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Abstract. Symbolic learning is the sub-�eld of machine learning that
deals with symbolic algorithms and models, which have been known for
decades and successfully applied to a variety of contexts, and of which
decision trees are the quintessential expression. The main limitation of
current symbolic models is the fact that they are essentially based on
classical propositional logic, which implies that data with an implicit
dimensional component, such as temporal, e.g., time series, or spatial
data, e.g., images, cannot be properly dealt with within the standard
symbolic framework. In this paper, we show how propositional logic in
decision trees can be replaced with the more expressive (propositional)
modal logics, and we lay down the formal bases of modal decision trees
by �rst systematically delineating interesting and well-known properties
of propositional ones and then showing how to transfer these properties
to the modal case.

Keywords: Machine learning · Decision trees · Modal logic · Learning
from dimensional data

1 Introduction

The most iconic and fundamental separation between sub-�elds of machine learn-
ing is the one between functional and symbolic learning. Functional learning is
the process of learning a function that represents the theory underlying a cer-
tain phenomenon, while symbolic learning is the process of learning a logical
description that represents that phenomenon.

Whether one or the other approach should be preferred raised a long-standing
debate among experts, which roots in the fact that functional methods tend
to be more versatile and statistically accurate than symbolic ones, while sym-
bolic methods are able to extract models that can be interpreted, explained, and
then enhanced using human-expert knowledge. These characteristics of symbolic
methods, both for political reasons (consider, for instance, the recent General
Data Protection Regulation (GDPR) of the European Union [13], that highlights
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the need for interpretable/explainable automatic learning-based decision-making
processes, including those involving AI technologies) and technical ones (inter-
pretable models are often easier to train, explore, integrate, and implement), are
sometimes used as arguments for preferring a symbolic approach over a func-
tional one. From a logical standpoint, canonical symbolic learning methods are
all characterized by the use of propositional logic (they are, indeed, sometimes
called propositional methods), and, among them, propositional decision trees are
probably the best known.

The origin of modern decision trees dates back to the �fties [2]; a lot of
work has been done since then, which includes, among others, [4, 8, 10, 11, 15�
17], and decision tree models extracted using popular algorithms such as ID3,
C4.5, and more recent ones, have been widely applied in the literature. Di�erent
decision tree models di�er in their structure and the language on which they are
based, but only slightly; from a structural point of view, it can be argued that
virtually all such structures and learning algorithms stemmed, in some sense,
from CART [4], which already contained all the fundamental ideas of decision
trees.

Dimensional data, such as temporal or spatial data, cannot be dealt with in
a proper, native way using propositional decision trees. The general to-go strat-
egy to treat dimensional data with propositional models, such as decision trees,
is to �atten the dimensional component, e�ectively hiding it. Flattening con-
sists in massaging the dataset in such a way that dimensional attributes become
scalar ones. As an example, a multivariate time series with n temporal attributes
A1, . . . , An can be transformed by applying one or more feature extractions func-
tion to all attributes, e.g., average, minimum, maximum, and the like, to obtain
(a feature representation of) an instance f1(A1), f2(A1), . . . , f1(A2), f2(A2), . . . ,
which can now be treated, for example, by a standard decision tree. A more gen-
eral approach consists of applying the same strategy to di�erent windows along
all dimensions, e.g., intervals in the temporal case, rectangles in the spatial one,
and so on, obtaining several new attributes for each original one and each feature
extraction function. At the limit, each temporal (spatial, . . . ) point may become
a window. As an example, a single-variate time series A with N ordered points
ends up being represented as the (unordered) collection A(1), A(2), . . . , A(N).
Such a representation is called lagged (for temporal data) or �attened (for spatial
ones).

In this paper, we adopt a di�erent point of view, aiming at laying down the
formal bases of modal symbolic learning, by means of which dimensional datasets
can be dealt with in a native way. To this end, we replace propositional logic by
propositional modal logic (modal logic for short) and we enhance decision trees
accordingly. Modal logic [3] generalizes propositional logic by allowing one to
natively express the relationships that emerge among the di�erent worlds, e.g.,
time points, time intervals, multi-dimensional areas, that contribute to describe
real-world scenarios. Since modal logic can be declined into more practical lan-
guages, such as temporal and spatial logics, and dimensional data can be seen
as modal data, modal symbolic learning is immediately applicable to the dimen-
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sional case. Moreover, this is not the only possible application, as modal data
emerge in a natural way also from non-dimensional data, like, for instance, in
textual and graph-based data.

Here, we introduce modal decision trees, and we systematically study their
logical properties, speci�cally, correctness. Standard decision trees are, indeed,
correct, although the nature of their presentation, mostly driven by applica-
tions, tends to hide their theoretical aspects. While we are not interested in
studying e�cient implementations of learning algorithms, the driving principle
of the de�nition of modal decision trees is the preservation of the simplicity and
interpretability that characterize propositional ones. As a result, modal decision
tree learning algorithms can be implemented starting from any implementation
of propositional ones, and working one's way up.

The paper is organized as follows. In Section 2, we provide some preliminary
de�nitions and concepts. In Section 3, we de�ne modal decision trees and study
their properties. Then, in Section 4, we brie�y show how modal decision trees
can be applied to learn from dimensional data, before concluding.

2 Preliminaries

Let P be a set of propositional letters. The well-formed formulas of modal logic
(ML) are obtained from the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 3ϕ.

The other usual Boolean connectives can be derived from them, and, as standard,
we use 2ϕ to denote ¬3¬ϕ. The modality 3 (resp., 2) is usually referred to
as it is possible that (resp., it is necessary that). Modal logic is considered as
archetypical of (propositional) temporal, spatial, and spatio-temporal logics, and
it is a non-conservative extension of propositional logic (PL). Its semantics is
given in terms of Kripke models. A Kripke model K = (W,R, V ) over P consists
of a (�nite) set of worlds W , which contains a distinguished world w0, called
initial world, a binary accessibility relation R ⊆W×W , and a valuation function
V : W → 2P , which associates each world with the set of proposition letters that
are true on it. The truth relation K,w  ϕ for a model K and a world w in it is
expresed by the following clauses:

K,w  p i� p ∈ V (w);
K,w  ¬ϕ i� K,w 6 ϕ;
K,w  ϕ ∧ ψ i� K,w  ϕ and K,w  ψ;
K,w  3ϕ i� ∃v s.t. wRv and K, v  ϕ.

We write K  ϕ as an abbreviation for K,w0  ϕ.
The importance of modal logic comes from the fact that most classic tempo-

ral [5, 7, 14] and spatial logics [1, 9] stem from (generalizations of) modal logic.
Therefore, the theory of modal logic and the tools built on it can be reused to
cope with more practical situations.

We now introduce the notion of modal dataset and its associated problems.
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Fig. 1. An example of modal dataset with 4 instances, each described by a Kripke
model.

De�nition 1 (Modal dataset). Let P be a set of proposition letters. A modal
dataset I = {I1, . . . , Im} over P is a �nite collection of m instances, each of
which is a Kripke model over P, and such that I, J are not bisimilar, for each
I, J ∈ I with I 6= J , that is, there exists at least one formula ϕ ∈ ML with
I  ϕ and J 6 ϕ. We say that I is labeled if it is equipped with a labeling
function L : I → C which associates every instance with a class from a �nite set
C = {C1, . . . , Ck}.

In the static case, a dataset is usually de�ned as a collection I = {I1, . . . ,
Im} of m instances described, each, by the value of n distinct attributes A =
{A1, . . . , Am}. However, since each attribute A is associated to its �nite domain
dom(A), that is, the �nite set of all values taken by A across I, the latter
naturally induces a set of propositional letters:

P = {A ./ a |./∈ {<,≤,=,≥, >}, A ∈ A, a ∈ dom(A)}.

Learning-wise, therefore, we can always de�ne a static dataset as if the corre-
sponding set of propositional letters is �xed.

A modal dataset immediately generalizes a static one, by postulating that
instances are described by Kripke frames in which attributes change value across
di�erent worlds. There are several scenarios that can be naturally modeled by
modal, non-static datasets, instead; by way of example, dimensional datasets
are characterized by each attribute in each instance being described by a d-
dimensional matrix (e.g., d = 1 in the temporal case, and d = 2 in the spatial
case). In such cases, �xed a set of feature extraction function(s) F = {f1, . . . , fk},
the set of induced propositional letters becomes:

P = {f(A) ./ a |./∈ {<,≤,=,≥, >}, A ∈ A, a ∈ dom(A), f ∈ F}.
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Dimensional datasets are not the only source of modal datasets; in fact, our
de�nition of modal dataset is more general, and captures a wide range of practical
situations.

In the static case two instances cannot be identical, that is, there must be a
propositional formula that distinguishes them; at the modal level, this require-
ment translates into constraining every two instances to be non-bisimilar (see,
again, [3]), that is, to be distinguishable by at least one modal formula.

In machine learning, several problems are associated to a labeled dataset I.
Among them, a fundamental and ubiquitous one is the classi�cation problem,
that is, the problem of synthesizing an algorithm (a classi�er) that is able to
classify the instances of an unlabeled dataset J of the same type as I.

In the symbolic context, learning a classi�er from a dataset requires extract-
ing from it the logical property that de�ne each class, that is, its characteristic
formula. Then, instances are seen as models of the considered logical formalism
and the classi�cation task is performed via model checking an instance against
characteristic formulas. Although, in principle, one can be interested in learning
characteristic formulas of any logic in any dataset, to modal (resp., propositional)
datasets it is natural to associate modal (resp., propositional) characteristic for-
mulas.

Binary decision trees, which are typical classi�ers, are binary trees whose
leaves and edges are equipped with labels. Leaf labels identify the di�erent classes
an instance can belong to; edge labels are atomic logical elements which are then
composed to obtain complex formulas in the considered logical formalism (in
the propositional case, edge labels edges are literals and formulas are Boolean
combinations). A tree associates a formula to every class it features (i.e., every
label occurring in a leaf) and it classi�es an instance into a class if and only if
the instance satis�es the formula corresponding to that class. As there can be
exponentially many leaves in a tree, the classi�cation process can possibly require
verifying the satisfaction of an instance against exponentially many formulas.

However, decision trees provide an e�cient mechanism for classifying an in-
stance that does not explore the entire tree: for every node, starting from the
root and going down towards the leaves, the truth of the formula associated with
that node is checked against the instance to be classi�ed and, depending on the
outcome the instance is passed to the right or the left child and the process is
repeated. When a leaf is reached, the instance is classi�ed into the class that
labels that leaf. Summing up, the desired properties for a familyM of decision
trees include: (i) correctness (every tree classi�es any given instance into exactly
one class); (ii) completeness (for every formula ϕ of the considered formalism,
there is a decision tree τ ∈ M that realizes ϕ); and (iii) e�ciency (a decision
tree τ of height h must be able to classify an instance I by checking the truth
of, at most, a number of formulas polynomial in h).

In the rest of this paper we consider the problem of designing modal decision
trees in such a way to be correct, complete, and e�cient with respect to modal
logic.
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3 Modal Decision Trees

Let τ = (V,E) be a full directed �nite binary tree with vertexes in V and edges
in E. We denote by root(τ) the root of τ , by V ` ⊆ V the set of its leaves, and by
V ι the set of its internal nodes (that is, non-root and non-leaf nodes). For each
non-leaf node ν we denote by ;(ν) (resp.,

;
(ν)) its left (resp. right) child, and

by ; (ν) its parent. Similarly, for a tree τ , we denote by ;(τ) (resp.,
;

(τ)) its left
(resp. right) subtree. Finally, for a node ν, the set of its ancestors (ν included)
is denoted by ;

∗(ν), where ;
∗ is the transitive and re�exive closure of ; ; we also

de�ne ;
+(ν) = ;

∗(ν) \ {ν}.
A path πτ = ν0 ; νh in tree τ (or, simply, π, if τ is clear form the context)

of length h ≥ 0 from ν0 to νh is a �nite sequence of h+ 1 nodes ν0, . . . , νh such
that νi = ; (νi+1), for each i = 0, . . . , h−1. We denote by π1 ·π2 the operation of
appending the path π2 to the path π1. We also say that a path ν0 ·ν1 ; νh is left
(resp., right) if ν1 = ;(ν0) (resp., ν1 =

;
(ν0)). For a path π = ν0 ; νh, the set

of its improper pre�xes is denoted by prefix (π), and if ν is a node in τ , πτν (or,
simply, πν , if τ is clear from the context) denotes the unique path root(τ) ; ν.
Finally, a branch of τ is a path πτ` (or, simply, π`, if τ is clear from the context)
for some ` ∈ V `.

De�nition 2 (modal decisions). Fixed a modal dataset I over P, the set of
decisions is:

Λ = {>,⊥, p,¬p,3>,2⊥ | p ∈ P}.

We say that p,¬p are propositional decisions, while 3> (resp., 2⊥) are modal
existential (resp., modal universal) ones, and we use the symbol λ ∈ Λ to denote
a decision. For each λ ∈ Λ, the decision that corresponds to its logical negation
¬λ is univocally identi�ed, so when λ = > (resp., p,3>) we use ¬λ to denote
⊥ (resp., ¬p,2⊥), and vice versa.

De�nition 3 (modal decision tree). Fixed a propositional alphabet P and a
set of classes C, a modal decision tree τ over P and C is a structure:

τ = (V,E, b, l, s),

where (V,E) is a full directed �nite binary tree, l : V ` → C is the leaf-labeling
function, b : V ι → V ι is the back-edge function, s : E → Λ is the edge-labeling
function, and the following conditions hold:

1. ∀ν, ν′ ∈ V.(b(ν) = ν′ → ν′ ∈ ;
∗(ν));

2. ∀ν, ν′ ∈ V.((b(ν) 6= ν ∧ b(ν′) 6= ν′)→ b(ν) 6= b(ν′));
3. ∀ν, ν′, ν′′ ∈ V.((b(ν) = ν′ ∧ ν′ ∈ ;

+(ν′′) ∧ ν′′ ∈ ;
+(ν))→ ν′ ∈ ;

+(b(ν′′)));
4. ∀(ν, ν′) ∈ E.((s(ν, ν′) ∈ {⊥,2⊥} ∧ ν′ /∈ V `)→ b(ν′) 6= ν′);
5. ∀(ν, ν′), (ν, ν′′) ∈ E.(s(ν, ν′) = ¬s(ν, ν′′)).

For every c ∈ C, we denote by leavesτ (c) (or, simply, leaves(c), when τ is clear
from the context) the set of leaves of τ labeled with c.
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A propositional decision tree is a modal decision tree in which edges are
labeled with propositional decisions and the back-edge function plays no role
(therefore, in propositional decision trees only condition 5 is still non-trivial);
thus, propositional decision trees are a particular case of modal decision trees.
In the following, we denote byMDT the family of modal decision trees (ormodal
decision tree classi�cation model), and by DT its propositional counterpart (that
is, the sub-family of MDT that only contains propositional trees). From now
on, we use the term decision tree to refer to an element of either DT orMDT .

We now show how a modal decision tree de�nes a modal formula for each of
its classes. This is obtained by associating a formula to each branch, and then
the formula of a class is the disjunction of all the formulas associated to branches
whose leaf is labeled with that class. In the propositional case, each branch is
associated to the conjunction of the labels that occur on its edges; as every
propositional formula can be written in disjunctive normal form, propositional
decision trees are complete with respect to propositional logic. Modal logic does
not have a normal form that allows one to bound the nesting of modal operators,
and this makes the construction of formulas more complicated. Let us �rst �x
the following useful concepts.

De�nition 4 (contributor, node agreement). Given a decision tree τ and
a path π = ν0 ; νh, with h > 1, the contributor of π, denoted ctr(π), is de�ned
as the only node νi in π such that νi 6= ν1, 0 < i < h, and b(νi) = ν1, if it exists,
and as ν1 otherwise. Moreover, given two nodes νi, νj ∈ π, with i, j < h, we say
that they agree if νi+1 =

;
(νi) (resp., νi+1 = ;(νi)) and νj+1 =

;
(νj) (resp.,

νj+1 = ;(νj)), and we denote this situation by A(νi, νj), and that they disagree
(denoted by D(νi, νj)), otherwise.

To our purposes, we use the following grammar to generate formulas of ML:

ϕ ::= λ | λ ∧ (ϕ ∧ ϕ) | λ→ (ϕ→ ϕ) | 3(ϕ ∧ ϕ) | 2(ϕ→ ϕ),

where λ ∈ Λ.

De�nition 5 (implicative formulas). We say that a modal formula ϕ is im-
plicative if it has the form ψ → ξ, or 2(ψ → ξ), and we denote by Im the set
of implicative formulas.

As a matter of fact, in order to assign a formula to each leaf, and then to each
class, we �rst associate a formula to every path (see Fig. 2 for an example).

De�nition 6 (path-, leaf-, and class-formula). Let τ be a decision tree. For
each path π = ν0 ; νh in τ , the path-formula ϕτπ (or, simply, ϕπ, when τ is
clear from the context) is de�ned inductively as:

� If h = 0, then ϕπ = >.
� If h = 1, then ϕπ = s(ν0, ν1).
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ν0 = root(()τ)

`5 (c2)ν1

ν2 `4 (c1)

`1 (c1) ν3

`2 (c2) `3 (c1)

2⊥

3
>

3
>

2⊥

¬p p

q

¬
q

ϕν;ν = >,∀ν ∈ V ι

ϕ
; (ν);ν

= s( ; (ν), ν), ∀ν ∈ V \ {ν0}

ϕν1;`1 = 3(> ∧ ¬p)
ϕν0;ν2 = 3(> → 3>)
ϕν0;`1 = 3(> ∧3(> ∧ ¬p)) = ϕπ`1
ϕν1;ν3 = 2(> → p)
ϕν0;ν3 = 2(> → 2(> → p))
ϕν0;`2 = 3(2(> → p) ∧ q) = ϕπ`2
ϕν0;`3 = 2(2(> → p) → ¬q) = ϕπ`3
ϕν0;`4 = 2(> → 2⊥) = ϕπ`4

ϕ` =
∧

π∈prefix(π`)

ϕπ, ∀` ∈ V `

ϕc1 = ϕ`1∨ϕ`3∨ϕ`4
ϕc2 = ϕ`2∨ϕ`5

Fig. 2. On the left-hand side, an example of a modal decision tree; on the right-hand
side, all relevant path-, leaf-, and class-formulas (ϕ`5 is included in the second group
from the top).

� If h > 1, let λ = s(ν0, ν1), π1 = ν1 ; ctr(π), and π2 = ctr(π) ; νh. Then,

ϕπ =



λ ∧ (ϕπ1
∧ ϕπ2

) if λ 6= 3>, A(ν0, ctr(π)), and ϕπ2
/∈ Im,

or λ 6= 3>, D(ν0, ctr(π)), and ϕπ2
∈ Im;

λ→ (ϕπ1 → ϕπ2) if λ 6= 3>, D(ν0, ctr(π)), and ϕπ2 /∈ Im,
or λ 6= 3>, A(ν0, ctr(π)), and ϕπ2 ∈ Im;

3(ϕπ1
∧ ϕπ2

) if λ = 3>, A(ν0, ctr(π)), and ϕπ2
/∈ Im,

or λ = 3>, D(ν0, ctr(π)), and ϕπ2
∈ Im;

2(ϕπ1
→ ϕπ2

) if λ = 3>, D(ν0, ctr(π)), and ϕπ2
/∈ Im,

or λ = 3>, A(ν0, ctr(π)), and ϕπ2 ∈ Im.

Then, for each leaf ` ∈ V `, the leaf-formula ϕτ` (or, simply ϕ`, when τ is clear
from the context) is de�ned as:

ϕ` =
∧

π∈prefix(π`)

ϕπ.

Finally, for each class c, the class-formula ϕτc (or, simply, ϕc, when τ is clear
from the context), is de�ned as:

ϕc =
∨

`∈leaves(c)

ϕπ` .

De�nition 7 (run). Let τ = (V,E, b, l, s) be a modal decision tree, ν a node
in τ , and I an instance in a modal dataset I. Then, the run of τ on I from ν,
denoted τ(I, ν), is de�ned as:
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τ(I, ν) =


l(ν) if ν ∈ V `
τ(I, ;(ν)) if I  ϕπ ;

(ν)

τ(I,
;

(ν)) if I  ϕπ ;
(ν)
.

The run of τ on I (or the class assigned to I by τ), denoted τ(I), is de�ned as
τ(I, root(τ)).

Following the above de�nition, a modal decision tree classi�es an instance
using its class-formulas, and does so by checking, progressively, the path-formulas
that contribute to build a leaf-formula, which, in turn, is one of the disjuncts
that take part in a class-formula. Observe that, inter alia, this implies that
propositional decision trees can be seen as particular cases of modal decision
trees even from a semantic point of view: formulas of the type ϕ1 ∧ ϕ2 behave
exactly as in the propositional case, while those of the type ϕ1 → ϕ2, are such
that their the antecedent is always included as a conjunct in their corresponding
leaf-formula, e�ectively reducing it to a conjunction, as in the propositional case.

Now, on the one side, the e�ciency of classi�cation depends on how leaf-
formulas are checked, while on the other side correctness and completeness
depend on their semantics. Let us start by evaluating the e�ciency of modal
decision trees.

De�nition 8 (e�ciency). We say that a decision tree τ of height h is e�cient
if and only if, for every dataset I and every instance I ∈ I, it is the case that
its run τ(I) can be computed in polynomial time with respect to h and to the size
of I. A family of decision trees is e�cient if and only all of its decision trees are
e�cient.

The following result holds due to the fact that model checking anML formula
against a Kripke structure can be done in polynomial time in the sizes of the
structure and the formula [6], and the fact that the size of the formula associated
to a path is linear in the length of the path itself.

Theorem 1 (e�ciency of MDT ). The familyMDT is e�cient.

Now, we want to prove that modal decision trees are correct.

De�nition 9 (correctness).We say that a decision tree τ is correct if and only
if, for every dataset I and every instance I ∈ I, it is the case that I satis�es
exactly one of its class-formulas ϕc. A family of decision trees is correct if and
only all of its decision trees are correct.

The following lemma can be proved by induction on the lengths of the paths,
and the correctness ofMDT follows.

Lemma 1. Let τ be a modal decision tree, and let π1 = ν0 ; νh−1 · ;(νh−1)
and π2 = ν0 ; νh−1 ·

;
(νh−1) be two paths. Then, ϕπ1

↔ ¬ϕπ2
is valid.
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A1 A2 A3 . . .

a1,11 a2,11 a3,11 . . . t1
I1 . . . . . . . . . . . . . . .

a1,21 a2,21 a3,21 . . . tk
a1,12 a2,12 a3,12 . . . t1

I2 . . . . . . . . . . . . . . .

a1,22 a2,22 a3,22 . . . tk
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

a1,1m a2,1m a3,1m . . . t1
Im . . . . . . . . . . . . . . .

a1,2m a2,2m a3,2m . . . tk

⇒
A1:

A2:

. . .

t1 t2 t3 t4 t5 t6

w0

w1
RO

Fig. 3. Typical presentation of an implicit temporal data set.

Theorem 2 (correctness of MDT ). The familyMDT is correct.

Finally, we discuss the completeness of modal decision trees with respect to
modal logic.

De�nition 10 (completeness).We say that a family of decision trees is strong-
ly complete for a logical formalism if and only if, for each of its formula ϕ, there
is a decision tree τ and a class c ∈ C such that ϕc ↔ ϕ is valid. We also say that
a family of decision trees is weakly complete for a logical formalisms if and only
if, for each of its formula ϕ, there is a decision tree τ and two classes c, c̄ ∈ C
such that ϕc → ϕ and ϕc̄ → ¬ϕ are both valid.

Modal decision trees are strongly complete with respect to propositional logic
by de�nition, and weakly complete with respect to modal logic.

Lemma 2. Let ϕ ∈ ML. Then, there exists a modal decision tree τ and two
leaves `c, `c̄ ∈ V ` such that ϕπ`c ↔ ϕ and ϕπ`c̄ ↔ ¬ϕ are both valid.

Theorem 3 (completeness ofMDT ). The familyMDT is strongly complete
for PL and weakly complete for ML.

4 Applications

To show the potential of modal symbolic learning, in this section we consider
two representative learning situations: from temporal data and from spatial data.
As we have observed, spatial/temporal datasets can be seen as modal ones, and
modal logic can be declined into suitable spatial/temporal logics that are able
to describe such data. An example of dimensional dataset in the temporal case
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temporal spatial

seed propositional modal propositional modal

acc. sen. spe. acc. sen. spe. acc. sen. spe. acc. sen. spe.

1 79.17 79.17 95.83 88.89 88.89 97.78 59.58 59.58 96.33 79.58 79.58 98.14

2 83.33 83.33 96.67 88.89 88.89 97.78 62.50 62.50 96.59 79.58 79.58 98.14

3 80.56 80.56 96.11 93.06 93.06 98.61 63.75 63.75 96.70 67.92 67.92 97.08

4 77.78 77.78 95.56 91.67 91.67 98.33 62.50 62.50 96.59 79.58 79.58 98.14

5 84.72 84.72 96.94 91.67 91.67 98.33 62.92 62.92 96.63 75.83 75.83 97.80

6 77.78 77.78 95.56 88.89 88.89 97.78 57.08 57.08 96.10 71.25 71.25 97.39

7 83.33 83.33 96.67 84.72 84.72 96.94 71.25 71.25 97.39 80.00 80.00 98.18

8 80.56 80.56 96.11 91.67 91.67 98.33 62.92 62.92 96.63 75.83 75.83 97.80

9 80.56 80.56 96.11 84.72 84.72 96.94 58.75 58.75 96.25 77.08 77.08 97.92

10 75.00 75.00 95.00 87.50 87.50 97.50 62.92 62.92 96.63 79.58 79.58 98.14

avg. 80.27 80.27 96.05 89.16 89.16 97.83 62.42 62.42 96.58 76.62 76.62 97.87

Table 1. Test results: propositional versus modal learning from the public, 1-
dimensional data set NATOPS (left), and from the public, 2-dimensional data set
INDIAN PINES. Performances are reported in percentage points.

is given in Fig. 3 (left); here, m instances are described by several attributes,
each one of which takes value on each of the time points that contribute to
the description. Thus, this is a set of multi-variate time series; examples of real
situations that can be described by sets of multi-variate time series range from
hospitalized patients that are constantly monitored, to di�erent sport activi-
ties described by the values of wearable sensors, to industrial machines whose
behaviour is recorded over time.

In many such situations, the relevant information is not necessarily visible at
time points, but rather at time intervals, and in many cases the information to
be extracted is concerned with prolonged events that take place at the same, or
overlapping, or separate times, which is, again, a situation that is more naturally
described with intervals rather than points. One way to extract such information
is considering the multi-variate time series that corresponds to each instance, as
in Fig. 3 (right), and each interval that can be built on it. Each such interval
is regarded as a world, as in Fig. 3 (right), and worlds are connected through
interval-interval relations. Taking the standard approach to do so results in hav-
ing 12 interval-interval relations, excluding equality, that is meets (RA), overlaps
(RO), begins (RB), ends (RE), during (RD), and later (RL); in turn, these give
rise to a multi-modal logic which is known as HS (from the authors that �rst
introduced it, Halpern and Shoham [7]) which we can use to extract knowledge
from a single-dimensional dataset. In Fig. 3 (right), we have shown the relation
overlaps by way of example. In the spatial case, we can generalize both the def-
inition of world and the relations between worlds, and devise a 2-dimensional
version of HS, in order to apply the same idea.

We performed a simple classi�cation experiment on two public datasets, using
a prototype, simple version of MDT (available at [12]); besides being publicly
available, the chosen datasets have been selected taking into account their num-
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ber of attributes and instances, and their representativeness for temporal and
spatial problems. The �rst dataset is temporal, and known as NATOPS. It con-
tains data generated by sensors on the hands, elbows, wrists and thumbs, in
all three coordinates, along the temporal axis, of subjects performing several
repetitions of aircraft hand signals, chosen among the 24 most often used ones;
the problem consists in recognizing the speci�c signal. The second one is spatial,
known as INDIAN PINES, and contains an hyperspectral image over a single
landscape in Indiana (US) with 145Ö145 pixels, each represented by 220 spectral
re�ectance bands, and classi�ed into one or more of sixteen types of crops; the
problem is to recognize the type of cultivation in each pixel. While it would be
premature to draw any conclusions from a single group of experiments, we can al-
ready see the improvement that we can expect to observe stepping from a static
to a modal approach in Tab.1. The results (accuracy, sensitivity, speci�city)
marked as modal are compared with those obtained with the same datasets us-
ing simple aggregating functions and propositional decision trees (propositional).

5 Conclusions

In this paper, we have shown how propositional decision trees can be generalized
into modal decision trees. To this end, we have �rst highlighted the desirable
properties of a family of decision trees in terms of e�ciency of classi�cation and
logical properties, with respect to a given logical formalism. Then, we designed
a family of e�cient decision trees that is correct with respect to modal logic.

Application-wise, we have argued that, on the one side, di�erent kinds of
data are inherently non-propositional, including dimensional (temporal, spatial,
spatial/temporal) data, graph-based data, and textual data, and that, on the
other side, the logical formalisms that �t such cases are inherently modal. We
considered two speci�c dimensional cases (a temporal one and a spatial one),
and executed a learning experiment comparing the performances of propositional
and modal decision trees on the same problem and under the same conditions.
Temporal and spatial learning have been deeply studied in the machine learning
literature; our purpose here is not that of comparing the performances of learning
models in absolute terms, but to show the improvement that we can expect from
introducing modal logic in symbolic learning schemata.

The current implementation of modal decision trees is simpler than the one
presented in this paper. The problem of devising an e�cient implementation of a
learning algorithm that extracts full modal decision trees is still open. While the
problem of extracting the optimal decision tree is knowingly NP-hard already at
the propositional level, much work has been done on approximation algorithms;
adapting such algorithms to this proposal, and studying their computational
complexity, is an open issue as well.

Finally, decision trees are not the only symbolic learning classi�cation method
that can be generalized from the propositional to the modal case; the same can
be done, at least, with rule-based systems and ensembles of trees, giving rise to
what could be called modal symbolic learning.
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