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Abstract Unlike the Moon, the dark side of interval temporal logic$hie one we usually
see: their ubiquitous undecidability. Identifyimginimal undecidable interval logics is thus
a natural and important issue in that research area. In #psrpwe identify several new
minimal undecidable logics amongst the fragments of Halmerd Shoham'’s logi¢iS,
including the logic of theverlapsrelation, over the classes of all finite linear orders and all
linear orders, as well as the logic of teeetsandsubintervakelations, over the classes of all
and dense linear orders. Together with previous undedityat@sults, this work contributes
to bringing the identification of the dark side of intervaijgoral logics very close to the
definitive picture.

Keywords Interval temporal logic Undecidability- Tiling problems

1 Introduction

Temporal reasoning plays a major role in computer sciemctd most standard approach,
the basic temporal entities are time points and temporakilmsrare represented as ordered
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structures of time points. The interval reasoning appraaabbpts another perspective on
time, sometimes more natural, according to which the prmnidbntological entities are time
intervals instead of time points.

The tasks of representing and reasoning about time intear&e naturally in various
fields of computer science, artificial intelligence, andpenal databases, such as theories of
action and change, natural language processing, and aimistatisfaction problems. Tem-
poral logics with interval-based semantics have also beeposed as a useful formalism
for the specification and verification of hardware [22] andezfl-time systems [24].

Despite the relevance of interval-based temporal reagphimwever, interval temporal
logics are far less studied and popular than point-based beeause of their higher con-
ceptual and computational complexity (relations betwedervals are more complex than
those between points). Interval temporal logics typicBture modal operators that corre-
spond to (binary) relations between intervals usually kmaw Allen’s relations [1]. In [13],
Halpern and Shoham introduce a modal logic for reasoningtabterval structuresHsS),
with a modal operator for each Allen’s relatidS is undecidable under very weak assump-
tions on the class of interval structures [13]. In particulendecidability holds for any class
of interval structures over linear orders that containgast one linear order with an infinite
ascending (or descending) sequence of points, thus imgjube natural time flowR, Z, Q,
andR. For a long time, such sweeping undecidability results lthseouraged attempts for
practical applications and further research on intervgice A renewed interest in the area
has recently been stimulated by the discovery of some stiagedecidable fragments of
HS [7-10]. Gradually, the quest for more expressive yet stilidable fragments d4S has
become one of the main focuses of the current research af@ridgerval temporal logic.

In this paper, we contribute to delineating the border betwgecidable and undecidable
fragments oHS by establishing new undecidability results. The initiatlanidability results
mentioned above have been strengthened further in a nurhbesre recent publications,
including [3-5,19], where many fragmentstd$ have been shown to be undecidable. The
present paper extends and partly subsumes some of thedis.resparticular, we exhibit
the first known case of a single-modalitis fragment which is undecidable in the class
of all linear orders, as well as in the class offalite linear orders, strengthening previous
results [4,5]. Furthermore, most undecidability proofsifdgerval logics hinge on the ex-
istence of a linear ordering with an infinite sequence of {mihere we show how to relax
such an assumption. Although this paper is about undedityalie believe that the pre-
sented results also give a better insight in the expressiweipof interval-based temporal
logics. While these results exclude the possibility of hgvtorrect and complete algorith-
mic decision procedures for some very natural fragment$Sfthey may stimulate further
research in this area and contribute to a deeper undemstpatiinterval reasoning in artifi-
cial intelligence and the mathematics around it.

A complete picture of the state-of-the-art on the clasdificaof HS fragments with
respect to the decidability of satisfiability can be foundllih]. The web page [15] also pro-
vides a collection of online tools that enable one to cheelstatus (decidable / undecidable
/ unknown) of any fragment dfiS with respect to the satisfiability problem, over various
classes of linear orders (all, dense, discrete, and fiigeq surprising outcome of the study
of the family of fragments oHS with respect to the satisfiability problem, the borderline
between decidable and undecidable such fragments turrieéd be quite complicated, and
they show an unexpected variety of behavior over differeamiskof linear orders.

The rest of the paper is organized as follows. In Section Zntveduce syntax and se-
mantics of interval temporal logics. In Section 3, we givdarssummary of undecidability
results and proof techniques. The following two sectiomsdavoted to the study of specific
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Relation Operator Formal definition Pictorial example
a
meets A | [abRacd eb=c -
before (L) [abR[cd<b<c ?—f‘
startedby | (B) | [abRelcd sa=cd<b |
finished-by (E) [abRe(c,d] & b=d,a<c T—F
contains (D) [abjRp[c,d] <a<c,d<b ?—?
overlaps (O) [abRofc,d] a<c<b<d ?—?

Table 1 Allen’s interval relations and the correspondiH$ modalities.

relevant fragments dfiS: the logicsO and O of Allen’s relationoverlapsand its inverse
(Section 4) and the logicaD, AD, AD, andAD of Allen’s relationsmeetsandduring and
their inverses (Section 5). Section 6 provides an assessyhére work done and outlines
future research directions.

2 Interval temporal logics: syntax and semantics

LetD = (D, <) be a linearly ordered set. Anterval overD is an ordered paila, b], where
a,b e D anda < b. Intervals of the fornja, a] are callecboint intervals while those where
a < b arestrict intervals There are 12 different non-trivial relations (excludihg identity)
between two intervals in a linear order, often calldtén’s relations[1]: the six relations
depicted in Table 1 and their inverses, which are defined lswvigx for each relatiorRy,
with X € {A,L,B,E, D, O}, its inverse is the relatioRg = (Rx) . One can naturally asso-
ciate a modal operatdiX) with each Allen’s relatiorRx. For each operatqixX), we denote
by (X) its transposecorresponding to the inverse relation. The notion of subrial (the
containsrelation) can be defined in two variants, namslyict sub-interval fa, b] is a strict
sub-interval oflc, d] if both ¢ < aandb < d) andpropersub-interval (wher < a,b < d, and
[a,b] # [c,d]). Both variants will be considered in this paper. Except mvéiated otherwise,
we refer to proper ones.

Halpern and Shoham'’s logidS is a multi-modal logic with formulae built over a set
AP of proposition letters (aka atomic propositions), the pifional connectives and—,
and unary modalities for Allen’s relations. For each suffggt, ..., Ry, } of these relations,
we define theHS fragmentX; X, ... Xy, whose formulae are defined by the grammar:

pu=plm[=¢|¢Ve|Xd|...| (X,

wherertis a modal constant, true precisely at point intervals. Wi ernwhen it is definable
in the language or when point intervals are not allowed. Thergropositional connectives,
like A and—, and universal modalitie)X] are defined as usual, e.gX]¢ = —~(X)—¢.

LetI(D) be the set of all intervals ové@. The non-strict semanticsf an interval tem-
poral logic is given in terms dhterval models M= (I(D),V), whereV : (D) — 247 is the
valuation functiorthat assigns to every intervid, b] € I(D) the set of proposition letters
V([a,b]) that are true at it. The truth of a formula over an interjab] in a modelM is
defined by structural induction on formulae:
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b] I- miff a=b;
bl IF piff peV([a,b]), for pe AP;
b] IF =y iff it is not the case thaM, [a,b] I- ;

Satisfiabilityis defined as usual: given a formufaof HS, we say thatp is satisfiableif
there exist a mode¥ and an intervala, b] such thai, [a, b] I ¢. Throughout the paper, for
every proposition lettep and interval[a, b], we say thafa, b] is a p-intervalif p holds at it
(in the considered model).

Interval temporal logics can be giversaict semantic®y excluding point intervals from
the set of intervals over which formulae are interpretedl (ay correspondingly excluding
rtfrom the language). In the following, we will restrict outeaition to the strict semantics.
However, our undecidability results hold for the non-dtsemantics.

3 A short summary of undecidability results and proof technigues

In this section, we first summarize the main undecidabikiyuits forHS fragments, and
then we state the main results of the present paper (Thedrenhith extend known ones
by providing new undecidability proofs for proper sub-fregnts of logics that were already
known to be undecidable.

3.1 Undecidability results

Undecidability of fullHS was proved by Halpern and Shoham in [13]. Since then, several
other undecidability results have been obtained. In [18[jdya proved undecidability of
BE over dense linear orders, or, alternatively, ofer<), provided that infinite intervals are
allowed. In [3], Bresolin at al. showed undecidability ofamber ofHS fragments, namely,
ADE, ADE, ADE, ADE, ADO, ADO, ADO, ADO, ADB, ADB, ADB, ADB, BE, BE, and
BE. Undecidability of all HS-)extensions oD (resp.,0), except for those with modalities
(L) and (L), interpreted over any class of linear orders with at leastiofinite sequence
of points which, depending on the modalities of the fragmeraty be required to be either
ascending or descending, has been shown in [4]. In [5], tieenoodality fragmenO has
been proved to be undecidable over the class of discret lorders. Finally, Marcinkowski
et al. have shown the undecidability BD, BD, BD, andBD on finite and discrete linear
orders in [20], and later strengthened that result to thernadality fragmentD and D
in [19].

The present paper aims at contributing as much as possilile toompletion of the
undecidability picture. Its results can be summarized Havis.

Theorem 1 The satisfiability problem for thES fragmentsO, O, AD, AD, AD, andAD,
over any class of linear orders that contains, for each naltur, at least one linear order
with cardinality greater than n, is undecidable.

Theorem 1 states the undecidability of variddS fragments over (i) classes of linear
orders that contain at least one linear order with an infasteending (fragmen, AD, AD)
or descending (fragmen€, AD, AD) sequence of points, and (ii) those classes that contain
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arbitrarily large finite linear orders. The next sectionsdevoted to the proof of Theorem 1.
The proof involve reductions of two different problems, deding on the considered class
of linear orders: a reduction of the Octant Tiling Problenused to deal with classes of
linear orders containing an infinite sequence of points (Wkocall it “the infinite case”),
while a reduction of the Finite Tiling Problem is used to dedth classes of unbounded
finite linear orders (“the finite case”). It is important toipioout that all natural classes of
linear orders fit in one of these two cases, including thesels®f all linear orders, dense
linear orders, discrete linear orders, finite linear ordasswell as the linear orders b, Z,
@, andR (singletons). The proof of Theorem 1 follows from Coroll&rfinfinite case foO
andO), Corollary 3 (finite case fo® andO), Corollary 5 (infinite case foAD), Corollary

9 (infinite case forAD), Corollary 10 (infinite case foAD andAD), and the undecidability
results given in [19] (finite case faxD, AD, AD, andAD).

Pairing known results with those given in this paper, we makenificant step toward
the complete classification &fS fragments with respect to their decidable/undecidable sta
tus, as we can conclude th@t O, AD, AD, AD, AD, BE, BE, BE, andBE are undecidable
over all above referred classes of linear orders, that &, the classes of all, dense, discrete,
and finite linear orders. The undecidability proof @randO generalizes those given in [4,
5] as, unlike [5], it neither assumes discreteness norkeiff], the existence of an infinite
sequence. The undecidability proof 4D and AD (resp.,AD andAD), over any class of
linear orders that contains at least a linear order with énifa ascending (resp., descend-
ing) sequence of points, strengthens the undecidabil@yli® given in [3]. Since undecid-
ability of these fragments over the class of finite linearessdmmediately follows from that
of D andD, undecidability spans all meaningful classes of lineaemsdAs a matter of fact,
undecidability of finite satisfiability foD andD can also be exploited to prove undecid-
ability of AD andAD (resp.,AD andAD) over infinite, discrete, and right-bounded (resp.,
left-bounded) interval structures. UndecidabilityRE, BE, BE, andBE over all meaning-
ful classes of linear orders follows from a collection ofuks. First, sinceD) (resp.,(D))
is definable irBE (resp.,BE) by equationD)¢ = (B)(E)¢ (resp.,(D)¢ = (B)(E)¢), unde-
cidability of BE (resp.,BE) over finite and discrete linear orders immediately folldvesn
that of D (resp.,D) [19]. Undecidability ofBE over the class of all dense linear orders has
been proved in [17] (since density is expressibl8bby a constant formula, undecidabil-
ity over the class of all linear orders immediately follovt€]), while undecidability oBE
over the classes of dense and all linear orders has been sh@8{nFinally, sinceO (resp.,
(O)) is definable irBE (resp.,BE) by equation/O)¢ = (E)(B)¢ (resp.,(O)¢ = (B)(E)¢),
undecidability ofBE (resp.,BE) over all meaningful classes of linear orders immediately
follows from that ofO (resp.,0).

3.2 Proof techniques

The undecidability results given in this paper are provettlyction of suitable instances of
the Tiling Problem to the satisfiability problem for the ctesedHS fragments. Generally
speaking, the Tiling (or Domino) Problem is the problem ofidang whether a set of tiles
of a particular kind can tile a given portion of the plane.rthtg from the seminal work by
Wang [23], the Tiling Problem has been extensively useddegundecidability and to give
complexity bounds to the satisfiability problem for manyetiént logical formalisms [2, 14].
As a matter of fact, a number of variants of the problem haes peoposed in the literature,
which differ from each other in the constraints they imposeéhe placement of the tiles and
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on the shape of the considered portion of the plane. In tipempave will we make use of
the Octant Tiling Problem (OTP) and of the Finite Tiling Pleb (FTP).

OTP is the problem of establishing whether a given finite Bélectypes7 = {t1,..., &}
cancorrectlytile the second octant of the integer pla®e= {(i,j) :i,j e NAO<i < j}.
For every tile typet; € T, let right(t;), left(t;), up(ti), and dowr(t;) be the colors of the
corresponding sides ¢f To obtain acorrect tiling of the octantD, one must find a function
f : O — T such thatight(f (n,m)) =left(f (n+1,m)), wheneven < m, andup(f(n,m)) =
down(f(n,m+1)). Undecidability of OTP can be shown by means of an argumenmtzsi
to the one used in [2] to prove undecidability of the QuadHaliig Problem.

FTP is a well-known undecidable problem, that has been edtiuh the literature in
different, yet closely related, variants. Here, we refethi® one introduced and shown to
be undecidable in [18]. Formally, we define FTP as the probdérestablishing whether
there exist two natural numbeksand! such that a finite set of tile typés, containing two
distinguished tile typety andts, can correctly tile thg0,...,k} x {0,...,I} finite portion
of the plane, under the additional restriction tfiéd, 0) =to and f (k,1) = t5.

Given anHS fragmentF and an instance OTHF') of OTP, whereT is a finite set of tile
types, to reduce OTP to the satisfiability problem farwe build anF-formula @7 which
is satisfiable if and only iff” can correctly tile©. The construction is similar to those used
to prove undecidability of othedS fragments, but it is not readily derivable from them.

First, given an intervaja, b], sometimes referred to as thtarting interval we identify
a subsetyy of relevant intervals. Such a set contains all and only thervals we need.
Typically, Gja ) is the set of all intervals reachable from the starting irdkfa, b] using
modalities of 7. However, this is not alway the case. For instance, in thefday AD and
AD (Section 5)Giap is a subset of the set of intervals reachable fianb]|. A character-
ization of the seyjj5p is given by means of global operator[G| (definable inF) such
that[G]pis true if and only ifpis true over all intervals ig, 1, Since all relevant formulae
exclusively refer to intervals belonging @ 1,), hereafter, even if not explicitly said, we will
only refer to intervals irG, ), all other intervals being irrelevant.

Second, we set the tiling framework by forcing the existesf@unique infinite chain of
u-intervals (1 stands fowunit), calledu-chain, on the underlying linear order. The elements
of theu-chain are used as cells to arrange the tiling. Furthernsoneyv modality (definable
in F) is introduced to move from the currewtinterval to the next one in the-chain

Third, we encode the octant by means of a unique infinite sesuefld-intervals (d
stands foridentifier), calledld-chain Eachld-interval represents a row of the octant, and
it consists of a sequence ofintervals. Eachu-interval is used either to represent a labeled
position of the plane or to separate two consecutive rowthérformer case, it is labeled
with tile; in the latter case, it is labeled with

Finally, by using suitable proposition letters, we encdueabove-andright-neighbor
relations, which connect each tile of the octant with, retigely, the one immediately above
it and the one immediately at the right of it. Throughout tlager, if two tilest; andt, are
connected by the above-neighbor (resp., right-neighlmgtion, we say thaty is above-
connectedresp. right-connectelito t;, and similarly fortile-intervals (when they encode
tiles of the octant that are above- or right-connected,aethely). The two neighbor rela-
tions must satisfy the followingommutativity property

Definition 1 An interval model has theommutativity propertyif for any pair of tile-
intervals [c,d] and [e, f], if there exists atile-interval [di,e;], such that[c,d] is right-
connected tdd;, e ] and[d;, e;] is above-connected {e, f], then there exists dle-interval
[d2, &] such thafc, d] is above-connected {dy, e;] and[dy, €] is right-connected tée, f].
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The rest of the paper is devoted to the proof of Theorem 1. Asiveady mentioned in
Section 2, strict semantics is assumed. However, the pesolbe easily adapted to non-strict
semantics, because only proper intervals are used in tlgrootion of models representing
correct tilings.

4 The fragmentsO and O

The section is structured as follows. First, we prove urtdtdility of O over any class
of linear orders containing at least one linear order withirdimite ascending sequence
of points (infinite case) by building step-by step @formula that encodes OTP; then, to
prove undecidability ofd over any class of linear orders containing finite linear osde
unbounded cardinality (finite case), we show that an engpalif-TP can be obtained by a
suitable adaptation of the construction for the infiniteec&ince, by symmetry, analogous
results hold forO, this suffices to prove Theorem 1 as far@sndO are concerned. The
proof for the infinite case is based on that given in [5] for ¢heess of discrete linear orders,
but dropping the discreteness assumption turned out torjeofa being simple. The final
achievement is a very general (and elegant) undecidapiliigf for O (andO).

4.1 Undecidability in the infinite case

Let [a,b] be any interval of length at least 2, that is, such that theist®at least one poirt
in betweera andb. Furthermore, legj, 1, be the set containing, b] and all and only those
intervals[c,d] of length at least 2 such that> a andd > b. Finally, let modality[G] be
defined as follows[G]p = pA [O]pA [O][O]p for p € AP. It can be easily checked thi&]p
holds overfa, b] if and only if p holds over all intervals iG, 1, .

Definition of the u-chain. The definition of theu-chain is the most difficult step in the con-
struction, due to the weakness of the language. It represleatmost significant departure
from the solution given in [5], where the definition of thechain hinges on the discreteness
assumption. Here, a completely new approach is neededstk om three main ingredi-
ents:(a) existence of an infinite sequencewfntervals{by, bg], (b1, b1, .., [bi, bi], ... such
thatb < by andbl = bj;1 for eachi € N; (b) existence of an interleaved auxiliary chain
[0, Gy, [€1,€Y], - .-, [Gi,G], ... such thaby < ¢ < bl =bj; 1 < ¢ <bf,; andc = ¢y for each

i € N; (c) unigueness of chains. We calintervals the intervals of the auxiliary chain. Each
k-interval overlaps exactly oneinterval, and it will be exploited to move from the current
u-interval to next one in tha-chain. A graphical account of the relationships between th
two chains is given in Fig. 1.

The third ingredient is definitely the most difficult one t@tlwith. To guarantee unique-
ness, we will show that, under certain conditio®,can impose suitable conditions on
proper sub-intervals of a given interval (which is quitepsising for a very wealdS frag-
ment likeO). In particular, we will show that, under appropriate coaistts on the valuation
of p € AP (see Definition 2 below), it is possible to express propettie: “for each interval
[c,d], if [c,d] satisfiesp, then no proper sub-interval &, d] satisfiesp”.

Definition 2 Let M be a model|a,b] be an interval oveM, andp,q € AP. We say that
p andq aredisjoint in (M, [a,b]) if, for every pair of intervalgc,d], [, f] € G5 such that
M, [c,d] IF pandM, [e, f] I q, eitherd < eor f < c. Furthermore, we say thatis adisjoint
consequendf pin (M,[a b]) if p andq are disjoint in(M, [a,b]) and anyp-interval is
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Fig. 1 Encoding of theu-chain inO.

followed by ag-interval, that is, for eaclp-interval [c,d] € G, there exists a@-interval
e, f] € Gjap such thae > d. Finally, we say thap is disjointly-bounded if(M, [a, b]) with
disjoint consequent & (i) [a,b] neither is ap-interval nor overlaps a-interval, that is,
if [c,d] is a p-interval, thenc > b; (ii) there are no twa-intervals[c,d] and [e, f] with
c<e<d< f, that is, p-intervals do not overlap(ii) q is a disjoint consequent gf in
(M, [a,b]).

The definition ofu-chain makes use of the auxiliary proposition lettersus, k1, andk,.
The following formulae constrains, uz, k1, andk; to be disjointly-bounded ifM, [a, b])
with disjoint consequentsy, u1, ko, k1, respectively.

(O)T A—uA=kA[O](—u A —k) Q)
[G]((u > urVuz) A (k > kg Vko) A (ug — —uz) A (kg — —ko)) 2
[G]((u1 — [O](—u A —kg))A(uz = [O](—uA—k1))) 3)
[G]((k1 — [O](=k A—u1))A(kz — [O](—k A —u2))) 4
[G](((O)uz = ~(O)uz) A ((O)k1 — —(O)k2)) 5)
[G]((u1 — (O)ka) A (k1 — (O)uz) A (u2 = (O)k2) A (k2 = (O)ua)) (6)
D)A...A(6) (disj-bnd)

Lemmal Let M be a model andh, b] be interval over M such that Ma, b] I (disj-bnd).
Thenus, u, ki, andky are disjointly-bounded if{M; [a, b]) with disjoint consequents,,
u1, ko, k1, respectively.

Proof We prove the statement far. The proof forus, ki, andks is analogous. We show
thatus satisfies the three conditions for disjointly-bounded psifion letters of Definition
2. By (1) and (2)a, b] neither satisfies1 nor overlaps ams-interval (condition (i)). By
(2) and (3),us-intervals do not overlap each other (condition (ii)). Wewmow thatu; is
a disjoint consequent af; (condition (iii)). First, we prove that; andu, are disjoint. To
this end, suppose, for the sake of contradiction, that thezeanus-interval [c,d] and an
ug-interval e, f] such thatd > eandf > c. We distinguish three cases:

1. e<c. If f <d, (3)isviolated, while iff > d, (5) is violated. The former case is straight-
forward; as for the latter case, consider an interval stgusirictly inside[a, b] and end-
ing strictly inside[c,d]. Such an interval overlaps both the-interval [c,d] and the
ug-interval [e, f] (by the first conjunct of (1), the length @, b] is greater than or equal
to 2, and, by definition ofG], the same holds for each interval reachable ffarh]);

2. e=c. (5) is violated (same argument of point 1);

3. e>c. If f <d, (5)is violated (same argument of point 1), whild if- d, (3) is violated.

To complete the proof, we need to show that, for eacinterval [c,d], there exists an,-
interval[e, f] such thae > d. This follows from (6) and disjointedness of andu;. ad
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We now show that whenever a proposition lefpes disjointly-bounded M, [a, b]) with
disjoint consequeny, we can introduce an auxiliary proposition letieside, and force it

to be true over all proper sub-intervals (i ;) of p-intervals. Then, by simply stating that
insidep-intervals andp-intervals cannot overlap, we prove thatmdnterval can be a proper
sub-interval of another one. To properly constrain the Bienaf insidep, we introduce an
auxiliary proposition lettefp and we force it to be true over intervals that start inside a
p-interval and end inside ginterval (and thus outside theinterval they start from). The
following three formulae express the above conditions f@eaeric proposition lettep
disjointly-bounded inM, [a, b]) with disjoint consequerd.

[Gl(p— [0]((O)g— ) @)
[G](—pA[O]((0)q— B) — insidep) (8)
[G]((insidep — =(O)p) A (p— —(O)insidep)) 9

Lemma 2 Let M be a modelja, b] be an interval over M, and, g € AP be two proposition
letters such that p is disjointly-bounded(id, [a, b]) with disjoint consequent q. If Ma, b] I+
(7)A(8)A(9), then no p-interval can be a proper sub-interval of anothee MG, 1, -

Proof Suppose, for the sake of contradiction, that there existirgervals|c,d] and|e, f]
in Gjap such thafe, f] is a proper sub-interval g€, d]. By definition of proper sub-interval,
we have thatt < e or f < d. Without loss of generality, let us suppose that e (the
other case is analogous). Sifeef] € g[a,b], then there exists a point in betweeiand f,
call it €. The interval[c,€] cannot satisfyp, since it overlaps th@-interval [e, f] and p is
disjointly-bounded in(M, [a, b]). Furthermore|c, €] is a sub-interval ofc,d], and, by (7),
each interval starting at a point betweeandd and ending inside g-interval (@ being a
disjoint consequent op) satisfiesp. Hence,[c, €] satisfies~p and [0]((0)q — ). By
(8), it immediately follows thafc, €] satisfiesinside, as well, and then, by (9), thét, €]
overlaps ngp-interval (contradiction). ad

Hereafter, we will denote bgon-sul(x,y), with X,y proposition letters indP, the formula
obtained from (7)\ (8) A (9) by replacingp by x, P by X, insidep, by insidey, andq by'y,
stating that noc-interval is a sub-interval of another one.

To complete the construction of tlwechain, the following formulae are needed, where
first is used to identify the first interval of thechain.

(O)(O) (ug Afirst) (10)
[G](uV k — [O]—first A [O][O] first) (11)
[G]((first — ug) A (first — [O][O]—first)) (12)
non-sub{ug,uz) Anonsul(uz, uy) A nonsulky, ko) Anorrsulks, k1) (13)
[G](uVk— [O(O)(uVk)) (14)
(10)A...A(14) (u-chain)

Lemma3 Let M be a model anda,b] be an interval such that Ma, b] IF (disj-bnd) A
(u-chair). Then,

(a) there exists an infinite sequencesahtervals{bg, by], [by, b, ..., [bi,B],..., withb<bg
and f = b1 for every ic N, such that M[bo, by] I first,
(b) there exists an infinite sequencekeintervals [co, ¢y, [C1,C)], - - -, [Ci,C],. .. such that

by <c <bf,b1<c <k, and¢=cyforeveryic N, and
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(c) any other intervajc,d] € g[a’b] satisfies no one af, k, andfirst, unless c> bj for every
i eN.

Proof For the sake of simplicity, we first prove a weaker versionagfand (b), namely,

(@) there exists an infinite sequencewsintervals|bg, bg), [b1, b)), ..., [bi,bl], ..., withb <
bo andb{ < bi;1 (instead ot} = bj,.1) for everyi € N, such that, [bg, bp] I first, and

(b)) there exists an infinite sequencelefntervals|co, ), [c1,¢}), - -, [Ci, ¢], ... such that
b <c <bf, by < <b,,andd <cj;1 (instead ofc] = ¢, 1) for everyi € N.

Then, we will prove (c), and, finally, we will forcl = bj1 andc = ¢4 for everyi € N.

As a matter of fact, the existence of athain and &-chain that respectively satisfy (a)’
and (b)’ easily follows from formulae (1), (2), (3), (4), (&nd (10).

To prove (c) , we show that any other interval g ) satisfies neithes nor k, unless
its starting point is greater than all points belonging ®ititervals of thei-chain and thé-
chain. As a preliminary step, we show thatunterval (resp.k-interval) belonging t@,
can be a proper sub-interval of arinterval or ak-interval. Formula (5) guarantees that no
uz-interval (resp.ki-interval) can be a sub-interval of an-interval (resp.kz-interval) and
vice versa, that is, nas-interval (resp.ko-interval) can be a sub-interval of an-interval
(resp.,ky-interval). Furthermore, by Lemma 14, uy, k1, andk, are disjointly-bounded,
and thus from (13) it follows that nos-interval (resp.uz-interval, kq-interval, ko-interval)
can be a sub-interval of anotheg-interval (resp.uz-interval, ki-interval, ko-interval). It
remains to show that na-interval can be a sub-interval of ahyinterval, and vice versa.
Suppose, for the sake of contradiction, that there exist-anterval [¢’,d'] which is a sub-
interval of ak-interval[c”,d"]. By (6), it follows that there existskrinterval which starts in
betweerc’ andd’. Let that belc”’,d”’]. Then, eithed” < d” and thek-interval[c”,d"'] is a
sub-interval of thex-interval [¢”,d"] (contradiction, as we just proved that this cannot be the
case) ord” > d” and thek-interval [c”,d”] overlaps thek-interval [¢”,d"”’] (contradiction,
as (4) constraink-intervals to not overlap). With a similar argument, one shaw that no
k-interval can be a sub-interval of arinterval.

To conclude the proof of (c), suppose, for the sake of corttfiad, that there exists
anu-interval [c,d] in Gjap such thafc,d] # [bj, bj], for everyj € N, andc < by, for some
k € N. By (1), c > b. We show that all possible choices folead to contradiction.

— If b <c < by, then one of the following two cases applies: (idik by, then (11) is
violated; (ii) if d > by, then theu-interval b, by] is a sub-interval of the-interval [c, d]
(contradiction).

— If c=bj for somei <k, then one of the following cases applies: (ilik bf, then theu-
interval[c,d] is a sub-interval of the-interval [b;, b{] (contradiction); (ii) ifd = bf, then
[c.d] = [by,b{], against the assumption thatd] # [b;, b{] for anyi € N; (iii) if d > b,
then theu-interval [b;, bf] is a sub-interval of the-interval[c,d] (contradiction).

— If bj < ¢ < b for somei <k, then one of the following two cases applies: (ifiK b,
then theu-interval [c,d] is a sub-interval of the-interval [b;, b{] (contradiction); (ii) if
d > b, then theu-interval [b;, bj] overlaps thei-interval [c, d], thus violating (3).

— If b < c < bi;1 for somei < k, then one of the following cases applies: (iif b1,
then theu-interval [c,d] is a sub-interval of the-interval [c;, ¢{] (contradiction); (ii)
if biy1 <d < b4, then theu-interval [c,d] overlaps theu-interval [bi,1,bf,,], thus
violating (3); (iii) if d >k ,, then theu-interval [bj, 1,0 ] is a sub-interval of the
u-interval [c, d] (contradiction).

A similar argument can be used to prove that there existsinterval [c,d] € G5 except
[ci,cl],i €N, unlessc > by for everyi € N. Finally, assume that there exist§iat-interval
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[c,d] in |5y such thatc, d] # [bo, by] andc < by for somek € N for the sake of contradic-
tion. By the first conjunct of (12)¢,d] = [b;, b] for somei € N, with i # 0 (we just proved
that there are no otherintervals), but this immediately leads to a violation oé tsecond
conjunct of (12).

We conclude the proof by showing tHat= bj;1 andc] = ci1 for everyi € N. Suppose,
for the sake of contradiction, thaf < biy1 for somei € N. By (a’) and (b’), there exist
bi,ci,c, b, , such thaty < ¢ < bf, bi;1 < ¢ <bf, 4, and(c;,c]] satisfiesk. Furthermore,
by (c), there exists no- or k-interval starting in betweety andb;, ;. It can be easily checked
that theu-interval [b;, bf] overlaps the intervalc;, bi 1] that, in turn, overlaps ne- or k-
interval, thus violating (14). A similar argument can be dise prove that] = c1 for

everyi € N. O
In the following, we will make use of a derived modalif(,) to access the firat-interval

of the u-chain and to step from any giveninterval to the next one in the-chain. (X,) is
defined as follows:

(Xa)¢=(0)(O)(first A @) V (uA (O) (kA (O)(ur9)))

Definition of the Id-chain. Theld-chain is defined by the following set of formulae:

=ld A=(O)Id A [G](ld — —(O)1d) (15)
(Xu) (x A (Xy) (tile ATd A (X)) x A[G](x — (Xu) (tile A (X, ) tile)))) (16)
[G]((u +> x Vtile) A (x — —tile)) a7)
[Gl(x = (O) (kA (O)ld)) (18)
[G](Id — (O)(k A (O))) (19)
[G]((u— —=(O)ld) A (Id = =(O)u)) (20)
[G]((0)+ — =(O)Id) (21)
non-sulyld, ) (22)
(15)A...A(22) (Id-chair)
Lemma4 Let M be a model anda,b] be an interval such that Ma, b} Ik (disj-bnd) A
(u- cham) A (1d-chair). Furthermore, let b< b < @ < bl < ... <B4t <t < — 19 <
dt—<bl<.. <bf=b)<.. beasequence of pomts such tI{idlt b'+l ] is anu-

mterval and|c},c '*1} is ak-interval forevery > 1,0 <i <kj, whose eX|stence is guaran-
teed by Lemma 3. Then for every L

(@ M [b?,b]l] I *;

(b) M, [bl,b[""] I tile for each0 < i < kj;

(c) M, [bjl,b?ﬂ] I+ 1d;

(d) ki =2,and k > 2for ¢ > 1.

Furthermore, any other intervat, d] € G, 1, satisfies no one 6f tile, andld, unless ¢ bi]-
foreveryij > 0.

Proof As a first step, we show th#d is a disjointly-bounded proposition ifM, [a, b]) with
disjoint consequent. By (15), it can be easily checked tHdtmeets the first two conditions
of Definition 2. By (17), (20) and (21)s andld are disjoint, and, by (19) is a disjoint
consequent ofid. Now, we prove the statements of the lemma one by one.
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(a) From (16), (18), and (19), it immediately follows thaetl exists an infinite sequence
of -intervals. Without loss of generality, we can assume itedidj, bl], [b3,b3],.. .,

[b?,bjl}, .... Furthermore, by the first conjunct of (17), we can asstimat, for every
j > 0, there exists no &interval betweerib?, bj] and[b?, ;, b}, 4.

(b) By (17), every interval satisfying or tile is anu-interval and everyi-interval satisfies
eitherx or tile. Then allu-intervals between two consecutivantervals (if any) must
betile-intervals.

(c) By (18), for evenk-interval [c?, cﬂ overlapped by a-interval, there exists ad-interval
[c,d] such thate? < ¢ < ¢} < d. We show that = b} andd = b, ;. For the sake of

contradiction, suppose that by. If ¢ < b}, then theu-interval [b?, bl] overlaps théd-
interval [c,d], thus violating (20). In case > bl, two alternatives must be considered,
both leading to contradiction.

(i) j = 1. By (16),[b}, b3] is theld-interval corresponding to the first row of the octant.
Now, if d > b2, then theu-interval [b}, b?] overlaps thed-interval [c,d], violating
(20); otherwise, ifl < b?, then thdd-interval [c,d] is a sub-interval of th&d-interval
[b}, b?], violating (22).

(i) j > 1. By (16),[bj,b?] is not the lastile-interval of thejth row, and thus thé-

interval [c}, cf] overlaps nox-interval (bf,b?] is atile-interval). By (19), it must
bed > CJZ, from which it follows that theu-interval [b]l, bJZ] overlaps thdd-interval
[c,d], thus violating (20).

We show now thatl = b?ﬂ, that is, theld-interval starting at the right endpoint of the

+-interval [b?, b]] ends at the left endpoint of the nexinterval [b9, ;b ;] . Suppose,

for the sake of contradiction, thdt# b?ﬂ. Two cases must be considergd= 1 and
j > 1.1f j =1, then fromd < b9 (resp.,d > b), it follows that theld-interval [c,d]
(resp.,[bl, b?]) is a sub-interval of théd-interval [bi, b?] (resp.,[c,d]), violating (22). In
casej > 1, several alternatives must be considered, all leadingritradiction:
@) if d < clj("fl, then (19) is violated, since eithér,d] overlaps nok-interval or it
overlaps &-interval that overlaps ne-interval;

(i) if c';“l <d< b?ﬂ, then theld-interval [c,d] overlaps theu-interval [b

],
thus violating (20);
(iii) if bY,; <d < b}, 4, then theld-interval [c,d] overlaps ther-interval [0, ;, bt ],
again violating (20);
(iv) if d > bj 4, then (21) is violated, since any intenal,c?, ;] such tha < & < b
(by (1), there exists at least one such interval) overlapth libe x-interval
b7, ,,b7,,] and theld-interval [c, d].
(d) Itimmediately follows from (16).

kj,]_ kj
;b

Finally, for the sake of contradiction, suppose that theistg anld-interval [c,d] € g[a’b]
such thafc, d] # [b}, b9, 4], for everyj > 0, andc < b, for somei, j > 0. By (15),[a,b] is
not anld-interval and it overlaps nkal-interval. Hence¢ > b. We show now that all possible

choices forc (> b) lead to contradiction:

(i) if b<c<bl, then, by (19), it must be > c?, which causes a violation of (21);

(ii) if bY < c < c? for somej > 0, then (21) is violated;

(iii) if ¢ < c < by for somej > 0, then, by (19), it must bé > ¢} and thus the:-interval
[b?, bi] overlaps thed-interval[c, d], violating (20);

(iv) if c= b} for somej > 0, then it must bel = b?, , (see proof of statemeric));
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b2 4344045
bw | t5 et ¢ ot <12 bw fw bw fw
(‘_/‘\(_/h“r Y Rl
fw tg}**t%*t%ﬁh \ up-rel | up-rel |
| [ e — | L ——— e ] !
——1——
bw tg€%§€4§ P last last; last ——e last,
7L vy ot 2, 22 g, 2 8 A
fw | -t AR L N L L AL L L S
bw | t up_rel
W 1 Oo—————0
(a) Cartesian representation. (b) Interval representation.

Fig. 2 Encoding of the above-neighbor relationGn

(v) if b} <c<b?, for somej > 0 then eitherd < b?

i+1 and theld-interval [c,d] is a

sub-interval of thed-interval [bf,b?, , ], violating (22), ord > b?,, and theld-interval
[b},b%, ;] overlaps thed-interval [c,d], violating (15).
A similar argument can be used to prove that no other intdovel € Gj5 ) satisfiesx or
tile, unlessc > b, for everyi, j > 0 i

Above-neighbor relation. The next (difficult) step is the encoding of the above-neayhb
relation (the idea is depicted in Fig. 2). The main role herplayed by proposition letter
up_rel, used to connect eadifie-interval with its upper level neighbor in the octant, e.g.,
t2 with t3 in Fig. 2). For technical reasons, we need to partition row€ainto backward
andforward rows making use of proposition lettelsss and fw. Intuitively, tiles belonging
to forward rows on® are encoded in ascending order, while those belonging towzad
rows are encoded in descending order (the tiling is encadadrig-zag manner by suitably
connecting forward and backward rows). In particular, thisans that the leftmostle-
interval of a backward row encodes the last tile of that ronto{not the first one). Let
a, B range oveR bw, fw} such thatr # 3. We label eaclu-interval withbw (resp. fw) if it
belongs to a backward (resp., forward) row:

(Xy)bw A [G]((u <> bw V fw) A (bw — —fw)) (23)
[Gl((an=(Xu)x = (Xa)a) A(aA(Ku)x — (Xu)B)) (24)
(23)1 (24) (bw/fw)

Lemma5 Let M be a modelja,b] be an interval over M, and b b < ¢ < b} < ... <
bttt apft=p)<dt=cd<bl<...<b2=bJ<...bethe sequence of points de-
fined by Lemma 4. If Ma, b] I+ (disj-bnd;) A (u-chain) A (Id-chain) A (bw/fw), then M [b'j , b'j“} I+
bw (resp., M [bi]- , bij“} IF fw) if and only if j is an odd (resp., even) number, for every 1.
Furthermore, no other intervalc,d] € g[&b] satisfiesbw or fw, unless ¢> bij for every
i,j>0.

The alternation between backward and forward rows makessgiple to correctly encode
the above-neighbor relation by constraining evepyrel-interval starting from a backward
(resp., forward) row not to overlap any othgr_rel-interval starting from a backward (resp.,
forward) row. The structure of the encoding is shown in Fi@p) 2whereup_rel-intervals
starting from a given forward (resp., backward) row are @thone inside the other. Con-
sider, for instance, how the 3rd and 4th rows on the octanteggmesented in Fig. 2(b). The
1sttile-interval of the 3rd rowt§) is connected to the second-lat-interval of the 4th



14 Davide Bresolin et al.

row (t3), the 2ndtile-interval of the 3rd rowtg) is connected to the third-lasiie-interval
of the 4th row (2), and so on. Notice that, in forward (resp., backward) rdhe Jast (resp.,
first) tile-interval has naile-intervals above-connected to it, in order to constrairheaw
to have exactly onéile-interval more than the previous one (thege-intervals are labeled
with last).

Formally, the above-neighbor relation is defined as followe constrain everyile-

interval [b'J , b'ﬁ 1] belonging to a forward (resp., backward) row to be abovereoted to the

tile-interval [b:ﬁ ',b}ﬁ 1) (resp. [b}ﬁ - 1,b}ﬁ ) by labeling themtervaﬂc'],c}ﬁ y
(resp. [c' c}ﬁ - l])W|th up_rel. We distinguish betweeup_rel-intervals starting from for-

ward and backward rows and, within each case, between thadimg from odd and even
tile-intervals. To this end, we use a new proposition latterel2” (resp.up_rel>”, up_reﬁ,w
up_rel‘;w) to labelup_rel-intervals starting from an oddle-interval of a backward row (resp.,
eventile-interval/backward row, odd/forward, even/forward). Ese the reading of formu-
lae, we groupup_rel2 andup_rel®” in up_rel® (up_rel® < up_rel?” @ up_rel?”, where

@ denotes “exclusive or”), and similarly fap_rel™. Finally, up_rel is one ofup_rel®” and
up-rel™ (up_rel <> up_rel® & up_rel™). Leta, B range over bw, fw} and lety, 3 range over
{o,e}, with a # 3 andy # d. We encode the correspondence between tiles of consecutive
rows on the plane induced by the above-neighbor relationlbmss:

—up_rel A =(O)up_rel (25)
[G]((up_rel <> up_rel™ v up_relfw) A (up_rel® + up_rel? V up_reld)) (26)
[G]((kV * — —(O)up_rel) A (up_rel = —(O)k)) (27)
[G](u A (O)up-reld — ~(O)up_rel§ A ~(O)up_rel?) (28)
[G](up-rel” — —|<O>up_rela) (29)
[G](up-rel = (O)Id) (30)
[G]({(O)up_rel — —(O)first) (31)
[G](up-relj — (O)(tileA (O )up_rele)) (32)
(25)A...A(32) (up_rel-def)

Lemma 6 Let M be a modelja,b] be an interval over M, and & b? < ¢ < bl < ... <
Bt it <t =) <t =cJ<bl<...<b2=1bd<...be the sequence of points
defined by Lemma 4. If Ni, b IF (disj-bnd) A (u-chain) A (Id-chair) A (bw/fw) A (up-rel-def),
then, it holds that:

(a) if [c,d] is anup_rel-interval, then c= ¢, and d= cij', for someiji’,j,j' > 0;

(b) foralli,i’,j,j’ >0, [c'],c'] ] is anup_rel-interval iff it is either anup_rel®"-interval or

anup_rel™-interval, and[c' c' ] is anup_rel®"-interval (resp.up_rel™-interval) iff it is
either anup_rel2"-interval or anup_relgw-interval (resp.up_rel®-interval orup_relf-
interval);

(c) foralli,i’,j,j’>0, a,B e {bw,fw}, andy,d € {o,e}, if [c' c' /] is anup_relf,’-interval,

then there exists nmp_relg-lnterval starting at t; with up_rel‘;’ #+ up_relﬁ;

(d) noup_rel®-interval (resp. up_rel™-interval) overlaps anothenp_rel”"-interval (resp.,
up-rel™-interval);
- - . i il . . .
(e) foralli,i’;j,j’ >0,if [c' c' ] is anup_rel>-interval (resp. up_rel>-interval, up_relf"-
interval, up_ reIfW-lntervaI) then there exists anp_rel™-interval (resp., up_rel-
interval, up_ rerW-lntervaI up_rel>-interval) starting at(f
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Proof We only prove (a), which can be rephrased as follows: agchel-interval starts
(resp., ends) at the same point in whickrmterval starts (resp., ends). The other statements
of the lemma are rather straightforward. Lletd] be anup_rel-interval. As a preliminary
step, we observe that it cannot be the casedhat? (resp.d = c‘j),) for somej > 1 (resp.,
j’ > 1), since this would imply the existence of ap_rel-interval overlapped by (resp.,
overlapping) as-interval, thus violating (27).

We first show that = c'] for somei, j > 0. By (25),c > b. Since, by (1), the length
of [a,b] is greater than or equal to 2, it immediately follows thatréhexists at least one
pointe, with a < e < b, such that ncmp rel-interval starts ag. Together with (31) and (32),
this allows us to conclude that> c?. Furthermore, by (27) and (32), it cannot be the case
thatb' <c< c' for anyi > 0, j > 0. It only remains to exclude tha'; <c< b'+l for some

i>0,j>0. For the sake of contradiction, suppose ttja:t c< b'+1 for somei > 0,j > 0.
If d > ¢}, then (27) is violated. Thus, let us assuthe c|"*. By (30), [c,d] overlaps an
Id- |nterval which necessarily startstit*, and thus{b‘l,b'JH} is ax-interval. S|ncéb'1,b']+1]
overlaps theup_rel-interval [9 d], (27) is violated.

We now show thatl = c']-, for somei’, j’ > 0. For the sake of contradiction, we assume

thatd # cij', for everyi’, j’ > 0. Two cases are possible, both leading to contradiction.

(i) c=c} andd < c|**. By (30),d > bj* and anld-interval starts ab'"*. [b}, b|"*] is thus
ak- |nterval Slnce{b'J,b']”] overlaps thaip_rel-interval [c, d], (27) is violated.
(i) c= c'j andd > c']-+l Hence, thaip_rel-interval [c,d] overlaps thek-interval starting at

cj't, thus violating (27). O

To complete the encoding of the above-neighbor relatiorcamstrain eachile-interval,
apart from those encoding the last tile of a row, to hatdeainterval above-connected to
it. To this end, we first label anyle interval representing the last tile of a row with the new
proposition lettefast (formulae (38)-(40)). Then, we force alle-intervals which are not
labeled withlast to have aile-interval above-connected to them (formulae (41)-(44)):

[G](tile — (O)up_rel) (33)
[G](a — [O](up_rel — up_rel)) (34)
[G](up-rel” — (O)B) (35)
[G]((O)* — —((O)up_rel®™ A (O)up_rel™)) (36)
[G](tile A (O)up_rely A (Xu)tile — (X, ) (tile A (O)up_rel)) (37)
[G](last — tile) (38)
[G]((x Abw — (X,)last) A (fw A (X, )+ — last)) (39)
[G]((last Afw — (X)) A (bw A (X, )last — %)) (40)
[G](x A fw — (X,) (tile A (O) (up_rel A (O) (tile A (Xy)*)))) (41)
[G](last A bw — (O) (up_rel A (O)(tile A (X,) (tile A (Xy)*)))) (42)
[G](k A (O)(tile A (O)up_rely) —

[O]((O}up_rel? A (O} (k A {O)(tile A (O)up_relf A —last)) — (Ojupreld)) +*)

[G](up-rel = —(O)last) (44)
(B3)A...A(44) (up_rel-def)
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Lemma 7 Let M be a modelja,b] be an interval over M, and kb9 < < bl < ... <

Bt ot i — )<= cd<bl<...<b2 =13 < ... bethe sequence of points

defined by Lemma 4. If N, b] I (disj-bnd;) A (u-chain) A (Id-chair) A (bw/fw) A (up_rel-defy) A

(up_rel-det), then it holds that:

(a) foreveryup_rel-intervalc}, cij',] connecting theile-interval b}, bij“} to thetile-interval
[bf), b, "], if [}, c] is anup_rel™-interval (resp. up_rel™-interval), then[b}, bj™] is
a bw-interval (resp. fw-interval) and[bi]-’,, bij',“} is afw-interval (resp. bw-interval);

(b) for everytile-interval [bij,bi]*l], with i < kj — 1, such that there exists amp_rel>"-
interval (resp.,up_rel2"-interval, up_rel}-interval, up_rel{*-interval) starting at ¢,
there exists anp_rel2"-interval (resp.,up_relS"-interval, up_rel®-interval, up_relf"-
interval) starting at {f*l (strict alternation property);

(c) foralli,j, if [bij,b‘j“} satisfiegile andlast, then intervals ending ai}care notup_rel;
(d) for eachup_rel-interval [cij,cij',} suchtha® < i <Kkj, j' =j+1.

Proof (a) Let [cij,cij',] be anup_rel-interval connecting thele-interval [bij,bij+ 1 to thetile-

interval [bij',,bijl,”]. Suppose, for the sake of contradiction, thz%ltcij',] is anup_rel™"-

interval (the other case is symmetric) a{b@, bij+ 1is anfw-interval. Then, (34) is vio-

lated. Similarly, if[bi.',,bi./,“} is abw-interval, then (35) is violated.

(b) Straightforward (by (37)).

(c) Straightforward (by (44)). o

(d) Let [c'j,c'j',} be anup_rel-interval such that G< i < kj. We assume§c'j,c'j/,] to be an
up_rel®™-interval (the other case is symmetric). For the sake ofregiittion, suppose
that j’ # j + 1. We just proved (item (a)) thét}, bi™"] is abw-interval and[bij',,b'jl,“} is
afw-interval. Two cases must be considered.

(i) Letj"=j.Then[bj, b'j“} and[b'j',, b,*1] belong to the samig-interval. By Lemma
5, both of them must be labeled eitherlay or by fw (contradiction).

(i) Letj’ > ] +1. Consider aile-interval [0, 1, bi'f1] belonging to the j + 1)th row.
Since[b), bi"!] is abw-interval, by Lemma 5pf!, ; , b} 1] is afw-interval. By (33)
and (34), there exists amp_rel™-interval starting a(:*j1 '\, and ending at some?,’,,
with j” > j+1 (by (i), j” cannot be equal tp+ 1). Now consider the-interval

b7, 5, b7, ,]. Since, by (1), the length 64, b is at least 2, there exists asuch that
a<e<bandlec?,,| overlaps the-interval [b?, ,, b} ,], the up_rel™-interval

[c},¢), and theup_rel™-interval [c], ;,cf}, thus violating (36).

Lemma8 Let M be a modelja,b] be an interval over M, and b b < ¢ < b} < ... <
Bt ot i — )<= cd<bl<...<b2 =13 < ... bethe sequence of points
defined by Lemma 4. Then, eadhk-interval is above-connected to exactly aile-interval
and, if it does not satisfiast, then there exists exactly onge-interval which is above-
connected to it.

Proof Step 1From (33) and Lemma 6(a), it immediately follows that eaibdrinterval is
above-connected with at least otile-interval.

Step 2 We prove now that if aile-interval is not dast-interval, then there existstile-
interval which is above-connected to it. Assume the contfar the sake of contradiction.
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The proof is by induction on the position of thige-interval within theld-interval it belongs
to.

Base casd.et [b'J , b']“] be the rightmostile-interval, belonging to thgth Id-interval, which
is not alast-interval. If [bi‘,b‘-“} is afw-interval (resp.bw-interval), then = k; — 2 (resp.,
i =kj —1). Formula (42) (resp., (41)) guarantees the existence opael-interval ending

atc; (contradiction).

Inductive stepLet [bi b”l} be tile-interval, belonging to thgth Id-interval, which is not
a last-interval, but not the rightmost one. By inductive hypoikethere exists anp_rel-
interval ending a1c'+1 and starting at some pouu% . We prove that there exists also
an up_rel-interval endlng at:' Without loss of generality, suppose tﬂa‘} 1,C '*1] satis-
fies up_relf,‘”. By item (e) of Lemma 6, amp_rel2¥-interval starts at:']”, and then, by
Lemma 7(b) (strict alternation property), ap_ rerW-intervaI starts asl:'J

We now focus our attention on theinterval [c = 1,c'] 1), showing that we get contra-
diction with the condition expressed by formula (43). Fimse observe tha@cJ 1,0'] 1
satisfies the formula A (O)(tile A (O)up_rel™) and it overlaps thai-interval [b = 1,b'],
which satisfies the formul4O)up_rel™, as [c'jfl,c'“] is aup_rel™-interval, and the for-

mula (O) (k A (O)(tile A (O)up_rel>™ A —last)), as[cj” ,c']} is ak-interval that overlaps the
tile-interval [b'J,b']+ 1], which is not dast-interval (by hypothesis) and overlaps @ rel>"-
interval (the one starting aﬁ)

To realize that (43) is violated it suffices to establish t[’h‘i{gl,bﬂ does not satisfy

(O)up_relf™, For the sake of contradiction, suppose that there existsparel™-interval
[e, f] such thatt| ; < e < bj < f. We show that all possible choices ferand f lead to
contradiction.

—If f>cdtlande>d _q. then theup_ relf‘”-lnterval[
interval e, f] (contrad|ct|on with Lemma 6(d)).

—If f> c'+l ande= cJ 1, then both theup_rel*-interval [cJ 1,0']“} and theup_relf"-

interval [e f] start atc' _4 (contradiction with item (c) of Lemma 6).

— If f =c|"*, then both thenp relf-interval[c|_,,c|""] and theup_relf*-intervalfe, f] end
atc;™ and thus, by Lemma 6(e), there areugnrel?”-interval and anip_rel?"-interval
that both start ant'j+ ! (contradiction with item (c) of Lemma 6).

— If f =}, then there exists le-interval above-connected fbl,,b"!] via [e, f] against
the assumption.

i+1 fi
Cj_1,Cj "] overlaps theup_rel"-

Step 3 To complete the proof, we need to guarantee uniqueness&h@make of con-

tradiction, suppose that for somp cHl, andc 41 Such thab < c 41 (the cas<-:e:l+1 >
c'J+1 is symmetric), botr{c J+1] and [c], i]"H] areup_rel- |ntervals. By Lemma 6(c), they

both satisfy one Oﬁp_relf"", up_relf"", up_rel®, and up_ljelle""’. Let that beup_relf,W (the
other cases are analogous). Then, by Lemma 6(e), othandc]’ , start anup_rel2"-

interval. By Lemma 7(b) (strict alternation property), aerelbW-lntervaI starts at! 11

j+1
Since [b'ljll,b'lez] is not alast-interval (it is neither the rightmost nor the leftmasie-
interval of the(j + 1)th Id-interval), there exists a such thafc, c']jll] is anup_rel-interval

(step 2 above). By Lemma 6(c) and Lemma 6[&)0'1111} is anup_rel™-interval. We show
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now that all possible choices farlead to contradiction: (i) it < ¢\, then|c, cij'ill} over-

laps theup._rel%*-interval [c}, ¢ ] (contradiction with Lemma 6(d)); (i) it = |, thenc|
starts both amp_reliw-interval and amp_reli‘”-interval (contradiction with Lemma 6(c));

and (i) if ¢ > ¢}, then theup_rel"-interval [cij,cij/ 1] overlapsic, c‘j'jll] (contradiction with
Lemma 6(d)). In a similar way, one can prove that no two distip_rel-intervals can end

at the same point. ad

Right-neighbor relation. The right-neighbor relation connects each tile with itsizmmtal
(right) neighbor in the octant, if any (e.g%,with t§ in Fig. 2). Again, in order to encode the
right-neighbor relation, we must distinguish between fardvand backward rows: #le-
interval belonging to a forward row is right-connected te the-interval immediately to
the right, if any, while aile-interval belonging to a backward row is right-connectetht®
tile-interval immediately to the left, if any. For example, igF2(b), the 2ndile-interval of
the 4th row (3) is right-connected to thele-interval immediately to the rightZ), since the
4th row is a forward one, while the 2nie-interval of the 3rd rowtg) is right-connected to
thetile-interval immediately to the Ieftg), since the 3rd row is a backward one.

We define the right-neighbor relation as foIIows{bT,bij”] is atile-interval belonging
to a forward (resp., backwardg-interval such thait # k; — 1 (resp.j # 1), then we say that
it is right-connected to theile-interval [bi**, bi*?] (resp.,[b} *,b}]). As a matter of fact, no
additional proposition letter is needed to encode rightrectedness.

The following lemma proves that the commutativity propédrojds.

Lemma9 Let M be a modelja,b] be an interval over M, and kb9 < c < bl < ... <
Bt <ot <t =) <= cd<bl<...< b2 =13 <...be the sequence of points
defined by Lemma 4. If N, b] I (disj-bnd;) A (u-chain) A (Id-chair) A (bw/fw) A (up_rel-defy) A
(up_rel-def), then M satisfies the commutativity property.

Proof Given twotile-intervals|b}, b}!] and[bij',,bij',“], let [c, d] be atile-interval such that

[bij,bij+ 1] is right-connected téc,d] and|c,d] is above-connected l{bij',, b‘{,* 1]. We assume
[bij,bij“] to be afw-interval, that is, to belong to a forwatd-interval. The case in which
[bij,bij“] is abw-interval can be dealt with in a similar way, and thus it is tted.

By the definitions of the right-neighbor and above-neighietations [c, d] = [bij“, bi]*z]

and [cj'*,¢} ] is anup_rel-interval. It follows thatj’ = j + 1. Since[b}"*,b}"?] is a fw-

. i 1 il . . f . f .
interval, by Lemma 7(a)[,c']-+ ,Cj1] is either anup_rel*-interval or anup_relc”-interval.

Without‘loss of generality, we assun{xé+ 1,ci]-/ +1] to be anup_rel™-interval (the case in
which [c'j“, c']-/H] is anup_rel™-interval is similar and thus omitted).

Since [bij,bij“] is atile-interval, by Lemma 8, it is above-connected to exactly one
tile-interval, say{b!’, ;,b}'""]. Thus, [c},c/" ] is anup_rel-interval. Sincelc|"*,c] ;] is an
up_rel¥-interval, by Lemma 7(b), it is anp_rel®-interval.

To complete the proof, we must show tr[iaijﬁl, bij"jll] is right-connected t{bij’ i1 bij'jll].
Since|b|,b}"?] is afw-interval, by Lemma 5, it follows thalb! ;. bl /]] is abw-interval.
Hence, the only interval that is right-connected [n‘éﬂ,bij'jll}, if any, is the interval
[0}, b{1Z]. Then it suffices to show thabl, , b}’ "] = [b 11, b! ], which amounts to
proving thatcij"+1 = ';jll For the sake of contradiction, suppose that this is not ése.c

Two cases must be considered, both leading to contradiction
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up_rel?
up_rel?
up-rel2" up-rel?”
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Fig. 3 A model satisfying the formul#@ (for the sake of readability, we wriiefor by, i =0, ...,24).
f i'+1 H |+l
(i) +1 <cify.If c' 1—CH1, then theup_rel- |ntervals[c' Cj+1] and[ ,C
same point (contradlctlon with Lemma 8); otherW|se: jl <d
interval [c!, ¢’ ] overlaps theip_ relf‘”-lnterval[ 1

1+1] end at the

(10 then theup_ relf-

] (contradiction with item (d)

P27+ ) J+1
of Lemma 6)
(i) c 1> C,+1 By Lemma 8, there exists a p0|d} such thal{c 'lel] is anup_rel-
interval. By Lemma 6(e) and Lemma 7()%", ¢ 'lel] is an up_rel‘;w-lnterval. We show

now that all possible choices fof" lead to contradiction:

—if ¢" > "%, then theup_rel™-interval [cj"*,c}, ;] overlaps theup_rel™-interval

[ci]m, 'lel] (contradiction with item (d) of Lemma 6):

— if c'] = c|™, then theup_rel-intervals[c| ", ¢| ;] and[c]™,c 'lel] begin at the same
point (contradlct|on with Lemma 8);

- if & = ¢}, then theup_rel-intervals|c}, C1+1] and(c}, 'lel] begin at the same point
(contradiction with Lemma 8);

—if ¢’ <, then theup_rel™-interval [c! 'lel] overlaps theup_rel™-interval

[c}, ; 41 (contrad|ct|on with item (d) of Lemma 6)

Hence,cl,, = ¢ 1, and thusb’, | bl '] = [b}/], b }Z]. This allows us to conclude that
[b'J,b']“] is above-connected q@ujll,b']jlz} which is right-connected t{:le,b']jll} thus
proving the thesis. ad

Corollary 1 The ithtile-interval of the jth row [d-interval) is above-connected to the ith
tile-interval of the(j + 1)th row.

Tiling the plane. The following formulae constrain eag¢he-interval (and no other one) to
be tiled by exactly one tile (formula (45)) and tiles that aght- or above-connected to
respect color constraints (formulae (46) — (48)):

[GI((VICy i > tile) A (A i (£ AE))) (45)
G (tile = Vyp(t)=downt;) (ti A (O) (uprel A (O)t))) (46)
[Gl(tile Afw A (Xu)tile = Viightt)=leftity) (£ A (Xu) t)) (47)
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[Gl(tile Abw A (Xu)tile = Vief)=right(t;) (£i A (X)) (48)
(45)A... A (48) (tles)

Let 7 be the set of tile typefts, to, . . ., tk } and @7 be the formuladisj-bnd;) A (u-chain) A
(1d-chain) A (bw/fw) A (up-rel-def;) A (up_rel-def,) A (tiles) overT .

Lemma 10 For any linear orderD with an infinite ascending sequence of points, the for-

mula @7 is satisfiable ifD if and only if 7" can tile the second octax?.

Proof (“only if” direction) Let D be a linear order with an infinite ascending sequence of

points such thaM, [a,b] IF @+ for some modeM = (I(D),V) and interval[a b] € I(D).
Letb<bl <bl<b2=b) <. <bf=bd<..<h0<bl<..<bl=H <..be
the sequence of points deflned by Lemma 4. For gaslD and 0<i < kj, [b'l,b'j“] is a
tile-interval, and thu$/ [b'J,b']“] I ¢, for a uniquev. Then, for each, j such that < i < j,
we putf(i,j) =ty, wheretv is the unique proposition letter in the St {t1,ta,...,tx}
such thatv [b']fl,b';zl} I ty. By Lemma 8, Lemma 9, Corollary 1, and formutée$), the
function f : O — T defines a correct tiling oD.

(“if” direction) Let D be a linear order with an infinite ascending sequence of pcamd
let f : O — T be a correct tiling ofD. We provide a modeM = (I(ID),V) and an interval
[a,b] € M such thaM, [a, b] IF @ (see Fig. 3). Letr = b, by, . .. be the infinite ascending
sequence of points Il whose existence is guaranteed by hypothesis. The valdatiction

V is defined as follows, wherg(n) abbreviategn+ 1)(n+ 2):
u € V([c,d]) iff [c,d] = [bj,bj],i=2n, andj =i+ 2 for somen(> 0) € N;

c
— keV([c,d)iff [c,d] = [b,b;] andu € V([bi_1,bj_1]) for somei, j € N;
— up €V([c,d)) iff [c,d] = [b,b;j], u e V([bi,bj]), andi = 2n for some odch € N;
— uzeV([c,d)) iff [c,d] = [by,bj], u eV ([b,bj]), anduy ¢ V([b;,b;]) for somei, j € N;
— k1 eV([c,d))iff [c,d] = [bj,b;], uy € V(bi_1,bj_1]) for somei, j € N;
— ko e V([c.d]) iff [c,d] = [bj,bj], uz € V([bi_1,bj— 1])forsome| jeN;
— insidey, € V([c,d]) iff uy eV([b,, j]) for somei, j € N such thath; < ¢, d < b; and
e, # [b1,b];

- u1 eV([c,d)) iff ug € V([bi,bj]) anduz € V([by,by]) for somei, j,k,I € N, with bj <
c<bj<dc<by<d<by;

— inside,, € V([c,d]) iff up € V([b;,b;]) for somei, j € N such that; < c, d < b; and
[c,d] # [bi, byl;

— w3 e V([c,d)) iff up e V([bi,bj]) anduy € V([by,by]) for somei, j, k| € N, with bj <
c<bj<dc<by<d<by;

— insidey, € V([c,d]) iff ki € V([bj,bj]) for somei, j € N such thaty < ¢, d < b; and
fe.d] # [b1.by];

— kg e V([c,d]) iff ki € V([bi,bj]) andkz € V([bk,by]) for somei, j, k| € N, with by <
c<bj<dc<by<d<by;

— insidey, € V([c,d]) iff ko € V([b;,bj]) for somei, j € N such thatt; < ¢, d < b; and
fe,d] # [b1. by

— ko e V([c,d]) iff ko € V([bi,bj]) andky € V([bk,by]) for somei, j, k| € N, with by <
c<bj<dc<by<d<hby;

— first e V([c,d]) iff [c,d] = [bo,ba];

— xeV([c,d))iff [c,d] = [bi,bj], u e V([b;,bj]), andi

— IdeV([c,d]) iff [c,d] = [by,bj], » € V([bi2,bi]), =
j =9(n+ 1) for somen > 0;

= g(n) for somen > 0;
€V([bj,bj2)), i = g(n) +2, and



The dark side of Interval Temporal Logic: marking the undability border 21

— inside;g € V([c,d]) iff I1d € V([bi,b;]) for somei, j € N, with by < ¢, d < bj, and[c,d] #
[bivbi];

~d eV([c,d]) iff Id e V([bi,b;]) and* € V([bx,by]) for somei, j, kI € N, withb < c <
bj <d,c<by<d<ly;

— tile e V([c,d]) iff [c,d] = [bi,bj], u € V([bi,bj]), and* ¢ V([b;, b;]) for somei, j € N;

— fw e V([c,d]) iff [c,d] = [by,b;], u e V([bi,bj]), Id € V([bx,by]) for somei, j,k | € N
such thak <iandj <I, andk = g(n) for some odd;

— bw e V([c,d]) iff [c,d] = [bj,bj], u € V([bi,bj]), andfw ¢ V([bi,b;]) for somei, j € N;

— for eachh e {1,... k}, th € V([c,d]) iff [c,d] = [by,bj], tile € V([by,b;]), f(I,m) =ty
for somel, msuch that < | <m, and eithex(i) fw € V ([bym), bym)+2]) andi = g(m) +
21 +2, or (i) bw € V([by(m), bgm)+2]) andi = g(m+1) — 21 —2;

— up_rel™ e V([c,d]) iff [c,d] = [bi,bj], tile € V([bi_1,bi;1]), tile € V([bj_1,bj+1]), fw €
V([bi—1,bi41]),i—1=9g(m)+ 2 +2, andj — 1 = g(m+2) — 2| — 2 for somel,msuch
that 0<| < mandl = 2n for somen > 0;

— up_rel™ e V([c,d]) iff [c,d] = [bi,bj], tile € V([bi_1,bi;1]), tile € V([bj_1,bj+1]), fw €
V([bi—1,bi41]),i—1=9g(m)+2 42, andj — 1 = g(m+2) — 2| — 2 for somel,msuch
that 0<| <mandl = 2n+ 1 for somen > 0;

— up_rel>¥ € V([c,d]) iff [c,d] = [bi,bj], tile € V([bi_1,bi11]), tile € V([bj_1,bj1]), bw €
V([bi—1,bi41]),i—1=9g(m)+2 42, andj — 1 = g(m+2) — 2| —4 for somel,msuch
that 0<| < mandl = 2n for somen > 0;

— up_rel™ € V([c,d]) iff [c,d] = [bi,bj], tile € V([bi_1,bi11]), tile € V([bj_1,bj1]), bw €
V([bi—1,bi41]),i—1=9g(m)+ 2 +2, andj — 1 = g(m+2) — 2| —4 for somel,msuch
that 0<| < mand| = 2n+ 1 for somen > O;

— up_rel™ e V([c,d]) iff [c,d] = [0y, bj], up_rel’’ € V([bi,bj]) or up_rel®™ € V([b;, bj]) for
somei, j € N;

— up_rel™ € V([c,d)) iff [c,d] = [bi,bj], up_rel>* € V([bi,bj]) or up_rel®™ € V([bi,bj])
for somei, j € N;

— up_rel € V([c,d]) iff [c,d] = [bi,bj], up_rel™ € V([bi,bj]) or up_rel™™ € V([b;, bj]) for
somei, j € N;

— last € V([c,d)) iff [c,d] = [bi,bj], tile € V([l, bj]) and either(i) bw € V([b;,b;]) and
« € V([bi—2,bi]) or (i) fw € V([bi, bj]) and* € V([bj, bj+2]), for somei, j € N;

It can be easily checked thit, [bg, by] I+ @ O

Corollary 2 The satisfiability problem fo© (resp.,0) is undecidable over any class of
linear orders that contains at least one linear order with iafinite ascending (resp., de-
scending) sequence of points.

4.2 Undecidability in the finite case

The encoding of OTP we provided makes essential use of aitéd@quence of points, and
thus it cannot be exploited to prove undecidabilityGbbver classes of finite linear orders.
In the following, we show how to adapt the given constructiororder to encode FTP.

The resulting reduction proves the undecidabilityGobver any class of linear orders that
contains finite linear orders of unbounded cardinality. dntjgular, it proves undecidability

of O when interpreted over the class of all finite linear orders.

Definition of the u-chain. The main difference between the reduction of FTP and that of
OTP is the finiteness of the rectangular area. Such a condiiguires the existence of an
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Fig. 4 An infinite bounded-above-chain.

arbitrarily long, but finiteu-chain. To deal with it, we introduce an auxiliary propamitiet-
terlast, to denote the last-interval of the (finite)u-chain. Properties dést, are expressed
by the following formulae:

(O)(O)lasty, (49)
[G](lasty — * A [O](—u A —k) A [O][O](—u A —k)) (50)

Most formulae introduced in the previous section can séilused for the present reduction.
In the following, we simply identify which ones must be reggd, and we provide their
replacements. Formula (6) must be replaced by (51) to gtedhe existence of the and
k-chains.

[G]((ul/\ —last, — <O> k]_) N (kl — <O> uz)

A (up A—last, — (O)kp) A (k2 — (O)uy)) 1

Sinceu;- anduz-intervals (resp.ki- andkz-intervals) do not infinitely alternate with each
other, to forceus, up, k1, andk, to be disjointly-bounded, we introduce a new proposition
cons and we constrain it to be a disjoint consequent ahdk.

—cons A [O]—cons A [G](u Ak — (O)(O)cons) (52)
[G]((O)u V (Oyk — —(O)cons) (53)
[G]((uV k — —(O)cons) A (cons — [O](—u A —k))) (54)

Finally, we replace formulae (13) and (14) by formulae (5%) €6), respectively:

nonsul(uz,cons) A nontsub(uy, cons) Anonsub(ky, cons) Anonsulky,cons)  (55)
[G](uV k — [O]({O)(O)last, — (O)(uVk))) (56)

It is worth pointing out that formulae (49) — (56) guarantke éxistence of the-chain
also when interpreted over arbitrary linear orders. Thédiirdss assumption guarantees the
finiteness of the chain. As a counterexample, considefQtmodel depicted in Figure 4,
whereu; holds over every interval2 — 5%,27 ?ﬁ} and uy holds over every interval

[2— 52%,27 EZ&W], the sequences &f- andk,-intervals are defined consistently, dast,

holds over the intervel2,2 + %}. This model satisfies formulae (49) — (56), but it contains
an infiniteu-chain.

Definition of the Id-chain. Like the u-chain, theld-chain must be finite. To deal with such
a condition, we introduce a proposition lettest)y that denotes the lasd-interval of the
(finite) Id-chain.

[G]((lastig — Id)A(IdA(O) (kA (O)last,) — lastyg)) (57)
Furthermore, we replace formulae (16) and (18) by formul@ and (59), respectively:
(Xu) * A[G](x A —last, — (X,)tile) (58)
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[G](% A —last, — (O)(k A (O)Id)) (59)

Above-neighbor relation. In the finite case, each row has exactly the same number sf tile
and thus formulae (38), (39), (40), (42), and (44) can be wised. Formulae (32), (33),
(41), and (43) are respectively replaced by the followingon

G(up-rely — ((O)tile A ({(O)(O) (x A —last,) — (O)(tile A (O)up_rele)))) (60)
G(tile A (O)(O) (x A —lasty,) — (O)up_rel) (61)
(x A{O)(O) (x A —lasty) — (X,) (tile A (O) (up_rel A (O) (tile A (Xu)*)))) (62)
(k

A(O)(tile A (O)up_rel}) —
[O]({O >up_rel‘;,’/\(O)(k/\(O)(tiIe/\(O)up_relg)) — (O)up_rel§))

|
|
|
| ©3)

To complete the construction, it suffices to add the conssain the first and last tile of
the plane. Therefor&) (resp.,0) turns out be undecidable over finite linear orders as well.

Corollary 3 The satisfiability problem fo© (resp.,0) is undecidable over any class of
finite linear orders that contains, for every>n0, at least one linear order with cardinality
greater than n.

5 The fragmentsAD, AD, AD, and AD

In this section, we focus our attention on the interval legi€ Allen’s relationameets met

by andduring / containsAD, AD, AD, andAD. We assume the sub-interval (resp., super-
interval) relation to be strict. First, we prove undeciditypof the satisfiability problem for
AD over any class of linear orders containing at least onefioeter with an infinite ascend-
ing sequence of points by reducing OTP to it. Then, we showthevwproof can be adapted
to AD over the same classes of linear orders. Undecidabilif@fandAD over any class

of linear orders containing at least one linear order witlinfinite descending sequence of
points follows by symmetry from undecidability 8D andAD, respectively. Finally, unde-
cidability of AD, AD, AD, andAD over any class of finite linear orders immediately follows
from undecidability oD andD over finite linear orders [19].

5.1 The fragmenAD

Let [a,b] be an interval. We define the set of relevant interéalg, as the set containing
[a,b] and all intervaldc, d] such thatc > b. Accordingly, the global modalityG] is defined
as:

[Glp=pAAIPA[AAP.
It is worth noticing that the definition ofG] makes no reference {®], and thusGyy, is
only a subset of all the intervals reachable fri@yb| using modalities irAD.

Definition of the u-chain. In order to build a chain of-intervals, we need to chop each
interval into a pain(us-interval up-interval). Proposition lettersi; andus are instrumental
to the construction of the-chain. The following formulae define thechain:

—uA—ug A—ug A (A)u A [Gl(u — (A)u) (64)
[GI({(Au < (Ayu1) (65)
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[G](u — —u1) (66)
[G)(u1 — (A)uz) (67)
[G](uz — (A)u) (68)
[Cl({(A)ur = ~(A)uz) (69)
[G](u — —(D)(A)u A—(D)us A ~(D)u>) (70)
[Gl(u—(D)T) (71)
[G)(uz = (D) {A)u) (72)
[G)(u2 = (D) {A)u A =(D)u1) (73)
[G](uz — (D)T) (74)
BAHA...AN(T4) (u-chairf*P)

From now on, for each formula of the for{@®](¢ — ¢1 A ... A @n), where, for eacl,
¢ is conjunction-free, labeled bk), we usek followed by a Roman numeral to restrict the
consequent of the implication to the conjunct pointed byRloenan numeral, that isk+)
denotes the formulgG](¢ — ¢1), (k-11) denotes the formul&G]|(¢ — ¢2), and so on. As an
example, (7Q#) denotes the formulfG](u — —(D)uy).

Lemma 11 Let M be a model andi, b] be an interval over M. If M[a,b] IF (u-chairfP),

then there exists an infinite sequence of pointsty < b; < ... in M such that:

(a) foreachi>0, M, [b;,bj 1] IF u;

(b) for each i> 0, there existsicsuch that b< ¢; < b1, M, [b;, 6] IF ug, and M, [c;, bj 1] IF
uz,

(c) no other intervalc,d] € G, satisfiesu, unless ¢ bj for each i> 0.

Proof (a) The existence of an infinite sequenceudhtervals follows immediately from
(64).

(b) Consider any intervdb;, b;; 1] of the sequence. We first prove that there exists a point
¢ such thath; < ¢ < b1 and [b;,¢] satisfiesu;. By (71) there exists at least one
point d; such thaty < di < bi;1. By (65), there exists a poim > b; such thatb;, c]
satisfiesus, and, by (66)c; # bi;+1. For the sake of contradiction, suppose that-
bit1. Then,[d;,bi;1] is strictly contained in theip-interval [b;, ¢i] and it meets the-
interval [bi+1, bit2], violating (72). Henceéy, < ¢ < bji1. We prove now thajci, b 1]
satisfiesuz. By (67), there exists afi > ¢; such thafc, fi] satisfiesu;. We show that
fi = bj11. For the sake of contradiction, suppose that b 1. If fi < b1, then (70-
) is violated. Then, leff; > bj;1. By (74), theuy-interval [¢;, fi] must contain some
interval [g;, hi]. We show that there exists no way to properly locate such temal. If
i < bi11, then[g;, bi;1] is strictly contained in the,-interval [ci, fi] and it meets the-
interval[bi1,bi; 2], thus violating (73). Then, letg; > bj 1. Itimmediately follows that
bi.1 < hj < fi. To show that such an alternative is inconsistent, we coentber relative
position of fi andci1 (we just proved that, for each> 0, [bj,c;j] is aup-interval): (i)
if fi < cit1, then the intervalh, fi] is strictly contained in the-interval [bi;1, Cit1],
and since, by (68)f; starts au-interval, (72) is violated; (ii) iff; = ¢i1-1, then, by (68)
and (65), f; starts auj-interval (c;, fi] is a up-interval), and, by (67), it also starts a
ug-interval (bi;1,Ci+1] is aus-interval), thus violating (69); (iii) iff; > ci+1, then the
up-interval[bi;1, Ci+1] is contained in the-interval [c;. i, violating (734).

(c) To show that there exists no othesinterval [c,d] € G5, unlessc > b for eachi,
suppose, for the sake of contradiction, that there existssoieh intervajc,d]. By the
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(a) Cartesian representation.

Fig. 5 Encoding of the octant plane WD.

last conjunct of (64)|c, d] starts an infinitai-chain. Then, by applying the argument we
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(b) Interval representation

use to prove (b), we can show that there exists a poBuch thatc < e< d, [c,€] is
a uj-interval andfe,d] is aup-interval. We show that all possible choices fiead to

contradiction.

If bj < ¢ < by, for somei, then there exists no way to properly locatdf d < b1,
then theu-interval [b;, b, 1] contains thais-interval[c, €], violating (704). If d > by 1,
then two options are given. &f > by », then theu-interval [c, d] contains theu;-interval

[bit+1,Cit1], violating (7041). If d < biy», then there exists no way to properly locate

e (i) if e< bj;1, then theu-interval [b;, b 1] contains theus-interval [c, €], violating
(7041); (ii) if e=bj;1, then both aip-interval and aiz-interval start ag, violating (69);
(iii) if e> bi+1, then theu-interval [bi1,bi+2] contains theus-interval [e, d], violating

(704n).

If ¢ = by for somei, thend # b ;1. If (b <) d < bj1, the above argument abdoit<
¢ < bi;1 can be reused. The same appliesite b1, as theu-interval [bj 1, b 2] is

such that < b ; < d.

Definition of the Id-chain. The following set of formulae defines tié-chain:

[G]((u <> (xVtile)) A (x — —tile))

1A A (A (5 A (A (tile A (A) (+ A [G](+ — (A)(tile A (Atile)))))

[GI((A)Id <> (A)x)
[G](Id — (A)x)
[G](Id — —(D)*)
(TS)A ... A(79)

O

(75)
(76)
(77
(78)
(79)

(1d-chairf*P)

Lemma 12 Let M be a modelja, b] be an interval over M, and b- b9 < b} < ... < bft =
bd<bl<...< b';z =Db3 < ... be the sequence of points defined by Lemma 11, [i,id I

(u-chairt*P) A (1d-chairf'P), then:

(a) foreach j>1, M, [b?, blj(j] I-1d;

(b) foreach j>1, M, [b9,bf] I *;

(c) foreach j> 1, M, [b}, bl I tile for each0 < i < k;;

(d) ki =2, and k > 2for each? > 1,

and no other intervalc,d] € g[a’b] satisfiedd (resp.,*, tile), unless ¢ bij foreachij > 0.

Proof (a) By (75), (77) (left-to-right direction), and (78), ealehinterval begins and ends
with u-intervals. The existence of tHd-chain, beginning abp = b, is guaranteed by
(76), (77) (right-to-left direction), and (78).
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(b) By (77) (left-to-right direction), the firsti-interval of everyld-interval ([b?,bjl]) is a
x-interval.

(c) Suppose, for the sake of contradiction, that thereusdrderval [b‘j,bij+ 1] such that 1<

i < kj—1 (that is, b}, b}"] is not the firstu-interval of the th Id-interval [b?,blj(j]),
which is ax-interval. There are two possibilities, both leading to teadiction: (i) if
i < kj — 1, then[b}, b"*] is not the lastu-interval of b, blj(j}, and thus there exists a
*-interval strictly contained in ahi-interval, thus violating (79). If = kj — 1, then the
«interval b, bi"!] meets the-interval [0, ,, b}, ], violating (76).

(d) Direct consequence of (76).
To conclude the proof we have to show that no other intejozal] € Gj, 1, satisfiesd,

*, Or tile, unlessc > bij for everyi, j > 0. For the sake of contradiction, suppose that there
exists anld-interval [c,d] € Gja With [c,d] # [b?,blj(j] for everyj > 0. By Lemma 11, (75),
and (78),d = bl, for somej’ > 0 andi’ > 0, and[b‘j',,bij',“] is a x-interval. We have two
options forc, both leading to contradiction.

If c= b(j’ for somej > 0, thend = blj(j Jdfd< blj(j ,thend = bij , for somd > 0. Hence{bij , bij“]

satisfies botk (by (78)) andtile (by item (c)), violating (75). Ifd > blj(j , then two cases are

possible: (i) ifd = b, ;, then, by (78), botfb, ;,b%, ;] and[b?, ;, b}, ;] satisfy , violating
(;g); (ii) if d > bf;, then theld-interval[c, d] contains the-interval [0, ;b 4], violating
I(f fo)r everyj>0c# b? , then, by Lemma 11, (75), and (77) (left-to-right direc)ion= bij
for somei, j > 0 and [b,,b["] satisfies«. By item (c), [b},b}"] also satisfiesile, thus
violating (75).

For the sake of contradiction, suppose now that there eaiststerval [c,d] € Gjapy

such thafc, d] # [b?, b}] for everyj > 0. By Lemma 11 and (75)¢, d] = [bf,, b""] for some
i,j >0.Byitem (c),[bij,bij“] is atile-interval as well, thus violating (75).
A similar argument can be use to show that no other intgoydl € Q[a’b] satisfietile,

unlessc > bl for everyi, j > 0. i

Fig. 5 shows how to exploit the-chain andd-chain to encode the octant plane. Notice
that there exists no need to distinguish between forwardankward rows: tiles are always
encoded in ascending order. As a matter of fact, so far we dralyeencoded the rows of the
octant by means d#l-intervals, the first one featuring exactly one tile, theeotbnes at least
two tiles. We show now how to encode some neighbor relatioatsdonnect each tile with
its above neighbor and its right neighbor, if any, in the ntté@his will allow us to force the
jth ld-interval to contain exactly tile-intervals.

Above-neighbor relation. The above-neighbor relation connects each tile with itsrabo

!

neighbor in the octant. Ifo}, b}**] and [b‘j,,bij',+ 11 are, respectively, thih tile-interval of

the jth Id-interval and the'th tile-interval of thej’th Id-interval, then we say thabij,bij“]
is above-connectetb [bij',,bijl,”] if and only if i’ = j +1 andi = i’. To encode the above-

neighbor relation, we make use of a proposition laiterel: theup_rel-interval [bij“, bij+1]

connects theile-interval [}, b"!] with thetile-interval b, ;,bj%}]. Let b}, bl"*] be atile-
interval. We say that it is andd (resp. even tile-interval ifi is odd (resp., even). The relation
up_rel is encoded by means of the additional proposition lettpresl, (connecting oddile-
intervals) andup_rel, (connecting evemile-intervals) such thatp_rel <+ up_rel, & up_rel,.
As shown on Fig. 6, intervalsp_rel, and up_rel, alternate $trict interleaving property,
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(a) Cartesian representation. (b) Interval representation.

Fig. 6 Encoding of the above-neighbor relationAl: up_rel,- andup_rel.-intervals alternate.

namely, if[bij , bij“} is atile-interval such thalbij+1 is the starting point of anp_rel,-interval
(resp.,up_rel-interval), then the nextile-interval [bij“,bij*z}, if any, is connected to its
above-neighbor by means of ap_rel.-interval (resp.up_rel,-interval). Furthermore, we
prevent any twaup_rel-intervals from starting or ending at the same point and flaaimg
contained in each other. Finally, for any row, eag&-interval must be above-connected to
sometile-interval of the next row and for ea¢He-interval, except for the last one of the row,
there must be somigle-interval of the previous row, if any, which is above-conteekto it
(formula (93) below). This guarantees that each row hastkyxaie tile-interval more than
the previous one. Leat, 8 range overo,e}, with a # . The following formulae encode
the properties of the above-neighbor relation:

—wup-rel A =(A)up_rel A {A) (x A (A)(tile A (A)(x Aup_rel,))) (80)
[G](up-rel <> (up-rel, \VV up_rel,)) (81)
[G]((A)up_rel, — = (A)up_rel,) (82)
[G](tile — (Ayup_rel) (83)
[G](up-rely — (A)(tile A (Ayup_rely)) (84)
[G]({(A)up-rel = (A)u) (85)
[G](uA (Ayup_rel — tile) (86)
[G](up_rel — (A)(tile A (A)tile)) (87)
[G]({(A)up_relg A (A)tile — (A)(tile A (A)up_relg)) (88)
[GJ((A)x — [A](up_rel = —(D)(A)*)) (89)
[G]((up-rel = —(D)Id) A (Id = —(D)up-rel)) (90)
[G](x — (A)(tile A [A](up_rel = —(D)x))) (91)
[G](up_rel = —(D)up_rel) (92)
[G]({D)up-relg A (A) (uz A (A)tile A (A)up_relg) — (D)up_relg) (93)
(BO)A...A(93) (up_rel-defP)

Lemma 13 Let M be a modelfa, b] be an interval over M, and k- b < b} < ... < bl =

b < bl <...< b =bd < ...be the sequence of points defined by Lemma 12, [,k I

(u-chain“‘D) /\ (1d- chamAD) A (80)/\ (85)A...A(90), then:

(a) for everyup_rel-interval [c,d], there are €and d such that|c/,c] and [d,d'] are tile-
intervals;
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(b) for everytile-interval [bij,bij”} such that i< kj — 1, if there exists amp_rel,-interval
resp.,up_rel -interval) starting at b1, then there is amp_rel -interval (resp. up_rel -
p e 9 e p o

interval) starting at E?*z (strict interleaving property);
(c) forevery j> 0, blj("*l is the right endpoint of nap_rel-interval;
(d) for everyup_rel-interval [bij,b‘j',] such thatl <i <Kkj, j'=j+1.

Proof (a) Let[c,d] be anup_rel-interval. By (87), there existd’ such thafd,d’] is atile-
interval, and, by (80) (second conjunct), (85), (86), anthtrea 11, there exists such
that[c’, ] is atile-interval.

(b) Straightforward by (88).

(c) Straightforward by (87).

(d) Let [bij,bij',] be anup_rel-interval such that k i < kj. For the sake of contradiction,
suppose tha}’ # j 4 1. Two cases are possible, both leading to contradiction.

—Letj > j+1. Ifi =k ([b'lfl,bij} is the lasttile-interval of the jth Id-interval),
then b, *,b}] satisfies(A) and the lastile-interval of the { + 1)-th Id-interval

[blj(illfl,b?fll_] meets thes-interval [b9,,,b} ,] and is contained in thep.rel-
interval [b'j,b'j,], thus violating (89). Ifi < kj, the up_rel-interval [b'j,b'j,} contains

theld-interval [b? b'-(j“], violating (904);

IR S B
— Let j’ = j. Then, it necessarily holds thiak i’ and thus theip_rel-interval [bij,bij']
is contained in thgth Id-interval, violating (90H). ad

Lemma 13 states some basic properties of the above-neighlation. However, it does
not guarantee the existence of the above neighborté-interval: it may be the case that
atile-interval is not above-connected to any otti&-interval. Existence and uniqueness of
the above-neighbor is enforced by the following lemma.

Lemma 14 Let M be a modelja, b] be an interval over M, and b b9 < b} < ... < bft =
bd<bl<...< b';z =Db3 < ... be the sequence of points defined by Lemma 12, [d,id I
(u-chairf*P) A (1d-chairf*P) A (up_rel-defP), then eachile-interval [bij , bij“} is above-connected
to exactly oneile-interval and, if i< k; — 1, then there exists exactly onige-interval which
is above-connected to it.

Proof Step 1By (83) and (87), everyile-interval is above-connected to at least aie-
interval. o

Step 2 Consider aile-interval [b']-,b'j“}, with i < kj — 1. Since the first row consists
of only onetile-interval, it holds thatj > 1. By Lemma 13, there exislaij'+l such that
[0}, bij’H]-is anup_rel-interval. By (81) and (82)bj'*, bi, 4] is either any p-rel-interval or
anup_rel -interval. Let us assume it to be ap_rel -interval (the other case is analogous).

We prove that there exists a poinsuch thatc, bi]-] is anup_rel-interval. For the sake of
contradiction, suppose that there exists no such a poietpftof is by induction om

— Base casé & 1). If j = 2, then, by (80)[bZ, bl] is anup_rel-interval (contradiction). If
j > 2, let us consider the in'.[er.v{it?fl,b]{l]. By (91), (83), and Lemma 1$b]271,b]-1]
is anup_rel-interval (contradiction).

— Inductive stepi(> 1). By Lemma 13(b) (strict interleaving property), theréséxa point
bl 1 such thafb}, b\’ ;] is anup._rel.-interval. Furthermore, by the inductive hypothesis,

there exists a poinb|”; such thatfb” ,,b|*] is anup_rel-interval. Such an interval
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[bij/il,bijfl} is in fact anup_rel -interval (if it was anup_rel,-interval, by (84), both an

up_rel,-interval and arup_rel,-interval would begin ab', violating (82)).

Now, let[c,d] be an interval such that its left endpointies strictly in betweelbij'ig1
and bil-'il, and its right endpoind lies strictly in betweerb andbj** and [d,b}*!] is
aug-interval (by Lemma 11, such a poidtalways exists). We focus our attention on
[c,d], showing that we get contradiction with the condition esgedl by formula (93).

First, it can be easily checked thé, d] satisfies the formulae (i{D)up_rel,, as
ol bj""] is anup_rel -interval andc < bl ; < b <d, and (ii) (A) (uz A (A)tile A
(A)up-rel,), as (b}, "] is not the last tile of thejth Id-interval and[o}™*, b ] is an
up_rel,-interval.

To violate (93), it suffices to show thét, d] does not satisfyD)up_rel,. For the sake
contradiction, suppose that there existaiprrel -interval [h,h'] such that < h< h' <
d. We show that all possible choices ftx 1] lead to contradiction.

-Ifh= bijlil, then both amip_rel,- and anup_rel -interval begin ah, violating (82).

-Ifh> bij'il andh < bij’l, then theup_rel-interval [h, ] is contained in theip_rel-
interval [b}” ;b 1], violating (92).

- If h>bl"; andh = b, then both theip_rel.-interval [b|" ;b !] and theup_rel,-
interval [h,bj~*] end atb{*, and thus, by (84)b|, begins both amp_rel.-interval
and anup_rel-interval, violating (82). '

- Ifh> b'»'ﬁl andh' = b']-, then there exists amp_rel-interval ending ab', against the
initial hypothesis.

Step 3 We just proved that for evertile-interval [bij,bij“] which is not the lastile-
interval of thejth Id-interval there exists a poimtsuch thatc, bi]-} is anup_rel-interval. To
complete the proof, we must show that evafy-interval is above-connected to at most one
tile-interval and there exists at most otit-interval above-connected to it. For the sake

of contradiction, suppose that there ex@tbij'fl, and bij';l, with bi 1 < b, (the case
b'j‘+1 ? bj., is symmetric) such thgt bgtﬂ’m'j, i+1] and by, b}, ,] areup_rel-intervals. If
[b}, b 4] is anup_rel-interval and[b'i, lijl] is anup_rglf-interval, or vice versa, then (82)
is violated. Let us assume that bdt}), bf ;] and[bj, bj_,] areup_selo-interv_?ls (the case
in which both areup_rel -intervals is symmetric). By (84), botb'jill and b'j jll start an
up_rel-interval. By Lemma 13(b) (strict interleaving propertghup_rel.-interval starts at

bl 2. Since[b! 1, bl 2] is not the last tile of the j + 1)th Id-interval, there exists a point

j+1- L+
¢ such thatfc, b'j'jll} is anup_rel-interval (step 2 above). By (84) and (829, b'j'jll} is a

up_rel -interval. We show that all possible choices tdead to contradiction: (i) it < b,
then theup_rel-interval(c, b‘j'jll] contains thaip_rel-interval b}, ij'H}, violating (92); (ii) if
c= b'j, thenb'j starts both amp_rel,- and anup_rel.-interval, viol_ating (82); (iii) ifc > b,
then theup_rel-interval [bij,bij';l] contains theup_rel-interval [c, b'j'jll], violating (92). In a
similar way, we can prove that twep_rel-intervals cannot end at the same point. ad

Right-neighbor relation. The right-neighbor relation connects two consecutives the-
longing to the same row. We say that taite-intervals b/, b}"!] and [bij',,bij/,“} areright-
connectedf and only if ' = j andi’ =i+ 1. The encoding of the right-neighbor relation is
trivial, as it exploits the adjacency of consecutive paifrtiles belonging to the same row,
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that is, from atile-interval [bj, bi*!] it is possible to access thée-interval [b}"*,b["?], if
any, with which it is right-connected, simply by applying dadity (A).
The following lemma shows that the commutativity propenyds.

Lemma 15 Let M be a modelja, b] be an interval over M, and b b9 < b} < ... < bft =

b < b} <...< bk =bJ <...be the sequence of points defined by Lemma 12, [\ I
(u-chair*P) A (Id-chairfP) A (up_rel-def*P), then M satisfies the commutativity property.

Proof Let [bij , b‘j+ 1 and[bij',, b‘{,* 1] be twotile-intervals and suppose that there existiia
interval[c,d] such that[bi‘,b‘j+ 11is right-connected téc, d] and|[c, d] is above-connected to
(b, bij’,+1]. It holds thatc, d] = [b}"*, b/"?] and[b}"2, b} ] is anup_rel-interval. Itimmediately
follows thatj’ = j+ 1. Since[bij , bij“} is atile-interval, by Lemma 14, it is above-connected

to exactly onetile-interval. Let that bgbl, , .bl' "] Thus, b, bl",;] is anup_rel-interval.

We show thafbf, ,, bi]-"jll] is right connected tdb| ;, bij/jll}. Since the only interval that is

right-connected tdb] +l,bij'jll], if any, is the interval[bij/lll,bij' .4), then it suffices to show

that[bij'.;ll, bij"jll] = [bijllll, bl 4], thatis,ol,, = bij/lll. For the sake of contradiction, suppose
that this is not the case. Two cases must be considered,daatng to contradiction.
() b,y > b3 1 b’y = bl then theup_rel-intervals[b|*?, bj,.1] and(bj2, b, end
at the same point (contradiction with Lemma 14); otherwiisda!j+1 > b'Hl, then the
up__rel-int?rval [bj*2,bl, ] contains thesp_rel-interval [0}"2, b} " vic_)/lating (92);
(i) b, < bl 1. By Lemma 14, there exists a p:/)ibllt such thafb", bl 1] is anup_rel-
interval. We show that all possible choices ﬁ?r lead to contradiction:
_ |f bij/l/
[b] I b] ;11’], violating (92); -
- if b} =b"?, then the twaup_rel-intervals[b}"? b},
same point (contradiction with Lemma 14);
— if bf" = b, then the twaup_rel-intervals[b|**, b, ] and [b}**, bl 1] begin at the
same point (contradiction with Lemma 14);

i

> b2, then theup_rel-interval [bj™2,b,,] contains theup._rel-interval

] and([b}*?, b} 1] begin at the

—if b < bj"!, then theup_rel-interval [bijm,bij' 1] contains theup_rel-interval
[0, b 1], violating (92).
Hencebl,; = bl 1, which implies thafb}, b["] is above-connected {0 {,bl ,]. D

Corollary 4 The ithtile-interval of the jth row [d-interval) is above-connected to the ith
tile-interval of the(j + 1)th row (d-interval).

Tiling the plane. To complete the encoding of OTP, we must constrain edetinterval
(and no other one) to be tiled by exactly one tile, and forless tihat are right- or above-
connected to respect the color constraints. We do it asaiello

k k

GI((\/tiertile)A( A\ —(tiA%)))) (94)
i=1 i,j=1,i#]

[G](tile — \V  (EiA(A) (uprel A (A)E)))) (95)

up(ti):dOWI’(tJ’)
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[G](tile A (A)tile — Vo GAAL)) (96)
right(tj ) =left(tj)

(94) A (95)A (96) (tiles"P)

Let 7 be the set of tile typefts, to, . . ., tx} and @7 be the formulay-chairf®) A (1d-chairfP) A
(up-rel-def*P) A (tiles”P). The following lemma holds.

Lemma 16 For any linear orderD with an infinite ascending sequence of points, the for-
mula @7 is satisfiable ifD if and only if 7 can tile the second octax?.

Proof (“only if” direction) Let D be a linear order with an infinite ascending sequence of
points such thaM, [a,b] IF @+ for some modeM = (I(D),V) and interval[a b] € I(D).
Letb=b <bl <hZ=h)<..<bf=bd<... <hl<bl<..<b =b,; <...bethe
seguence of points defined by Lemma 12. For gash0 and 0< i < k, [b'] , b'J“} is atile-
interval, and thui, [bij,bij“] Ity for an uniquev. Then, for each, j such that 6<i < j,

we putf(i, j) =ty, wheret, is the unique proposition letter in the Set= {t1,ts,...,tx}
such thatvl [b'fl, b'ljzl] I- ty. By Lemma 14, Lemma 15, Corollary 4, and formui@¢*°),

the functionf : O — T defines a correct tiling a.

(“if” direction) Let D be a linear order with an infinite ascending sequence of pcamd
let f : O — T be a correct tiling ofD. We provide a modeM = (I(D),V) and an interval
[a,b] € M such thaM, [a,b] I @ (see Fig. 7). Let = b, by, . .. be the infinite ascending
sequence of points i whose existence is guaranteed by hypothesis. The valdatiction
V is defined as follows, wherg(n) abbreviategn+ 1)(n+ 2):

—ueV([c,d) iff [c,d] =[bi,bj],i=2nandj=i+2 for somen(>0) € N;
— ug €V([c,d]) iff c=hi, d=bi+1, andu € V([bi, bi12]) for somei € N;
— uzeV([c,d)) iff c=b;, d=bj;1, andu € V([bj_1,bi,1]) for somei € N;

— xeV([c,d))iff [c,d] = [by,bj], u € V([bi,bj]), andi = g(n) for somen > 0;

—1d e V([e,d) iff [c.d] = [b.by], € V([bi,biz]), € V([bj,bji2)), i = g(n), andj =
g(n+ 1) for somen > 0;

— tile e V([c,d]) iff [c,d] = [bi,bj], u € V([bi,bj]), and* ¢ V([bi,b;]) for somei, j € N;

— foreachh e {1,...,k}, th € V([c,d]) iff [c,d] = [by,bj], tile € V([by, b;]), f(I,m) =ty,
andi = g(m) + 2| + 2 for somd ,msuch that 0< | <m;

— uprel, € V([c,d]) iff [c,d] = [by,bj], tile € V([bi_2,bi]), tile € V([bj,bj42]), i —2 =
g(m)+2 +2, andj = g(m+ 1) + 2| + 2 for somel,m such that 0<| < mandl = 2n
for somen > 0;

— uprel, € V([c,d]) iff [c,d] = [b;,bj], tile € V([bi—2,hi]), tile € V([bj,bj+2]), i —2 =
g(m)+2 +2, andj = g(m+1) + 2| + 2 for somd ,msuch that 6< | <mandl =2n+1
for somen > 0;

— up_rel € V([c,d]) iff [c,d] = [by,b;], up_rel, € V([bi,bj]) or up_rel, € V([bi,b;]) for
somei, j € N.

It can be easily checked thit, [bg, by] = @7

Corollary 5 The satisfiability problem foAD is undecidable over any class of linear orders
that contains at least one linear order with an infinite asdiey sequence of points.
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up-rel,
up-rel, up-rel,
O——0 O O
up-rel, up-rel, up-rel,
. . . . o .
Id Id Id
* tile * tile tile * tile tile tile * tile
u u u u u u u u u u u

U] U2 U] U2 U] U2 U] U2 U] U2 U] U2 U] U2 U] U2 U] U2 Ul U2 U] U2
1 3 4 5 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. 7 A model satisfying the formul@- (for the sake of readability, we wriiefor by, i =0,...,24).

5.2 The fragment&D, AD, andAD

To adapt the construction we devised Adb to AD, we will replace each formula containing
the operatoD with a formula (or a set of formulae) belonging to the languafAD. Thus,
such a replacement involves formulae (70), (71), (72),,(73)), (79), (89), (90), (91), (92),
and (93). Most of them can be rewritten with minimum effortt bome of them need to be
completely reformulated.

As a preliminary step, let us consider thB formula[G](p — [D]q) and theAD formula
[G]({D)p — q). Apparently, both formulae force every interval @,y contained in go-
interval to be ag-interval. However, due to the way in which we defined mogldl@], the
two formulae are not equivalent, as they behave differemtlyntervals that do not belong
to Q[a’b]. The former imposes no constraint on these intervals, vthddatter does: starting
from an interval inGja 1y, the AD formula allows one to reachginterval outsidejja p (via
modality (D)) and then it forces such grinterval to contain a-interval. Hence, thé\D-
formula is stronger than th&D one, since it can constrain the behavior of a larger set of
intervals. This is formally stated by the following lemma.

Lemma 17 Let pq€ AP and M, [a,b] IF =p. Then it holds that:

(i) if M, [a,b] IF [G]({D) p — —q), then M [a,b] I [G](p — —(D)q), and
(i) it M, [a,b] I [G]({D) p— ~(A)q), then M [a,b] I [G](p — =(D)(A)q).

Proof We only prove item (ii). The proof of item (i) is simpler andut omitted. Let
M, [a,b] IF [G]((D)p — —(A)g) and [c,d] € Gjap. Then if there exists g-interval [e, f]
such thae < c<d < f, then for evenyd’ > d [d,d’] is not ag-interval. For the sake of con-
tradiction, suppose thad, [a,b] If [G](p — —(D)(A)q). Then there exists p-interval[e, f]

in Grap) such that there exist a sub-interyeJd] of [e, f] and ag-interval [d,d’], for some
d’ > d. Since, by hypothesisa, b] is not ap-interval, [e, f] # [a,b]. It can be easily checked
that [c,d] belongs toG,1, ([€, f] belongs toGp,p, \ {[a b]}, and[c,d] is a sub-interval of
[e, f]). From M, [a, b] IF [G]((D)p — —{A)q), it follows thatM, [c,d] I =(A)q (contradic-
tion). ad

By Lemma 17, formulae (70), (72), (73), (79), (90), and (%) be rewritten as follows:
[G]({D)u — = (A)u A —ug A —up) (97)

D
[G]({D)uz — ~(A)u) (98)
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[G]({D)uz — —~{A)u A—uy) (99)
[G]((D)ld — =) (100)
[G](({D)up-_rel — —Id) A ((D)Id — —up_rel)) (101)
[G]({D)up_rel — —up_rel) (102)

Since all proposition letters occurring in the above formeuare not satisfied by the initial
interval [a, b], from Lemma 17 itimmediately follows that:

M, [a,b] IF (97) = M, [a,b] I (70) M, [a,b] I (98) = M, [a,b] IF (72)
M, [a,b] IF(99) = M, [a,b] IF (73) M, [a,b] I (100) = M, [a,b] IF (79) (AD1)
M, [a,b] I (101) = M, [a,b] IF (90) M, [a,b] I (102) = M, [a,b] IF (92)

The replacement of the remaining formulae is more complekuk start with formulae
(71) and (74). First, we expand the s& of proposition letters with two additional letters
ki andkz, whose meaning is expressed by the following set of formulae

[G]((A)u — (A)(D)ki) (103)
[G](u— ~(D)ki) (104)
[G][D](k1 — ~(A)u) (105)
[G((A)uz — (A)(D)kz) (106)
[G](uz — ~(D)ka) (107)
[G][D](kz — ~(A)u) (108)

Formulae (103), (104), and (105) replace formula (71), fatmulae (106), (107), and
(108) replace formula (74), as formally stated by the naxine.

Lemma 18 Let M, [a,b] I (64) A (68). Then it holds that:

(i) if M, [a,b] I- (103)A (104)A (105), then M [a, b] IF- (71), and
(i) if M , [a,b] I (106)A (107)A (108), then M [a, b] IF- (74).

Proof We prove item (i). Item (ii) can be proved in the very same veang thus its proof is
omitted. LetM, [a,b] IF (64) A (103)A (104)A (105). For the sake of contradiction, suppose
that [a,b] does not satisfy (71), that i84,[a,b] I [G](u — (D) T). Then there exists an
interval [c,d] in Gz such thatM, [c,d] IF uA—(D)T. By (64), [a,b] does not satisfy,
and thus there exists an interyalc| in G, such thaM, [e,c] I- (A)u. By (103), it follows
that there exist an intervat, f] such thatM, [c, f] I+ (D)ks, and an intervalg, h], which is

a super-interval ofc, f], such thatM, [g, h] IF k1. We show that all choices for the relative
positions ofh andd lead to contradiction: (i) ih > d, then thek;-interval [g, h] contains the
u-interval [c,d], thus violating (104); (ii) ith = d, then, by (64), thé;-interval[g, h] meets
someu-interval [d, i], violating (105); (iii) if h < d, then[f, h] is strictly contained iric,d],
against the hypothesis thstt, [c,d] I (D) T. O

Lemma 18 allows us to rewrite formula-¢hair*®), that defines the-chain, as follows:
(64N ... A(BI)A(97)A(98)A (99)A (103)A ... A (108) (u-chairt*D)

Corollary 6 1f M, [a, b] IF (u-chairftP), then M [a, b] I (u-chair*P).
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As for formula (d-chairtP), it suffices to replace formula (79) (the only one making ofe
modality (D)) by formula (100):

(75)A...A(78)A(100) (d-chair*®)

Corollary 7 1f M, [a,b] IF- (id-chair®), then M [a, b] IF- (1d-chair*®).

The case of formulaup_rel-def*P) is more involved. Formulae (90) and (92) can be replaced
by formulae (101) and (102), but there exists no such a dieggacement for formulae
(89), (91), and (93). These formulae can be replaced by tlming set of formulae, which
makes use of a new proposition letfest:

[G](+ — [AJ((A)x — ~(D)up_rel)) (109)
[G](x — (A)(tile A [A](up_rel — first))) (110)
[G](x — —(D)first) (111)
[C]({A)x — [A](up_rel — (A)(tile A (A)(tile A (A)x)))) (112)
[G]((A) (u2 A (A)(tile A (A)up_relq A (Atile)) — (D)up_relg V=(Djuprelg)  (113)

First, we show that (89) and (91) can be replaced by (109) g{d10) and (111), respec-
tively.

Lemma 19 It holds that:

(i) if M, [a,b] IF (u-chair®) A (Id-chairf®) A (109), then M [a, b] I (89);
(i) if M, [a,b] I (110)A (111), then M [a, b] I (91).

Proof We first prove item (i). For the sake of contradiction, sugpteatM, [a, b] I (76) A
(109), butM, [a, b} If* [G]((A) x — [A](up_rel — —~(D) (A)*)). Then there exists&,d] € Gja
such thatM, [c,d] IF (A) x A(A)(up-rel A (D) (A)x). Hence, there exist, €], [d, f] € Gap
such tha, [d, €] IF x andM, [d, f] I up_rel A (D) (A)«. By definition of (D), it follows that
there exists a-interval[g, h| € G5 such thad < g < f. By Lemma 11 and Lemma 18<
g. Since bottd, €] and[g, h] arex-intervals, from (109), it follows thatl, [e, g] I~ =(D)up_rel
(contradiction withM, [d, ] I up_rel).

We now prove item (ii). For the sake of contradiction, sugpthatM, [a, b] IF (110)A (111)
but M, [a,b] I [G](x — (A)(tile A [A](up-rel — —~(D)x))). Then there exists &,d] € Gy
such thatM, [c,d] I % A [A](—tile VV (A) (up_rel A (D)x)). From (110), it follows that there
exists a[d, €] € Gap such thatM, [d, €] I- tile A [A](up_rel — first) A (A)(up_rel A (D)x).
Then there exists a, f] € Gjap such thaMM, [e, f] I up_rel Afirst A (D)x. Finally, by the
definition of (D), it follows that[e, f] contains a-interval [g,h] € Gj, ) (contradiction with
(111)). O

Formula (p_rel-def*P) can be replaced by the following one:
(80)A ... A(88)A (101)A (102)A (109)A ... A (113) (up_rel-def*D)

To prove that formuladp_rel-def*P) correctly defines the above-neighbor relatioild, we
need to show that formula (93) can be replaced by formula2)@dd (113).

Lemma 20 If M, [a, ] IF (u-chairfP) A (Id-chairt*P) A (up_rel-def*P), then M [a, b] I- (93).
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Proof As a preliminary remark, we observe that from Corollary 6,rdlary 7, and
Lemma 19, it follows that Lemma 11, Lemma 12, and Lemma 1Bhsiitl.

To prove the statement of the lemma, suppose, for the sakerdfacliction, that
M, &, b] IF (u-chairt*P) A (1d-chairfP) A (up_rel-defP), butM, [a, b] I} [G] ((D)up_rely A {A) (U2 A
(Atile A (A)up-relg) — (D)up_relg). This implies the existence ¢¢, d] such that:

M, [c,d] I (D)up_relq A (A) (uz A (A)tile A (A)up_relg) A —~(D)up_relg, (H1)

for somea # B € {o,e}.

From the first conjunct, it follows that there existsugnrel,-interval [e, f] strictly con-
tained in[c,d]. Without loss of generality, we can assufegf] to be initiated by soméile-
interval[e, g]. Suppose that this is not the case. By (85) and ()] is ax-interval. Hence,
by (112), there exists #le-interval [f, f'], followed by atile-interval [f’,¢'], followed by
x-interval [¢/,g”]. We show now thay” < d. For the sake of contradiction, suppose that
g’ >d. Let T (resp.,f’,g) be such thaf < T < f/ (resp.,f' < ' < ¢, d < g < d') and
M, [f, ] IF uy andM, [T, f'] IF up (resp.,M, [f’, /] IF up andM, [f/,d/] IF uz, M, [d,d/] I ug
andM, [d,g"] IF up). SinceM, [c,d] I- (A)u,, eitherd =T ord= f’ord =¢. If d =T, then,
by (H1) (second conjunct), there existsgsrelg-interval starting aff’ and, by (84), there
exists arup_rel,-interval which starts af’ and violates (82). It = T/, then by (H1) (sec-
ond conjunct)[d’,g"] is both atile-interval and«-interval, violating (75). Finally, i = ¢/,
then, by (H1) (second conjunct), theinterval [¢',g"] meets arup_rel-interval, violating
(86). Henceg” < d, and thudd’,g"] is contained irjic, d]. Now, by (76), thex-interval e, g]
meets someile-interval [g,t] and, by (83) and (91), there existaip_rel-interval starting
att and ending at some poitlt with t'(< ¢”) < d. Thus|t,t] is strictly contained irc,d]
and it is started by aile-interval. Hence, whenevée, f] is started by a-interval, we can
substitutdt,t'] for it in our argument.

From the assumption thé, g] is atile-interval and (88), it follows that there exists an
up-relg-interval[g, h| for someh. Since, by (H1) (third conjunctM, [c,d] IF ~(D)up_relg, it
holds thath > d. Now, by (H1) (second conjunct), there existspainterval[d,d'], for some
d’, and anup_relg-interval starting at’’. By Lemma 11 and (86), there exis§ such that
j <i<dandli,d]is atile-interval andj,i] is aup-interval. Now, the intervalg, j] satisfies
(A)(uz A (A)(tile A (A)up_relg A (A)tile)). Hence, by (113), it also satisfi€B)up_relg v
~(D)up_rel,. SupposeM, [g, j] I (D)up_relg. Then there exists amp_relg-interval [g, J]
such thag< gand] > j. In fact,§ < e, sinceg’= ewould violate (82). This implies that the
up_relg-interval[e, f] is contained in thep_relg-interval [§, j], thus violating (102). Hence,
we can conclude thad, [g, j] IF ~(D)up_rel,.

Now, let [k, h| be theu-interval that ends thep_relg-interval [g, h], whose existence
is guaranteed by Lemma 11 and Lemma 13. Since @t and|[g, h] areup_rel-intervals
starting from the samigl-interval (row), say, by Lemma 13, they both must end on the next
Id-interval (row)l 4 1. Itimmediately follows thalk, h] cannot be a-interval, as, otherwise,
f andh would belong to differentd-intervals (rows), and thus it is @le-interval. By the
strict interleaving propertyh starts aup-rel,-interval. Now, let consider the intervah, n],
wherem andn are such thafg, m| is aus-interval and[n,K] is aus-interval (the existence
of these points is guaranteed by Lemma 1) n] satisfiesA) (uz A (A) (tile A (Ayup_rel, A
(Atile)), and thus, by (113), it satisfig®)up_rel, vV ~(D)up._relg. We show that in both
cases we get a contradiction.

— If M, [m,n] I (D)up_rel,, then there exists @p_rel ,-interval [m', '] such that’ < m<
n<n'. By Lemma 13m < g, and thudg, j] is contained in thep_rel ,-interval [n7, "],

against the hypothesis thitt, [g, j] IF —(D)up_rel,.
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— If M,[m,n] I ~(D)up_rels, we immediately get a contradiction, sin¢ggh] is an
up-relg-interval. ad

Corollary 8 If M,[a,b] IF (u-chaifP) A (Id-chai®) A (up_rel-def*P), then M][a,b] IF
(up_rel-def*P).

Since modality(D) does not occur in formulailes*P), no replacement is necessary. The
encoding of OTP is thus complete. LEtbe the set of tile type$ts,to, ...t} and¥r be
the formula (-chairf®) A (1d-chairt*C) A (up_rel-def*P) A (tiles*P). The following lemma holds.

Lemma 21 For any linear orderD with an infinite ascending sequence of points, the for-
mula Wy is satisfiable irD if and only if 7 can tile the second octax?.

Proof (“only if” direction) Let D be a linear order with an infinite ascending sequence of
points such thaM, [a,b] IF ¥ for some modeM = (I(D),V) and interval[a,b] € I(D).

By Corollary 6, Corollary 7, and Corollary 8,[a,b] IF @7, where @+ is the formula
(u-chairf'P) A (Id-chairfP) A (up-rel-def*P) A (tiles*P). By Lemma 16, it immediately follows
that7 can tile the second octa@t.

“if” direction) Let f : O — T be a correct tiling ofO. It can be easily shown that a
model for%- can be obtained from the modél = (I(D),V) for &+ given in the proof of
Lemma 16, by extending the valuation function to the new psion lettersks, ko, and
first. This completes the proof. ad

Corollary 9 The satisfiability problem foAD is undecidable over any class of linear orders
that contains at least one linear order with an infinite asdiey sequence of points.

___The previous reductions féxD andAD can be easily adapted, by symmetryAd and
AD, provided that there exists an infinite descending sequeingeints.

Corollary 10 The satisfiability problem foAD and AD is undecidable over any class of
linear orders that contains at least one linear order withiafinite descending sequence of
points.

6 Conclusions and future work

In this paper, we solved various open problems in the chariaation ofHS fragments with
respect to decidability/undecidability. First, we showewlecidability of the satisfiability
problem forO andO over all meaningful classes of linear orders, including dlesses of
all, discrete, dense, and finite linear orders. As a direasequence of this result, we got
undecidability ofBE andBE, whose decidability status over the class of finite linedecs
was still unknown. Then, we proved undecidability of theissatbility problem for AD,
AD, AD, andAD over all classes of linear orders containing at least a inegder with an
infinite sequence of points. Since undecidabilityAd, AD, AD, andAD over the class
of finite linear orders was already known, we can concludé afso for these fragments
undecidability spans all important classes of linear agsder

Even though this paper solved a number of open problems ghojdecidability of
HS fragments, it does not allow us to get the complete pictime:status of some interest-
ing fragments is still unknown. In particular, the satisiliap problem is still open for the
following fragments:
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(i) AB, AB, AE, andAE over all meaningful classes of linear orders, except focthss of
finite linear orders, over which the problem is known to beidigale [21]. We believe
it possible to adapt the undecidability results AhBB and AAEE over (Dedekind-
complete) infinite linear orders given in [21].

(i) D andD over the class of all linear orders. This is the most challengroblem, since
neither the decidability proof for the dense case [7] noreandhbility proofs for the
finite and discrete cases [19] can be transferred directlyg@ase of all linear orders.

We believe it's possible to exploit the proof technique deped in the paper to prove
undecidability of other logical formalisms, not necedyariterval-based. As an example,
we have explored their applicability in the setting of fiestter and monadic second-order
logics with matching relations [16], which are binary redas whose semantics resembles
the one of Allen’s relations over intervals. We have alrealliained some preliminary re-
sults showing that the proofs given in this paper can be adaipot prove undecidability of
first-order logic with two matching relations over lineaders.
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