S(ny) is not satisfiable. Since every model satisfyB{g) must, in
particular, satisfy(é A &1, [dk,di]), and hence &, [dk,d|]) and (&1,dk,d]), it follows
thatS(n), S(np), andS(ny) are equi-satisfiable. Therefoi®n) is not satisfiable.

— If ¢ =¢&1V &, R2 has been applied. Then, there exist two successor npdasd ny
of n such thatv(ng) = (&o, [dk,d|], D, po, Uo), v(n1) = (&1, [dk,di],D, p,u1), and both
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np < nandn; < n. Since each branch containings closed, then each branch containing
no or ny is closed as well. By the inductive hypothes$éng) andS(n;) are not satisfi-
able. Since every model satisfyil®jn) must also satisfyé, [dk,d]) or (&1, [dk, di]), it
follows thatS(n) is not satisfiable.

— If ¢ =—-(&C¢&1), R3 has been applied. For the sake of contradiction, let us assum
S(n) to be satisfiable. Then, sinde:(&y Cé&1), [dk,di]) € S(n), there is a modeM =
(I(D"),V) such thafD’ extendsDy, andM, [dk,d] IF =(&,Cé&1). Hence, for eacld; such
thatdy < d; <d, M, [dk, d] I} & or M, [dk,d] I &1. By construction, the two immediate
successors ofare two nodesg andn; and there exists a poidf, with d < d; <d;, such
that (&, [dk,d]) is in v(no) and (&4, [d,d/]) is in v(ny). By the inductive hypothesis
(bothng < nandn; < n), S(ng) andS(n;) are not satisfiable. But, from the hypothesis
of our reductio-ad-absurdum argument, there is a mitel (I(D'),V), whereD’' is an
extension ofDy, such thatM, [dk, d;] IF =&y or M, [di,d] IF =&1. Thus, eitherS(ng) or
S(np) is satisfiable (by modeM), leading to a contradiction.

— If ¢ =& C¢&;, R6 has been applied. For the sake of contradiction, let us asSum
to be satisfiable. Then, there is a modigl= (I(D'),V) such thatD’ extendsDy and
M, [d,d] IF & C &1. Hence,M, [dk,d] IF & and M, [d,d] IF & for someds < d < d,.
Two cases are possible:

1. If d € Dy, thend = d; for somedy < di < d;. By R6, n has a successor, sayn,
which, in turn, has a successor, sayyitwith v(n,) = (&, [dk, t], Dn, pt, u) and
v(ng) = (&1, [k, di],Dn, pt,u). By the inductive hypothesisy( < n andn; < n),
S(nt) = S(n) U{(&o, [dk,dk]), (&1,[ck,d])} is not satisfiable. But, from the hypothesis
of our reductio-ad-absurdum argument, there is a mbtlel (I(D'),V), whereD’
is an extension oby,, such thatV, [dy, di] IF & andM, [, d|] IF &1. Thus,S(ry) is
satisfiable (by modeW), leading to a contradiction.

2. If d ¢ Dy, then there exists such thatk <t <|—1 andd; < d < di+1. By R6,
n has a successor, sayri, which, in turn, has a successor, sayyit with v(ry)
= <607 [dkadLDﬂ U {d}a pt,ut>: V(n{) = <Ela [dadl]v]D)n U {d}7 p{,U{> By the induc-
tive hypothesisr§ < nandn; < ny), S(ng) = S(n) U{(&o, [k, d]), (&1, [d.,dl])} is not
satisfiable, which, as in the previous case, leads to a ahatian. O

5.2 Completeness

In this subsection, we prove that the proposed tableau déstemmplete, that is, whenever
¢ € CDTgs is valid, every tableauw” for =¢ must be closed. To this end, we need to
preliminary prove some patrtial results.

Definition 10 Let ¢ be a CDBs-formula and.% be the initial tableau for it. Théimit
tableau 7 for @ is the decorated tree generated as follows. For 2l0, let 7,1 be the
tableau generated by the simultaneous application of #wecbrexpansion strategy to each
branch in.%. If we ignore all flags from the decorations of the nodes imgvé, we obtain

a chain of decorated trees ordered by inclusighC 7, C ... C J C .... The limit tableau

J— w
T is equal tolJ 4.
i=0

Notice that the above definition does not prelude the lintitleau from being infinite. Later
on, we will prove that it cannot be the case, that is, the ltatileau is always finite. Never-
theless, finiteness (of the limit tableau) is not necessaprave that the tableau method is
complete.
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The definitions of open and closed branch and tableau diraptlly to the limit tableau
as well. In addition, we introduce the notion of saturateghich and tableau.

Definition 11 A branch in a (limit) tableau isaturatedf there are no nodes on that branch
to which the branch-expansion rule is applicable on thediraa (limit) tableau issaturated
if every open branch in it is saturated.

We now show that the set of all labeled formulas on an openchrana limit tableau
has the saturation properties of a Hintikka set in first-ptdgic.

Lemma 6 Every limit tableau is saturated.

Proof Let B be a branctB in the limit tableauZ andn be a node irB. We prove that
after every step of the expansion of that branch at which thedi-expansion rule becomes
applicable tan (becausen has just been introduced or a new point has been added) and the
application of the rule generates at least a new node, ttanute is subsequently applied
on B to that node. The proof is by induction depth(n) (the depth of node).

Let us assume thatepth(n) = | and the branch-expansion rule has become applica-
ble to n. By the inductive hypothesis, the thesis holds for all nodéts depthn) < I.
If there are no nodes between the root (including the road) ra(excludingn) to which
the branch-expansion rule is applicable at that momenteéeapplication of the branch-
expansion rule ol is necessarily t. Otherwise, len* be the closest-to-node between
the root andh to which the branch-expansion rule is applicable, or wiltdmme applica-
ble, onB at least once thereafter. (Such a node exists because teevalg finitely many
nodes between and the root.) Sincdepth{n*) < depth{n), by the inductive hypothesis,
the branch-expansion rule has been subsequently applied Tden, the next application
of the branch-expansion rule &must have been toand that completes the induction.

Suppose now that there exists a braBcim a limit tableau which is not saturated. Let
n be the closest-to-the-root node Brto which the branch-expansion rule is applicable. If
the case applicable tois different fromR3, R4, andR5, then the branch-expansion rule
has become applicable toat the step whem is introduced, and by the claim above, it
has been subsequently applied. Hence, the node has becewnalainle thereafter, which
contradicts the assumption. Let us consider now the caR8,dhat is, the formula iwv(n) is
—(&C¢&;) (caseR4 andR5 are similar, and thus they are omitted). An applicatioR8fon
Bwould create two immediate successors with labeled fors{dlg [di,d]) and(& , [d,d;]),
at least one of them new dh ForR3 to be applicable, points;, d;, andd must have been
already introduced at some step of the constructioB.dflence, at the moment when the
three of them, and, have appeared on the branch, the branch-expansion ruleebame
applicable tan. By the above claim, the rule has been subsequently appli&lamd such
an application must have introduced the labeled form(fagd;,d]) and (1, [d, d;]) onB,
which again contradicts the assumption. ad

Corollary 1 Let¢ be aCDTgs-formula and.7 be the limit tableau fop. For every open
branch B in.7, the following closure properties hold:

— If there is a node re B such thatv(n) = (& A &1, [di, d;j], D, pn, Un), then there are a
node @y € B such thatv(ng) = (o, [di,d;j],ID, Py, Un,) @and a node n € B such that
v(m) = (&, [divdiL]D)v Pry > Ung )-

— If there is a node re B such thatv(n) = (& V &1, [di,d;j], D, pn,uUn), then there are a
node ry € B such thatv(ng) = (o, [di,d;],D, Py, Un,) OF @ node i € B such thav(ny)
= (Ela [di,dj],D, pnlaunl)-
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— If there is a node re B such that/(n) = ( OCEl, [di,d;j], D, pn, Un), then there are two
nodes g, 1 € B such thaw (np) = (&o, [di,d], D, pny,Un,) andv(ny) = (&1,[d,d;], D
Py, Uny ), fOr some de Dg, with ¢ < d < dj,

— If there is a node re B such thatv(n) = ( oDél, [di,d;j], D, pn, Un), then there are two
nodes g, € B such thatv(ng) = (&, [d,di], D, pno,uno) andv(ny) = (&1,[d,d;], D/
Pry» Un ), for some de= Dg, with d < d.

— If there is a node re B such that(n) = (o T &1, [di, d;], D, pn, Un), then there are two
nodes B,y € B such thaw (np) = (&o, [d;,d], Y, Py, Un,) and v(ny) = (&1,[d;,d], D’
Pry, Un, ), for some de Dg, with d > dj, .

— If there is a node re B such thatv(n) = (=(&C&1), [di,dj], D, pn, Un), then, for each
d € Dg, with d < d < dj, there is a node'ne B such thatv(n') = (EO, [di,d], D, Py,
Uy) or a node he B such thav (') = (&4,[d,dj], ', py, Uy).

— If there is a node re B such thatv(n) = (—(& D &1), [d;,dj],ID, pn, un), then for each
d € Dg, with d < d;, there is a nodere B such thaw (') = (&g, [d,di],/, py, Uy) OF
anode he B such thav () = (&,,[d,dj], 1/, py, Uy).

— If there is a node re B such thatv(n) = (—(& T &1), [di,d;], D, pn, Un), then, for each
d € Dg, with d > dj, there is a node’ne B such thatv (') = (&o,[di,d], ', pyy, Uy ) OF
anode he B such thav () = (&,,[d;,d], I/, py, Uy).

The proof of Corollary 1 is straightforward, and thus it isitied.

Lemma 7 (Completenessif the limit tableau for some formulé € CDTgs is closed, then
some finite tableau fap is closed.

Proof Let us assume the limit tableau f¢rto be closed. Then, every branch closes at some
finite step of the construction, and then it is not furtheranged (it remains finite). Since
the branch-expansion rule always produces finitely mangessors, every finite tableau
is finitely branching, and hence so is the limit tableau. ThBnKonig's lemma, the limit
tableau, being a finitely branching tree with no infinite lmaes, must be finite. This allows
us to conclude that its construction stabilizes at someefisiiage. At that stage, a closed
tableau forg is constructed. ad

5.3 Termination and Complexity

In this last subsection, we prove that the proposed tablegthod is terminating, and we
determine its computational complexity. The proof restagair of basic lemmas.
As a preliminary step, we definecaunting functiorCount onB as follows:

CouniB) = EBIllln\ “Pn-Un(B)

where (), and p, are the formula and the-flag in the decoration of, respectively. The
following lemma proves that Count is non-increasing witkpect to branch expansions.

Lemma 8 Let ¢ be aCDTgs-formula, B be a branch in a tableau far, and B be an
expansion of B generated by the application of the brangiaesion strategy of Definition
8. ThenCoun{B’) < Couni{B). Moreover, if Bis obtained from B by the application Bf.,
R2, R6, R7, or R8 to a node n with pin v(n) equal tol, thenCoun{B’) < Coun{B).



20 Davide Bresolin et al.

Proof Let.7 be atableau fog, B be a branch on it, amlbe the closest-to-the-root node for
which the branch-expansion rule is applicable. Moreoet8'lbe a branch obtained by the

application of the branch-expansion strategyBoWe consider the cases of the application
of R1, R3, andR6 to n. The missing cases are similar to the considered dR2ss(similar

to R1, R4 andR5to R3, R7 andR8 to R6), and thus they are omitted.

— Rlis applied ton. Then,v(n) = (&g A &1,[di, dj],D, pn,un) andB’ = B-n' -, with &
belonging tov(n’) andé; belonging tov (). Sincepy = Py = P, Uy (B) = Uy (B) =
1, up(B') = 0, andum(B') = um(B) for eachm¢ {n,n’,m'}, Count{B’) = Coun{B) —
|EoA&1]+1&0|+]&1] < Coun(B), whenp, = 1, and CounB’) = Coun{B) whenp, = 0.

— R3is applied toB. Then,v(n) = (~(&C &), [di,d;], D, pn,Un) andB’ = B- 1, with &
or &1 belonging tov(n'). In both casespy in v(rY) is equal to 0, and thus Cou) =
CountB).

— R6is applied toB. Then,v(n) = (§0C &1, [di,d;], D, pn, Un) andB' = B-n'- 1, with &g
belonging tov(n') andé&; belonging tov(n7). Sincepy = Py = Py Uy (B) = Uy (B') =
1, up(B') = 0, andun(B') = uy(B) for eachm ¢ {n,n’,m'}, Coun{B’) = Coun{B) —
|€0C &1|+| &0l +|€1] < CouniB) whenp, = 1, and Coun(B’) = Coun{B) whenp, = 0.

Summing up, whateveRi one applies, CoufiB’) < Coun{B). Moreover, wherR1, R2, R6,
R7, or R8 are applied to a nodewith py in v(n) equal to 1, Cour{B8’) < CouniB). O

Lemma9 Let¢ be aCDTgs-formula, .7 be a tableau forp, and n be a node i7 with
decorationv(n) = (, [di,d;], 1D, pn, Un). It holds that if p, = 0, then® € ¢s.

Proof Letn be a node on a brandhin .7 with decoratiorv (n) = (, [d;,d;], 1D, pn, un). We
prove the claim by induction odeptHn).

Base case. lflepthn) < 2, thenn is either the root or one of the leaves of the initial
tableau. In both cases, the claim follows trivially.

Inductive step. Letlepth(n) > 2. By the inductive hypothesis, the claim holds for each
ancestor ohin B. Let’ be the node to which the branch-expansion rule has beeredppli
during the construction of” to obtain noden. As in the proof of Lemma 8, we restrict our
attention toR1, R3, andR6. The other cases can be dealt with in a similar way.

— RuleR1 has been applied td. Then,v(r') = (& A &1, [di, d;j], D, py, uy) and eitherég
or &1 belong tov(n). Let us assume thdp belongs to/(n) (the case in whicl§; belongs
to v(n) is analogous) an@, = 0. By definition ofR1, py = pn = 0. By the inductive
hypothesisgo A &1 = &V & € ¢5. From the grammar rules for CR, it follows that
éo € ¢3.

— RuleR3 has been applied 8. Then,v (') = (=(&Cé1), [di, d;j], D, py, Uy) and either
&o or &1 belong tov(n). Let us assume tha belongs tov(n) (the case in whict;
belongs tov(n) is analogous). By definition dR3, p, = 0. By the grammar rules for
CDTas, it holds thatéy € ¢5. The thesis immediately follows frody = &.

— RuleR6 has been applied 8. Then,v(n') = (§oCé1, [di,dj], D, py,uy) and eitherég
or &1 belong tov(n). Let us assume,y = 0. By the inductive hypothesis, it follows that
EoC&L = —(&CE&1) € ¢5 (contradiction). Hence, it holds thaty = 1, and thus, byR6,
pn=1. O

By exploiting Lemma 8 and Lemma 9, we now prove that the len§t#ny branctB of
any tableau for is polynomially bounded by the length of the formula.

Lemma 10 (Termination) Let ¢ be aCDTggs-formula, 7 be a tableau forp, and B be a
branch in.7. Then,|B| < 2-[¢[2+8-|¢|*>+8-||.
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Proof Let B be a branch in a tablead for ¢. Given the branch-expansion rule and the
branch-expansion strategy, there cannot be two nodesn B such that the same formula
and the same interval belong to battn) andv(n'). Since for any node in B, the formula
in v(n) is either a subformula op or the dual of a subformula af, it holds that|B| <
2:1¢|- |De|*.

To give a bound on the number of pointsDig, it suffices to observe that:

1. only the application oR6, R7, andR8 add new points t®g;
2. by Lemma 9, they can be applied only to nodes where thepflagqual to 1;
3. by Lemma 8, every application of them strictly decreabessailue of Cour{B).

Now, let By be the two-node prefix oB consisting of the root and one of its successors
labeled with¢. Since|Dg,| < 2 and CountBo) = |¢|, |Dg| < |¢|+2, and thusB| < 2-|¢|-
(19| +2)2<2:|¢[*+8-[$]*+8:|9]. 0

Theorem 7 The proposed tableau method foDTgs is sound and complete, and the satis-
fiability problem forCDTgs is NP-complete.

Proof By Lemma 5 (soundness) and Lemma 7 (completeness), it H@tsatisfiability of a
formula¢ can be reduced to the search for an open limit tableau fordiréct consequence
of Lemma 10 is that this search can be performed by a nondietistin algorithm that
guesses an open and saturated branch of the limit tableiag, ardy a polynomial amount
of time. NP-hardness immediately follows from that of preijtional logic. ad

6 Undecidable extensions of CD3g

In the previous section, we have proved that the satisfiglglioblem for CDgs is NP-
complete. Since the full logic CDT is undecidable, one mapder whether CDgs can be
extended preserving decidability. In this section, we stimat the most natural extension of
CDTgs is already undecidable.

In CDTgs-formulas, modalities can occur in the scope of at most omgatien. We
slightly extend CDgs by allowing one more nesting of negations and modalitieg fEh
sulting logic includes formulas like:((—(pCg)Cq) or —=(pC—(qCr)). In [20], Hodkinson et
al. have shown that CDT is undecidable over the class ofelily-ordered domains even if
we restrict ourselves to formulas where only one modaligueg. Undecidability has been
proved by reducing the problem of finding a solution to theanttiling problem to the sat-
isfiability problem for the logic. The undecidability probélow is based on the observation
that the entire construction given in [20] exploits formail@here modalities occur in the
scope of at mostvo negations.

Given a set of tiles7 = {t4,...,tx}, theoctant tiling problemis the problem of es-
tablishing whether7 can tile an octant of the Cartesian plane over the integessuk
consider the second octat = {(p,q) | p,g € N, p < q}. Each tilet; has four colors,
namely,right(t;), left(ts), up(t;), anddownt; ). Neighboring tiles must have matching
colors. Formally, we say that a sét can tile & if there exists a functiorf : & — Z such
thatright(f(p,q)) =left(f(p+1,0)) andup(f(p,q)) = down(f(p,q+1)), wheref(p,q)
represents the tile to be placed in the positipng), provided that all relevant coordinates
((p,9),(p+1,q), etc.) lie in&. Using Konig's lemma, one can prove that a tiling system
tiles the second octant if and only if it tiles arbitrarilyrd@ squares if and only if it tiles
N x N if and only if it tiles Z x Z. Undecidability of the first problem immediately follows
from that of the last one [4].



22 Davide Bresolin et al.

Let 7 = {ti,...,tx} be an instance of the octant tiling problem. We will assuna th
o/ &7 contains at least the propositional letters, . .., tx. CDTgs makes it possible to define
the “somewhere in the future” operatér(we assume future to be non-strict) as follows:

Fo:=TT(¢TT). (10)
TheuniversaloperatorG can be defined as the duallef that is:
G¢ = —-F—¢. (11)

Making use ofG, we set our framework by forcing the existenceuwiit-intervals (or u-
intervalg working like atomic elements. Such intervals will be deatbby the proposition
letter u. We forceu-intervals to be disposed in an unbounded unique (unirited) se-
guence by means of the following formula:

uTT AG(u— uT—u). (12)

Lemma 11 Let M be a model such that Ntl,d’] I- (12). Then, there exists an infinite se-
guence of pointsgk d; < ..., such that

1. d/:do;
2. forevery le N, M,[d|,d ;1] IF u.

The following formulas associate a unique tile with evarinterval; moreover, they guar-
antee that tiles are placed in such a way that they respeditos on colors (a graphical
account of the encoding is given in Figure 5):

|7

Glu—\/t), (13)
i=1
|7
G /\ —(t /\tj), (14)
i j=Li]
|7 |7
GA @t — —(uT- \V tj), (15)
i=1 j=Lup(ti)=down(tj)
Ed
G(u N A ﬁ(m,q). (16)

i,j=Lright(tj)#left(t;)

It is easy to check that, in (12), (13), and (14), modalitiesus in the scope of at most
two negations. Moreover, formulas (15) and (16) can beeasilritten in such a way that
modalities occur in the scope of at most two negations as Wel, let¢ » be the following
formula:

(12) A (13) A (14) A (15) A (16). 17)

We prove that the encoding is sound and complete.

Lemma 12 Let.7 ={t4,...,tx} be asetoftiles. It holds that is satisfiable if and only
if 7 tiles the second octarnt.
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N A

t,o ot ‘u

Fig. 5 A pictorial representation of the encoding.

Proof (Soundnegd.etM,[d,d’] = ¢ ». We show that there exists a tiling functidn & —
Z . By Lemma 11, we know that there exists an infinite sequengmiftsdy < d; < ...
such thatl’ = dy and, for every € N, M, [yi,¥i+1] = u. Now, for eacH,me N, with | <m,
we put:

f(I,m) =1t wheneveM, [d,dn1] =t.

First, we have to show thdtis well-defined, that is, that eadt{l,m) is a tile. We proceed
by induction on(m—1). If (m—1) =0, then, by Lemma 11, we are onuanterval and thus,
by (13), there exists a tile associated with it. Since by €ubh a tile is uniquef is well-
defined. Suppose now th&fl, m) is a tile whenevem—1 < p, and considem—1| = p+1.
Since(m—1) — | < p, by the inductive hypothesif(l,m—1) is a tile, sayt;, which means

thatM, [d,dm] = ti. By (15), M, [di,dy] = ﬁ(uTﬁ\/‘J.'Z'Lup<ti>:down(tj>t,—). Hence, for every

d > dp, if M, [dm,d] |= u, then it must be the case thistt, [dy,d] = \/lj"zll‘up(ti):dowdtj)tj.

SinceM, [dm, dm 1] = u, this applies to the particular cade= dmy1. Thus, we have that
M, [d,dm1] =, that is, f(I,m) = t;, for somej such thatdown(t;) = up(t;) (again,
since by (14) such a tile is uniquéd, is well-defined). This not only guarantees us that
f is well-defined, but also that it respects the ‘vertical’ dibion of a tiling function. To
conclude the proof, we need to show that the ‘horizontal'dithon is respected as well. To
this end, let us considefr(I,m) and f (I 4+ 1, m). By definition, the corresponding tiles are
those associated witld|,dmy1] and[d|1,dm+1]. Since, by definition, the intervéd, d 1]

is au-interval, by (16) it cannot be the case thaft(f(l +1,m)) # right(f(l,m)), which
implies thatle ft(f (1 +1,m)) = right(f(I,m)). O

(Completenegd-or simplicity, let us assume the linearly ordered set tgMe<). One can
force the truth o, over[0, 0] by lettingu be true over all intervals of length 1 and edch
be true over all intervals of the forfh m+ 1], wheref(I,m) = t;. O

Theorem 8 The satisfiability problem for any syntactic extensiorC@fTgs where modal
operators occur in the scope of two negations is undecidable

Proof The thesis directly follows from Lemma 12.

It is worth noticing that only modalityl occurs in¢ . An alternative proof of Lemma
12 can be given by making use of modalyor of modality D only. This shows that any
fragment of CDT containing at least one modality am@n®, andT, where modalities are
allowed to occur in the scope of two negations, is undecalabl
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7 Conclusions and future work

In this paper, we studied a syntactic fragment of Venema'sT d@jic, that we called
CDTgs, Whose standard translation to first-order logic fits intorBgs-Schonfinkel class
of quantifier prefix formulas. Decidability of CIEE directly follows from that of Bernays-
Schonfinkel class.

We first focused our attention on expressiveness issues.on&dered the following
guestion: “can every formula in Bernays-Schonfinkel ctadsst-order logic over the linear
order<, limited to binary predicates, be turned into a Gdafformula?”. We proved that this
is not the case. In [33], Venema showed that CDT is expregsieenplete with respect to
FO*?[<]. In this paper, we showed that CBJ is expressively complete with respect to
the corresponding fragment of Bernays-Schonfinkel clﬁg[k]. Next, we developed a
tableau-based decision procedure for GBTand we proved that the satisfiability problem
for CDTgs is NP-complete. Finally, we showed that any natural relaradbf the syntactic
restrictions we imposed on CRR¥ yields undecidability, as it makes the resulting logic
expressive enough to encode the (undecidable) octarg filioblem.

The present work can be developed in a number of future relsetnrections. From a
theoretical point of view, one can think of the possibilitiyidentifying the interval tem-
poral logic counterparts of other decidable classes ofdirdér formulas. Moreover, the
relationships between interval temporal logics and (edeei) guarded fragments are still
unexplored. For instance, It would be interesting to giveaacount of the good compu-
tational properties of decidable fragments of CDT and H8l(iting CDTgs) in terms of
suitable guarded fragments. From a more practical poiniesf,we expect CDgs to be ap-
plicable in a variety of areas such as, for instance, planaird synthesis of plan controllers,
temporal description logics, and sequencing problemsimpetational genetics.
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