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Abstract Decidability and complexity of the satisfiability problem for the logics of time
intervals have been extensively studied in the recent years. Even though most interval log-
ics turn out to be undecidable, meaningful exceptions exist, such as the logics of temporal
neighborhood and (some of) the logics of the subinterval relation. In this paper, we explore
a different path to decidability: instead of restricting the set of modalities or imposing se-
vere semantic restrictions, we take the most expressive interval temporal logic studied so
far, namely, Venema’s CDT, and we suitably limit the negation depth of modalities. The
decidability of the satisfiability problem for the resulting fragment, called CDTBS, over the
class of all linear orders, is proved by embedding it into a well-known decidable quantifier
prefix class of first-order logic, namely, Bernays-Schönfinkel class. In addition, we show
that CDTBS is in fact NP-complete (Bernays-Schönfinkel class is NEXPTIME-complete),
and we prove its expressive completeness with respect to a suitable fragment of Bernays-
Schönfinkel class. Finally, we show that any increase in thenegation depth of CDTBS modal-
ities immediately yields undecidability.

Keywords Interval temporal logic· Tableau methods· Decidability· Complexity

1 Introduction

In the recent years, the study of temporal reasoning via interval-based (logical) approaches
has been very intensive. Since the seminal work by Halpern and Shoham [18] and Ven-
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ema [33], a series of papers on interval temporal logics has been published, e.g., [5,6,9–11,
23,24,29]. As an effect, the problem of classifying all “natural”, genuinely interval-based
(that is, all intervals over a linear order are considered, and no projection principle is ap-
plied [17]) logics with respect to their expressive and computational power has been exten-
sively studied and almost completely solved.

Propositional interval temporal logics are modal logics, interpreted over linearly- or
partially-ordered sets, whose proposition letters are evaluated over intervals instead of over
points. They differ from each other in the number and type of basic relations between inter-
vals that are captured by their modalities, by the linear order(s) over which they are inter-
preted, and by the inclusion or exclusion of point-intervals (intervals with coincident end-
points). In the hierarchy of existing interval temporal logics based on their expressive power,
the top element is Venema’s CDT [33], whose language features three binary modalities,
corresponding to the three possible ways to place a point with respect to the two endpoints
of a given interval, and a modal constant, that identifies point-intervals. The second-highest
logic in the hierarchy is Halpern and Shoham’s HS [19], whichfeatures one unary modality
for each Allen’s relation between pairs of intervals [1]. Both in CDT and in HS, satisfia-
bility turns out to be undecidable, no matters what class of linear orders is considered (all,
discrete, dense, finite, the linear order of natural numbers, and so on) [19].

In the recent years, some fragments of HS with a better computational behavior have
been identified. Meaningful examples include, but are not limited to,AA (a.k.a. Proposi-
tional Neighborhood Logic, PNL), which features two modalities for Allen’s relationsmeets
andmet by, and is decidable over all meaningful classes of linear orders [8,16]; its exten-
sionAABB [28], that includes modalities for Allen’s relation’sstartsandstarted by, and its
mirror imageAAEE, with additional modalities for Allen’s relationsfinishesandfinished
by, which are decidable over the class of finite linear orders and undecidable everywhere
else; andBBDDLL (and its mirror imageEEDDLL), with modalities for Allen’s relations
starts, started by, during, contains, before, andafter, which is decidable over dense linear
orders [27] and undecidable over finite and (weakly) discrete linear orders (as a matter of
fact, one-modality logicsD andD are already undecidable over the classes of finite and
discrete linear orders [23])1.

The situation with classical first-order logic is somehow similar. Since it has been shown
that satisfiability for the full language is undecidable, a great effort has been made in order
to identify more and more expressive decidable fragments. At least three different strategies
have been pursued: (i) limiting the number of variables of the language, (ii) limiting the type
of formulas allowed by relativizing quantification (guarded fragments), and (iii) limiting the
structure and the shape of the quantifier prefix.

First-order logics with a restriction on the number of variables have been already stud-
ied in connection with interval temporal logics. Most notably, AA has been proved to be
expressively equivalent to the two-variable fragment of first-order logic over linear orders.
Such a fragment of first-order logic has been shown to be NEXPTIME-complete over var-
ious classes of linear orders in [30]. Decidability ofAA over the same classes of orders
immediately follows. Guarded fragments of first-order logic (see [2] for an introduction)
have been shown to be quite useful to explain the good computational properties of modal
logics, but, to the best of our knowledge, they have never been considered in the frame-
work of interval temporal logics. As a matter of fact, mapping interval temporal logics into
guarded fragments of first-order logic would require (i) theuse of a relation in the guards

1 In all these cases, including or excluding point-intervalsmakes no difference.
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which is (or can be forced to behave as) a linear order, (ii) atleast three distinct variables,
(iii) uninterpreted predicates which are at least binary, and (iv) quantifications with Boolean
combinations of atomic formulas as guards. Such requirements are not met by known de-
cidable guarded fragments of first-order logic2.

In this paper, we explore an original path to decidability ofinterval temporal logics,
which follows the third strategy: we look for meaningful interval temporal logics that can
be embedded into decidable quantifier prefix classes of first-order logics. The decidability
of the latter family of logics does not depend on the shape of the quantifier prefix only, but
also on the number and the arity of predicate and function symbols that are allowed in the
formulas, and on the presence/absence of equality. Seven different decidable classes have
been identified in the literature (a survey on quantifier prefix classes of first-order logic can
be found in [4]).

We focus our attention on the prefix vocabulary class identified by Bernays and Schön-
finkel in 1928 (a.k.a. Bernays, Schönfinkel, and Ramsey class, as Ramsey proved that decid-
ability is preserved even when equality is included) [4]. Itconsists of all and only formulas
in prenex form whose quantifier prefix is of the form∃x1 . . .∃xn∀y1 . . .∀ym and whose ma-
trix may include predicate symbols of any arity (but no function symbols) and, possibly,
equality. It is well known that Bernays-Schönfinkel fragment of first-order logic is expres-
sive enough to model a linear order devoid of specific properties such as discreteness or
density. Moreover, it can express simple frame properties,commonly studied in the interval
temporal logic literature, like, for instance, boundedness.

We identify a syntactic fragment of CDT [33], called CDTBS, whose standard transla-
tion fits into Bernays-Schönfinkel class, by limiting the negation depth of the modalities to
one, that is, by constraining temporal operators to occur inthe scope of at most one nega-
tion. Decidability of CDTBS, over the class of all linear orders, immediately follows. Then,
a precise characterization of CDTBS expressive power is given by showing that it is ex-
pressively complete with respect to a suitable fragment of Bernays and Schönfinkel class.
A decision procedure for CDTBS is then obtained by tailoring the non-terminating tableau-
based deduction system for CDT developed in [15] to it. As a by-product, we prove that the
satisfiability problem for CDTBS is NP-complete, in sharp contrast with that of Bernays-
Schönfinkel class, which is NEXPTIME-complete, when relation symbols of unbounded
arity are allowed, and PSPACE, when relation symbols have bounded arity, e.g., only binary
relations are allowed, as it is the case for interval logics.Finally, we show that any increase
in the negation depth of CDTBS modalities immediately yields undecidability.

The paper is structured as follows. In Section 2, we provide background knowledge
about Bernays and Schönfinkel fragment of first-order logic. In Section 3, we define syntax
and semantics of CDTBS, and we define its standard translation. Decidability immediately
follows from the inclusion of the resulting set of formulas in Bernays and Schönfinkel class.
Next, in Section 4, we prove the expressive completeness of CDTBS with respect to a suitable
fragment of such a class. In Section 5, we devise a sound, complete, and terminating tableau
method for CDTBS. Finally, in Section 6, we show that fairly natural extensions of CDTBS

do not preserve decidability. An assessment of the work doneand possible future research
directions are given in Section 7.

2 Extended guarded fragments includes loosely guarded fragments, which allow guards to be more com-
plex than simple atoms [3], and guarded fragments with transitive guards (in general, transitivity cannot be
expressed as a guarded formula) [31].
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2 Bernays-Scḧonfinkel class

Bernays-Schönfinkel prefix vocabulary class, denoted hereby FOBS, consists of all and
only those first-order formulas, making use of any relational symbol of any arity, including
equality, that can be put in prenex form by using a quantifier prefix of the form∃x∀y,
wherex= x1 . . .xn andy = y1 . . .ym are (possibly empty) vectors of first-order variables. It is
well known that the satisfiability problem for FOBS is NEXPTIME-complete [4]. Moreover,
FOBS is closed under conjunction and disjunction, since all its formulas can be thought of as
sentences (free variables can be existentially quantified), but it is not closed under negation.

To simplify the proofs of the results given in the paper, we introduce an alternative
definition of FOBS via the following abstract grammar:

α ::= α∃ | α ∧α | α ∨α | ∃x.α | ¬α∃ for α∃ of the form∃x.α∃ (1)

α∃ ::= A(x) | ¬A(x) | α∃∧α∃ | α∃∨α∃ | ∃x.α∃ (2)

A(x) ::= any relational symbol of arbitrary arity, including equality (3)

Grammar (1) generates a fragment of first-order logic consisting of all and only those for-
mulas where existential quantifiers can occur in the scope ofat most one negation. While
any prenex formula of the form∃x∀yβ can be generated by grammar (1), the converse is not
true, since grammar (1) can generate also formulas which arenot in prenex form. However,
it is not difficult to show that any formula generated by grammar (1) can be transformed into
an equivalent prenex formula of the correct form, as shown bythe following proposition.

Proposition 1 Any formula generated by grammar(1) can be transformed into a prenex
formula of the form∃x∀yβ , with β quantifier-free.

Proof Let α be a formula generated by grammar (1). We show that there exists an equivalent
formulaτ(α) of the required form by structural induction. We start with the set of formulas
generated by the sub-grammar forα∃, and we show that each of them can be transformed
into a formula of the form∃xβ , with β quantifier-free. The case in whichα is a relation
or the negation of a relation is trivial. Consider now the case of formulasα = α∃ ∧α ′

∃.
By inductive hypothesis,τ(α∃) = ∃zβ andτ(α ′

∃) = ∃wβ ′, for some quantifier-freeβ and
β ′. Without loss of generality, we can assumez∩w = /0 (if this is not the case, we can
apply a suitable variable substitution), and thusα is equivalent to∃zw(β ∧β ′). The case of
disjunction is similar, and thus omitted. Consider now the case of formulasα = ∃x.α∃. By
inductive hypothesis,τ(α∃) = ∃wβ , for some quantifier-freeβ , with x 6∈ w, and thusα is
equivalent to∃x∃wβ . Let us consider now an arbitrary formula generated by grammar (1).
The only interesting case is the one for the negation of existential quantifiers. Letα =
¬∃x.α∃. By inductive hypothesis,τ(∃x.α∃) = ∃x∃wβ , for some quantifier-freeβ , with x 6∈
w. Hence,α is equivalent to the formula (in prenex form)∀x∀w¬β . ⊓⊔

Thanks to the above result, from now on we will assume that anyFOBS-formula has been
generated by grammar (1).

3 Decidability of the logic CDTBS over the class of all linear orders

Interval temporal logics are usually interpreted over a linearly ordered setD = 〈D,<〉. In
this setting, anintervalonD is an ordered pair[di ,d j ] with di ≤ d j (we refer to such a case as
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di dk dj

C

Fig. 1 The ternary relationchop, splitting the interval[di ,dj ] into the subintervals[di ,dk] and[dk,dj ].

thenon-strictsemantics, in contrast with thestrict one, that excludes degenerate intervals of
the form[di ,di ]). The set of all intervals onD is denoted byI(D). The variety of all possible
relations between any two intervals has been studied by Allen [1], who identified 12 distinct
binary relations plus the equality relation. Halpern and Shoham modal logic of intervals,
abbreviated HS, can be viewed as the modal logic of Allen’s relations as it features one
modality for each such relation. As we already mentioned, HSturns out to be undecidable
over any meaningful class of linear orders [19]. In [33], theternary relationchop, depicted in
Figure 1, has been taken into consideration. The corresponding binary modalityC, together
with the two conjugated modalitiesD (done) andT (to do), and the modal constantπ for
point-intervals define the interval temporal logic CDT. It can be easily shown that CDT
subsumes HS (in fact, it is strictly more expressive than HS), and thus it is undecidable
whenever HS is. In [20], Hodkinson et al. systematically investigate the three fragments
of CDT with only one binary modality each (C, D, or T), showing that each of them is
undecidable.

Formulas of CDT are built on a set of proposition lettersA P = {p,q, . . .}, the Boolean
connectives¬ and∨, the three binary modalitiesC,D, andT, and the modal constantπ, by
the following abstract grammar [33]:

ϕ ::= p | π | ¬ϕ | ϕ ∨ϕ | ϕ Cϕ | ϕ D ϕ | ϕ T ϕ .

The other Boolean connectives can be viewed as suitable short forms, as usual. Similarly,
universal counterparts of the existential modalitiesC, D, andT can be defined by means of
negation in the standard way; CDT has not any special notation for them.

The semantics of CDT-formulas can be given in terms of concrete modelsof the form
M = 〈I(D),V〉, whereV : A P → 2I(D) is avaluation function, as follows:

– M, [di ,d j ]  p if and only if [di ,d j ] ∈V(p),
– M, [di ,d j ]  π if and only if di = d j ,
– M, [di ,d j ]  ¬ϕ if and only if M, [di ,d j ] 6 ϕ ,
– M, [di ,d j ]  ϕ ∨ψ if and only if M, [di ,d j ]  ϕ or M, [di ,d j ]  ψ ,
– M, [di ,d j ]  ϕ Cψ if and only if there existsdi ≤ dk ≤ d j such thatM, [di ,dk]  ϕ and

thatM, [dk,d j ]  ψ ,
– M, [di ,d j ]  ϕ D ψ if and only if there existsdk ≤ di such thatM, [dk,di ]  ϕ and that

M, [dk,d j ]  ψ ,
– M, [di ,d j ]  ϕ T ψ if and only if there existsdk ≥ d j such thatM, [d j ,dk]  ϕ and that

M, [di ,dk]  ψ .

Thestandard translationis the usual way to express the semantics of a modal or tem-
poral formula in first-order logic. Letϕ be a CDT-formula and, for everyp∈ A P , let us
denote by the same symbolp the corresponding binary relation. The standard translation
functionST(ϕ)[x,y] is defined as follows:

– ST(ϕ)[x,y] = x≤ y∧ST′(ϕ)[x,y],

wherex,y are two first-order variables andST′(ϕ)[x,y] is inductively defined as follows:

– ST′(p)[x,y] = p(x,y),
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– ST′(π)[x,y] = (x= y),
– ST′(¬ϕ)[x,y] = ¬ST′(ϕ)[x,y],
– ST′(ϕ ∨ψ)[x,y] = ST′(ϕ)[x,y]∨ST′(ψ)[x,y],
– ST′(ϕ Cψ)[x,y] = ∃z(x≤ z≤ y∧ST′(ϕ)[x,z]∧ST′(ψ)[z,y]),
– ST′(ϕ D ψ)[x,y] = ∃z(z≤ x∧ST′(ϕ)[z,x]∧ST′(ψ)[z,y]),
– ST′(ϕ T ψ)[x,y] = ∃z(y≤ z∧ST′(ϕ)[y,z]∧ST′(ψ)[x,z]).

As a general rule, the standard translation makes it possible to reduce the satisfiability prob-
lem for a modal logic to a first-order satisfiability problem:a modal formulaϕ is satisfiable
if and only if its standard translation, evaluated on a pair of points x,y, is (first-order) sat-
isfiable. Now, we ask ourselves the following question: which CDT-formulas are such that
their satisfiability problem can be reduced to a first-order satisfiability problem in Bernays-
Schönfinkel class? To answer this question, we define an abstract grammar that generates
only CDT-formulas suitably limited in the negation depth ofmodalities:

ϕ ::= ϕ∃ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ Cϕ | ϕ D ϕ | ϕ T ϕ |

¬(ϕ∃Cϕ∃) | ¬(ϕ∃ D ϕ∃) | ¬(ϕ∃ T ϕ∃)
(4)

ϕ∃ ::= π | ¬π | p | ¬p | ϕ∃∧ϕ∃ | ϕ∃∨ϕ∃ | ϕ∃Cϕ∃ | ϕ∃ D ϕ∃ | ϕ∃ T ϕ∃ (5)

The above grammar generates a fragment of CDT, that we call CDTBS, which consists
of all and only those formulas where the modalitiesC, D, andT can occur in the scope of
at most one negation. The next lemma shows that the above-defined standard translation
maps CDTBS-formulas into Bernays-Schönfinkel class. It is easy to check that the syntactic
limitations of CDTBS do not prevent it from expressing all HS modalities (it only constrains
the way in which they can be composed). As an example,〈B〉ϕ is captured byϕ C¬π.
Similar encodings can be given for the other HS modalities [33].

Lemma 1 For everyCDTBS-formula ϕ , its standard translation ST(ϕ)[x,y] is an FOBS-
formula, with free variables x and y.

Proof The proof is by structural induction. We start with the set offormulas generated by
the sub-grammar forϕ∃, and we show that the standard translation of each of these formulas
belongs to the sub-grammar forα∃ and it hasx,y as its free variables.

As for the base case, letϕ∃ = p, for some proposition letterp. By definition,ST(p)[x,y]
= x ≤ y∧ p(x,y); the thesis immediately follows. The cases¬p,π, and¬π are similar,
and thus omitted. As for the case of conjunction, letϕ∃ = ϕ ′

∃∧ϕ ′′
∃ . By definition,ST(ϕ ′

∃∧
ϕ ′′
∃ )[x,y] = x≤ y∧ST′(ϕ ′

∃)[x,y]∧ST′(ϕ ′′
∃ )[x,y]. By inductive hypothesis, bothST(ϕ ′

∃)[x,y]
andST(ϕ ′′

∃ )[x,y], and thusST′(ϕ ′
∃)[x,y] andST′(ϕ ′′

∃ )[x,y], belong to the sub-grammar for
α∃ and havex,y as their free variables. It immediately follows thatST(ϕ ′

∃∧ϕ ′′
∃ )[x,y] has the

required form. The case of disjunction is similar, and thus omitted.
Now, letϕ∃ = ϕ ′

∃Cϕ ′′
∃ . By definition,ST(ϕ ′

∃Cϕ ′′
∃ )[x,y] = x≤ y∧∃z(x≤ z≤ y∧ST′(ϕ ′

∃)
[x,z]∧ST′(ϕ ′′

∃ )[z,y]). By inductive hypothesis,ST′(ϕ ′
∃)[x,z] is anα∃-formula withx,zas its

free variables, andST′(ϕ ′′
∃ )[z,y] is anα∃-formula withz,y as its free variables. Hence, the

formulax≤ y∧∃z(x≤ z≤ y∧ST′(ϕ ′
∃)[x,z]∧ST′(ϕ ′′

∃ )[z,y]) is anα∃-formula withx,y as its
free variables. The other two cases forD andT can be dealt with in a similar way.

Let us consider now an arbitrary formula generated by the grammar. The only in-
teresting cases are those for the negation of modalities. Let ϕ = ¬(ϕ ′

∃ C ϕ ′′
∃ ). By defini-

tion, ST(¬(ϕ ′
∃Cϕ ′′

∃ ))[x,y] = x ≤ y∧¬ST′(ϕ ′
∃Cϕ ′′

∃ )[x,y], andST′(ϕ ′
∃Cϕ ′′

∃ )[x,y] = ∃z(x ≤
z≤ y∧ST′(ϕ ′

∃)[x,z]∧ST′(ϕ ′′
∃ )[z,y]). We have already shown that bothST′(ϕ ′

∃)[x,z] and
ST′(ϕ ′′

∃ )[z,y] areα∃-formulas withx,z andz,y as their free variables, respectively. Hence,
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∃z(x≤ z≤ y∧ST′(ϕ ′
∃)[x,z]∧ST′(ϕ ′′

∃ )[z,y]) is anα∃-formula withx,y as its free variables. It
immediately follows that¬ST′(ϕ ′

∃Cϕ ′′
∃ )[x,y] is anα-formula withx,y as its free variables,

and thus the thesis, as the conjunction of twoα-formulas is anα-formula. The other two
cases can be dealt with in a similar way. ⊓⊔

In order to prove the main theorem, it suffices to observe thatthe linear order< is captured
by the following axioms [4], whose conjunctionΦ belongs to FOBS:

1. ∀x¬(x< x);
2. ∀x,y(x< y→¬y< x);
3. ∀x,y,z(x< y∧y< z→ x< z);
4. ∀x,y(x= y∨x< y∨y< x).

Theorem 1 The satisfiability problem forCDTBS over the class of all linear orders is de-
cidable.

Proof By Lemma 1, ifϕ is a CDTBS-formula, then∃x,yST(ϕ)[x,y] (the existential closure
of ST(ϕ)[x,y]) belongs to Bernays-Schönfinkel class. Satisfiability ofϕ can thus be reduced
to satisfiability of the FOBS-formula Φ ∧∃x,yST(ϕ)[x,y]. Since the satisfiability problem
for FOBS is decidable, decidability of CDTBS immediately follows. ⊓⊔

The satisfiability problem for FOBS has been shown to be NEXPTIME-complete. The
proof relies on the observation that an FOBS-formula is satisfiable if and only if it has a
model with a number of elements bounded by the number of existential quantifiers [4, Propo-
sition 6.2.17]. This immediately leads to a nondeterministic exponential-time procedure for
satisfiability checking. However, when we restrict our attention to formulas where the arity
of relational symbols is bounded (to two, in our case), the complexity of such a procedure
becomes PSPACE, since in this case a candidate model for the formula can be represented
using only a polynomial amount of memory. Hence, Theorem 1 gives us a PSPACE upper-
bound to the complexity of CDTBS. In Section 5, we will show that this bound is not tight,
by providing an NP decision procedure for the satisfiabilityof CDTBS.

4 Expressive completeness of CDTBS

In Section 3, we showed that CDTBS formulas can be translated into Bernays-Schönfin-
kel class FOBS of first-order logic with equality, thanks to the fact that the linear order
< can be expressed in this fragment. Inspired by the observation that the translation uses
only binary predicates, we now ask ourselves the following question: for every formula in
Bernays-Schönfinkel class of first-order logic, interpreted over the linear order< and limited
to binary predicates, is there an expressively equivalent CDTBS-formula? Similar expressiv-
ity comparison issues have been already investigated for various point- and interval-based
logics. A partial list includes basic results about the completeness of LTL with respect to
the first-order fragment of monadic second-order logic overDedekind-complete linear or-
ders and generalizations (Kamp’s Theorem and its extensions [12–14,21,22,25]), the com-
pleteness of CDT with respect to the three-variable fragment of first-order logic over linear
orders, where at most two variables are free [33], the completeness ofAA with respect to
two-variable first-order logic over linear orders [8], and the completeness of its metric ex-
tension, called MPNL, with respect to a fragment of two-variable first-order logic extended
with a successor function overN [7].
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We focus our attention on first-order logic interpreted overthe linear order< and limited
to binary predicates, denoted by FO[<]. We will denote by FOn,m[<] then-variable fragment
of FO[<], where at mostmvariables are free, and by FOω ,m[<] the fragment of FO[<] with
a denumerable set of variables, where at mostmare free. Since interval logics are interpreted
over intervals (represented as pairs of points), the standard translation of any interval logic
formula is a formula with two free variables, and thus it belongs to FOω ,2[<]. By analogy
with the case of other interval logics, e.g., [8,33], to establish an expressive completeness
result for CDTBS, we will limit the number of variables of the corresponding first-order frag-
ment. We denote by FOn,mBS [<] (resp., FOω ,m

BS [<]) then-variable fragment (resp., the fragment
with a denumerable set of variables) of the language defined by grammar (1), where at most
m variables occur free.

In the following, we compare interval and first-order logicswith respect to their ability
of expressing properties of a given interval in a model. We distinguish three cases: (i) the
comparison of two interval logics, (ii) the comparison of two fragments of first-order logic,
and (iii) the comparison of an interval logic and a fragment of first-order logic.

Given two interval logics (resp., fragments of first-order logic) L and L’, we say that
L’ is at least as expressive asL, denoted by L� L′, if there is an (effective) translation
τ from L to L’ such that for every modelM, interval [di ,d j ] (resp., pair of pointsdi ,d j )
in M, and formulaϕ of L, M, [di ,d j ]  ϕ iff M, [di ,d j ]  τ(ϕ) (resp.,M |= ϕ(di ,d j) iff
M |= τ(ϕ)(di,d j)). Furthermore, we say that L’ isas expressive asL, denoted by L′ ≡ L, if
both L′ � L and L� L′, and we say that L’ isstrictly more expressive thanL, denoted by
L ≺ L′, if L � L′ and L′ 6� L.

To compare the expressive power of an interval logic and a fragment of first-order logic,
we must cope with a technical problem: interval models constrain interval logic formulas
to be evaluated on ordered pairs[di ,d j ], with di ≤ d j , only, while relational models do not
impose such a constraint. To solve it, we map each binary relation p of the considered
fragment of first-order logic into two distinct propositionlettersp≤ and p≥ of the interval
logic. From [8], we borrow the following definition.

Definition 1 Let M = 〈I(D),VM〉 be an interval model. The corresponding relational model
η(M) is the pair〈D,Vη(M)〉, where, for every proposition letterp, Vη(M)(p) = {(a,b) ∈ D×
D : [a,b] ∈VM(p)}. Conversely, letM = 〈D,VM〉 be a relational model. The corresponding
interval modelζ (M) is the pair〈I(D),Vζ (M)〉, where, for every binary relationp and interval
[di ,d j ], [di ,d j ]∈Vζ (M)(p

≤) iff (di ,d j)∈VM(p) and[di ,d j ]∈Vζ (M)(p
≥) iff (d j ,di)∈VM(p).

Given an interval logic LI and a fragment of first-order logic LFO, we say that LFO is at least
as expressive asLI , denoted by LI � LFO, if there exists an effective translationτ from LI to
LFO such that for any interval modelM, interval[di ,d j ], and LI -formulaϕ , M, [di ,d j ]ϕ iff
η(M) |= τ(ϕ)(di,d j). Conversely, we say that LI is at least as expressive asLFO, denoted
by LFO � LI , if there exists an effective translationτ ′ from LFO to LI such that, for any
relational modelM, pair of points(di ,d j), and LFO-formulaϕ , M |= ϕ(di,d j) if and only if
ζ (M), [di,d j ]  τ ′(ϕ), if di ≤ d j , or ζ (M), [d j ,di ]  τ ′(ϕ), otherwise. LI ≡ LFO, LI ≺ LFO,
and LFO ≺ LI are defined as usual.

In [32], Venema shows that the hierarchy of fragments FOn,2[<], for n≥ 2, is strict.

Theorem 2 For every n≥ 2, FOn,2[<] ≺ FOn+1,2[<] (over the class of all linear orders).

The expressive completeness of the interval logic of temporal neighborhoodAA with respect
to FO2,2[<] and of CDT with respect to FO3,2[<] have been proved by Bresolin et al. in [8]
and by Venema in [33], respectively.
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τ i, j (xi = xj ) = π
τ i, j (xj = xi ) = π
τ i, j (xi = xi ) = ⊤

τ i, j (xj = xj ) = ⊤
τ i, j (xi < xj ) = ¬π
τ i, j (xj < xi ) = ⊥
τ i, j (xi < xi ) = ⊥

τ i, j (xj < xj ) = ⊥
τ i, j (p(xi ,xj )) = p≤

τ i, j (p(xj ,xi )) = p≥

τ i, j (p(xi ,xi )) = (π ∧ p≤)C⊤
τ i, j (p(xj ,xj )) = ⊤C(π ∧ p≤)

τ i, j (¬α(xi ,xj )) = ¬τ i, j (α(xi ,xj ))

τ i, j (α(xi ,xj )∧β(xi ,xj )) = τ i, j (α(xi ,xj ))∧ τ i, j (β(xi ,xj ))

τ i, j (α(xi ,xj )∨β(xi ,xj )) = τ i, j (α(xi ,xj ))∨ τ i, j (β(xi ,xj ))

τ i, j (∃xk(α(xi ,xk)∧β(xk,xj ))) = τk,i(α(xi ,xk))D τk, j (β(xk,xj ))∨
τ i,k(α(xi ,xk))Cτk, j (β(xk,xj ))∨
τ j,k(β(xk,xj ))T τ i,k(α(xi ,xk))

Table 1 The mapping of FO3,2sp [<] into CDTBS: translation rules.

Theorem 3 AA≡ FO2,2[<].

Theorem 4 CDT≡ FO3,2[<].

The proof of Theorem 2 shows that for any givenn ≥ 2, there exist two modelsM1 and
M2 such thatM1 and M2 satisfy the same set of FOn,2[<]-formulas, and there exists an
FOn+1,2[<]-formula which is satisfied byM1 and not byM2. Equivalence ofM1 andM2

with respect to FOn,2[<]-formulas is established by a game-theoretic argument, while the
FOn+1,2[<]-formula that differentiates the two models is the following one:

∃x1∃x2 . . .∃xn∃xn+1

(

∧

xi 6=x j

¬p(xi ,x j)
)

. (6)

Since such a formula belongs to Bernays-Schönfinkel fragment of first-order logic, the very
same argument can be used to prove that FOn,2

BS[<] ≺ FOn+1,2
BS [<], for anyn≥ 2. Moreover,

by Theorem 4, it holds that FOn,2BS[<] ≺ FOn,2[<], for every n ≥ 3: on the one hand, it

trivially holds that FOn,2
BS[<] � FOn,2[<]; on the other hand, decidability of FOω ,2

BS [<] and

undecidability of CDT imply that FOn,2[<] 6� FOn,2
BS[<]. Finally, we have that, for every

n≥ 3, FOn,2[<] and FOn+1,2
BS [<] are incomparable: on the one hand, FOn+1,2

BS [<] 6� FOn,2[<],

as formula (6) belongs to FOn+1,2
BS [<] and there is not an equivalent formula in FOn,2[<];

on the other hand, FOn+1,2
BS [<] is decidable, while FOn,2[<] is not, and thus FOn,2[<] 6�

FOn+1,2
BS [<]. Hence, the following theorem holds.

Theorem 5 For every n≥ 3, it holds that:

1. FOn−1,2
BS [<] ≺ FOn,2

BS[<];

2. FOn,2
BS[<] ≺ FOn,2[<];

3. FOn,2[<] andFOn+1,2
BS [<] are incomparable

(over the class of all linear orders).

We conclude the section by showing that CDTBS is expressively complete with respect
to FO3,2

BS[<]. One direction is straightforward: since the standard translation of CDTBS-

formulas given in Section 3 makes use of 3 variables only, it holds that CDTBS � FO3,2
BS[<].

We now show that the converse holds as well, that is, FO3,2
BS[<] � CDTBS. By analogy

to the case of the mapping from FO3,2[<] to CDT defined by Venema [33], as a preliminary
step, we provide a suitable characterization of FO3,2

BS[<]-formulas.
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Definition 2 Let {i, j,k} ⊆ {1,2,3}. The language FO3,2sp [<] is defined by the following
abstract grammar:

β (xi ,x j) ::= β∃(xi ,x j) | β (xi ,x j)∧β (xi,x j) | β (xi ,x j)∨β (xi,x j) |

∃xk(β (xi,xk)∧β (xk,x j)) | ¬β∃(xi ,x j) for β∃(xi ,x j)

of the form∃xk(β∃(xi ,xk)∧β∃(xk,x j))

(7)

β∃(xi ,x j) ::= A(xi ,x j) | ¬A(xi ,x j) | β∃(xi ,x j)∧β∃(xi ,x j) | β∃(xi ,x j)∨β∃(xi ,x j) |

∃xk(β∃(xi ,xk)∧β∃(xk,x j))
(8)

A(xi ,x j) ::= xi = x j | x j = xi | xi = xi | x j = x j | xi < x j | x j < xi | xi < xi | x j < x j |

p(xi ,x j) | p(x j ,xi) | p(xi ,xi) | p(x j ,x j)
(9)

Lemma 2 For every formula inFO3,2
BS[<], there is an equivalent formula inFO3,2

sp [<].

Proof We prove the following stronger claim on the 3-variable fragment FO3,3
BS[<], which

includes formulas where all three variables occur free:

for every formulaα in FO3,3
BS[<] there is equivalent formulaτ(α), which is a

Boolean combination ofFO3,2
sp [<]-formulas, with the same free variables asα .

The proof is by structural induction.
The base cases (α is an atomic formula orα is the negation of an atomic formula)

and the case of logical connectives (α is a conjunction or a disjunction of formulas) are
straightforward. In particular, as for the base case, it suffices to remind that we restricted our
attention to fragments of first-order logic with binary predicates only.

Let α be of the form∃xkγ(xi ,x j ,xk). By the inductive hypothesis,γ(xi,x j ,xk) is equiv-
alent to a formulaτ(γ(xi,x j ,xk)), that we may assume, without loss of generality, to be a
disjunction of conjunctions of formulas in FO3,2

sp [<]. By distributing the existential quan-
tifier ∃xk over disjunctions, we obtain a formula of the form

∨m
h=1∃xkγh(xi ,x j ,xk), where

eachγh(xi ,x j ,xk) is a conjunction of formulas. Since only binary predicates are allowed,
we can rewrite eachγh(xi ,x j ,xk) asξh(xi ,x j)∧ξh(xi ,xk)∧ξh(x j ,xk). Since variablexk does
not occur free inξh(xi ,x j), we can rewrite∃xkγh(xi ,x j ,xk) as ξh(xi ,x j)∧∃xk(ξh(xi ,xk)∧

ξh(x j ,xk)). This latter formula is a conjunction of FO3,2sp [<]-formulas with the same free
variables asα .

The case in whichα is of the form¬∃xkγ(xi ,x j ,xk) can be dealt with in a very similar
way. ⊓⊔

We are now ready to define the translationτ from FO3,2
sp [<] to CDTBS. For the sake of

brevity, we writeτ i, j for τ [xi,x j ], with xi ≤ x j . Translation rules for atomic and complex
formulas are given in Table 1.

Lemma 3 Let α(xi,x j) be anFO3,2
sp [<]-formula. Then, for every pair of points(di ,d j),

M |= α(di ,d j) if and only if di ≤ d j and ζ (M), [di ,d j ]  τ i, j(α(xi,x j)), or dj ≤ di and
ζ (M), [d j ,di ]  τ j,i(α(xi,x j)).

Proof The proof is by induction on the structure ofα(xi,x j). The cases of atomic formulas
and Boolean connectives are straightforward.
Once more, the only interesting case is the one of existential quantifiers. Letα(xi,x j) be
the formula∃xk(β (xi,xk)∧ γ(xk,x j)) anddi ≤ d j . By the semantic clauses for FO3,2

sp [<], it
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FO2,2[<]

FO3,2[<]

FO4,2[<]

. . .

FOω,2[<]

FO3,2
BS[<]

FO4,2
BS[<]

. . .

FOω,2
BS [<]

≡PNL ≡≡≡ CDTBS

≡CDT

Fig. 2 A classification of the considered interval logics and fragments of first-order logic with respect to their
expressive power.

holds thatM |= ∃xk(β (di ,xk)∧ γ(xk,d j)) if and only if there exists a pointdk such thatM |=
β (di ,dk) andM |= γ(dk,d j). Since we are interpreting our formulas over a linear order,there
are three possible ways to placedk with respect todi andd j : eitherdk ≤ di , or di ≤ dk ≤ d j ,
or d j ≤ dk. By the inductive hypothesis, we have thatM |= α(di,d j) if and only if:

(

ζ (M), [dk,di ]  τk,i(β (xi ,xk)) and ζ (M), [dk,d j ]  τk, j(γ(xk,x j))
)

or
(

ζ (M), [di,dk]  τ i,k(β (xi ,xk)) and ζ (M), [dk,d j ]  τk, j(γ(xk,x j))
)

or
(

ζ (M), [d j ,dk]  τ j,k(γ(xk,x j)) and ζ (M), [di,dk]  τ i,k(β (xi,xk))
)

.

By the semantics of theC, D, andT operators, we can conclude thatM |= α(di,d j) if and
only if ζ (M), [di,d j ]  τ i, j(α(xi,x j)), as required. ⊓⊔

Theorem 6 CDTBS is as expressive asFO3,2
BS[<].

Proof By Lemma 2 and Lemma 3, FO3,2BS[<] � FO3,2
sp [<] � CDTBS. Moreover, by Lemma

1, CDTBS � FO3,2
BS[<]. Hence, CDTBS ≡ FO3,2

BS[<]. ⊓⊔

Figure 2 gives a graphical account of the relationships among the considered logics
(interval logics and fragments of first-order logic) in terms of their expressive power (the
contributions of the present work are in boldface).

5 A tableau method for CDTBS

In [15], Goranko et al. propose a tableau method for CDT interpreted over partial orders with
the linear interval property, that is, partial orders in which every interval is linear (BCDT+

for short). The method provides a semi-decision procedure for BCDT+ (it is not guaranteed
to terminate). This does not come as a surprise as BCDT+ is undecidable. In this section,
we show how to turn the method into an NP decision procedure CDTBS. In particular, we
show how to exploit BCDT+ syntactic restrictions to guarantee termination.

Let us start with some basic terminology. Afinite treeis a finite directed acyclic graph
in which every node, apart from one (theroot), has exactly one incoming edge. Asuccessor
of a noden is a noden′ such that there is an edge fromn to n′. A leaf is a node with no
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successors. A path is a sequence of nodesn0, . . . ,nk such that, for alli = 0. . .k−1, ni+1 is
a successor ofni ; a branch is a path from the root to a leaf. Theheightof a noden is the
maximum length (number of edges) of a path fromn to a leaf, while itsdepthis the length
of the (unique) path from the root to it. If two nodesn andn′ belong to the same branch
and the height ofn is less than (resp., less than or equal to) the height ofn′, we writen≺ n′

(resp.,n� n′).

Definition 3 Let D be a finite linear order. Alabeled formula overD is a pair(ψ , [di,d j ]),
whereψ ∈ CDTBS and[di ,d j ] ∈ I(D).

Definition 4 Let T be a (finite) tree and letn be a node ofT . Thedecorationν(n) of n is
a tuple〈ψ , [di,d j ],D, p,u〉, whereD is a finite linear order,(ψ , [di ,d j ]) is a labeled formula
overD, p ∈ {0,1}, andu is a local flag functionwhich associates the values 0 or 1 with
every branchB containingn.

Definition 5 A decorated treeis a finite treeT enriched with a decorationν(n) for each
noden of T , apart from the root.

The tableau construction described below generates a decorated treeT . Given a branchB
and a nodenbelonging to it, with decorationν(n), u(B)= 1 means thatncan be expanded on
B. Given a branchB, B· (n1 · . . . ·nh) is the result of the expansion ofB with the sequence of
nodesn1 · . . . ·nh (for h= 1, we simply writeB·n), whileB·(n1,1 · . . .·n1,h)| . . . |(nk,1 · . . .·nk,h)
is the result of the expansion ofB with k sequences ofh nodes (forh= 1, we simply write
B ·n1| . . . |nk). The auxiliary flagp has been added to simplify termination and complexity
proofs. It records the nature of formulaψ : if ψ is aϕ∃-formula, thenp= 0; otherwise,p= 1.
Finally, if n is the leaf of a branchB, we denote byDB the finite linear order inν(n).

Since in CDTBS negation can occur only in front of proposition letters or modalities, we
need to introduce the notion ofdual formulaof a formulaϕ , denoted byϕ. It is inductively
defined as follows:

– p= ¬p and¬p= p, for everyp∈ A P ∪{π};
– ϕ ∨ψ = ϕ ∧ψ;
– ϕ ∧ψ = ϕ ∨ψ;
– ϕ Rψ = ¬(ϕ Rψ), for R∈ {C,D,T};
– ¬(ϕ Rψ) = ϕ Rψ , for R∈ {C,D,T}.

Notice that the dual of a generic CDTBS-formula does not necessarily belong to CDTBS.
This is the case, for instance, with the formulapC¬(qC r). However, the following lemma
guarantees that dual formulas ofϕ∃-formulas are CDTBS-formulas. Such a lemma will play
a crucial role in the proof of correctness of the tableau method.

Lemma 4 Let ϕ be aϕ∃-formula. Then,ϕ is aCDTBS-formula.

Proof The cases of proposition letters and Boolean connectives can be proved by a straight-
forward structural induction. To prove that the thesis holds also for modalities, let us assume
ϕ = ψ Cτ to be aϕ∃-formula. By definition, the dual formulaϕ is¬(ψ Cτ). Sinceψ ,τ are
ϕ∃-formulas, we can conclude thatϕ is a CDTBS-formula. The other cases can be dealt with
in a similar way. ⊓⊔

The construction of a tableau for a CDTBS-formula ϕ to be checked for satisfiability starts
from a three-node tree (initial tableau) consisting of a root and two leaves with decorations
〈ϕ , [d0, d0],{d0},1,1〉 and〈ϕ , [d0,d1],{d0 < d1},1,1〉, respectively. The procedure exploits
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a set of expansion rules, adapted from those given in [15], toadd new nodes to the tree.
In particular, the original rules for modalities have been revised to restrict the search for
possible models to linear orders only.

Definition 6 Given a treeT , a branchB in T , and a noden∈B with decoration〈ψ , [di ,d j ],
D, pn,un〉 such thatun(B) = 1, thebranch-expansion rulefor B andn is defined as follows
(in all considered cases,un′(B

′) = 1 for all new nodesn′ and branchesB′).

R1 If ψ = ξ0∧ξ1, then expandB to B·n0 ·n1, wheren0 is decorated with〈ξ0, [di ,d j ],DB, pn,
un0〉 andn1 is decorated with〈ξ1, [di ,d j ],DB, pn,un1〉.

R2 If ψ = ξ0∨ξ1, then expandB to B·n0 | n1, wheren0 is decorated with〈ξ0, [di ,d j ],DB, pn,
un0〉 andn1 is decorated with〈ξ1, [di ,d j ],DB, pn,un1〉.

R3 If ψ = ¬(ξ0 C ξ1) and d is a point in DB, with di ≤ d ≤ d j , which has not been
used yet to expandn in B, then expandB to B · n0|n1, wheren0 is decorated with
〈ξ0, [di ,d],DB,0,un0〉 andn1 is decorated with〈ξ1, [d,d j ],DB,0,un1〉.

R4 If ψ =¬(ξ0Dξ1), andd is a point inDB, with d≤ di , which has not been used yet to ex-
pandn in B, then expandB to B·n0|n1, wheren0 is decorated with〈ξ0, [d,di ],DB,0,un0〉

andn1 is decorated with〈ξ1, [d,d j ],DB,0,un1〉.
R5 If ψ =¬(ξ0T ξ1), andd is a point inDB, with d j ≤ d, which has not been used yet to ex-

pandn in B, then expandB to B·n0|n1, wheren0 is decorated with〈ξ0, [d j ,d],DB,0,un0〉

andn1 is decorated with〈ξ1, [di ,d],DB,0,un1〉.
R6 If ψ = ξ0 C ξ1, then expandB to B · (ni ·mi)| . . . |(n j ·mj)|(n′i ·m

′
i)| . . . |(n

′
j−1 ·m

′
j−1),

where:

(a) for all i ≤ k ≤ j, nk is decorated with〈ξ0, [di ,dk],DB, pn,unk〉 andmk is decorated
with 〈ξ1, [dk,d j ],DB, pn,umk〉;

(b) for all i ≤ k ≤ j −1,Dk is the linear ordering obtained fromDB by inserting a new
point d betweendk anddk+1, n′k is decorated with〈ξ0, [di ,d],Dk, pn,un′k

〉 andm′
k is

decorated with〈ξ1, [d,d j ],Dk, pn,um′
k
〉.

R7 If ψ = ξ0 D ξ1 andd0 is the least point ofDB, then expandB to B · (n0 ·m0)| . . . |(ni ·
mi)|(n′0 ·m

′
0)| . . . |(n

′
i ·m

′
i), where:

(a) for all 0≤ k ≤ i, nk is decorated with〈ξ0, [dk,di ],DB, pn,unk〉 andmk is decorated
with 〈ξ1, [dk,d j ],DB, pn,umk〉;

(b) for all 0≤ k≤ i,Dk is the linear ordering obtained fromDB by inserting a new point
d betweendk−1 anddk (for k= 0,d is placed immediately befored0), n′k is decorated
with 〈ξ0, [d,di ],Dk, pn,un′k

〉 andm′
k is decorated with〈ξ1, [d,d j ],Dk, pn,um′

k
〉.

R8 If ψ = ξ0 T ξ1 anddN is the greatest point ofDB, then expandB to B· (n j ·mj)| . . . |(nN ·
mN)|(n′j ·m

′
j)| . . . |(n

′
N ·m′

N), where:

(a) for all j ≤ k ≤ N, nk is decorated with〈ξ0, [d j ,dk],DB, pn,unk〉 andmk is decorated
with 〈ξ1, [di ,dk],DB, pn,umk〉;

(b) for all j ≤ k≤N,Dk is the linear ordering obtained fromDB by inserting a new point
d betweendk anddk+1 (for k=N, d is placed immediately afterdN), n′k is decorated
with 〈ξ0, [d j ,d],Dk, pn,un′k

〉 andm′
k is decorated with〈ξ1, [di ,d],Dk, pn,um′

k
〉.

Finally, for each branchB′ extendingB, let um(B′) = um(B), for each nodem 6= n in B,
and letun(B′) = 0, unlessψ = ¬(ξ0Cξ1), ψ = ¬(ξ0Dξ1), or ψ = ¬(ξ0Tξ1) (in such cases
un(B′) = 1).
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We briefly explain the behavior of the branch-expansion rulein casesR6 (ξ0 Cξ1) andR3
(¬(ξ0Cξ1)). The corresponding cases for modalitiesD andT are similar.R6 deals with two
possible scenarios: either there existsdk ∈ DB such thatξ0 holds over[di ,dk] andξ1 holds
over [dk,d j ], or such a point must be added toDB. The successors(ni ·mi)| . . . |(n j ·mj)
created by the rule cover the former case, while the successors (n′i ·m

′
i)| . . . |(n

′
j−1 ·m

′
j−1)

cover the latter case. As forR3, the formula¬(ξ0 C ξ1) states that, for alldi ≤ d ≤ d j ,
eitherξ0 holds over[di ,d] or ξ1 holds over[d,d j ]. R3 imposes such a condition for a single
point d ∈ DB and keeps the flag equal to 1. In such a way, all points inDB are eventually
considered, including those points that will be added in subsequent steps of the tableau
construction.

Definition 7 A branchB is closedif one of the following conditions holds:

1. there are two nodesn,n′ in B such thatν(n) = 〈ψ , [di ,d j ],D, p,u〉 and ν(n′) =
〈ψ, [di ,d j ],D

′, p′,u′〉 for some formulaψ anddi ,d j ∈ D;
2. there is a node n such thatν(n) = 〈π, [di ,d j ],D, p,u〉 anddi 6= d j ;
3. there is a node n such thatν(n) = 〈¬π, [di ,d j ],D, p,u〉 anddi = d j ;

If none of the above conditions hold, the branch isopen.

Definition 8 The branch-expansionstrategyfor a branchB in a decorated treeT is defined
as follows:

1. apply the branch-expansion rule to a branchB only if it is open;
2. if B is open, apply the branch-expansion rule to the closest to the root noden such

that un(B) = 1 and the application of the rule generates at least one node with a new
decoration (if any).

Definition 9 A tableauT is any decorated tree obtained from the initial tableau by the
application of the branch-expansion strategy.

We say that a tableauT is closedif and only if all its branches are closed, otherwise it is
open.

We conclude the section by giving a couple of examples of the application of the pro-
posed method. As a first example, we consider the satisfiable formulaϕ = (¬π D¬π)C¬π.
A portion of a tableau forϕ is given in Figure 3, where thick edges highlights an open
branch representing a four-point model for the formula. As asecond example, letψ be the
unsatisfiable formulap T¬(⊤C p). A closed tableau forψ is given in Figure 4. It is worth
pointing out that there is an abuse of notation in the last component of the node decorations:
while it is formally defined as a function from a set of branches to{0,1}, in the pictures it
is represented as a constant (either 0 or 1). The reason is that in the proposed examples the
function is constant for each node, that is, for eachn we have that the value of the function
un(B) is the same for every branchB containingn.

In the following, we will show that to establish the satisfiability of a CDTBS-formula
ϕ it is sufficient to start with the initial tableau forϕ , and keep expanding it for as long
as it is possible: if the resulting tableau is open, thenϕ is satisfiable, otherwise it is not.
Moreover, we will prove that this expansion procedure terminates and it can be executed by
a nondeterministic machine that uses only a polynomial amount of time.
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root

〈

(¬π D¬π)C¬π , [d0,d0],{d0},1,0
〉

〈

¬π D¬π , [d0,d0],{d0},1,1
〉

〈

¬π , [d0,d0],{d0},1,1
〉

×

〈

(¬π D¬π)C¬π , [d0,d1],{d0 < d1},1,0
〉

〈

¬π D¬π , [d0,d0],{d0 < d1},1,1
〉

〈

¬π , [d0,d1],{d0 < d1},1,1
〉

· · ·

〈

¬π D¬π , [d0,d1],{d0 < d1},1,1
〉

〈

¬π , [d1,d1],{d0 < d1},1,1
〉

×

〈

¬π D¬π , [d0,d2],{d0 < d2 < d1},1,0
〉

〈

¬π , [d2,d1],{d0 < d2 < d1},1,1
〉

〈

¬π , [d0,d2],{d0 < d2 < d1},1,1
〉

〈

¬π , [d0,d0],{d0 < d2 < d1},1,1
〉

×

〈

¬π , [d3,d0],{d3 < d0 < d2 < d1},1,1
〉

〈

¬π , [d3,d2],{d3 < d0 < d2 < d1},1,1
〉

Fig. 3 A portion of an open tableau for the formula(¬π D¬π)C¬π.

5.1 Soundness

In this subsection, we prove that the proposed tableau method is sound, that is, given a
formula ϕ and a tableauT for it, if T is closed, thenϕ is not satisfiable. In the next
subsection, we will show that the method is also complete.

Lemma 5 (Soundness)Let ϕ be a CDTBS-formula andT be a tableau for it. IfT is
closed, thenϕ is not satisfiable.

Proof Let n be a node in the tableauT , and letDn = {d0 < .. . < ds} be the linear ordering
from ν(n). We will prove the following claim by induction on the heighth of the node:

if every branch including n is closed, then the set S(n) of all labeled formulas in the
decorations of the nodes between n and the root is neither satisfiable inI(Dn) nor
in any extension of it.

If h = 0, thenn is a leaf and the unique branchB containingn is closed. Then, either
S(n) contains both the labeled formulas(ψ , [dk,dl ]) and (¬ψ , [dk,dl ]), for some CDTBS-
formula ψ and dk,dl ∈ Dn, or the labeled formula(π, [dk,dl ]), for somedk 6= dl , or the
labeled formula(¬π, [dk,dl ]), for somedk = dl . Take any modelM = 〈I(D′),V〉, where
D
′ extendsDn. It holds thatM, [dk,dl ]  ψ if and only if M, [dk,dl ] 6 ¬ψ , and, therefore,

(ψ , [dk,dl ]) and (¬ψ , [dk,dl ]) cannot be jointly satisfied. Similarly,M, [dk,dl ]  π (resp.,
M, [dk,dl ]  ¬π) if and only if dk = dl (resp.,dk 6= dl ), and therefore(π, [dk,dl ]) (resp.,
(¬π, [dk,dl ])) cannot be satisfied whendk 6= dl (resp.,dk = dl ).

Now, suppose thath > 0. Then, eithern has been generated as one of the successors,
but not the last one, when applying casesR1, R6, R7, or R8 of the branch-expansion rule,
or the branch-expansion rule has been applied to some labeled formula(ψ , [dk,dl ]) ∈ S(n)
\{τ}, whereτ is the labeled formula in the decorationν(n), to extend the branch atn. We
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root

〈

pT¬(⊤C p), [d0,d0],{d0},1,0
〉

〈

p, [d0,d0],{d0},1,1
〉

〈

¬(⊤C p), [d0,d0],{d0},1,1
〉

〈

¬p, [d0,d0],{d0},0,1
〉

×

〈

⊥, [d0,d0],{d0},0,1
〉

×

〈

p, [d0,d1],{d0 < d1},1,1
〉

〈

¬(⊤C p), [d0,d1],{d0 < d1},1,1
〉

〈

⊥, [d0,d1],{d0 < d1},0,1
〉

×

〈

¬p, [d0,d1],{d0 < d1},0,1
〉

×
〈

pT¬(⊤C p), [d0,d1],{d0 < d1},1,0
〉

〈

p, [d1,d1],{d0 < d1},1,1
〉

〈

¬(⊤C p), [d0,d1],{d0 < d1},1,1
〉

〈

¬p, [d1,d1],{d0 < d1},0,1
〉

×

〈

⊥, [d0,d1],{d0 < d1},0,1
〉

×

〈

p, [d1,d2],{d0 < d1 < d2},1,1
〉

〈

¬(⊤C p), [d0,d2],{d0 < d1 < d2},1,1
〉

〈

¬p, [d1,d2],{d0 < d1 < d2},0,1
〉

×

〈

⊥, [d0,d1],{d0 < d1 < d2},0,1
〉

×

Fig. 4 A closed tableau for the formulapT¬(⊤C p).

detail the latter case; the former one can be dealt with in thesame way, and thus its analysis
is omitted. First, we observe that every branch passing through any successor ofn must be
closed. It immediately follows that the inductive hypothesis applies to all successors ofn.
We consider the possible cases for the application of the branch-expansion rule to extend the
branch atn, restricting our attention to the conceptually different ones only (the other cases
can be dealt with in a similar way):

– If ψ = ξ0∧ ξ1, R1 has been applied. Then, there are two nodesn0,n1 such thatν(n0)
= 〈ξ0, [dk,dl ],D, p0,u0〉, ν(n1) = 〈ξ1, [dk,dl ],D, p1,u1〉. Without loss of generality, we
can assumen0 to be the successor ofnandn1 to be the successor ofn0. Since each branch
containingn is closed, then each branch containingn1 is closed as well. By the inductive
hypothesis (n1 ≺ n), S(n1) is not satisfiable. Since every model satisfyingS(n) must, in
particular, satisfy(ξ0 ∧ ξ1, [dk,dl ]), and hence(ξ0, [dk,dl ]) and (ξ1,dk,dl ]), it follows
thatS(n), S(n0), andS(n1) are equi-satisfiable. Therefore,S(n) is not satisfiable.

– If ψ = ξ1∨ ξ2, R2 has been applied. Then, there exist two successor nodesn0 andn1

of n such thatν(n0) = 〈ξ0, [dk,dl ],D, p0,u0〉, ν(n1) = 〈ξ1, [dk,dl ],D, p1,u1〉, and both
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n0 ≺ n andn1 ≺ n. Since each branch containingn is closed, then each branch containing
n0 or n1 is closed as well. By the inductive hypothesis,S(n0) andS(n1) are not satisfi-
able. Since every model satisfyingS(n) must also satisfy(ξ0, [dk,dl ]) or (ξ1, [dk,dl ]), it
follows thatS(n) is not satisfiable.

– If ψ = ¬(ξ0 C ξ1), R3 has been applied. For the sake of contradiction, let us assume
S(n) to be satisfiable. Then, since(¬(ξ0 Cξ1), [dk,dl ]) ∈ S(n), there is a modelM =
〈I(D′),V〉 such thatD′ extendsDn andM, [dk,dl ]  ¬(ξ0Cξ1). Hence, for eachdt such
thatdk ≤ dt ≤ dl , M, [dk,dt ] 6 ξ0 or M, [dt ,dl ] 6 ξ1. By construction, the two immediate
successors ofn are two nodesn0 andn1 and there exists a pointdt , with dk ≤ dt ≤ dl , such
that (ξ 0, [dk,dt ]) is in ν(n0) and (ξ 1, [dt ,dl ]) is in ν(n1). By the inductive hypothesis
(bothn0 ≺ n andn1 ≺ n), S(n0) andS(n1) are not satisfiable. But, from the hypothesis
of our reductio-ad-absurdum argument, there is a modelM = 〈I(D′),V〉, whereD′ is an
extension ofDn, such thatM, [dk,dt ]  ¬ξ0 or M, [dt ,dl ]  ¬ξ1. Thus, eitherS(n0) or
S(n1) is satisfiable (by modelM), leading to a contradiction.

– If ψ = ξ0 Cξ1, R6 has been applied. For the sake of contradiction, let us assume S(n)
to be satisfiable. Then, there is a modelM = 〈I(D′),V〉 such thatD′ extendsDn and
M, [dk,dl ]  ξ0 C ξ1. Hence,M, [dk,d]  ξ0 andM, [d,dl ]  ξ1 for somedk ≤ d ≤ dl .
Two cases are possible:

1. If d ∈ Dn, thend = dt for somedk ≤ dt ≤ dl . By R6, n has a successor, say itnt ,
which, in turn, has a successor, say itn′t , with ν(nt) = 〈ξ0, [dk,dt ],Dn, pt ,ut〉 and
ν(n′t) = 〈ξ1, [dt ,dl ],Dn, p′t ,u

′
t〉. By the inductive hypothesis (nt ≺ n andn′t ≺ nt),

S(n′t) =S(n)∪{(ξ0, [dk,dt ]),(ξ1, [dt ,dl ])} is not satisfiable. But, from the hypothesis
of our reductio-ad-absurdum argument, there is a modelM = 〈I(D′),V〉, whereD′

is an extension ofDn, such thatM, [dk,dt ]  ξ0 andM, [dt ,dl ]  ξ1. Thus,S(n′t) is
satisfiable (by modelM), leading to a contradiction.

2. If d /∈ Dn, then there existst such thatk ≤ t ≤ l −1 anddt < d < dt+1. By R6,
n has a successor, say itnt , which, in turn, has a successor, say itn′t , with ν(nt)
= 〈ξ0, [dk,d],Dn ∪{d}, pt ,ut〉, ν(n′t) = 〈ξ1, [d,dl ],Dn ∪{d}, p′t ,u

′
t〉. By the induc-

tive hypothesis (nt ≺ n andn′t ≺ nt), S(n′t) = S(n) ∪{(ξ0, [dk,d]),(ξ1, [d,dl ])} is not
satisfiable, which, as in the previous case, leads to a contradiction. ⊓⊔

5.2 Completeness

In this subsection, we prove that the proposed tableau method is complete, that is, whenever
ϕ ∈ CDTBS is valid, every tableauT for ¬ϕ must be closed. To this end, we need to
preliminary prove some partial results.

Definition 10 Let ϕ be a CDTBS-formula andT0 be the initial tableau for it. Thelimit
tableauT for φ is the decorated tree generated as follows. For alli ≥ 0, let Ti+1 be the
tableau generated by the simultaneous application of the branch-expansion strategy to each
branch inTi . If we ignore all flags from the decorations of the nodes in every Ti , we obtain
a chain of decorated trees ordered by inclusion:T1 ⊆T2 ⊆ . . .⊆Tk ⊆ . . .. The limit tableau

T is equal to
ω
⋃

i=0
Ti .

Notice that the above definition does not prelude the limit tableau from being infinite. Later
on, we will prove that it cannot be the case, that is, the limittableau is always finite. Never-
theless, finiteness (of the limit tableau) is not necessary to prove that the tableau method is
complete.
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The definitions of open and closed branch and tableau directly apply to the limit tableau
as well. In addition, we introduce the notion of saturated branch and tableau.

Definition 11 A branch in a (limit) tableau issaturatedif there are no nodes on that branch
to which the branch-expansion rule is applicable on the branch. A (limit) tableau issaturated
if every open branch in it is saturated.

We now show that the set of all labeled formulas on an open branch in a limit tableau
has the saturation properties of a Hintikka set in first-order logic.

Lemma 6 Every limit tableau is saturated.

Proof Let B be a branchB in the limit tableauT andn be a node inB. We prove that
after every step of the expansion of that branch at which the branch-expansion rule becomes
applicable ton (becausen has just been introduced or a new point has been added) and the
application of the rule generates at least a new node, then that rule is subsequently applied
on B to that node. The proof is by induction ondepth(n) (the depth of noden).

Let us assume thatdepth(n) = l and the branch-expansion rule has become applica-
ble to n. By the inductive hypothesis, the thesis holds for all nodeswith depth(n) < l .
If there are no nodes between the root (including the root) and n (excludingn) to which
the branch-expansion rule is applicable at that moment, thenext application of the branch-
expansion rule onB is necessarily ton. Otherwise, letn∗ be the closest-to-n node between
the root andn to which the branch-expansion rule is applicable, or will become applica-
ble, onB at least once thereafter. (Such a node exists because there are only finitely many
nodes betweenn and the root.) Sincedepth(n∗) < depth(n), by the inductive hypothesis,
the branch-expansion rule has been subsequently applied ton∗. Then, the next application
of the branch-expansion rule onB must have been ton and that completes the induction.

Suppose now that there exists a branchB in a limit tableau which is not saturated. Let
n be the closest-to-the-root node onB to which the branch-expansion rule is applicable. If
the case applicable ton is different fromR3, R4, andR5, then the branch-expansion rule
has become applicable ton at the step whenn is introduced, and by the claim above, it
has been subsequently applied. Hence, the node has become unavailable thereafter, which
contradicts the assumption. Let us consider now the case ofR3, that is, the formula inν(n) is
¬(ξ0Cξ1) (casesR4 andR5 are similar, and thus they are omitted). An application ofR3 on
B would create two immediate successors with labeled formulas(ξ 0, [di ,d]) and(ξ 1, [d,d j ]),
at least one of them new onB. ForR3 to be applicable, pointsdi ,d j , andd must have been
already introduced at some step of the construction ofB. Hence, at the moment when the
three of them, andn, have appeared on the branch, the branch-expansion rule hasbecome
applicable ton. By the above claim, the rule has been subsequently applied on B and such
an application must have introduced the labeled formulas(ξ0, [di ,d]) and(ξ1, [d,d j ]) on B,
which again contradicts the assumption. ⊓⊔

Corollary 1 Let ϕ be aCDTBS-formula andT be the limit tableau forϕ . For every open
branch B inT , the following closure properties hold:

– If there is a node n∈ B such thatν(n) = (ξ0∧ ξ1, [di ,d j ],D, pn,un), then there are a
node n0 ∈ B such thatν(n0) = (ξ0, [di ,d j ],D, pn0,un0) and a node n1 ∈ B such that
ν(n1) = (ξ1, [di ,d j ],D, pn1,un1).

– If there is a node n∈ B such thatν(n) = (ξ0∨ ξ1, [di ,d j ],D, pn,un), then there are a
node n0 ∈ B such thatν(n0) = (ξ0, [di ,d j ],D, pn0,un0) or a node n1 ∈ B such thatν(n1)
= (ξ1, [di ,d j ],D, pn1,un1).
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– If there is a node n∈ B such thatν(n) = (ξ0Cξ1, [di ,d j ],D, pn,un), then there are two
nodes n0,n1 ∈ B such thatν(n0) = (ξ0, [di ,d],D′, pn0,un0) andν(n1) = (ξ1, [d,d j ],D

′,
pn0,un0), for some d∈ DB, with di ≤ d ≤ d j , .

– If there is a node n∈ B such thatν(n) = (ξ0 D ξ1, [di ,d j ],D, pn,un), then there are two
nodes n0,n1 ∈ B such thatν(n0) = (ξ0, [d,di ],D

′, pn0,un0) andν(n1) = (ξ1, [d,d j ],D
′,

pn0,un0), for some d∈ DB, with d≤ di .
– If there is a node n∈ B such thatν(n) = (ξ0 T ξ1, [di ,d j ],D, pn,un), then there are two

nodes n0,n1 ∈ B such thatν(n0) = (ξ0, [di ,d],D′, pn0,un0) andν(n1) = (ξ1, [d j ,d],D′,
pn0,un0), for some d∈ DB, with d≥ d j , .

– If there is a node n∈ B such thatν(n) = (¬(ξ0Cξ1), [di ,d j ],D, pn,un), then, for each
d ∈ DB, with di ≤ d ≤ d j , there is a node n′ ∈ B such thatν(n′) = (ξ 0, [di ,d],D′, pn′ ,

un′) or a node n′ ∈ B such thatν(n′) = (ξ 1, [d,d j ],D
′, pn′ ,un′).

– If there is a node n∈ B such thatν(n) = (¬(ξ0 D ξ1), [di,d j ],D, pn,un), then for each

d ∈ DB, with d≤ di , there is a node n′ ∈ B such thatν(n′) = (ξ 0, [d,di ],D
′, pn′ , un′) or

a node n′ ∈ B such thatν(n′) = (ξ 1, [d,d j ],D
′, pn′ ,un′).

– If there is a node n∈ B such thatν(n) = (¬(ξ0 T ξ1), [di ,d j ],D, pn,un), then, for each
d ∈ DB, with d≥ d j , there is a node n′ ∈ B such thatν(n′) = (ξ 0, [di ,d],D′, pn′ , un′) or
a node n′ ∈ B such thatν(n′) = (ξ 1, [d j ,d],D′, pn′ ,un′).

The proof of Corollary 1 is straightforward, and thus it is omitted.

Lemma 7 (Completeness)If the limit tableau for some formulaϕ ∈ CDTBS is closed, then
some finite tableau forϕ is closed.

Proof Let us assume the limit tableau forϕ to be closed. Then, every branch closes at some
finite step of the construction, and then it is not further expanded (it remains finite). Since
the branch-expansion rule always produces finitely many successors, every finite tableau
is finitely branching, and hence so is the limit tableau. Then, by König’s lemma, the limit
tableau, being a finitely branching tree with no infinite branches, must be finite. This allows
us to conclude that its construction stabilizes at some finite stage. At that stage, a closed
tableau forϕ is constructed. ⊓⊔

5.3 Termination and Complexity

In this last subsection, we prove that the proposed tableau method is terminating, and we
determine its computational complexity. The proof rests ona pair of basic lemmas.

As a preliminary step, we define acounting functionCount onB as follows:

Count(B) = ∑
n∈B

|ψn| · pn ·un(B),

whereψn and pn are the formula and thep-flag in the decoration ofn, respectively. The
following lemma proves that Count is non-increasing with respect to branch expansions.

Lemma 8 Let ϕ be a CDTBS-formula, B be a branch in a tableau forϕ , and B′ be an
expansion of B generated by the application of the branch-expansion strategy of Definition
8. Then,Count(B′)≤ Count(B). Moreover, if B′ is obtained from B by the application ofR1,
R2, R6, R7, or R8 to a node n with pn in ν(n) equal to1, thenCount(B′)< Count(B).
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Proof LetT be a tableau forϕ , B be a branch on it, andn be the closest-to-the-root node for
which the branch-expansion rule is applicable. Moreover, letB′ be a branch obtained by the
application of the branch-expansion strategy onB. We consider the cases of the application
of R1, R3, andR6 to n. The missing cases are similar to the considered ones (R2 is similar
to R1, R4 andR5 to R3, R7 andR8 to R6), and thus they are omitted.

– R1 is applied ton. Then,ν(n) = 〈ξ0∧ ξ1, [di ,d j ],D, pn,un〉 andB′ = B ·n′ ·m′, with ξ0

belonging toν(n′) andξ1 belonging toν(m′). Sincepn′ = pm′ = pn, un′(B
′) = um′(B′) =

1, un(B′) = 0, andum(B′) = um(B) for eachm 6∈ {n,n′,m′}, Count(B′) = Count(B)−
|ξ0∧ξ1|+ |ξ0|+ |ξ1|<Count(B), whenpn = 1, and Count(B′)=Count(B) whenpn = 0.

– R3 is applied toB. Then,ν(n) = 〈¬(ξ0Cξ1), [di ,d j ],D, pn,un〉 andB′ = B ·n′, with ξ0

or ξ1 belonging toν(n′). In both cases,pn′ in ν(n′) is equal to 0, and thus Count(B′) =
Count(B).

– R6 is applied toB. Then,ν(n) = 〈ξ0Cξ1, [di ,d j ],D, pn,un〉 andB′ = B ·n′ ·m′, with ξ0

belonging toν(n′) andξ1 belonging toν(m′). Sincepn′ = pm′ = pn, un′(B
′) = um′(B′) =

1, un(B′) = 0, andum(B′) = um(B) for eachm 6∈ {n,n′,m′}, Count(B′) = Count(B)−
|ξ0Cξ1|+ |ξ0|+ |ξ1|<Count(B) whenpn = 1, and Count(B′) =Count(B) whenpn = 0.

Summing up, whateverRi one applies, Count(B′)≤Count(B). Moreover, whenR1, R2, R6,
R7, or R8 are applied to a noden with pn in ν(n) equal to 1, Count(B′)< Count(B). ⊓⊔

Lemma 9 Let ϕ be aCDTBS-formula,T be a tableau forϕ , and n be a node inT with
decorationν(n) = 〈ψ , [di,d j ],D, pn,un〉. It holds that if pn = 0, thenψ ∈ ϕ∃.

Proof Let n be a node on a branchB in T with decorationν(n) = 〈ψ , [di,d j ],D, pn,un〉. We
prove the claim by induction ondepth(n).

Base case. Ifdepth(n) ≤ 2, thenn is either the root or one of the leaves of the initial
tableau. In both cases, the claim follows trivially.

Inductive step. Letdepth(n) > 2. By the inductive hypothesis, the claim holds for each
ancestor ofn in B. Let n′ be the node to which the branch-expansion rule has been applied
during the construction ofT to obtain noden. As in the proof of Lemma 8, we restrict our
attention toR1, R3, andR6. The other cases can be dealt with in a similar way.

– RuleR1 has been applied ton′. Then,ν(n′) = 〈ξ0∧ξ1, [di ,d j ],D, pn′ ,un′〉 and eitherξ0

or ξ1 belong toν(n). Let us assume thatξ0 belongs toν(n) (the case in whichξ1 belongs
to ν(n) is analogous) andpn = 0. By definition ofR1, pn′ = pn = 0. By the inductive
hypothesis,ξ0∧ξ1 = ξ0∨ ξ1 ∈ ϕ∃. From the grammar rules for CDTBS, it follows that
ξ0 ∈ ϕ∃.

– RuleR3 has been applied toB. Then,ν(n′) = 〈¬(ξ0Cξ1), [di ,d j ],D, pn′ ,un′〉 and either
ξ0 or ξ1 belong toν(n). Let us assume thatξ0 belongs toν(n) (the case in whichξ1

belongs toν(n) is analogous). By definition ofR3, pn = 0. By the grammar rules for

CDTBS, it holds thatξ0 ∈ ϕ∃. The thesis immediately follows fromξ0 = ξ0.
– RuleR6 has been applied toB. Then,ν(n′) = 〈ξ0Cξ1, [di ,d j ],D, pn′ ,un′〉 and eitherξ0

or ξ1 belong toν(n). Let us assumepn′ = 0. By the inductive hypothesis, it follows that
ξ0Cξ1 = ¬(ξ0Cξ1) ∈ ϕ∃ (contradiction). Hence, it holds thatpn′ = 1, and thus, byR6,
pn = 1. ⊓⊔

By exploiting Lemma 8 and Lemma 9, we now prove that the lengthof any branchB of
any tableau forϕ is polynomially bounded by the length of the formula.

Lemma 10 (Termination) Let ϕ be aCDTBS-formula,T be a tableau forϕ , and B be a
branch inT . Then,|B| ≤ 2· |ϕ |3+8· |ϕ |2+8· |ϕ |.
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Proof Let B be a branch in a tableauT for ϕ . Given the branch-expansion rule and the
branch-expansion strategy, there cannot be two nodesn,n′ in B such that the same formula
and the same interval belong to bothν(n) andν(n′). Since for any noden in B, the formula
in ν(n) is either a subformula ofϕ or the dual of a subformula ofϕ , it holds that|B| ≤
2· |ϕ | · |DB|

2.
To give a bound on the number of points inDB, it suffices to observe that:

1. only the application ofR6, R7, andR8 add new points toDB;
2. by Lemma 9, they can be applied only to nodes where the flagp is equal to 1;
3. by Lemma 8, every application of them strictly decreases the value of Count(B).

Now, let B0 be the two-node prefix ofB consisting of the root and one of its successors
labeled withϕ . Since|DB0| ≤ 2 and Count(B0) = |ϕ |, |DB| ≤ |ϕ |+2, and thus|B| ≤ 2· |ϕ | ·
(|ϕ |+2)2 ≤ 2· |ϕ |3+8· |ϕ |2+8· |ϕ |. ⊓⊔

Theorem 7 The proposed tableau method forCDTBS is sound and complete, and the satis-
fiability problem forCDTBS is NP-complete.

Proof By Lemma 5 (soundness) and Lemma 7 (completeness), it holds that satisfiability of a
formulaϕ can be reduced to the search for an open limit tableau for it. Adirect consequence
of Lemma 10 is that this search can be performed by a nondeterministic algorithm that
guesses an open and saturated branch of the limit tableau, using only a polynomial amount
of time. NP-hardness immediately follows from that of propositional logic. ⊓⊔

6 Undecidable extensions of CDTBS

In the previous section, we have proved that the satisfiability problem for CDTBS is NP-
complete. Since the full logic CDT is undecidable, one may wonder whether CDTBS can be
extended preserving decidability. In this section, we showthat the most natural extension of
CDTBS is already undecidable.

In CDTBS-formulas, modalities can occur in the scope of at most one negation. We
slightly extend CDTBS by allowing one more nesting of negations and modalities. The re-
sulting logic includes formulas like¬(¬(pCq)Cq) or ¬(pC¬(qCr)). In [20], Hodkinson et
al. have shown that CDT is undecidable over the class of all linearly-ordered domains even if
we restrict ourselves to formulas where only one modality occurs. Undecidability has been
proved by reducing the problem of finding a solution to the octant tiling problem to the sat-
isfiability problem for the logic. The undecidability proofbelow is based on the observation
that the entire construction given in [20] exploits formulas where modalities occur in the
scope of at mosttwonegations.

Given a set of tilesT = {t1, . . . ,tk}, theoctant tiling problemis the problem of es-
tablishing whetherT can tile an octant of the Cartesian plane over the integers. Let us
consider the second octantO = {(p,q) | p,q ∈ N, p ≤ q}. Each tileti has four colors,
namely,right(ti), le f t(ti), up(ti), anddown(ti). Neighboring tiles must have matching
colors. Formally, we say that a setT can tileO if there exists a functionf : O 7→ T such
thatright( f (p,q)) = le f t( f (p+1,q)) andup( f (p,q)) = down( f (p,q+1)), where f (p,q)
represents the tile to be placed in the position(p,q), provided that all relevant coordinates
((p,q),(p+1,q), etc.) lie inO. Using König’s lemma, one can prove that a tiling system
tiles the second octant if and only if it tiles arbitrarily large squares if and only if it tiles
N×N if and only if it tilesZ×Z. Undecidability of the first problem immediately follows
from that of the last one [4].
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Let T = {t1, . . . ,tk} be an instance of the octant tiling problem. We will assume that
A P contains at least the propositional lettersu, t1, . . . , tk. CDTBS makes it possible to define
the “somewhere in the future” operatorF (we assume future to be non-strict) as follows:

Fϕ ::=⊤T (ϕ T ⊤). (10)

TheuniversaloperatorG can be defined as the dual ofF , that is:

Gϕ ::= ¬F¬ϕ . (11)

Making use ofG, we set our framework by forcing the existence ofunit-intervals(or u-
intervals) working like atomic elements. Such intervals will be denoted by the proposition
letter u. We forceu-intervals to be disposed in an unbounded unique (uninterrupted) se-
quence by means of the following formula:

uT⊤∧G(u→ uT¬u). (12)

Lemma 11 Let M be a model such that M, [d,d′]  (12). Then, there exists an infinite se-
quence of points d0 < d1 < .. ., such that

1. d′ = d0;
2. for every l∈ N, M, [dl ,dl+1]  u.

The following formulas associate a unique tile with everyu-interval; moreover, they guar-
antee that tiles are placed in such a way that they respect conditions on colors (a graphical
account of the encoding is given in Figure 5):

G(u→

|T |
∨

i=1

ti), (13)

G
|T |
∧

i, j=1,i 6= j

¬(ti ∧ t j), (14)

G
|T |
∧

i=1

(ti →¬(uT¬
|T |
∨

j=1,up(ti)=down(tj)

t j)), (15)

G
(

u→

|T |
∧

i, j=1,right(tj) 6=left(ti)

¬(tiTt j)
)

. (16)

It is easy to check that, in (12), (13), and (14), modalities occur in the scope of at most
two negations. Moreover, formulas (15) and (16) can be easily rewritten in such a way that
modalities occur in the scope of at most two negations as well. Now, letϕT be the following
formula:

(12)∧ (13)∧ (14)∧ (15)∧ (16). (17)

We prove that the encoding is sound and complete.

Lemma 12 LetT = {t1, . . . ,tk} be a set of tiles. It holds thatϕT is satisfiable if and only
if T tiles the second octantO.
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Fig. 5 A pictorial representation of the encoding.

Proof (Soundness) Let M, [d,d′] |= ϕT . We show that there exists a tiling functionf : O 7→
T . By Lemma 11, we know that there exists an infinite sequence ofpointsd0 < d1 < .. .
such thatd′ = d0 and, for everyi ∈ N, M, [yl ,yl+1] |= u. Now, for eachl ,m∈ N, with l ≤ m,
we put:

f (l ,m) = t wheneverM, [dl ,dm+1] |= t.

First, we have to show thatf is well-defined, that is, that eachf (l ,m) is a tile. We proceed
by induction on(m− l). If (m− l) = 0, then, by Lemma 11, we are on au-interval and thus,
by (13), there exists a tile associated with it. Since by (14)such a tile is unique,f is well-
defined. Suppose now thatf (l ,m) is a tile wheneverm− l ≤ p, and considerm− l = p+1.
Since(m−1)− l ≤ p, by the inductive hypothesisf (l ,m−1) is a tile, sayti, which means

thatM, [dl ,dm] |= ti . By (15),M, [dl ,dm] |= ¬(uT¬
∨|T |

j=1,up(ti)=down(tj)
t j). Hence, for every

d ≥ dm, if M, [dm,d] |= u, then it must be the case thatM, [dl ,d] |=
∨|T |

j=1,up(ti)=down(tj)
t j .

SinceM, [dm,dm+1] |= u, this applies to the particular cased = dm+1. Thus, we have that
M, [dl ,dm+1] |= t j , that is, f (l ,m) = tj, for some j such thatdown(tj) = up(ti) (again,
since by (14) such a tile is unique,f is well-defined). This not only guarantees us that
f is well-defined, but also that it respects the ‘vertical’ condition of a tiling function. To
conclude the proof, we need to show that the ‘horizontal’ condition is respected as well. To
this end, let us considerf (l ,m) and f (l +1,m). By definition, the corresponding tiles are
those associated with[dl ,dm+1] and[dl+1,dm+1]. Since, by definition, the interval[dl ,dl+1]
is au-interval, by (16) it cannot be the case thatle f t( f (l +1,m)) 6= right( f (l ,m)), which
implies thatle f t( f (l +1,m)) = right( f (l ,m)). ⊓⊔

(Completeness) For simplicity, let us assume the linearly ordered set to be(N,<). One can
force the truth ofϕT over [0,0] by lettingu be true over all intervals of length 1 and eachti
be true over all intervals of the form[l ,m+1], where f (l ,m) = ti. ⊓⊔

Theorem 8 The satisfiability problem for any syntactic extension ofCDTBS where modal
operators occur in the scope of two negations is undecidable.

Proof The thesis directly follows from Lemma 12.

It is worth noticing that only modalityT occurs inϕT . An alternative proof of Lemma
12 can be given by making use of modalityC or of modalityD only. This shows that any
fragment of CDT containing at least one modality amongC,D, andT, where modalities are
allowed to occur in the scope of two negations, is undecidable.
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7 Conclusions and future work

In this paper, we studied a syntactic fragment of Venema’s CDT logic, that we called
CDTBS, whose standard translation to first-order logic fits into Bernays-Schönfinkel class
of quantifier prefix formulas. Decidability of CDTBS directly follows from that of Bernays-
Schönfinkel class.

We first focused our attention on expressiveness issues. We considered the following
question: “can every formula in Bernays-Schönfinkel classof first-order logic over the linear
order<, limited to binary predicates, be turned into a CDTBS-formula?”. We proved that this
is not the case. In [33], Venema showed that CDT is expressively complete with respect to
FO3,2[<]. In this paper, we showed that CDTBS is expressively complete with respect to
the corresponding fragment of Bernays-Schönfinkel class FO3,2

BS[<]. Next, we developed a
tableau-based decision procedure for CDTBS, and we proved that the satisfiability problem
for CDTBS is NP-complete. Finally, we showed that any natural relaxation of the syntactic
restrictions we imposed on CDTBS yields undecidability, as it makes the resulting logic
expressive enough to encode the (undecidable) octant tiling problem.

The present work can be developed in a number of future research directions. From a
theoretical point of view, one can think of the possibility of identifying the interval tem-
poral logic counterparts of other decidable classes of first-order formulas. Moreover, the
relationships between interval temporal logics and (extended) guarded fragments are still
unexplored. For instance, It would be interesting to give anaccount of the good compu-
tational properties of decidable fragments of CDT and HS (including CDTBS) in terms of
suitable guarded fragments. From a more practical point of view, we expect CDTBS to be ap-
plicable in a variety of areas such as, for instance, planning and synthesis of plan controllers,
temporal description logics, and sequencing problems in computational genetics.
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