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Abstract Interval temporal logics take time intervals, instead of time points, as
their primitive temporal entities. One of the most studied interval temporal logics is
Halpern and Shoham’s modal logic of time intervals HS, which associates a modal
operator with each binary relation between intervals over a linear order (the so-called
Allen’s interval relations). In this paper, we compare and classify the expressiveness
of all fragments of HS on the class of all linear orders and on the subclass of all dense
linear orders. For each of these classes, we identify a complete set of definabilities
between HS modalities, valid in that class, thus obtaining a complete classification
of the family of all 4096 fragments of HS with respect to their expressiveness. We
show that on the class of all linear orders there are exactly 1347 expressively different
fragments of HS, while on the class of dense linear orders there are exactly 966 such
expressively different fragments.
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1 Introduction

Interval reasoning naturally arises in various fields of computer science and artificial
intelligence, ranging from hardware and real-time system verification to natural lan-
guage processing, from constraint satisfaction to planning [4,5,19,28,29,34]. Interval
temporal logics make it possible to reason about interval structures over (linearly)
ordered domains, where time intervals, rather than time points, are the primitive
ontological entities. The distinctive features of interval temporal logics turn out to
be useful in various application domains [9,16,27,28,34]. For instance, they allow one
to model telic statements [32], that is, statements that express goals or accomplish-
ments, e.g., the statement: ‘The airplane flew from Venice to Toronto’ (see, e.g., [15,
Sect. II.B] and [27, p. 600]). Moreover, when we restrict ourselves to discrete linear
orders, some interval temporal logics are expressive enough to constrain the length
of intervals, thus allowing one to specify safety properties involving quantitative con-
ditions [27]. This is the case, for instance, with the well-known ‘gas-burner’ example,
originally presented in [34] and for which an encoding in a purely interval-based tem-
poral logic has been proposed in [9]. Temporal logics with interval-based semantics
have also been proposed as suitable formalisms for the specification and verifica-
tion of hardware [28] and of real-time systems [34]. Finally, it is worth mentioning
two system implementations recently proposed in the literature that are built on
(either algebraic or logic) interval-based temporal formalisms: TERENCE [21] (an
adaptive learning system for supporting poor comprehenders and their educators,
which is based on the so-called Allen’s interval algebra) and RISMA [24] (an algo-
rithm for performance and behavior analysis of real-time data systems, based on the
well-known modal logic of Allen’s relations, which is the main focus of this paper).

The variety of binary relations between intervals in a linear order was first studied
by Allen [4], who investigated their use in systems for time management and plan-
ning. In [22], Halpern and Shoham introduced and systematically analyzed the (full)
modal logic of Allen’s relations, called HS in this paper, that features one modality
for each Allen relation. In particular, they showed that HS is highly undecidable over
most classes of linear orders. This result motivated the search for (syntactic) HS frag-
ments offering a good balance between expressiveness and decidability/complexity
[8,10,13,14,15,25,26,27].

The problem of identifying expressive enough, yet decidable, fragments of HS
that are suitable for specific classes of applications is a major research problem in
the area. It requires a comparative analysis of the expressiveness of the variety of
such fragments. This amounts to systematically studying mutual definabilities among
the HS modalities. As an example, Bresolin et al. [11,12] identify all decidable HS
fragments with respect to the class of finite linear orders [11] and the class of strongly
discrete linear orders [12], and classify them in terms of both their expressive power
and their complexity.

A comparative analysis of the expressive power of the variety of HS fragments is
far from being trivial, because some HS modalities are definable in terms of others,
and thus syntactically different fragments may turn out to be equally expressive.
To complicate matters, the definability of a specific modality by a given subset
of HS modalities may depend on the class of linear orders over which the logic is
interpreted. Thus, such classifications cannot, in general, be easily transferred from
one class of linear orders to another: while definability does transfer from a class
to all its proper sub-classes, proving a non-definability result amounts to providing
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a counterexample based on concrete linear orders from the considered class. As a
matter of fact, different assumptions on the underlying linear orders give rise, in
general, to different sets of definability equations.

Many classes of linear orders are of practical interest, including the class of all
linear orders and the classes of all dense, discrete, and finite linear orders, as well
as the particular linear orders on R, Q, Z, and N. In this paper, we give a complete
classification of the expressiveness of HS fragments in two of the most important
cases, namely, the general case (i.e., over the class of all linear orders) and the dense
case (i.e., over the class of all dense linear orders)1. Most of the arguments that we
use to classify the expressive power of HS fragments over the class of all linear orders
directly apply also to the class of all dense linear orders. Nevertheless, some extra
effort is needed to obtain the classification over dense structures from the general
one, since more definability equations hold in the dense case.

We identify a complete set of valid definability equations among HS modalities
for both the considered classes of linear orders. While our proofs of undefinability
results in the dense case are based on counterexamples referring to the linear order
on R, the proposed constructions can be easily modified to deal with other specific
sub-classes of the class of all dense linear orders, e.g., the linear order on Q. This
means that the results presented in this paper yield complete classifications not
only with respect to the two classes mentioned above, but also with respect to each
of the linear orders on R and Q. Eventually, we show that there are exactly 1347
expressively different HS fragments in the general case, and 966 ones in the dense
case, out of 4096 syntactically distinct subsets of HS modalities.

The rest of the paper is organized as follows. In Section 2, we define the syntax
and the semantics of the interval temporal logic HS, and we introduce the basic
notions of definability and expressiveness. In Section 3, we give a short account of
the main results of the paper. Section 4 and Section 5 are devoted to the proofs
of soundness and completeness of the proposed set of definability equations, respec-
tively. The completeness proof turns out to be much harder than that of soundness,
and thus it does not come as a surprise that Section 5 is much longer than Section
4. In the final section, we summarize in Theorem 1 the import of the collection of
results shown in the previous sections, provide an assessment of the work done, and
outline future research directions. Some of the most involved proofs are reported in
a technical appendix.

2 Preliminaries

We denote the sets of natural numbers, integers, rationals, irrationals, and reals, as
well as the linear orders based on them, respectively by N, Z, Q, Q, and R.

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair
[a, b], where a, b ∈ D and a ≤ b. An interval is called a point interval if a = b

1 For the sake of clarity, we remark that in their seminal paper Halpern and Shoham do
not restrict themselves to classes of linear orders. They consider the more general case of
partial orders with the linear interval property, that is, partial orders where all the intervals
are linear. All the results we present in this paper for classes of linear orders immediately
transfer to the corresponding classes of partial orders that enjoy the linear interval property.
Indeed, undefinability results over a class of linear orders apply directly to any class of partial
orders that includes it and the soundness proofs for the definabilities given in this paper do
not make use of the totality of the ordering relation.
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HS modalities

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

Allen’s relations

[a, b]RA[c, d]⇔ b = c

[a, b]RL[c, d]⇔ b < c

[a, b]RB [c, d]⇔ a = c, d < b

[a, b]RE [c, d]⇔ b = d, a < c

[a, b]RD[c, d]⇔ a < c, d < b

[a, b]RO[c, d]⇔ a < c < b < d

Graphical representation

a b

c d

c d

c d

c d

c d

c d

Fig. 1 Allen’s interval relations and the corresponding HS modalities.

and a strict interval if a < b. In this paper, we assume the strict semantics, that
is, we exclude point intervals and only consider strict intervals. The adoption of
the strict semantics, excluding point intervals, instead of the non-strict semantics,
which includes them, conforms to the definition of interval adopted by Allen in [4],
but differs from the one given by Halpern and Shoham in [22]. It has at least two
strong motivations: first, a number of representation paradoxes arise when the non-
strict semantics is adopted, due to the presence of point intervals, as pointed out in
[4]; second, when point intervals are included there seems to be no intuitive semantics
for interval relations that makes them both pairwise disjoint and jointly exhaustive.

If we exclude the identity relation, there are 12 different relations between two
strict intervals in a linear order, often called Allen’s relations [4]: the six relations
RA (adjacent to), RL (later than), RB (begins), RE (ends), RD (during), and RO
(overlaps), depicted in Figure 1, and their inverses, that is, RX = (RX)−1, for each
X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations play-
ing the role of the accessibility relations. Thus, we associate a modality 〈X〉 with
each Allen relation RX . For each X ∈ {A,L,B,E,D,O}, the transpose of modality
〈X〉 is modality 〈X〉, corresponding to the inverse relation RX of RX .

2.1 Syntax and semantics

Halpern and Shoham’s logic HS [22] is a multi-modal logic with formulae built from
a finite, non-empty set AP of atomic propositions (also referred to as proposition
letters), the propositional connectives ∨ and ¬, and a modality for each Allen rela-
tion. With every subset {RX1 , . . . , RXk

} of these relations, we associate the fragment
X1X2 . . .Xk of HS, whose formulae are defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

where p ∈ AP. The other propositional connectives and constants (e.g., ∧, →, and
>), as well as the universal modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in the
standard way. For a fragment F = X1X2 . . .Xk and a modality 〈X〉, we write 〈X〉 ∈ F
if X ∈ {X1, . . . , Xk}. Given two fragments F1 and F2, we write F1 ⊆ F2 if 〈X〉 ∈ F1
implies 〈X〉 ∈ F2, for every modality 〈X〉. Finally, for a fragment F = X1X2 . . .Xk
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and a formula ϕ, we write ϕ ∈ F or, equivalently, we say that ϕ is an F-formula,
meaning that ϕ belongs to the language of F .

The (strict) semantics of HS is given in terms of interval models M = 〈I(D), V 〉,
where D is a linear order, I(D) is the set of all (strict) intervals over D, and V is
a valuation function V : AP → 2I(D), which assigns to every atomic proposition
p ∈ AP the set of intervals V (p) on which p holds. The truth of a formula on a given
interval [a, b] in an interval model M is defined by structural induction on formulae
as follows:

– M, [a, b]  p if and only if [a, b] ∈ V (p), for each p ∈ AP;
– M, [a, b]  ¬ψ if and only if it is not the case that M, [a, b]  ψ;
– M, [a, b]  ϕ ∨ ψ if and only if M, [a, b]  ϕ or M, [a, b]  ψ;
– M, [a, b]  〈X〉ψ if and only if there exists an interval [c, d] such that [a, b]RX [c, d]

and M, [c, d]  ψ, for each modality 〈X〉.

Formulae of HS can be interpreted over a given class of interval models. For the sake
of brevity (and with a benign abuse of notation), for a given class of linear orders
C, we identify the class of interval models over linear orders in C with the class C
itself. Thus, we will use, for example, the expression ‘formulae of HS are interpreted
over the class C of linear orders’ instead of the extended one ‘formulae of HS are
interpreted over the class of interval models over linear orders in C’. Among others,
we mention the following important classes of linear orders:

(i) the class of all linear orders Lin;
(ii) the class of (all) dense linear orders Den, that is, those in which for every pair

of distinct points there exists at least one point in between them — e.g., Q and
R;

(iii) the class of (all) discrete linear orders, that is, those in which every element,
apart from the greatest element, if it exists, has an immediate successor, and
every element, other than the least element, if it exists, has an immediate
predecessor — e.g., N, Z, and Z + Z2 ;

(iv) the class of (all) finite linear orders, that is, those having only finitely many
points.

All the classes of linear orders we consider in this paper are (left/right) symmetric,
namely, if a class C contains a linear order D = 〈D,≺〉, then it also contains (a linear
order isomorphic to) its dual linear order Dd = 〈D,�〉, where � is the inverse of ≺.

A formula φ of HS is valid over a class C of linear orders, denoted by C φ, if
it is true on every interval in every interval model belonging to C. Two formulae φ
and ψ are equivalent relative to the class C of linear orders, denoted by φ ≡C ψ, if
C φ↔ ψ.

2.2 Definability and expressiveness

The following definition formalizes the notion of definability of modalities in terms
of others.

2 In the literature, these are sometimes called weakly discrete linear orders, to distinguish
them from the so-called strongly discrete ones, where, for every pair of distinct points, there
are only finitely many points in between them — e.g., N, Z, but not Z + Z.
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Definition 1 (definability) A modality 〈X〉 of HS is definable in an HS fragment
F relative to a class C of linear orders, denoted 〈X〉�C F , if 〈X〉p ≡C ψ for some F-
formula ψ over the atomic proposition p, for any p ∈ AP. The equivalence 〈X〉p ≡C ψ
is called a definability equation for 〈X〉 in F relative to C. We write 〈X〉 6� CF if 〈X〉
is not definable in F relative to C.

In the rest of the paper, we will omit the class of linear orders when it is clear from
the context (e.g., we will simply write 〈X〉p ≡ ψ and 〈X〉�F instead of 〈X〉p ≡C ψ
and 〈X〉�C F , respectively). As we already noticed, smaller classes of linear orders
inherit the definabilities holding for larger classes. Formally, if C1 and C2 are classes
of linear orders such that C1 ⊂ C2, then all definabilities holding for C2 are also valid
for C1. However, more definabilities can possibly hold for C1. On the other hand,
undefinability results for C1 hold also for C2.

It is known from [22] that in the strict semantics all HS modalities are definable
in the fragment containing modalities 〈A〉, 〈B〉, and 〈E〉, and their transposes 〈A〉,
〈B〉, and 〈E〉. (In the non-strict semantics, the four modalities 〈B〉, 〈E〉, 〈B〉, and
〈E〉 suffice, as shown in [33].) For example, the modalities 〈L〉 and 〈D〉 are defin-
able by means of the definability equations 〈L〉p ≡ 〈A〉〈A〉p and 〈D〉p ≡ 〈B〉〈E〉p,
respectively.

In this paper, we compare and classify the expressiveness of all HS fragments with
respect to the class of all linear orders and to the class of all dense linear orders.
Formally, let F1 and F2 be any pair of such fragments. For a given class C of linear
orders, we say that:

– F2 is at least as expressive as F1, denoted by F1 � F2, if each modality 〈X〉 ∈ F1
is definable in F2;

– F1 is strictly less expressive than F2 (or, equivalently, F2 is strictly more ex-
pressive than F1), denoted by F1 ≺ F2, if F1 � F2 holds, but F2 � F1 does
not;

– F1 and F2 are equally expressive (or expressively equivalent), denoted by F1 ≡ F2,
if both F1 � F2 and F2 � F1 hold;

– F1 and F2 are expressively incomparable if neither F1 � F2 nor F2 � F1 hold.

Now, we define the notion of optimal definability, relative to a class C of linear
orders, as follows.

Definition 2 (optimal definability) A definability 〈X〉�F is optimal if 〈X〉 6�F ′
for each fragment F ′ such that F ′ ≺ F .

Our main technical contribution is to provide the complete (i.e., maximal with
respect to set inclusion) set of optimal definabilities among modalities of HS. In
other words, we identify a set of optimal definabilities and then we show that no
more definabilities exist. In order to show non-definability of a given modality in
an HS fragment, we use a standard technique in modal logic, based on the notion
of bisimulation and the invariance of modal formulae with respect to bisimulations
(see, e.g., [7,23]).

Let F be an HS fragment. An F-bisimulation between two interval models M =
〈I(D), V 〉 and M ′ = 〈I(D′), V ′〉 over a set of proposition letters AP is a relation
Z ⊆ I(D)× I(D′) satisfying the following properties:

– local condition: Z-related intervals satisfy the same atomic propositions in AP;
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– forward condition: if [a, b]Z[a′, b′] and [a, b]RX [c, d] for some 〈X〉 ∈ F , then there
exists some [c′, d′] such that [a′, b′]RX [c′, d′] and [c, d]Z[c′, d′];

– backward condition: if [a, b]Z[a′, b′] and [a′, b′]RX [c′, d′] for some 〈X〉 ∈ F , then
there exists some [c, d] such that [a, b]RX [c, d] and [c, d]Z[c′, d′].

The important property of bisimulations used here is that every F-bisimulation pre-
serves the truth of all F-formulae, that is, if [a, b]Z[a′, b′] and Z is an F-bisimulation,
then [a, b] and [a′, b′] satisfy exactly the same F-formulae. Thus, in order to prove
that a modality 〈X〉 is not definable in F , it suffices to construct a pair of interval
modelsM = 〈I(D), V 〉 andM ′ = 〈I(D′), V ′〉, and an F-bisimulation Z between them,
relating a pair of intervals [a, b] ∈ I(D) and [a′, b′] ∈ I(D′), such that M, [a, b]  〈X〉p
and M ′, [a′, b′] 6 〈X〉p. In this case, we say that Z violates 〈X〉. It is worth pointing
out that non-definability results obtained using bisimulations are not restricted to
the finitary logics we consider in this paper, but also apply to extensions with infinite
disjunctions and with fixed-point operators (see, e.g., [7, App. A] or [31, Prop. 3, p.
71, and Prop. 2, p. 113]).

3 A summary of the results

As we have already pointed out, every subset of the set of the 12 modalities corre-
sponding to Allen’s relations gives rise to a fragment of HS. There are 212 (the car-
dinality of the powerset of the set of HS modalities) such fragments. Due to possible
definabilities of some of these modalities in terms of others, not all these fragments
are expressively different. We consider here the problem of obtaining a complete
classification of all HS fragments with respect to their expressive power over the
considered classes of linear orders. In other words, for any two HS fragments, we
want to determine how they relate to each other with respect to expressiveness, that
is, whether one is strictly less expressive than the other, or they are expressively
equivalent, or they are incomparable.

In order to obtain such a classification, all we need to do is to provide a complete
set of optimal definabilities between HS modalities. Indeed, having such a set, it is
immediate to decide how any two given fragments relate with respect to their expres-
siveness. Table 1 presents such a complete set of optimal definabilities, partitioned
in three groups (top, middle, and bottom). Some of them (group on the top) were
already known from [22] to hold with respect to the class of all linear orders Lin and,
consequently, with respect to the class of all dense linear orders Den; the rest (group
in the middle and group at the bottom) are the subject of the present work: the
definabilities in the group in the middle hold for both classes Lin and Den; the ones
in the group at the bottom only hold for the class Den.

This paper is devoted to proving that Table 1 does present a complete set of
optimal definabilities. To this end, as a first step, we need to identify for each operator
〈X〉 all maximal HS fragments that cannot express 〈X〉 using the definabilities in
Table 1. We call this task the MaxUndef problem. For those HS operators that
are definable by means of only few definabilities, e.g., 〈D〉 and 〈O〉, or for those that
are not definable at all in terms of the others, e.g., 〈A〉, 〈B〉, and 〈E〉, such a task
is trivial and can be carried out by hand. However, in general solving MaxUndef
turns out to be quite time consuming when the operator under consideration has a
large number of definabilities (this is the case, for instance, with the HS modality
〈L〉 and the operators of the logic studied in [6]). To solve the MaxUndef problem
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Bibliography Equations Definabilities Linear orders

[# of fragments]

[22] 〈L〉p ≡ 〈A〉〈A〉p 〈L〉� A Lin [1347]

〈L〉p ≡ 〈A〉〈A〉p 〈L〉� A (and thus Den)

〈O〉p ≡ 〈E〉〈B〉p 〈O〉� BE

〈O〉p ≡ 〈B〉〈E〉p 〈O〉� BE

〈D〉p ≡ 〈E〉〈B〉p 〈D〉� BE

〈D〉p ≡ 〈E〉〈B〉p 〈D〉� BE

[this paper] 〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p 〈L〉� BE

〈L〉p ≡ 〈E〉[B]〈E〉〈B〉p 〈L〉� BE

〈L〉p ≡ 〈O〉(〈O〉> ∧ [O]〈D〉〈O〉p) 〈L〉� DO Den [966]

〈L〉p ≡ 〈O〉(〈O〉> ∧ [O]〈D〉〈O〉p) 〈L〉� DO (but not Lin)

〈L〉p ≡ 〈B〉[D]〈B〉〈D〉〈B〉p 〈L〉� BD

〈L〉p ≡ 〈E〉[D]〈E〉〈D〉〈E〉p 〈L〉� ED

〈L〉p ≡ 〈O〉[E]〈O〉〈O〉p 〈L〉� EO

〈L〉p ≡ 〈O〉[B]〈O〉〈O〉p 〈L〉� BO

〈L〉p ≡ 〈O〉(〈O〉>∧ [O]〈B〉〈O〉〈O〉p) 〈L〉� BO

〈L〉p ≡ 〈O〉(〈O〉>∧ [O]〈E〉〈O〉〈O〉p) 〈L〉� EO

〈L〉p ≡ 〈O〉(〈O〉> ∧ [O][L]〈O〉〈O〉p) 〈L〉� LO

〈L〉p ≡ 〈O〉(〈O〉> ∧ [O][L]〈O〉〈O〉p) 〈L〉� LO

Table 1 Complete set of optimal definabilities.

for the modalities 〈L〉 and 〈L〉, we have used the automated procedure designed and
implemented in [1].

It is worth pointing out that the MaxUndef problem is interesting in its own
right, thanks to its connections, established in [1], with other well-known classic
problems in different areas of computer science, such as the problem of finding all the
maximal models of a given Horn theory (which has been shown to be polynomially
equivalent to MaxUndef), or the problem of enumerating all the hitting sets of a
given hyper-graph (which can be seen as a restriction of MaxUndef to a specific,
well-defined class of instances — see [1] for a detailed account).

Once the preliminary task MaxUndef has been performed, it is possible to
disprove the existence of more definabilities using the notion of bisimulation as de-
scribed at the end of Section 2. To this end, we provide, for each 〈X〉 and each
maximal fragment F identified in the preliminary phase, an F-bisimulation that
violates 〈X〉. As a matter of fact, thanks to the symmetry of the classes of linear
orders under consideration and using the intrinsic ‘duality’ between some HS modal-
ities, it is enough to perform the above described process for only one modality in
each pair of ‘dual’ modalities. Thus, before proceeding further, we formalize here the
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concepts of dual HS operators and dual HS fragments. We say that two HS oper-
ators 〈X〉 and 〈Y 〉 are dual if and only if (〈X〉, 〈Y 〉) ∈ S, where S is the relation
defined as S = {(〈A〉, 〈A〉), (〈A〉, 〈A〉), (〈L〉, 〈L〉), (〈L〉, 〈L〉), (〈B〉, 〈E〉), (〈B〉, 〈E〉),
(〈E〉, 〈B〉), (〈E〉, 〈B〉), (〈D〉, 〈D〉), (〈D〉, 〈D〉), (〈O〉, 〈O〉), (〈O〉, 〈O〉)}. To define the
notion of dual fragments, we lift the relation S to a relation between fragments,
denoted by Ŝ and defined as Ŝ = {(F1,F2) | ∀〈X〉 ∈ F1 ∃〈Y 〉 ∈ F2.(〈X〉, 〈Y 〉) ∈ S
and ∀〈Y 〉 ∈ F2 ∃〈X〉 ∈ F1.(〈Y 〉, 〈X〉) ∈ S}. We say that two fragments F1 and F2
are dual if and only if (F1,F2) ∈ Ŝ. Not surprisingly, both relations S and Ŝ are
symmetric. In addition, notice that they are, in fact, functions. Therefore, we may
denote by S(〈X〉) (resp., Ŝ(F1)) the unique 〈Y 〉 (resp., F2) such that (〈X〉, 〈Y 〉) ∈ S
(resp., (F1,F2) ∈ Ŝ). Now, we can state the following proposition, which will simplify
our proofs in Section 5.

Proposition 1 Let 〈X1〉 and 〈X2〉 be two dual HS modalities and C be a symmetric
class of linear orders. Then, 〈X1〉 is definable in an HS fragment F relative to the
class C if and only if 〈X2〉 is definable in Ŝ(F) relative to the class C.

Proof Let ϕ be an F-formula andM be a model in C. The dual formula of ϕ, denoted
by ϕD, is obtained from ϕ by replacing every modality with its dual. It is clear that
ϕD ∈ Ŝ(F). The dual model ofM , denoted byMD, is defined asMD = 〈I(DD), V D〉,
where:

– DD ∈ C is (a linear order isomorphic to) the dual of D, whose existence is guar-
anteed by the symmetry of C. By the duality of D and DD, there exists an
order-preserving isomorphism between the elements of D and the ones of DD.
Let us denote it by ξ;

– V D : AP → 2I(DD) is defined as follows: V D(p) = {[ξ(b), ξ(a)] ∈ I(DD) | [a, b] ∈
V (p)}, for each p ∈ AP.

Since C is symmetric, MD belongs to C as well. In order to prove the proposition,
we use the following general observation, which can be easily shown using structural
induction on formulae (we omit the details, which are straightforward):

M, [a, b]  ϕ if and only if MD, [ξ(b), ξ(a)]  ϕD, (1)

for each model M ∈ C, each interval [a, b] over M , and each formula ϕ ∈ F .
Now, let us suppose that 〈X1〉 is definable in F relative to the class C, due to

the definability equation 〈X1〉p ≡ ψ. This means that the formula 〈X1〉p ↔ ψ is
valid (over C). Since 〈X1〉p↔ ψ and 〈X2〉p↔ ψD are dual, it follows from (1) that
〈X2〉p↔ ψD is valid (over C), which implies that 〈X2〉 is definable in Ŝ(F) relative
to the class C. The converse implication can be shown following the same argument.

ut

Table 2 shows the outcome of the preliminary step MaxUndef. Precisely, for
each modality 〈X〉 (dual modalities are coupled together in the rows of the table)
and for both the considered classes of linear orders Lin and Den, the table lists all
the maximal HS fragments F in which 〈X〉 is not definable using the definabilities
of Table 1 (fourth column). In addition, for each such fragment F , we identify the
minimal fragment F ′ that is expressively equivalent to F (fifth column). Finally, the
last column refers to the lemma or corollary containing the proof of non-definability
of 〈X〉 in F relative to the classes of linear orders specified in the second and third
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Operators Lin Den M(X): maximal F
s.t. 〈X〉 6�F

µ(X): minimal F ′

s.t. F ′ ≡ F
Lemma/

Corollary

〈L〉/ 〈L〉 • BEDOALEDO / EBDOALBDO BEOAED / EBOABD Lem. 3

• BDOALBEDO / EDOALEBDO BDOABE / EDOAEB Lem. 4

〈L〉/ 〈L〉 • BALBEDO / EALEBDO BABE / EAEB Lem. 5

• BEDALEDO / EBDALBDO BEAED / EBABD Lem. 7

• OBEDO / OEBDO OBEO / OEBO Lem. 8

〈E〉/ 〈B〉 • • ALBDOALBEDO / ALEDOALEBDO ABDOABE / AEDOAEB Lem. 9

〈E〉/ 〈B〉 • • ALBEDOALBDO / ALEBDOALEDO ABEABDO / AEBAEDO Lem. 10

〈A〉/ 〈A〉 • • LBEDOALBEDO / LEBDOALEBDO BEABE / EBAEB Lem. 11

〈D〉 • • ALBOALBEDO ABOABE Lem. 12

• • ALEOALBEDO AEABEO Cor. 7

〈D〉 • • ALBEDOALBO ABEABO Lem. 13

• • ALBEDOALEO ABEOAE Cor. 8

〈O〉/ 〈O〉 • • ALBEDALEDO / ALEBDALBDO ABEAED / AEBABD Lem. 14

• • ALBDALBEDO / ALEDALEBDO ABDABE / AEDAEB Lem. 15

Table 2 Maximal fragments that do not define 〈X〉 according to definabilities in Table 1.

column. For instance, consider the first two rows of the table. The first column tells
us that they refer to the operator 〈L〉 (and to the dual operator 〈L〉). The second
and the third column discriminate the class of linear orders, which is, in the example
under consideration, the class Lin. The fourth column contains, on the left of the
slash symbol ‘/’, the maximal HS fragments in which 〈L〉 is not definable using
the definabilities of Table 1, namely BEDOALEDO and BDOALBEDO, and, on the
right of the slash symbol ‘/’, the maximal HS fragments in which 〈L〉 is not definable
using the definabilities of Table 1, namely EBDOALBDO and EDOALEBDO. The fifth
column contains the minimal fragments that are expressively equivalent to the ones
listed in the fourth column, namely, BEOAED, BDOABE, EBOABD, and EDOAEB,
respectively. The last column refers to Lemma 3 and Lemma 4, which prove that 〈L〉
is definable neither in BEDOALEDO nor in BDOALBEDO relative to the class Lin.
Notice that fragments coupled together (in the same row) in either the fourth or the
fifth column are always dual, since they correspond to dual modalities.

In what follows, we first prove in Section 4 the validity of the new definabilities
given in this paper, that is, the ones that appear in the middle and bottom groups
in Table 1; then, following the above-described pattern, we prove in Section 5 that
Table 1 contains a complete set of optimal definabilities relative to each of the classes
Lin and Den. While proving soundness of the given sets of definability equations is
quite straightforward, proving their completeness is a non-trivial task, which requires
a deep understanding of the expressive power of a fragment of HS and the, often very
delicate, construction of bisimulations relating carefully constructed interval models.
We note that, even though all the definabilities for all the operators but 〈L〉 and 〈L〉
have been known since [22], no proof of their completeness was available so far.
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4 Soundness

We only need to prove the soundness of the set of definability equations listed in
the second and third groups of Table 1. As already pointed out, since 〈L〉 and 〈L〉
are dual, we focus on the definabilities for 〈L〉, and we will use the symmetry of
the linear order to obtain the result for 〈L〉 as well. The following lemma states the
soundness of the only definability for 〈L〉 listed in the second group of Table 1.

Lemma 1 (soundness for 〈L〉 over Lin) 〈L〉 is definable in BE relative to the
class Lin.

Proof We have to prove that the equivalence 〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p holds over Lin.
First, we prove the left-to-right direction. To this end, suppose that M, [a, b]  〈L〉p
for some model M and interval [a, b]. This means that there exists an interval [c, d]
such that b < c and M, [c, d]  p. We exhibit an interval [a, y], with y > b such that,
for every x (strictly) in between a and y, the interval [x, y] is such that there exist
two points y′ and x′ such that y′ > y, x < x′ < y′, and [x′, y′] satisfies p. Let y
be equal to c. The interval [a, c], which is started by [a, b], is such that for any of
its ending intervals, that is, for any interval of the form [x, c], with a < x, we have
that x < c < d and M, [c, d]  p. As for the other direction, we must show that
〈B〉[E]〈B〉〈E〉p implies 〈L〉p. To this end, suppose that M, [a, b]  〈B〉[E]〈B〉〈E〉p
for a model M and an interval [a, b]. Then, there exists an interval [a, c], for some
c > b, such that [E]〈B〉〈E〉p is true on [a, c]. As a consequence, the interval [b, c] must
satisfy 〈B〉〈E〉p, which means that there are two points x and y such that y > c,
b < x < y, and [x, y] satisfies p. Since x > b, it follows that M, [a, b]  〈L〉p. ut

The following corollary, which is a direct consequence of Proposition 1 and
Lemma 1, states the soundness of the only definabilities for 〈L〉 listed in the sec-
ond group of Table 1.
Corollary 1 (soundness for 〈L〉 over Lin) 〈L〉 is definable in BE relative to the
class Lin.

In the following lemma, we prove the soundness of the definabilities for 〈L〉
holding over the class Den only (and not in Lin — third group in Table 1).

Lemma 2 (soundness for 〈L〉 over Den) The following definabilities hold relative
to the class Den:
– 〈L〉 is definable in DO,
– 〈L〉 is definable in BD,
– 〈L〉 is definable in EO,
– 〈L〉 is definable in BO and
– 〈L〉 is definable in LO.

Proof We only present here the proof for the definability of 〈L〉 in DO. The proofs
for the other definabilities can be found in Appendix A.

Consider the equivalence 〈L〉p ≡ 〈O〉(〈O〉> ∧ [O]〈D〉〈O〉p) interpreted over the
class Den. First, suppose thatM, [a, b]  〈L〉p for an interval [a, b] in a modelM . We
want to prove that M, [a, b]  〈O〉(〈O〉> ∧ [O]〈D〉〈O〉p) holds as well. By M, [a, b] 
〈L〉p, it follows that there exists an interval [c, d] inM such that b < c andM, [c, d] 
p. Consider an interval [a′, c], with a < a′ < b (the existence of such a point a′ is
guaranteed by the density of the linear order). It is such that [a, b]RO[a′, c] and it
satisfies:
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– 〈O〉>, as [a′, c]RO[b, d], and
– [O]〈D〉〈O〉p, as every interval [e, f ], with [a′, c]RO[e, f ], is such that e < c < f ,

and thus, by density, there exists an interval [e′, f ′] such that [e, f ]RD[e′, f ′]
and [e′, f ′]RO[c, d], which implies M, [e, f ]  〈D〉〈O〉p, which in turn implies
M, [a′, c]  [O]〈D〉〈O〉p.

Hence, M, [a′, c]  〈O〉> ∧ [O]〈D〉〈O〉p and M, [a, b]  〈O〉(〈O〉> ∧ [O]〈D〉〈O〉p).
As for the opposite direction, let us assume that M, [a, b]  〈O〉(〈O〉> ∧

[O]〈D〉〈O〉p) for an interval [a, b] in a model M . That means that there exists an
interval [c, d], with [a, b]RO[c, d], such that:

– M, [c, d]  〈O〉>, and thus there exists a point e > d, and
– M, [c, d]  [O]〈D〉〈O〉p.

The interval [b, e] is such that [c, d]RO[b, e], and thus, by the second condition above,
it satisfies 〈D〉〈O〉p. Therefore, there exist an interval [f, g] such that [b, e]RD[f, g],
and an interval [h, i] such that [f, g]RO[h, i] and p holds over [h, i]. Since h > b, we
conclude that M, [a, b]  〈L〉p. ut

The following corollary, which immediately follows from Proposition 1 and
Lemma 2, states the soundness of the remaining definabilities.

Corollary 2 The following definabilities hold relative to the class Den:

– 〈L〉 is definable in DO,
– 〈L〉 is definable in ED,
– 〈L〉 is definable in BO,
– 〈L〉 is definable in EO and
– 〈L〉 is definable in LO.

5 Completeness

As we have already pointed out, proving completeness of the set of definabilities is the
most difficult task in obtaining the expressiveness classification we seek. Following
the general pattern described in Section 3, we first compute, for each operator 〈X〉,
the set M(X) (4th column of Table 2), containing all the maximal fragments F
in which 〈X〉 is not definable using the definabilities of Table 1 (i.e., 〈X〉 6�F for
each F ∈ M(X)). Then, for each modality 〈X〉 and each fragment F ∈ M(X), we
compute the minimal fragment F ′ such that F ′ ≡ F , according to the definabilities of
Table 1 (note that there exists exactly one such a fragment F ′ for each operator 〈X〉
and each F ∈M(X)). We collect such fragments in the set µ(X) = {F ′ | F ∈ M(X)
and F ′ is the minimal fragment such that F ′ ≡ F} (fifth column of Table 2). Finally,
we provide an F ′-bisimulation that violates 〈X〉, for each modality 〈X〉 and each
fragment F ′ ∈ µ(X).

As we have already pointed out, thanks to the symmetry of the classes of linear
orders and to the duality of HS modalities and fragments, it suffices to focus on one
modality for each pair of dual modalities only. For the sake of readability, we omit
the details for the most technical parts of most of the proofs in this section. For a
more detailed account of the proofs, the interested reader can refer to the appendix.
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5.1 Completeness for 〈L〉/〈L〉: Case Lin

In this subsection, we prove that the set of optimal definabilities listed in Table 1 for
〈L〉 and 〈L〉 is complete relative to the class Lin. To this end, we show that 〈L〉 is not
definable in either of the maximal fragments BEOAED and BDOABE (see Table 2).

Lemma 3 〈L〉 is not definable in BEOAED relative to the class Lin.

Proof Let M1 = 〈I(N), V1〉 and M2 = 〈I(N), V2〉 be two models and let V1 and V2 be
such that V1(p) = {[2, 3]} and V2(p) = ∅, where p is the only proposition letter of the
language. Moreover, let Z be a relation between (intervals of) M1 and M2 defined
as:

Z = {([0, 1], [0, 1])}.
It can be easily shown that Z is a BEOAED-bisimulation. The local property is
trivially satisfied since all Z-related intervals satisfy ¬p. As for the forward and
backward conditions, it suffices to notice that, starting from the interval [0, 1], it is
not possible to reach any other interval using any of the modalities of the fragment.
At the same time, Z violates 〈L〉. Indeed, [0, 1]Z[0, 1] and M1, [0, 1]  〈L〉p, but
M2, [0, 1]  ¬〈L〉p. Thus, we can conclude that 〈L〉 is not definable in BEOAED
relative to the class Lin. ut

Lemma 4 〈L〉 is not definable in BDOABE relative to the class Lin.

Proof Let M1 = 〈I(Z−), V1〉 and M2 = 〈I(Z−), V2〉 be two models based on the
set Z− = {. . . ,−2,−1} of the negative integers, and let V1 and V2 be such that
V1(p) = {[−2,−1]} and V2(p) = ∅, where p is the only proposition letter of the
language. Moreover, let Z be the relation between (intervals of) M1 and M2 defined
as follows:

[x, y]Z[w, z]⇔ [x, y] = [w, z] and [x, y] 6= [−2,−1].
We prove that Z is a BDOABE-bisimulation. First, the local property is trivially
satisfied since all Z-related intervals satisfy ¬p. Moreover, starting from any interval,
the only interval that satisfies p, viz., [−2,−1], cannot be reached using the set of
modal operators featured by our fragment. At the same time, Z violates 〈L〉, as
[−4,−3]Z[−4,−3] and M1, [−4,−3]  〈L〉p, but M2, [−4,−3]  ¬〈L〉p. The thesis
immediately follows. ut

By Proposition 1, Lemma 3, and Lemma 4, the following corollary holds.
Corollary 3 The following non-definabilities hold relative to the class Lin:
– 〈L〉 is not definable in EBOABD and
– 〈L〉 is not definable in EDOAEB.

5.2 Completeness for 〈L〉/〈L〉: Case Den

The case Den is more complicated than the case Lin. The bisimulations of this
section, one for each of the three fragments indicated in Table 2, namely, BABE,
BEAED, and OBEO, make use of the following observation. If D is a dense lin-
ear order without least and greatest elements, then for each [a, b] ∈ I(D) and
X ∈ {A,L,B,E,D,O,A,L,B,E, D,O} there exists an interval [c, d] ∈ I(D) such
that [a, b]RX [c, d]. In addition, the following general result, which will be used in the
proofs, holds.
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Proposition 2 Let F be an HS fragment and Z be a symmetric relation between
two interval models that satisfies the forward condition with respect to F (i.e., if
[a, b]Z[a′, b′] and [a, b]RX [c, d] hold for some modality 〈X〉 ∈ F , then there exists
an interval [c′, d′] such that [a′, b′]RX [c′, d′] and [c, d]Z[c′, d′] hold as well). Then, Z
satisfies the backward condition with respect to F as well (i.e., if [a, b]Z[a′, b′] and
[a′, b′]RX [c′, d′] hold for some modality 〈X〉 ∈ F , then there exists an interval [c, d]
such that [a, b]RX [c, d] and [c, d]Z[c′, d′] hold as well).

Proof Suppose that [a, b]Z[a′, b′] and [a′, b′]RX [c′, d′] hold for some 〈X〉 ∈ F . We
need to find an interval [c, d] such that [a, b]RX [c, d] and [c, d]Z[c′, d′] hold. By sym-
metry, we have that [a′, b′]Z[a, b] holds, as well. Then, by the forward condition, we
know that there exists an interval [c, d] such that [a, b]RX [c, d] and [c′, d′]Z[c, d] hold.
By symmetry [c, d]Z[c′, d′] also holds, hence the backward condition is fulfilled. ut

Lemma 5 〈L〉 is not definable in BABE relative to the class Den.

Proof Consider the two interval models M and M ′, defined as M = 〈I(R), V 〉 and
M ′ = 〈I(R), V ′〉, respectively, where V (p) = {[a, b] | a, b ∈ Q or a, b ∈ Q} and
V ′(p) = {[a′, b′] | a′ ≤ 0 and (a′, b′ ∈ Q or a′, b′ ∈ Q)} (recall that Q = R \ Q).
Moreover, let Z = {([a, b], [a′, b′]) | a′ ≤ −1 and M, [a, b]  p iff M ′, [a′, b′]  p}.

It immediately follows from definition that the local condition is satisfied.
As for the forward condition, consider a pair ([a, b], [a′, b′]) of Z-related intervals.

By definition of Z, it holds that a′ ≤ −1 (and thus a′ ≤ 0). LetX ∈ {B,A,B,E}. For
every interval [c′, d′], with [a′, b′]RX [c′, d′], it holds that c′ ≤ −1 (and thus c′ ≤ 0).

Since Q and Q are both dense and unbounded, there exist (i) an interval [c′′, d′′],
such that [a′, b′]RX [c′′, d′′], with c′′, d′′ ∈ Q or c′′, d′′ ∈ Q, and (ii) an interval
[c′′′, d′′′], such that [a′, b′]RX [c′′′, d′′′], with c′′′ ∈ S, d′′′ ∈ S′ for some S,S′ ∈ {Q,Q},
with S 6= S′. Therefore, for every [c, d] such that [a, b]RX [c, d], there exists [c′, d′]
such that [a′, b′]RX [c′, d′] and [c, d]Z[c′, d′].

The backward condition can be checked with an analogous argument.
It is now immediate to check that [−1, 0]Z[−1, 0],M, [−1, 0]  〈L〉p (asM, [1, 2] 

p) and M ′, [−1, 0]  ¬〈L〉p (as no interval [c, d], with c > 0, satisfies p in M ′). Thus,
Z is a BABE-bisimulation that violates 〈L〉, from which the thesis follows. ut

In order to build a BEAED-bisimulation that violates 〈L〉 (Lemma 7 below), we
use the following technical result, whose proof is trivial and thus omitted. Consider
the function f : R→ {x ∈ R | x < 1}, defined as follows:

f(x) =
{
x− 1 if x ≤ 1
1− 1

x if x > 1 (2)

Lemma 6 The function f is a monotonically increasing bijection from R to (−∞, 1)
such that f(x) < x for every x ∈ R.

Using the above lemma, we are now ready to prove the following result.

Lemma 7 〈L〉 is not definable in BEAED relative to the class Den.

Proof Consider two interval models M and M ′, defined as M = M ′ = 〈I(R), V 〉,
where V (p) = {[a, b] | a = f(b)} and where f is the function defined as in (2). In
addition, let Z = {([a, b], [a′, b′]) | a ∼ f(b), a′ ∼ f(b′) where ∼∈ {<,=, >}} (see
Fig. 2). It is immediate to check that [−1, 0]Z[0, 1] (as f(0) = −1 and f(1) = 0),
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no intervals satisfying p start here
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Fig. 2 BEAED-bisimulation that violates 〈L〉, relative to Den.

M, [−1, 0]  〈L〉p (as M, [0.5, 2]  p because f(2) = 0.5), and M ′, [0, 1]  ¬〈L〉p (as
no interval [c, d], with c > 1, satisfies p, given that no c > 1 is in the image of f).

In order to show that Z is a BEAED-bisimulation, consider a pair ([a, b], [a′, b′])
of Z-related intervals. The following chain of double implications holds:

M, [a, b]  p⇔ a = f(b)⇔ a′ = f(b′)⇔M ′, [a′, b′]  p.

This implies that the local condition holds.
The proof for the forward condition is technically involved, so we omit its details

here and refer the interested reader to Appendix B for the full proof. Since Z is
symmetric, the backward condition immediately follows from Proposition 2.

This allows us to conclude that Z is a BEAED-bisimulation that violates 〈L〉, and
thus the thesis. ut

Lemma 8 〈L〉 is not definable in OBEO relative to the class Den.

Proof Consider the two interval models M and M ′, defined as M = M ′ = 〈I(R), V 〉,
where V (p) = {[−a, a] | a ∈ R} (observe that no interval [c, d], with c ≥ 0, satisfies p).
Moreover, let Z = {([a, b], [a′, b′]) | −a ∼ b and − a′ ∼ b′ for some ∼∈ {<,=, >}}
(see Fig. 3). It is immediate to check that [−4,−2]Z[−4, 2], M, [−4,−2]  〈L〉p (as
M, [−1, 1]  p), and M ′, [−4, 2]  ¬〈L〉p (as no interval [c, d], with c > 0, satisfies
p).

To show that Z is an OBEO-bisimulation, consider a pair ([a, b], [a′, b′]) of Z-
related intervals. The following chain of equivalences hold:

M, [a, b]  p⇔ −a = b⇔ −a′ = b′ ⇔M, [a′, b′]  p.

This implies that the local condition is satisfied.
The proof for the forward condition is technically involved, so we omit its details

here and refer the interested reader to Appendix C for the full proof. Since the
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Fig. 3 OBEO-bisimulation that violates 〈L〉, relative to Den.

relation Z is symmetric, by Proposition 2 we have that the backward condition is
satisfied as well.

Therefore, Z is an OBEO-bisimulation that violates 〈L〉, and the thesis follows.
ut

By Proposition 1, Lemma 5, Lemma 7, and Lemma 8, the following corollary
holds.

Corollary 4 The following non-definabilities hold relative to the class Den:

– 〈L〉 is not definable in EAEB,
– 〈L〉 is not definable in EBABD and
– 〈L〉 is not definable in OEBO.

5.3 Completeness for 〈E〉/〈E〉/〈B〉/〈B〉: Cases Lin and Den

Lemma 9 〈E〉 is not definable in ABDOABE relative to the classes Lin and Den.

Proof Let M1 = 〈I(R), V1〉 and M2 = 〈I(R), V2〉, where

– p is the only proposition letter of the language,
– the valuation function V1 : AP → 2I(R) is defined as: [x, y] ∈ V1(p) ⇔ x ∈ Q if

and only if y ∈ Q, and
– the valuation function V2 : AP → 2I(R) is given by: [w, z] ∈ V2(p) ⇔ w ∈ Q if

and only if z ∈ Q, and [0, 3]RE [w, z] does not hold.

Moreover, let Z be a relation between (intervals of) M1 and M2 defined as follows:
[x, y]Z[w, z]⇔[x, y] ∈ V1(p) if and only if [w, z] ∈ V2(p). It is easy to verify that
[0, 3]Z[0, 3] and M1, [0, 3]  〈E〉p, but M2, [0, 3]  ¬〈E〉p.

We show now that Z is an ABDOABE-bisimulation between M1 and M2.
The local condition immediately follows from the definition.
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The proof for the forward condition is technically involved, so we omit its details
here and refer the interested reader to Appendix D for the full proof. The backward
condition follows from Proposition 2.

Therefore, Z is an ABDOABE-bisimulation that violates 〈E〉, and thus the thesis.
ut

Lemma 10 〈E〉 is not definable in ABEABDO relative to the classes Lin and Den.

Proof The bisimulation we use to prove this result is very similar to the one used
in the proof of Lemma 9, and it is defined as follows. Let M1 = 〈I(R), V1〉 and
M2 = 〈I(R), V2〉, where

– p is the only proposition letter of the language,
– the valuation function V1 : AP → 2I(R) is defined as: [x, y] ∈ V1(p) ⇔ x ∈ Q if

and only if y ∈ Q, and
– the valuation function V2 : AP → 2I(R) is given by: [w, z] ∈ V2(p) ⇔ w ∈ Q if

and only if z ∈ Q, and [0, 3]RE [w, z] does not hold.

The relation Z is defined exactly as in the proof of Lemma 9: [x, y]Z[w, z]⇔[x, y] ∈
V1(p) if and only if [w, z] ∈ V2(p). Notice that the only difference between the previous
bisimulation for 〈E〉 and the new one for 〈E〉 is in the definition of the valuation
function V2: in the former bisimulation, an interval [w, z] satisfies ¬p if it is a suffix
of [0, 3], that is, [0, 3]RE [w, z], in the latter one, [w, z] satisfies ¬p if [0, 3] is a suffix
of it, that is, [0, 3]RE [w, z].

Following the lines of the proof of Lemma 9, it is not difficult to verify that the
newly-defined relation Z is an ABEABDO-bisimulation that violates 〈E〉. The thesis
immediately follows. ut

The following corollary is an immediate consequence of Proposition 1, Lemma 9,
and Lemma 10.

Corollary 5 The following non-definabilities hold relative to the classes Lin and
Den:

– 〈B〉 is not definable in AEDOAEB and
– 〈B〉 is not definable in AEBAEDO.

5.4 Completeness for 〈A〉/〈A〉: Cases Lin and Den

The following property of the set of real numbers R is needed here and in the next
subsection: R can be partitioned into any finite or countably infinite number of
pairwise disjoint subsets, each one of which is dense in R, that is, for each pair
of real numbers x and y, and for each set S in the partition of R, there exists a
real number w ∈ S such that x < w < y. To convince oneself of the validity of
such a claim, see, e.g., [30, Thm 7.11], where the property has been proved for Q;
likewise, it holds for Q and, consequently, for R. More formally, the claim is that
there are countably many nonempty sets Ri (resp., Qi, Qi), with i ∈ N, such that,
for each i ∈ N, Ri (resp., Qi, Qi) is dense in R, R =

⋃
i∈N Ri (resp., Q =

⋃
i∈N Qi,

Q =
⋃
i∈N Qi), and Ri ∩Rj = ∅, (resp., Qi ∩Qj = ∅, Qi ∩Qj = ∅), for each i, j ∈ N,

with i 6= j.
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Lemma 11 〈A〉 is not definable in BEABE relative to the classes Lin and Den.

Proof Let M1 = 〈I(R), V1〉 and M2 = 〈I(R), V2〉 be two models built on the only
proposition letter p. In order to define the valuation functions V1 and V2, we make
use of two partitions of the set R, one for M1 and the other for M2, each of them
consisting of four sets that are dense in R. Formally, for j = 1, 2 and i = 1, . . . , 4, let
Rij be dense in R. Moreover, for j = 1, 2, let R =

⋃4
i=1 R

i
j and Rij ∩Ri

′

j = ∅ for each
i, i′ ∈ {1, 2, 3, 4}, with i 6= i′. For the sake of simplicity, we impose the two partitions
to be equal and thus we can safely omit the subscript, that is, Ri1 = Ri2 = Ri for
each i ∈ {1, 2, 3, 4}. Thanks to this condition, the bisimulation relation Z, that we
define below, is symmetric. We force points in R1 (resp., R2, R3, R4) to behave in
the same way with respect to the truth of p/¬p over the intervals they initiate and
terminate by imposing the following constraints. For j = 1, 2:

∀x, y (if x ∈ R1, then Mj , [x, y]  ¬p);
∀x, y (if x ∈ R2, then Mj , [x, y]  ¬p);
∀x, y (if x ∈ R3, then (Mj , [x, y]  p iff y ∈ R1 ∪ R3));
∀x, y (if x ∈ R4, then (Mj , [x, y]  p iff y ∈ R2 ∪ R4)).

It can be easily shown that, from the given constraints, it immediately follows that:

∀x, y (if y ∈ R1, then (Mj , [x, y]  p iff x ∈ R3));
∀x, y (if y ∈ R2, then (Mj , [x, y]  p iff x ∈ R4));
∀x, y (if y ∈ R3, then (Mj , [x, y]  p iff x ∈ R3));
∀x, y (if y ∈ R4, then (Mj , [x, y]  p iff x ∈ R4)).

The above constraints together induce the following definition of the valuation func-
tions Vj(p) : AP → 2I(R):

[x, y] ∈ Vj(p)⇔ (x ∈ R3 ∧ y ∈ R1 ∪ R3) ∨ (x ∈ R4 ∧ y ∈ R2 ∪ R4).

Now, let Z be the relation between (intervals of) M1 and M2 defined as follows. Two
intervals [x, y] and [w, z] are Z-related if and only if at least one of the following
conditions holds:

1. x ∈ R1 ∪ R2 and w ∈ R1 ∪ R2;
2. x ∈ R3, w ∈ R3, and (y ∈ R1 ∪ R3 iff z ∈ R1 ∪ R3);
3. x ∈ R3, w ∈ R4, and (y ∈ R1 ∪ R3 iff z ∈ R2 ∪ R4);
4. x ∈ R4, w ∈ R3, and (y ∈ R2 ∪ R4 iff z ∈ R1 ∪ R3);
5. x ∈ R4, w ∈ R4, and (y ∈ R2 ∪ R4 iff z ∈ R2 ∪ R4).

It is worth pointing out that two intervals [x, y] and [w, z] that are Z-related are
such that if, for instance, both x and w belong to R3 (second clause), then either y
and z both occur in odd-numbered partitions or they both occur in even-numbered
partitions. Moreover, since the two partitions are equal, Z is symmetric.

Let us consider now two intervals [x, y] and [w, z] such that x ∈ R1, w ∈ R1,
y ∈ R3, and z ∈ R1. By definition of Z, [x, y] and [w, z] are Z-related, and by
definition of V1 and V2, there exists y′ > y such that M1, [y, y′]  p, but there is no
z′ > z such thatM2, [z, z′]  p. Thus,M1, [x, y]  〈A〉p andM2, [w, z]  ¬〈A〉p hold.

To complete the proof, it suffices to show that the relation Z is a BEABE-
bisimulation. It can be easily checked that every pair ([x, y], [w, z]) of Z-related
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intervals is such that either [x, y] ∈ V1(p) and [w, z] ∈ V2(p), or [x, y] 6∈ V1(p)
and [w, z] 6∈ V2(p).

The proof for the forward condition is technically involved, so we omit its details
here and refer the interested reader to Appendix E for the full proof. The backward
condition follows from the forward one, by applying Proposition 2.

Therefore, Z is a BEABE-bisimulation that violates 〈A〉, and the thesis immedi-
ately follows. ut

The following corollary follows from Proposition 1 and Lemma 11.

Corollary 6 〈A〉 is not definable in EBAEB relative to the classes Lin and Den.

5.5 Completeness for 〈D〉/〈D〉/〈O〉/〈O〉: Cases Lin and Den

In this section, we prove our completeness result for 〈D〉 (Lemma 12 and Corol-
lary 7), 〈D〉 (Lemma 13 and Corollary 8), 〈O〉 (Lemma 14 and Lemma 15), and 〈O〉
(Corollary 9).

Lemma 12 〈D〉 is not definable in ABOABE relative to the classes Lin and Den.

Proof As a first step, we define a pair of functions that will be used in the definition
of the models involved in the bisimulation relation Z. Let P(Q) = {Qq | q ∈ Q}
and P(Q) = {Qq | q ∈ Q} be countably infinite partitions of Q and Q, respectively,
such that for every q ∈ Q, both Qq and Qq are dense in R. For every q ∈ Q, let
Rq = Qq ∪Qq. We define a function g : R→ Q that maps every real number x to the
index q (a rational number) of the class Rq it belongs to. Formally, for every x ∈ R,
g(x) = q, where q ∈ Q is the unique rational number such that x ∈ Rq. The two
functions f1 : R→ Q and f2 : R→ Q are defined as follows:

f1(x) =

 g(x) if x < g(x), x 6= 1, and x 6= 0
2 if x = 1
dx+ 3e otherwise

f2(x) =
{
g(x) if x < g(x) and x 6∈ [0, 3)
dx+ 3e otherwise

It is not difficult to check that the above-defined functions fi, with i ∈ {1, 2}, satisfy
the following properties:

(i) for every x ∈ R, fi(x) > x,
(ii) for every x ∈ Q, both f−1

i (x) ∩ Q and f−1
i (x) ∩ Q are left-unbounded (notice

that surjectivity of fi immediately follows), and
(iii) for every x, y ∈ R, if x < y, then there exists u1 ∈ Q (resp., u2 ∈ Q) such that

x < u1 < y (resp., x < u2 < y) and y < fi(u1) (resp., y < fi(u2)).

Now, we can define two models M1 and M2, built on the only proposition letter p,
as follows: for each i ∈ {1, 2}, Mi = 〈I(R), Vi〉, where Vi : AP → 2I(R) (i ∈ {1, 2}) is
defined as follows: [x, y] ∈ Vi(p)⇔ y ≥ fi(x). Finally, we define the relation Z as:

[x, y]Z[w, z]⇔ x ≡ w, y ≡ z, and [x, y] ≡l [w, z],
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where we define u ≡ v ⇔ u ∈ Q iff v ∈ Q, and [u, u′] ≡l [v, v′] ⇔ u′ ∼ f1(u) and
v′ ∼ f2(v), for ∼∈ {<,=, >}.

Let us consider the interval [0, 3] in M1 and the interval [0, 3] in M2. It is im-
mediate to see that these two intervals are Z-related. However, M1, [0, 3]  〈D〉p (as
M1, [1, 2]  p), but M2, [0, 3]  ¬〈D〉p.

We are left to show that Z is an ABOABE-bisimulation between M1 and M2. Let
[x, y] and [w, z] be two Z-related intervals. By definition, y ∼ f1(x) and z ∼ f2(w)
for some ∼∈ {<,=, >}. If ∼∈ {=, >}, then both [x, y] and [w, z] satisfy p; otherwise,
both of them satisfy ¬p. Thus, the local condition is satisfied.

The proof for the forward condition is technically involved, so we omit its details
here and refer the interested reader to Appendix F for the full proof. The backward
condition can be verified in a very similar way and the details are omitted.

Thus, Z is an ABOABE-bisimulation that violates 〈D〉, and the thesis follows. ut

Since ABOABE and AEABEO are dual (and since the dual of 〈D〉 is 〈D〉 itself),
the following corollary is an immediate consequence of Proposition 1 and Lemma 12.

Corollary 7 〈D〉 is not definable in AEABEO relative to the classes Lin and Den.

Lemma 13 〈D〉 is not definable in ABEABO relative to the classes Lin and Den.

Proof The bisimulation we use to prove this result is very similar to the one used to
prove Lemma 12, and it is defined as follows. The models M1 and M2 are defined as
in the proof of Lemma 12, but they make use of a different pair of functions f1, f2
in the definition of the valuation functions (indeed, in this case, f1 = f2). Formally,
for each i ∈ {1, 2}, Mi = 〈I(R), Vi〉, where Vi : AP → 2I(R) (i ∈ {1, 2}) is defined as
follows: [x, y] ∈ Vi(p)⇔ y ≥ fi(x), where f1(= f2) : R→ Q is such that:

f1(x) =
{
g(x) if x < g(x) ≤ 1
dx+ 1e otherwise

with g being the same function used before. It is not difficult to check that the
newly-defined functions fi (i ∈ {1, 2}) satisfy the following properties: (i) for every
x ∈ R, x < fi(x) < x+ 2, (ii) for every y ∈ Q and every ε > 0, there exist x1, x2 ∈ Q
and x1, x2 ∈ Q such that y − 1 < x1 < x1 < y − 1 + ε, y − ε < x2 < x2 < y, and
fi(x1) = fi(x1) = fi(x2) = fi(x2) = y, and (iii) for every x, y ∈ R, if x < y, then
there exists u1 ∈ Q (resp., u2 ∈ Q) such that x < u1 < y (resp., x < u2 < y) and
y < f(u1) (resp., y < f(u2)). Finally, the relation Z is defined as in the proof of
Lemma 12. By following a technique analogous to the one exploited in the proof of
Lemma 12, and making use of the properties of f1 and f2, it is not difficult to verify
that Z is an ABEABO-bisimulation.

Now, suppose that 0 ∈ Qq, for some q ∈ Q. By property (ii) of f1, there exists
x ∈ Q such that −0.5 < x < 0 and f1(x) = 0. Thus, the interval [x, 0.1] in M1 is
such that f1(x) < 0.1. Consider the interval [2, 4] in M2. By property (i) of f2, it
must be f2(2) < 4. Thus, [x, 0.1]Z[2, 4]. However, on the one hand, M1, [x, 0.1] 
〈D〉¬p, because, for example, by property (ii) of f1, there exists a point x′ such
that 0.5 < x′ < x and f1(x′) = 0.5. Thus, [x′, 0.4] is such that 0.4 < f1(x′), which
means that M1, [x′, 0.4]  ¬p. On the other hand, M, [2, 4]  ¬〈D〉¬p, because every
interval [w, z], with w < 2 < 4 < z, is such that f2(w) < z (as z > w + 2), and thus
M, [w, z]  p. This allows us to conclude that Z is an ABEABO-bisimulation that
violates 〈D〉, hence the thesis. ut
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Since ABEABO and ABEOAE are dual (and since the dual of 〈D〉 is 〈D〉 itself),
the following corollary immediately follows from Proposition 1 and Lemma 13.
Corollary 8 〈D〉 is not definable in ABEOAE relative to the classes Lin and Den.

Lemma 14 〈O〉 is not definable in ABEAED relative to the classes Lin and Den.

Proof The bisimulation we use here is very similar to those constructed for the
modalities 〈E〉 and 〈E〉 in the proofs of Lemma 9 and Lemma 10, respectively. Let
M1 = 〈I(R), V1〉 andM2 = 〈I(R), V2〉 be two models over the set of proposition letters
AP = {p}, where the valuation functions V1 : AP → 2I(R) and V2 : AP → 2I(R) are,
respectively, defined as follows:
– [x, y] ∈ V1(p)⇔ x ∈ Q iff y ∈ Q, and
– [w, z] ∈ V2(p) ⇔ w ∈ Q iff z ∈ Q, and [0, 3]RO[w, z] does not hold (that is, it is

not the case that 0 < w < 3 < z).
Then, we define the relation Z between intervals ofM1 and intervals ofM2 as follows:
[x, y]Z[w, z]⇔ [x, y] ∈ V1(p) iff [w, z] ∈ V2(p). It is immediate to see that [0, 3]Z[0, 3],
M1, [0, 3]  〈O〉p, but M2, [0, 3]  ¬〈O〉p.

Let us show that Z is an ABEAED-bisimulation between M1 and M2.
The local condition immediately follows from the definition.
The proof for the forward condition is technically involved, so we omit its details

here and refer the interested reader to Appendix G for the full proof. The backward
condition can be verified in a very similar way and thus we omit the details.

Therefore, Z is an ABEAED-bisimulation that violates 〈O〉. The thesis immedi-
ately follows. ut

Lemma 15 〈O〉 is not definable in ABDABE relative to the classes Lin and Den.

Proof The ABDABE-bisimulation that we present here has some similarities with
the ABOABE-bisimulation that violates 〈D〉, presented in the proof of Lemma 12.
However, we need to ‘rearrange’ the partitions of Q and Q that we exploited in the
proof of Lemma 12. More precisely, we still need two infinite and countable partitions
P(Q) of Q and P(Q) of Q, whose elements are dense in R, but it is useful to provide a
more suitable enumeration for both of them, as follows: P(Q) = {Qcq | c ∈ {a, b}, q ∈
Q} and P(Q) = {Qcq | c ∈ {a, b}, q ∈ Q}. Analogously to Lemma 12, we require these
partitions to be such that, for each c ∈ {a, b} and q ∈ Q, sets Qcq and Qcq are dense
in R. Now, we define the partition P(R) of R as: P(R) = {Rcq | c ∈ {a, b}, q ∈ Q},
where Rcq = Qcq ∪ Qcq, for each c ∈ {a, b} and q ∈ Q. We use Qc (resp., Qc, Rc)
as an abbreviation for

⋃
q∈Q Qcq (resp.,

⋃
q∈Q Qcq,

⋃
q∈Q Rcq), for each c ∈ {a, b}. In

addition, we define S1,S2 ⊆ I(R) as follows:

S1 = {[x, y] | x, y ∈ Rc, c ∈ {a, b}}, and
S2 = {[w, z] | w, z ∈ Rc, c ∈ {a, b}} \ {[w, z] | 0 < w < 3 < z}.

Finally, for each i ∈ {1, 2}, we use Si to denote the set I(R) \ Si. It is easy to verify
that, for every pair of points x, y ∈ I(R), if x < y, then there exist y1, y2, y3, y4 ∈ R
such that x < yi < y, for each i ∈ {1, 2, 3, 4}, and:

y1 ∈ Q and [x, y1] ∈ S1 (resp., S2),
y2 ∈ Q and [x, y2] ∈ S1 (resp., S2),
y3 ∈ Q and [x, y3] ∈ S1 (resp., S2),
y4 ∈ Q and [x, y4] ∈ S1 (resp., S2).

(3)
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We define now a pair of functions that will be used in the definition of the models
involved in the bisimulation relation Z. Let g : R→ Q be a function defined as follows
(notice the strong similarity with the definition of g in Lemma 12): for each x ∈ R,
g(x) = q, where q ∈ Q is the unique rational number such that x ∈ Raq ∪ Rbq. The
functions f1 : R→ Q and f2 : R→ Q are defined as follows:

f1(x) =
{
g(x) if x < g(x)
dx+ 3e otherwise

f2(x) =

 g(x) if x < g(x) and ([0, 3], [x, g(x)]) 6∈ RO
dx+ 3e if x ≥ g(x) and x 6∈ (0, 3)
an′ otherwise

where an′ is the least element of the series an = 3− ( 1
n ) (n ≥ 1) such that x < an′ . It

is not hard to verify that the functions fi (i ∈ {1, 2}) fulfill the following conditions:

(i) fi(x) > x for every x ∈ R;
(ii) for each x ∈ Q, f−1

i (x) ∩Qa, f−1
i (x) ∩Qb, f−1

i (x) ∩Qa, and f−1
i (x) ∩Qb are

left-unbounded (notice that surjectivity of fi immediately follows);
(iii) for each x, y ∈ R, if x < y, then there exist:

– u1 ∈ Qa such that x < u1 < y and y > fi(u1),
– u2 ∈ Qb such that x < u2 < y and y > fi(u2),
– u3 ∈ Qa such that x < u3 < y and y > fi(u3), and
– u4 ∈ Qb such that x < u4 < y and y > fi(u4).

In addition, function f2 satisfies the following property:

(iv) for each w ∈ (0, 3), f2(w) < 3.

At this point, we are ready to define the modelsM1 andM2, and the bisimulation
relation between their intervals. Let i ∈ {1, 2} and Mi = 〈I(R), Vfi〉, where the
valuation functions Vi : AP → 2I(R) is defined as follows:

[x, y] ∈ Vi(p)⇔ either y = fi(x) or both y < fi(x) and [x, y] ∈ Si.

The relation Z is defined as follows:

[x, y]Z[w, z]⇔ x ≡ w, y ≡ z, and [x, y] ≡l [w, z],

where the relations ≡ and ≡l are defined, respectively, in the following way:

x ≡ w ⇔ x ∈ Q iff w ∈ Q

[x, y] ≡l [w, z]⇔

 either y > f1(x) and z > f2(w)
or y = f1(x) and z = f2(w)
or y < f1(x), z < f2(w), and ([x, y] ∈ S1 iff [w, z] ∈ S2)

Now, by the definition of Z, we have that [0, 3]Z[0, 3] (notice that this is also a
consequence of the facts that f1(0) = f2(0) and [0, 3]RO[0, 3] does not hold). More-
over, it is easy to see that M1, [0, 3]  〈O〉p, while M2, [0, 3]  ¬〈O〉p (this is a direct
consequence of property (iv) of f2 and of the fact that f1(x) > 3 for some x ∈ (0, 3)).

We show that Z is an ABDABE- bisimulation.
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For the local condition, consider two intervals [x, y] and [w, z] such that
[x, y]Z[w, z]. First, we assume that [x, y] ∈ V1(p) and we show that [w, z] ∈ V2(p)
follows. Since [x, y] ∈ V1(p), either y = f1(x) holds or both y < f1(x) and [x, y] ∈ S1
hold. In the former case, by the definition of Z, it must be z = f2(w), which im-
plies [w, z] ∈ V2(p). In the latter case, by the definition of Z, both z < f2(w) and
[w, z] ∈ S2 hold, and thus [w, z] ∈ V2(p). Second, we assume that [w, z] ∈ V2(p) and
we show that [x, y] ∈ V1(p) follows. Since [w, z] ∈ V2(p), either z = f2(w) holds or
both z < f2(w) and [w, z] ∈ S2 hold. In the former case, by the definition of Z, it
must be y = f1(x), which implies [x, y] ∈ V1(p). In the latter case, by the definition
of Z, both y < f1(x) and [x, y] ∈ S1 hold, and thus [x, y] ∈ V1(p).

The proof for the forward condition is technically involved, so we omit its details
here and refer the interested reader to Appendix H for the full proof. The backward
condition can be verified in a very similar way and thus we omit the details.

Therefore, Z is an ABDABE-bisimulation that violates 〈O〉, hence the thesis. ut

The following corollary follows from Proposition 1, Lemma 14, and Lemma 15.

Corollary 9 The following non-definabilities hold relative to the classes Lin and
Den:

– 〈O〉 is not definable in AEBABD and
– 〈O〉 is not definable in AEDAED.

6 Harvest

In this paper, we have compared and classified all fragments of HS with respect to
their expressiveness, relative to the class of all linear orders and its subclass contain-
ing all dense linear orders. For each of these classes, we have identified a complete
set of definabilities among HS modalities, valid in that class, thus obtaining a com-
plete classification of the family of all 212 = 4096 fragments of HS with respect to
their expressive power. The final outcome is that there are exactly 1347 expressively
different fragments of HS, when we interpret them over the class of all linear orders,
while such a number reduces to 966, when we restrict our attention to the subclass
of all dense linear orders. Formally, the collection of results shown in the previous
sections enables us to prove the following theorem.

Theorem 1 Table 1 presents a complete set of optimal definabilities relative to:

– the class Lin (definabilities in the groups on the top and in middle);
– the class Den, and, in general, every (left/right) symmetric class of dense linear

orders containing at least one linear order isomorphic to R or to Q (all the
definabilities).

Proof For the class Lin, the class Den, and all symmetric classes of dense linear
orders containing at least a linear order isomorphic to R, the result is an immediate
consequence of the results in Section 4 and Section 5. As for other symmetric classes
of linear orders containing at least a linear order isomorphic to Q, it is enough to
observe that we have never made use of the Dedekind-completeness property (that
distinguishes between Q and R) and that, consequently, all the constructions given
in Section 5 with respect to R can be easily adapted to Q instead. ut
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The proposed set of definability equations and the resulting classification of HS
fragments are not appropriate any more if we change the semantics (from strict to
non-strict) or if we interpret HS fragments over a different class of linear orders.
For instance, if the non-strict semantics is assumed, then 〈A〉 (resp., 〈A〉) can be
defined in BE (resp., BE), as shown in [33]. Similarly, if we commit to the strict
semantics, but we restrict our attention to the class of all discrete linear orders, 〈A〉
can be defined in BE as well: 〈A〉p ≡ ϕ(p) ∨ 〈E〉ϕ(p), where ϕ(p) is a shorthand for
[E]⊥ ∧ 〈B〉([E][E]⊥ ∧ 〈E〉(p ∨ 〈B〉p)); likewise, 〈A〉 is definable in BE.

The classification of the expressive power of HS fragments with respect to other
interesting classes of linear orderings, such as the class of all finite linear orders and
the class of all discrete linear orders, is currently under investigation and will be
reported in a forthcoming publication (see [3] for some results in this direction). The
classification of HS fragments with respect to the various classes of linear orders
when the non-strict semantics is assumed, as well as that of HS fragments enriched
with point-based modalities borrowed from classical temporal logics [20], are still
open problems. As a further research direction, it would also be natural to study
extensions of classic logical formalisms with Allen’s relations between intervals. As a
contribution to that line of research, Conradie and Sciavicco identify in [17] the set
of expressively different extensions of first-order logic with Allen’s relations between
intervals.

Acknowledgements We thank the anonymous referees for their careful reading of our orig-
inal journal submission and their insightful comments, which led to several improvements.

The authors acknowledge the support from the Spanish fellowship program ‘Ramon y Ca-
jal’ RYC-2011-07821 and the Spanish MEC project TIN2009-14372-C03-01 (G. Sciavicco),
the project Processes and Modal Logics (project nr. 100048021) of the Icelandic Research Fund
(L. Aceto, D. Della Monica, and A. Ingólfsdóttir), the project Decidability and Expressiveness
for Interval Temporal Logics (project nr. 130802-051) of the Icelandic Research Fund in part-
nership with the European Commission Framework 7 Programme (People) under ‘Marie Curie
Actions’ (D. Della Monica), and the Italian GNCS project Automata, Games, and Temporal
Logics for the verification and synthesis of controllers in safety-critical systems (A. Monta-
nari).

References

1. Aceto, L., Della Monica, D., Ingólfsdóttir, A., Montanari, A., Sciavicco, G.: An algorithm
for enumerating maximal models of Horn theories with an application to modal logics. In:
Proc. of the 19th LPAR, LNCS, vol. 8312, pp. 1–17. Springer (2013)

2. Aceto, L., Della Monica, D., Ingólfsdóttir, A., Montanari, A., Sciavicco, G.: A complete
classification of the expressiveness of interval logics of Allen’s relations over dense linear
orders. In: Proc. of the 20th TIME, pp. 65–72. IEEE Computer Society (2013)

3. Aceto, L., Della Monica, D., Ingólfsdóttir, A., Montanari, A., Sciavicco, G.: On the expres-
siveness of the interval logic of Allen’s relations over finite and discrete linear orders. In:
E. Fermé, J. Leite (eds.) Proc. of the 14th JELIA, LNAI, vol. 8761, pp. 267–281. Springer
(2014)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

5. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23(2),
123–154 (1984)

6. Balbiani, P., Goranko, V., Sciavicco, G.: Two-sorted point-interval temporal logics. Electr.
Notes Theor. Comput. Sci. 278, 31–45 (2011)

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2002)



Expressiveness of HS: The General and the Dense Cases 25

8. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Decidable
and undecidable fragments of Halpern and Shoham’s interval temporal logic: Towards
a complete classification. In: Proc. of the 15th LPAR, LNCS, vol. 5330, pp. 590–604.
Springer (2008)

9. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propo-
sitional neighborhood interval logics on natural numbers. Software and Systems Modeling
12(2), 245–264 (2013)

10. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side
of interval temporal logic: marking the undecidability border. Annals of Mathematics and
Artificial Intelligence 71(1-3), 41–83 (2014)

11. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval Temporal
Logics over finite linear orders: the complete picture. In: Proc. of the 20th ECAI, pp.
199–204 (2012)

12. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval Temporal
Logics over strongly discrete linear orders: the complete picture. In: Proc. of the 3rd
GandALF, vol. 96, pp. 155–168. EPTCS (2012)

13. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision procedures for
the logics of subinterval structures over dense orderings. Journal of Logic and Computation
20(1), 133 – 166 (2010)

14. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighbor-
hood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and
Applied Logic 161(3), 289–304 (2009)

15. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: What’s decidable about Halpern and
Shoham’s interval logic? the maximal fragment abbl. In: Proc. of the 26th LICS, pp.
387–396. IEEE Computer Society (2011)

16. Bresolin, D., Sala, P., Sciavicco, G.: On Begins, Meets, and Before. International Journal
on Foundations of Computer Science 23(3), 559–583 (2012)

17. Conradie, W., Sciavicco, G.: On the expressive power of first order-logic extended with
Allen’s relations in the strict case. In: Proc. of the 14th CAEPIA, LNCS, vol. 7023, pp.
173–182. Springer (2011)

18. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of the interval
logics of Allen’s relations on the class of all linear orders: Complete classification. In: Proc.
of the 22nd IJCAI, pp. 845–850 (2011)

19. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics:
a journey. Bulletin of the European Association for Theoretical Computer Science 105,
73–99 (2011)

20. Emerson, E.A.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of Theo-
retical Computer Science, vol. B: Formal Models and Semantics, pp. 995–1072. MIT Press
(1990)

21. Gennari, R., Tonelli, S., Vittorini, P.: An AI-based process for generating games from flat
stories. In: Proc. of the 33rd SGAI, pp. 337–350 (2013)

22. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the
ACM 38(4), 935–962 (1991)

23. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of
the ACM 32(1), 137–161 (1985)

24. Laban, S., El-Desouky, A.: RISMA: A rule-based interval state machine algorithm for alerts
generation, performance analysis and monitoring real-time data processing. In: Proc. of
the EGU General Assembly 2013, Geophysical Research Abstracts, vol. 15 (2013)

25. Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals. Funda-
menta Informaticae 131(2), 217–240 (2014)

26. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of Halpern and Shoham’s
modal logic of intervals. In: Proc. of the 37th ICALP, LNCS, vol. 6199, pp. 345–356.
Springer (2010)

27. Montanari, A., Puppis, G., Sala, P., Sciavicco, G.: Decidability of the interval temporal
logic ABB over the natural numbers. In: Proc. of the 31st STACS, pp. 597–608 (2010)

28. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept. of
Computer Science, Stanford University, Stanford, CA (1983)

29. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelligence 166(1-2),
1–36 (2005)

30. Rosenstein, J.: Linear Orderings. Academic Press (1982)
31. Stirling, C.: Modal and temporal properties of processes. Springer (2001)



26 Aceto et al.

32. Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based semantics in
temporal relational databases: A treatment of the telic/atelic distinction. IEEE Transac-
tions on Knowledge and Data Engineering 16(5), 540–551 (2004)

33. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre Dame
Journal of Formal Logic 31(4), 529–547 (1990)

34. Zhou, C., Hansen, M.R.: Duration Calculus: A formal approach to real-time systems.
EATCS Monographs in Theoretical Computer Science. Springer (2004)

Appendix

A Complete proof of Lemma 2

Lemma 2 (soundness for 〈L〉 over Den) The following definabilities hold relative to the
class Den:
– 〈L〉 is definable in DO,
– 〈L〉 is definable in BD,
– 〈L〉 is definable in EO,
– 〈L〉 is definable in BO and
– 〈L〉 is definable in LO.

Proof The proof of the first claim is on page 11 in the main body of the paper. Consider
now the definability equation 〈L〉p ≡ 〈B〉[D]〈B〉〈D〉〈B〉p. Suppose that M, [a, b]  〈L〉p for
an interval [a, b] in a model M . Thus, as before, there exists an interval [c, d] in M such
that b < c and M, [c, d]  p. By definition of R

B
, it holds that [a, b]R

B
[a, c]. We now show

that [a, c] satisfies [D]〈B〉〈D〉〈B〉p. First, every interval [e, f ], with [a, c]RD[e, f ], is such that
e < c. We claim that M, [e, f ]  〈B〉〈D〉〈B〉p. To see this, let us consider the interval [e, d]. We
observe that [e, f ]R

B
[e, d] holds. Moreover, by the density of M , there exists a point d′, with

c < d′ < d, such that [e, d]RD[c, d′] holds and [c, d′] satisfies 〈B〉p, because p holds over [c, d]
and [c, d′]R

B
[c, d]. Thus, M, [e, f ]  〈B〉〈D〉〈B〉p, as claimed.

As for the opposite direction, suppose that M, [a, b]  〈B〉[D]〈B〉〈D〉〈B〉p for an interval
[a, b] in a model M . That means that there exists a point c > b such that the interval [a, c]
satisfies [D]〈B〉〈D〉〈B〉p. As a particular instance of the latter formula, every interval [e, f ]
such that b < e < f < c (the existence of such an interval [e, f ] is guaranteed by the density of
M) must satisfy 〈B〉〈D〉〈B〉p which means that there exists a point g > f such that M, [e, g] 
〈D〉〈B〉p, which implies, in turn, the existence of two points h, i, with e < h < i, such that
M, [h, i]  p. Since h > b, we have that M, [a, b]  〈L〉p.

Next, let us focus on 〈L〉p ≡ 〈O〉[E]〈O〉〈O〉p. Suppose that M, [a, b]  〈L〉p for an interval
[a, b] in a model M . Once again, this means that there exists an interval [c, d] in M such that
b < c and M, [c, d]  p. Consider an interval [a′, c], with a < a′ < b (the existence of such
a point a′ is guaranteed by the density of M). It holds that [a, b]RO[a′, c]. We prove that
M, [a′, c]  [E]〈O〉〈O〉p. Indeed, for every interval [e, c], with [a′, c]RE [e, c], by the density of
M , there exist a point f , with e < f < c, and a point g, with c < g < d, such that the interval
[f, g] satisfies 〈O〉p as [f, g]RO[c, d]. Thus, M, [e, c]  〈O〉〈O〉p, M, [a′, c]  [E]〈O〉〈O〉p, and
M, [a, b]  〈O〉[E]〈O〉〈O〉p.

In order to prove the converse direction, suppose that M, [a, b]  〈O〉[E]〈O〉〈O〉p for an in-
terval [a, b] in a model M . That means that there exists an interval [c, d] such that [a, b]RO[c, d]
and M, [c, d]  [E]〈O〉〈O〉p. As a particular instance, the interval [e, d], for some e such that
b < e < d (the existence of such a point e is guaranteed by the density of M), satisfies 〈O〉〈O〉p,
that implies the existence of an interval [f, g], with f > e (> b), satisfying p. It immediately
follows that M, [a, b]  〈L〉p.

Consider now 〈L〉p ≡ 〈O〉(〈O〉> ∧ [O]〈B〉〈O〉〈O〉p). Suppose that M, [a, b]  〈L〉p for an
interval [a, b] in a model M , which implies, as before, that there exists an interval [c, d] in M
such that b < c and M, [c, d]  p. Consider an interval [a′, c], with a < a′ < b (the existence
of such a point a′ is guaranteed by the density of M). This interval is such that [a, b]RO[a′, c]
and it satisfies:
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– 〈O〉>, as [a′, c]RO[b, d], and
– [O]〈B〉〈O〉〈O〉p, as every interval [e, f ], with [a′, c]RO[e, f ], is such that e < c < f ; thus, the

interval [e, c] is such that [e, f ]RB [e, c], and, by the density of M , there exists an interval
[g, h] such that [e, c]RO[g, h] and [g, h]RO[c, d], and this implies M, [e, c]  〈O〉〈O〉p, which
in turn implies M, [a′, c]  [O]〈B〉〈O〉〈O〉p.

Hence, M, [a′, c]  〈O〉> ∧ [O]〈B〉〈O〉〈O〉p, and thus M, [a, b]  〈O〉(〈O〉> ∧ [O]〈B〉〈O〉〈O〉p).
Conversely, suppose that M, [a, b]  〈O〉(〈O〉> ∧ [O]〈B〉〈O〉〈O〉p) for an interval [a, b] in a

model M . That means that there exists an interval [c, d] such that:

– [a, b]RO[c, d],
– M, [c, d]  〈O〉>, and thus there exists a point f > d, and
– M, [c, d]  [O]〈B〉〈O〉〈O〉p.

By the density of M , there exists a point e, with b < e < d. The interval [e, f ] is such that
[c, d]RO[e, f ], and thus, by the third condition above, it satisfies 〈B〉〈O〉〈O〉p, which implies
the existence of an interval [g, h], with g > e(> b), satisfying p. It immediately follows that
M, [a, b]  〈L〉p.

Finally, consider 〈L〉p ≡ 〈O〉(〈O〉> ∧ [O][L]〈O〉〈O〉p). Suppose that M, [a, b]  〈L〉p for
an interval [a, b] in a model M . Thus, there exists an interval [c, d] in M such that b < c and
M, [c, d]  p. Consider an interval [a′, c], with a < a′ < b (the existence of such a point a′ is
guaranteed by the density of M). This interval is such that [a, b]RO[a′, c] and it satisfies both
〈O〉>, as [a′, c]RO[b, d], and [O][L]〈O〉〈O〉p, thanks to the following argument. Every interval
[e, f ], with [a′, c]RO[e, f ], is such that e < c. Thus, every interval [g, h], with [e, f ]R

L
[g, h],

satisfies 〈O〉〈O〉p (by the density of M , there exist g < i < h and c < j < d such that both
[g, h]RO[i, j] and [i, j]RO[c, d] hold). Therefore, we have that M, [a′, c]  [O][L]〈O〉〈O〉p, which
implies M, [a, b]  〈O〉(〈O〉> ∧ [O][L]〈O〉〈O〉p).

As for the other direction, suppose that M, [a, b]  〈O〉(〈O〉>∧ [O][L]〈O〉〈O〉p) for an inter-
val [a, b] in a model M . That means that there exists an interval [c, d] such that [a, b]RO[c, d],
M, [c, d]  〈O〉> (and thus, there exists a point f > d), and that M, [c, d]  [O][L]〈O〉〈O〉p.
As a specific instance, consider the interval [e, f ], for some e such that b < e < d (the ex-
istence of such a point e is guaranteed by the density of M). Since [c, d]RO[e, f ], then we
have M, [e, f ]  [L]〈O〉〈O〉p, which in turn, together with the density assumption, implies the
existence of an interval [g, h], with b < g < h < e, that satisfies 〈O〉〈O〉p. Thus, there exists an
interval [i, j], with i > g(> b), which satisfies p. It immediately follows that M, [a, b]  〈L〉p.

ut

B Complete proof of Lemma 7

Lemma 7 〈L〉 is not definable in BEAED relative to the class Den.

Proof Consider two interval models M and M ′, defined as M = M ′ = 〈I(R), V 〉, where
V (p) = {[a, b] | a = f(b)} and where f is the function defined at the beginning of Section 5.2.
In addition, let Z = {([a, b], [a′, b′]) | a ∼ f(b), a′ ∼ f(b′) where ∼∈ {<, =, >}} (see Fig. 2). It
is immediate to check that [−1, 0]Z[0, 1] (as f(0) = −1 and f(1) = 0), that M, [−1, 0]  〈L〉p
(as M, [0.5, 2]  p because f(2) = 0.5) and that M ′, [0, 1]  ¬〈L〉p (as no interval [c, d], with
c > 1, satisfies p because c is not in the image of f for each c > 1). Now, in order to show that
Z is a BEAED-bisimulation, consider a pair ([a, b], [a′, b′]) of Z-related intervals. The following
chain of double implications holds:

M, [a, b]  p⇔ a = f(b)⇔ a′ = f(b′)⇔M ′, [a′, b′]  p.

This implies that the local condition holds. As for the forward condition, consider three
intervals [a, b], [a′, b′], and [c, d] such that [a, b]Z[a′, b′] and [a, b]RX [c, d] for some X ∈
{B, E, A, E, D}. We need to exhibit an interval [c′, d′] such that [a′, b′]RX [c′, d′] and
[c, d]Z[c′, d′]. We distinguish three cases.

– If a > f(b) and a′ > f(b′), then we distinguish the following sub-cases.
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– If X = B, then [c, d] is such that a = c < d < b. By the monotonicity of f , we have
that f(d) < f(b) < a = c. Moreover, by the monotonicity of f , for every interval
[c′, d′], with [a′, b′]RB [c′, d′], f(d′) < c′ holds, and thus [c, d]Z[c′, d′].

– If X = E, then [c, d] is such that a < c < b = d. Thus, f(d) = f(b) < a < c. For every
interval [c′, d′], with [a′, b′]RE [c′, d′], f(d′) < c′ holds, and thus [c, d]Z[c′, d′].

– If X = A, then [c, d] is such that c < d = a. Now, if c < f(d) = f(a), then, by
the definition of f and Lemma 6, there exists a point c′ such that c′ < f(a′) < a′.
Thus, the interval [c′, d′], with d′ = a′, is such that [a′, b′]R

A
[c′, d′] and [c, d]Z[c′, d′].

If c = f(d) = f(a), then take c′ = f(a′) < a′. The interval [c′, d′], with d′ = a′, is
such that [a′, b′]R

A
[c′, d′] and [c, d]Z[c′, d′]. If c > f(d) = f(a), then, by the density of

R, the definition of f , and Lemma 6, there exists a point c′ such that f(a′) < c′ < a′.
The interval [c′, d′], with d′ = a′, is such that [a′, b′]R

A
[c′, d′] and [c, d]Z[c′, d′].

– If X = E, then [c, d] is such that c < a < b = d. There are three possibilities. If c <
f(d), then, by the definition of f , there exists a point c′ such that c′ < f(b′) < a′. Thus,
the interval [c′, d′], with d′ = b′, is such that [a′, b′]R

E
[c′, d′] and [c, d]Z[c′, d′]. If c =

f(d), then the interval [c′, d′], with d′ = b′ and c′ = f(d′), is such that [a′, b′]R
E

[c′, d′]
and [c, d]Z[c′, d′]. If c > f(d), then, by the density of R, there exists a point c′ such
that f(b′) < c′ < a′, and the interval [c′, d′], with d′ = b′, is such that [a′, b′]R

E
[c′, d′]

and [c, d]Z[c′, d′].
– If X = D, then [c, d] is such that c < a < b < d. If c < f(d), then, take c′ = f(a′)

and any d′ > b′. The interval [c′, d′] is such that [a′, b′]R
D

[c′, d′] and [c, d]Z[c′, d′].
If c = f(d) (resp., c > f(d)), then, by the density of R and the monotonicity and
the surjectivity of f , there exist two points c′, d′ such that c′ < a′ < b′ < d′ and
c′ = f(d′) (resp., c′ > f(d′)). Thus, the interval [c′, d′] is such that [a′, b′]R

D
[c′, d′]

and [c, d]Z[c′, d′].
– If a < f(b) and a′ < f(b′), then we distinguish the following sub-cases.

– If X = B, then [c, d] is such that a = c < d < b. Now, if c < f(d) (resp., c = f(d),
c > f(d)), then, by the density of R and by the monotonicity and the surjectivity of
f , there exists a point d′ such that a′ < d′ < b′ and a′ < f(d′) (resp., a′ = f(d′),
a′ > f(d′)). Thus, the interval [c′, d′], with c′ = a′, is such that [a′, b′]RB [c′, d′] and
[c, d]Z[c′, d′].

– If X = E, then [c, d] is such that a < c < b = d. Now, if c < f(d) (resp., c = f(d),
c > f(d)), then, by the density of R, there exists a point c′ such that a′ < c′ < b′ and
c′ < f(b′) (resp., c′ = f(b′), c′ > f(b′)). Thus, the interval [c′, d′], with d′ = b′, is such
that [a′, b′]RE [c′, d′] and [c, d]Z[c′, d′].

– If X = A, then the same argument of the case when a > f(b) and a′ > f(b′) (and
X = A) applies.

– If X = E, then [c, d] is such that c < a < b = d. Thus, c < a < f(b) = f(d). For every
interval [c′, d′], with [a′, b′]R

E
[c′, d′], it holds c′ < f(d′), and thus [c, d]Z[c′, d′].

– If X = D, then [c, d] is such that c < a < b < d. Thus, by the monotonicity of f ,
c < a < f(b) < f(d) holds. For every interval [c′, d′], with [a′, b′]R

D
[c′, d′], it holds, by

the monotonicity of f , that c′ < f(d′), and thus [c, d]Z[c′, d′].
– If a = f(b) and a′ = f(b′), then we distinguish the following sub-cases.

– If X = B, then [c, d] is such that a = c < d < b. Thus, f(d) < f(b) = a = c holds by the
monotonicity of f . For every interval [c′, d′], with [a′, b′]RB [c′, d′], by the monotonicity
of f , we have that f(d′) < c′, and thus [c, d]Z[c′, d′].

– If X = E, then [c, d] is such that a < c < b = d. Thus, c > a = f(b) = f(d) holds.
For every interval [c′, d′], with [a′, b′]RE [c′, d′], we have that c′ > f(d′), and thus
[c, d]Z[c′, d′].

– If X = A, then the same argument of the case when a > f(b) and a′ > f(b′) (and
X = A) applies.

– If X = E, then [c, d] is such that c < a < b = d. Thus, c < a = f(b) = f(d). For every
interval [c′, d′], with [a′, b′]R

E
[c′, d′], c′ < f(d′) holds, and thus [c, d]Z[c′, d′].

– If X = D, then [c, d] is such that c < a < b < d. Thus, c < a = f(b) < f(d) holds by the
monotonicity of f . For every interval [c′, d′], with [a′, b′]R

D
[c′, d′], by the monotonicity

of f , we have that c′ < f(d′), and thus [c, d]Z[c′, d′].
Since Z is symmetric, the backward condition immediately follows from Proposition 2. There-
fore, Z is a BEAED-bisimulation that violates 〈L〉, hence the thesis. ut
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C Complete proof of Lemma 8

Lemma 8 〈L〉 is not definable in OBEO relative to the class Den.

Proof Consider the two interval models M and M ′, defined as M = M ′ = 〈I(R), V 〉, where
V (p) = {[−a, a] | a ∈ R} (observe that no interval [c, d], with c ≥ 0, satisfies p). Moreover,
let Z = {([a, b], [a′, b′]) | −a ∼ b and − a′ ∼ b′ for some ∼∈ {<, =, >}} (see Fig. 3). It is
immediate to check that [−4,−2]Z[−4, 2], that M, [−4,−2]  〈L〉p (as M, [−1, 1]  p) and
that M ′, [−4, 2]  ¬〈L〉p (as no interval [c, d], with c > 0, satisfies p). In order to complete the
proof for this fragment, we now proceed to show that Z is an OBEO-bisimulation. To this end,
consider a pair ([a, b], [a′, b′]) of Z-related intervals. The following chain of equivalences hold:

M, [a, b]  p⇔ −a = b⇔ −a′ = b′ ⇔M, [a′, b′]  p.

This implies that the local condition is satisfied. As for the forward condition, consider
three intervals [a, b], [a′, b′], and [c, d] such that [a, b]Z[a′, b′] and [a, b]RX [c, d] for some
X ∈ {O, B, E, O}. We need to exhibit an interval [c′, d′] such that [a′, b′]RX [c′, d′] and
[c, d]Z[c′, d′]. We distinguish three cases.

– If −a > b and −a′ > b′, then, as a preliminary step, we show that the following facts hold:
(i) a < 0 and a′ < 0; (ii) |a| > |b| and |a′| > |b′|. We only show the proofs for a < 0
and |a| > |b| and we omit the ones for a′ < 0 and |a′| > |b|, which are analogous. As for
the former claim above, it is enough to observe that, if a ≥ 0, then a ≥ 0 ≥ −a > b,
which implies b < a, leading to a contradiction with the fact that [a, b] is an interval (thus
a < b). Notice that, as an immediate consequence, we have that |a| = −a holds. As for
the latter claim above, firstly we suppose, by contradiction, that |a| = |b| holds. Then,
−a = |a| = |b| holds and this implies either b = −a, contradicting the hypothesis that
−a > b, or b = a, contradicting the fact that [a, b] is an interval. Secondly, we suppose,
again by contradiction, that |a| < |b| holds. Then, by the former claim, we have that
0 < −a = |a| < |b| holds, which implies b 6= 0. Now, we show that both b < 0 and b > 0
lead to a contradiction. If b < 0, then |b| = −b, and thus it holds −a < −b, which amounts
to a > b, contradicting the fact that [a, b] is an interval. If b > 0, then |b| = b, and thus
−a < b holds, which contradicts the hypothesis that −a > b. This proves the two claims
above. Now, we distinguish the following sub-cases.
– If X = O, then [c, d] is such that a < c < b < d. We distinguish the following cases.

• If −c > d, then take some c′ such that a′ < c′ < −|b′| < 0 (notice also that
c′ < −|b′| ≤ b′ trivially holds), and d′ such that b′ < d′ < |c′| = −c′ (the
existence of such points c′, d′ is guaranteed by the density of R). The interval
[c′, d′] is such that [a′, b′]RO[c′, d′] and [c, d]Z[c′, d′].

• If −c = d, then take some c′ such that a′ < c′ < −|b′| < 0, and d′ = −c′ (the
existence of such a point c′ is guaranteed by the density of R). The interval [c′, d′]
is such that [a′, b′]RO[c′, d′] and [c, d]Z[c′, d′].

• If −c < d, then take c′ such that a′ < c′ < −|b′| < 0, and any d′ > −c′ (the
existence of such a point c′ is guaranteed by the density of R). The interval [c′, d′]
is such that [a′, b′]RO[c′, d′] and [c, d]Z[c′, d′].

– If X = B, then [c, d] is such that a = c < b < d. We distinguish the cases below.
• If −c > d, then take c′ = a′ and d′ such that b′ < d′ < −a′ = −c′ (the existence

of such a point d′ is guaranteed by the density of R). The interval [c′, d′] is such
that [a′, b′]R

B
[c′, d′] and [c, d]Z[c′, d′].

• If −c = d, then take c′ = a′ and d′ = −c′(= −a′ > b′). The interval [c′, d′] is
such that [a′, b′]R

B
[c′, d′] and [c, d]Z[c′, d′].

• If −c < d, then take c′ = a′ and any d′ > −c′(= −a′ > b′). The interval [c′, d′] is
such that [a′, b′]R

B
[c′, d′] and [c, d]Z[c′, d′].

– If X = E, then [c, d] is such that c < a < b = d. Notice that |c| = −c > −a = |a|
holds, because c < a < 0. Thus −c > −a > b = d also holds. Then, take d′ = b′ and
any c′ < a′. We have that −c′ > −a′ > b′ = d′. The interval [c′, d′] is therefore such
that [a′, b′]R

E
[c′, d′] and [c, d]Z[c′, d′].

– If X = O, then [c, d] is such that c < a < d < b. Notice that |c| = −c > −a = |a|
holds, because c < a < 0. Thus −c > −a > b > d also holds. Then, take some d′ such
that a′ < d′ < b′ and any c′ < a′ (the existence of such a point d′ is guaranteed by
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the density of R). Thus, it holds −c′ > −a′ > b′ > d′. The interval [c′, d′] is therefore
such that [a′, b′]R

O
[c′, d′] and [c, d]Z[c′, d′].

– If −a = b and −a′ = b′, then we have that a < 0 (resp., a′ < 0) and b > 0 (resp., b′ > 0).
Indeed, if a ≥ 0 held, then b = −a ≤ 0 ≤ a would also hold, contradicting the fact that
[a, b] is an interval (and thus b > a). From a < 0 and −a = b, it immediately follows that
b > 0. The facts that a′ < 0 and b′ > 0 can be shown analogously. Notice also that, from
−a = b and −a′ = b′, it follows that |a| = |b| and |a′| = |b′|. Now, we distinguish the
following sub-cases.
– If X = O, then [c, d] is such that a < c < b < d. Notice that−c ≤ |c| < |a| = |b| = b < d

holds. Then, take c′ = 0 and any d′ > b′(> 0). We have that −c′ < d′. The interval
[c′, d′] is such that [a′, b′]RO[c′, d′] and [c, d]Z[c′, d′].

– If X = B, then [c, d] is such that a = c < b < d. Notice that −c = −a = b < d holds.
Then, take c′ = a′ and any d′ > b′. We have that −c′ = −a′ = b′ < d′. The interval
[c′, d′] is such that [a′, b′]R

B
[c′, d′] and [c, d]Z[c′, d′].

– If X = E, then [c, d] is such that c < a < b = d. Notice that |c| = −c > −a = |a|
holds, because c < a < 0. Thus −c > −a = b = d also holds. Then, take d′ = b′

and any c′ < a′. We have that −c′ > −a′ = b′ = d′. The interval [c′, d′] is such that
[a′, b′]R

E
[c′, d′] and [c, d]Z[c′, d′].

– If X = O, then [c, d] is such that c < a < d < b. Notice that |c| = −c > −a = |a| holds,
because c < a < 0. Thus −c > −a = b > d also holds. Then, take d′ = 0 and any
c′ < a′(< 0). We have that −c′ > d′. The interval [c′, d′] is such that [a′, b′]R

O
[c′, d′]

and [c, d]Z[c′, d′].
– If −a < b and −a′ < b′, then the following facts hold: (i) b > 0 (otherwise, −a < b ≤ 0

would hold, which implies a > 0 ≥ b, contradicting the fact that [a, b] is an interval),
(ii) |b| = b (this follows directly from b > 0), and (iii) |a| < |b| (otherwise, |a| ≥ |b| = b
would hold, which implies either a ≥ b, contradicting the fact that [a, b] is an interval,
or −a ≥ b, contradicting the hypothesis that −a < b). Now, we distinguish the following
sub-cases.
– If X = O, then [c, d] is such that c < a < d < b. We distinguish the cases below.

• If −c < d, then take some d′ and c′ such that |a′| < d′ < |b′| = b′ and −d′ < c′ <
|a′| = −c (the existence of points c′, d′ is guaranteed by the density of R). The
interval [c′, d′] is such that [a′, b′]R

O
[c′, d′] and [c, d]Z[c′, d′].

• If −c = d, then take some d′ such that |a′| < d′ < |b′| = b′ and c′ = −d′ (the
existence of such a point d′ is guaranteed by the density of R). The interval [c′, d′]
is such that [a′, b′]R

O
[c′, d′] and [c, d]Z[c′, d′].

• If −c > d, then take some d′ and c′ such that |a′| < d′ < |b′| = b′ and c′ < −d′

(the existence of points c′, d′ is guaranteed by the left-unboundedness and the
density of R, respectively). The interval [c′, d′] is such that [a′, b′]R

O
[c′, d′] and

[c, d]Z[c′, d′].
– If X = E, then [c, d] is such that c < a < b = d. We distinguish the following cases.

• If −c < d, then take d′ = b′ and some c′ such that −d′ < c′ < a′ (the existence
of such a point c′ is guaranteed by the density of R). The interval [c′, d′] is such
that [a′, b′]R

E
[c′, d′] and [c, d]Z[c′, d′].

• If −c = d, then take d′ = b′ and c′ = −d′(= −b′ < a′). The interval [c′, d′] is such
that [a′, b′]R

E
[c′, d′] and [c, d]Z[c′, d′].

• If −c > d, then take d′ = b′ and any c′ < −d′(= −b′ < a′). The interval [c′, d′] is
such that [a′, b′]R

E
[c′, d′] and [c, d]Z[c′, d′].

– If X = B, then [c, d] is such that a = c < b < d. Notice that −d < −b < a = c. Then,
take c′ = a′ and any d′ > b′. It holds that c′ = a′ > −b′ > −d′. The interval [c′, d′] is
such that [a′, b′]R

B
[c′, d′] and [c, d]Z[c′, d′].

– If X = O, then [c, d] is such that a < c < b < d. Notice that −d < −b < a < c. Then,
take some c′ such that a′ < c′ < b′ (the existence of such a point c′ is guaranteed by
the density of R) and any d′ > b′. It holds that c′ > a′ > −b′ > −d′. The interval
[c′, d′] is such that [a′, b′]RO[c′, d′] and [c, d]Z[c′, d′].

Since the relation Z is symmetric, by Proposition 2 we have that the backward condition is
verified, too. Therefore, Z is an OBEO-bisimulation that violates 〈L〉, and the thesis follows.

ut



Expressiveness of HS: The General and the Dense Cases 31

D Complete proof of Lemma 9

Lemma 9 〈E〉 is not definable in ABDOABE relative to the classes Lin and Den.

Proof Let M1 = 〈I(R), V1〉 and M2 = 〈I(R), V2〉, where
– p is the only proposition letter of the language,
– the valuation function V1 : AP → 2I(R) is defined as: [x, y] ∈ V1(p)⇔ x ∈ Q if and only if

y ∈ Q, and
– the valuation function V2 : AP → 2I(R) is given by: [w, z] ∈ V2(p)⇔ w ∈ Q if and only if

z ∈ Q, and ([0, 3], [w, z]) /∈ RE .
Moreover, let Z be a relation between (intervals of) M1 and M2 defined as follows:
[x, y]Z[w, z]⇔[x, y] ∈ V1(p) if and only if [w, z] ∈ V2(p). It is easy to verify that [0, 3]Z[0, 3],
M1, [0, 3]  〈E〉p, but M2, [0, 3]  ¬〈E〉p. We show now that Z is an ABDOABE-bisimulation
between M1 and M2. The local condition immediately follows from the definition. As for the
forward condition, it can be checked as follows. Let [x, y] and [w, z] be two Z-related intervals,
and let us assume that [x, y]RX [x′, y′] holds for some X ∈ {A, B, D, O, A, B, E}. We have to
exhibit an interval [w′, z′] such that [x′, y′] and [w′, z′] are Z-related, and [w, z] and [w′, z′]
are RX -related. We proceed by considering each case in turn.
– If X = A, then y = x′. We can always find a point z′ such that z′ > max{3, z} and

z′ ∈ Q if and only if y′ ∈ Q (since both Q and Q are right-unbounded). This implies that
[x′, y′] and [z, z′] are Z-related. Since [w, z] and [z, z′] are obviously RA-related, we have
the thesis.

– If X = B, the argument is similar to the previous one, but, in this case, the density of Q
and Q plays a major role. We choose a point z′ such that w < z′ < z, z′ 6= 3, and z′ ∈ Q
if and only if y′ ∈ Q. The interval [w, z′] is such that [x′, y′] and [w, z′] are Z-related, and
[w, z] and [w, z′] are RB-related.

– If X = D, it suffices to choose two points w′ and z′ such that w < w′ < z′ < z, z′ 6= 3,
w′ belongs to Q if and only if x′ does, and z′ belongs to Q if and only if y′ does. The
existence of such points is guaranteed by the density of Q and Q. The interval [w′, z′] is
such that [w, z]RD[w′, z′] and [x′, y′]Z[w′, z′].

– If X = O, then w′ and z′ are required to be such that w < w′ < z < z′, and both density
and right-unboundedness of Q and Q must be exploited in order to choose a point w′ such
that w < w′ < z and w′ ∈ Q if and only if x′ does, and a point z′ such that z′ > max{3, z}
and z′ belongs to Q if and only if y′ does. The interval [w′, z′] is such that [w, z]RO[w′, z′]
and [x′, y′]Z[w′, z′].

– If X = A, then there exists a point w′′ such that w′′ < min{0, w} and w′′ ∈ Q if and
only if w does (and thus M ′, [w′′, w]  p) and there exists a point w′′′ such that w′′′ <

w and w′′′ ∈ Q if and only if w ∈ Q (and thus M ′, [w′′′, w]  ¬p). We choose w′ =
w′′ if M, [x′, y′] |= p, otherwise we choose w′ = w′′′. The interval [w′, w] is such that
[w, z]R

A
[w′, w] and [x′, y′]Z[w′, w].

– If X = B, then there exists a point z′′ such that z′′ > max{3, z} and z′′ ∈ Q if and
only if w does (and thus M ′, [w, z′′]  p) and there exists a point z′′′ such that z′′′ > z

and z′′′ ∈ Q if and only if w ∈ Q (and thus M ′, [w, z′′′]  ¬p). We choose z′ = z′′ if
M, [x′, y′] |= p, otherwise we choose z′ = z′′′. The interval [w, z′] is such that [w, z]R

B
[w, z′]

and [x′, y′]Z[w, z′].
– If X = E, then there exists a point w′′ such that w′′ < min{0, w} and w′′ ∈ Q if and only if

z does (and thus M ′, [w′′, z]  p) and there exists a point w′′′ such that w′′′ < w and w′′′ ∈
Q if and only if z ∈ Q (and thus M ′, [w′′′, z]  ¬p). We choose w′ = w′′ if M, [x′, y′] |=
p, otherwise we choose w′ = w′′′. The interval [w′, z] is such that [w, z]R

E
[w′, z] and

[x′, y′]Z[w′, z].

The backward condition follows from Proposition 2. Therefore, Z is an ABDOABE-bisimulation
that violates 〈E〉, hence the thesis. ut

E Complete proof of Lemma 11

Lemma 11 〈A〉 is not definable in BEABE relative to the classes Lin and Den.
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Proof Let M1 = 〈I(R), V1〉 and M2 = 〈I(R), V2〉 be two models built on the only proposition
letter p. In order to define the valuation functions V1 and V2, we make use of two partitions of
the set R, one for M1 and the other for M2, each of them consisting of four sets that are dense
in R. Formally, for j = 1, 2 and i = 1, . . . , 4, let Ri

j be dense in R. Moreover, for j = 1, 2, let
R =

⋃4
i=1 Ri

j and Ri
j ∩R

i′
j = ∅ for each i, i′ ∈ {1, 2, 3, 4}, with i 6= i′. For the sake of simplicity,

we impose the two partitions to be equal and thus we can safely omit the subscript, that is,
Ri

1 = Ri
2 = Ri for each i ∈ {1, 2, 3, 4}. Thanks to this condition, the bisimulation relation Z,

that we define below, is symmetric. We force points in R1 (resp., R2, R3, R4) to behave in the
same way with respect to the truth of p/¬p over the intervals they initiate and terminate by
imposing the following constraints. For j = 1, 2:

∀x, y (if x ∈ R1, then Mj , [x, y]  ¬p);
∀x, y (if x ∈ R2, then Mj , [x, y]  ¬p);
∀x, y (if x ∈ R3, then (Mj , [x, y]  p iff y ∈ R1 ∪ R3));
∀x, y (if x ∈ R4, then (Mj , [x, y]  p iff y ∈ R2 ∪ R4)).

It can be easily shown that, from the given constraints, it immediately follows that:

∀x, y (if y ∈ R1, then (Mj , [x, y]  p iff x ∈ R3));
∀x, y (if y ∈ R2, then (Mj , [x, y]  p iff x ∈ R4));
∀x, y (if y ∈ R3, then (Mj , [x, y]  p iff x ∈ R3));
∀x, y (if y ∈ R4, then (Mj , [x, y]  p iff x ∈ R4)).

The above constraints together induce the following definition of the valuation functions Vj(p) :
AP → 2I(R):

[x, y] ∈ Vj(p)⇔ (x ∈ R3 ∧ y ∈ R1 ∪ R3) ∨ (x ∈ R4 ∧ y ∈ R2 ∪ R4).

Now, let Z be the relation between (intervals of) M1 and M2 defined as follows. Two intervals
[x, y] and [w, z] are Z-related if and only if at least one of the following conditions holds:

1. x ∈ R1 ∪ R2 and w ∈ R1 ∪ R2;
2. x ∈ R3, w ∈ R3, and (y ∈ R1 ∪ R3 iff z ∈ R1 ∪ R3);
3. x ∈ R3, w ∈ R4, and (y ∈ R1 ∪ R3 iff z ∈ R2 ∪ R4);
4. x ∈ R4, w ∈ R3, and (y ∈ R2 ∪ R4 iff z ∈ R1 ∪ R3);
5. x ∈ R4, w ∈ R4, and (y ∈ R2 ∪ R4 iff z ∈ R2 ∪ R4).

It is worth pointing out that two intervals [x, y] and [w, z] that are Z-related are such that if,
for instance, both x and w belong to R3 (second clause), then either y and z both occur in
odd-numbered partitions or they both occur in even-numbered partitions. Moreover, since the
two partitions are equal, Z is symmetric.

Let us consider now two intervals [x, y] and [w, z] such that x ∈ R1, w ∈ R1, y ∈ R3, and
z ∈ R1. By definition of Z, [x, y] and [w, z] are Z-related, and by definition of V1 and V2, there
exists y′ > y such that M1, [y, y′]  p, but there is no z′ > z such that M2, [z, z′]  p. Thus,
M1, [x, y]  〈A〉p and M2, [w, z]  ¬〈A〉p hold.

To complete the proof, it suffices to show that the relation Z is a BEABE-bisimulation. It
can be easily checked that every pair ([x, y], [w, z]) of Z-related intervals is such that either
[x, y] ∈ V1(p) and [w, z] ∈ V2(p), or [x, y] 6∈ V1(p) and [w, z] 6∈ V2(p).

In order to verify the forward condition, let [x, y] and [w, z] be two Z-related intervals.
For each modality 〈X〉 of the language and each interval [x′, y′] such that [x, y]RX [x′, y′], we
have to exhibit an interval [w′, z′] such that [x′, y′]Z[w′, z′] and [w, z]RX [w′, z′]. We proceed
by considering each case in turn.

– Let X = B. If x ∈ R1 ∪ R2 and w ∈ R1 ∪ R2, then for any z′ such that w < z′ < z, both
[x, y′]Z[w, z′] and [w, z]RB [w, z′] hold. If x ∈ Ri and w ∈ Ri, for some i ∈ {3, 4}, and
y′ ∈ Rk, for some k ∈ {1, 2, 3, 4}, then for any z′ such that w < z′ < z and z′ ∈ Rk, it
holds that [x, y′]Z[w, z′] and [w, z]RB [w, z′] (the existence of z′ is guaranteed by density
of Rk in R). Finally, if x ∈ Ri and w ∈ Ri′ for i, i′ ∈ {3, 4}, with i 6= i′, and, in addition,
y′ ∈ R1 ∪ R3 (resp., y′ ∈ R2 ∪ R4), then for any z′ such that w < z′ < z and z′ ∈ R2 ∪ R4

(resp., z′ ∈ R1 ∪ R3), it holds that [x, y′]Z[w, z′] and [w, z]RB [w, z′] (density of R2 and
R4, resp., R1 and R3, in R is used).
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– Let X = E. As [x, y]RE [x′, y′], we have that y = y′. We distinguish the following cases,
where we tacitly use the density of the relevant sets in R: (i) if x′ ∈ R1 ∪ R2, then we
choose w′ such that w < w′ < z and w′ ∈ R1; (ii) if either x′ ∈ R3 and y ∈ R1 ∪ R3, or
x′ ∈ R4 and y ∈ R2 ∪ R4, then we choose w′ such that w < w′ < z and either w′ ∈ R3

(if z ∈ R1 ∪ R3), or w′ ∈ R4 (if z ∈ R2 ∪ R4); (iii) if either x′ ∈ R3 and y ∈ R2 ∪ R4, or
x′ ∈ R4 and y ∈ R1 ∪ R3, then we choose w′ such that w < w′ < z and either w′ ∈ R3

(if z ∈ R2 ∪ R4), or w′ ∈ R4 (if z ∈ R1 ∪ R3). In all cases, we have that [x′, y]Z[w′, z] and
[w, z]RE [w′, z].

– Let X = A. As [x, y]R
A

[x′, y′], we have that x = y′. We distinguish the following cases:
(i) if x′ ∈ R1 ∪R2, then we choose w′ such that w′ < w and w′ ∈ R1; (ii) if either x′ ∈ R3

and x ∈ R1 ∪ R3, or x′ ∈ R4 and x ∈ R2 ∪ R4, then we choose w′ such that w′ < w and
either w′ ∈ R3 (if w ∈ R1 ∪ R3), or w′ ∈ R4 (if w ∈ R2 ∪ R4); (iii) if either x′ ∈ R3

and x ∈ R2 ∪ R4, or x′ ∈ R4 and x ∈ R1 ∪ R3, then we choose w′ such that w′ < w and
either w′ ∈ R3 (if w ∈ R2 ∪ R4), or w′ ∈ R4 (if w ∈ R1 ∪ R3). In all cases, we have that
[x′, x]Z[w′, w] and [w, z]R

A
[w′, w].

– Let X = B. Since [x, y]R
B

[x′, y′], we have that x = x′. If x ∈ R1 ∪ R2 and w ∈ R1 ∪ R2,
then for any z′ > z, both [x, y′]Z[w, z′] and [w, z]R

B
[w, z′] hold. If x ∈ Ri and w ∈ Ri,

for some i ∈ {3, 4}, and y′ ∈ Rk, for some k ∈ {1, 2, 3, 4}, then for any z′ > z such that
z′ ∈ Rk, it holds that [x, y′]Z[w, z′] and [w, z]R

B
[w, z′] (the existence of z′ is guaranteed

by density of Rk in R). Finally, if x ∈ Ri and w ∈ Ri′ for i, i′ ∈ {3, 4}, with i 6= i′, and, in
addition, y′ ∈ R1 ∪ R3 (resp., y′ ∈ R2 ∪ R4), then for any z′ > z such that z′ ∈ R2 ∪ R4

(resp., z′ ∈ R1 ∪ R3), it holds that [x, y′]Z[w, z′] and [w, z]R
B

[w, z′] (density of R2 and
R4, resp., R1 and R3, in R is used).

– Let X = E. Since [x, y]R
E

[x′, y′], we have that y = y′. We distinguish the following cases:
(i) if x′ ∈ R1 ∪R2, then we choose w′ such that w′ < w and w′ ∈ R1; (ii) if either x′ ∈ R3

and y ∈ R1 ∪ R3, or x′ ∈ R4 and y ∈ R2 ∪ R4, then we choose w′ such that w′ < w
and either w′ ∈ R3 (if z ∈ R1 ∪ R3), or w′ ∈ R4 (if z ∈ R2 ∪ R4); (iii) if either x′ ∈ R3

and y ∈ R2 ∪ R4, or x′ ∈ R4 and y ∈ R1 ∪ R3, then we choose w′ such that w′ < w and
either w′ ∈ R3 (if z ∈ R2 ∪ R4) or w′ ∈ R4 (if z ∈ R1 ∪ R3). In all cases, we have that
[x′, y]Z[w′, z] and [w, z]R

E
[w′, z].

The backward condition follows from the forward one by Proposition 2. Therefore, Z is a
BEABE-bisimulation that violates 〈A〉, and the thesis immediately follows. ut

F Complete proof of Lemma 12

Lemma 12 〈D〉 is not definable in ABOABE relative to the classes Lin and Den.

Proof As a first step, we define a pair of functions that will be used in the definition of the
models involved in the bisimulation relation Z. Let P(Q) = {Qq | q ∈ Q} and P(Q) = {Qq |
q ∈ Q} be countably infinite partitions of Q and Q, respectively, such that for every q ∈ Q,
both Qq and Qq are dense in R. For every q ∈ Q, let Rq = Qq ∪ Qq . We define a function
g : R → Q that maps every real number x to the index q (a rational number) of the class Rq

it belongs to. Formally, for every x ∈ R, g(x) = q, where q ∈ Q is the unique rational number
such that x ∈ Rq . The two functions f1 : R→ Q and f2 : R→ Q are defined as follows:

f1(x) =

{
g(x) if x < g(x), x 6= 1, and x 6= 0
2 if x = 1
dx + 3e otherwise

f2(x) =
{

g(x) if x < g(x) and x 6∈ [0, 3)
dx + 3e otherwise

It is not difficult to check that the above-defined functions fi (i ∈ {1, 2}) satisfy the following
properties:

(i) for every x ∈ R, fi(x) > x,
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(ii) for every x ∈ Q, both f−1
i (x) ∩ Q and f−1

i (x) ∩ Q are left-unbounded (notice that
surjectivity of fi immediately follows), and

(iii) for every x, y ∈ R, if x < y, then there exists u1 ∈ Q (resp., u2 ∈ Q) such that x < u1 < y
(resp., x < u2 < y) and y < fi(u1) (resp., y < fi(u2)).

Now, we can define two models M1 and M2, built on the only proposition letter p, as follows:
for each i ∈ {1, 2}, Mi = 〈I(R), Vi〉, where Vi : AP → 2I(R) (i ∈ {1, 2}) is defined as follows:
[x, y] ∈ Vi(p)⇔ y ≥ fi(x). Finally, we define the relation Z as:

([x, y], [w, z]) ∈ Z ⇔ x ≡ w, y ≡ z, and [x, y] ≡l [w, z],

where we define u ≡ v ⇔ u ∈ Q if and only if v ∈ Q and [u, u′] ≡l [v, v′] ⇔ u′ ∼ f1(u) and
v′ ∼ f2(v), for ∼∈ {<, =, >}.

Let us consider the interval [0, 3] in M1 and the interval [0, 3] in M2. It is immediate to
see that these two intervals are Z-related. However, M1, [0, 3]  〈D〉p (as M1, [1, 2]  p), but
M2, [0, 3]  ¬〈D〉p.

To complete the proof, it suffices to show that Z is an ABOABE-bisimulation between M1
and M2. Let [x, y] and [w, z] be two Z-related intervals. By definition, y ∼ f1(x) and z ∼ f2(w)
for some ∼∈ {<, =, >}. If ∼∈ {=, >}, then both [x, y] and [w, z] satisfy p; otherwise, both of
them satisfy ¬p. Thus, the local condition is satisfied.

As for the forward condition, let [x, y] and [x′, y′] be two intervals in M1 and [w, z] an
interval in M2. We have to prove that if [x, y] and [w, z] are Z-related, then, for each modality
〈X〉 of ABOABE such that [x, y]RX [x′, y′], there exists an interval [w′, z′] such that [x′, y′] and
[w′, z′] are Z-related and [w, z]RX [w′, z′]. Once again, we proceed by examining each case in
turn.

– Let X = A. By definition of 〈A〉, x′ = y and we are forced to choose w′ = z. By y ≡ z,
it immediately follows that x′ ≡ w′. We must find a point z′ > z such that y′ ≡ z′ and
both y′ ∼ f1(y) and z′ ∼ f2(z) for some ∼∈ {<, =, >}. Let us suppose that y′ < f1(y). In
such a case, we choose a point z′ such that z < z′ < f2(z) and y′ ≡ z′. The existence of
such a point is guaranteed by property (i) of f2 above and by the density of Q and Q in R.
Otherwise, if y′ = f1(y), we choose z′ = f2(z). By definition of f1 and f2 (the codomain
of f1 and f2 is Q), both y′ and z′ belong to Q and thus y′ ≡ z′. Finally, if y′ > f1(y),
we choose z′ > f2(z) such that y′ ≡ z′. The existence of such a point is guaranteed by
right-unboundedness of Q and Q, and the interval [z, z′] is such that [x′, y′]Z[z, z′] and
[w, z]RA[z, z′].

– Let X = B. In this case, x = x′ and y′ < y. We distinguish the following cases.
– If y′ > f1(x) and y′ ∈ Q (resp., y′ ∈ Q), then y > f1(x) holds as well (as y′ < y),

which implies z > f2(w). Thus, we can choose any point z′ ∈ Q (resp., z′ ∈ Q), with
f2(w) < z′ < z (the existence of such a point is guaranteed by density of Q and Q,
respectively).

– If y′ = f1(x), then y′ ∈ Q (by definition of f1) and y > f1(x) holds (as y′ < y). The
latter implies z > f2(w), and thus we choose z′ = f2(w). Note that f2(w) ∈ Q by the
definition of f2.

– If y′ < f1(x) and y′ ∈ Q (resp., y′ ∈ Q), then we choose a point z′ ∈ Q (resp., z′ ∈ Q)
such that w < z′ < min{z, f2(w)} (the existence of such a point is guaranteed by
density of Q and Q, respectively).

In all cases, the interval [w, z′] is such that [x, y′]Z[w, z′] and [w, z]RB [w, z′].
– Let X = O. Firstly, we choose a point w′ such that w < w′ < z, w′ ∈ Q iff x′ ∈ Q, and

f2(w′) > z (the existence of such a point is guaranteed by property (iii) of f2 on page 19).
Secondly, we choose a point z′ such that z′ ∈ Q iff y′ ∈ Q, and
– if y′ < f1(x′), then z < z′ < f2(w′) (density of Q and Q is used here),
– if y′ > f1(x′), then z′ > f2(w′) (right-unboundedness of Q and Q is used here),
– if y′ = f1(x′), then z′ = f2(w′).

In all cases, the interval [w′, z′] is such that [x′, y′]Z[w′, z′] and [w, z]RO[w′, z′].
– Let X = A. In this case, y′ = x. We distinguish the following cases.

– If f1(x′) < y′(= x), then consider any point w ∈ Q, with w < w. By property (ii) on
page 19, there exist both a point w′′ ∈ Q and a point w′′′ ∈ Q such that w′′ < w,
w′′′ < w, and f2(w′′) = f2(w′′′) = w. We select w′ = w′′ if x′ ∈ Q, and w′ = w′′′ if
x′ ∈ Q.
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– If f1(x′) > y′(= x), then consider any point w ∈ Q, with w < w. By property (ii),
there exist both a point w′′ ∈ Q and a point w′′′ ∈ Q such that w′′ < w, w′′′ < w,
and f2(w′′) = f2(w′′′) = w. We select w′ = w′′ if x′ ∈ Q, and w′ = w′′′ if x′ ∈ Q.

– If f1(x′) = y′(= x), then x, w ∈ Q. By property (ii), there exist both a point w′′ ∈ Q
and a point w′′′ ∈ Q such that w′′ < w, w′′′ < w, and f2(w′′) = f2(w′′′) = w. We
select w′ = w′′ if x′ ∈ Q, and w′ = w′′′ if x′ ∈ Q.

In all cases, the interval [w′, w] is such that [x′, x]Z[w′, w] and [w, z]R
A

[w′, w].
– Let X = B. In this case x′ = x. We distinguish the following cases.

– If y′ < f1(x) and y′ ∈ Q (resp., y′ ∈ Q), then y < f1(x) holds as well (as y < y′),
which implies z < f2(w). Thus, we can choose any point z′ ∈ Q (resp., z′ ∈ Q), with
z < z′ < f2(w) (the existence of such a point is guaranteed by density of Q and Q,
respectively).

– If y′ = f1(x), then y′ ∈ Q (by definition of f1) and y < f1(x) holds (as y < y′). The
latter implies z < f2(w), and thus we choose z′ = f2(w). Note that f2(w) ∈ Q by the
definition of f2.

– If y′ > f1(x) and y′ ∈ Q (resp., y′ ∈ Q), then we choose a point z′ ∈ Q (resp.,
z′ ∈ Q) such that z′ > max{z, f2(w)} (the existence of such a point is guaranteed by
right-unboundedness of Q and Q, respectively).

In all cases, the interval [w, z′] is such that [x′, y′]Z[w, z′] and [w, z]R
B

[w, z′].
– Let X = E. In this case y = y′ and x′ < x. We distinguish the following cases.

– If f1(x′) < y′(= y), then consider any point w ∈ Q, with w < z. By property (ii) on
page 19, there exist both a point w′′ ∈ Q and a point w′′′ ∈ Q such that w′′ < w,
w′′′ < w, and f2(w′′) = f2(w′′′) = w. We select w′ = w′′ if x′ ∈ Q, and w′ = w′′′ if
x′ ∈ Q.

– If f1(x′) > y′(= y), then consider any point w ∈ Q, with z < w. By property (ii)
on page 19, there exist both w′′ ∈ Q and w′′′ ∈ Q such that w′′ < w, w′′′ < w, and
f2(w′′) = f2(w′′′) = w. We select w′ = w′′ if x′ ∈ Q, and w′ = w′′′ if x′ ∈ Q.

– If f1(x′) = y′(= y), then y, z ∈ Q. By property (ii) on page 19, there exist both
w′′ ∈ Q and w′′′ ∈ Q such that w′′ < w, w′′′ < w, and f2(w′′) = f2(w′′′) = z. We
select w′ = w′′ if x′ ∈ Q, and w′ = w′′′ if x′ ∈ Q.

In all cases, the interval [w′, z] is such that [x′, y]Z[w′, z] and [w, z]R
E

[w′, z].

The backward condition can be verified in a very similar way and thus the details of the proof
are omitted. Hence, Z is an ABOABE-bisimulation that violates 〈D〉, hence the thesis. ut

G Complete proof of Lemma 14

Lemma 14 〈O〉 is not definable in ABEAED relative to the classes Lin and Den.

Proof The bisimulation we use here is very similar to those constructed for the operators
〈E〉 and 〈E〉 in the proofs of Lemma 9 and Lemma 10, respectively. Let M1 = 〈I(R), V1〉
and M2 = 〈I(R), V2〉 be two models over the set of proposition letters AP = {p}, where the
valuation functions V1 : AP → 2I(R) and V2 : AP → 2I(R) are, respectively, defined as follows:

– [x, y] ∈ V1(p)⇔ x ∈ Q iff y ∈ Q and
– [w, z] ∈ V2(p) ⇔ w ∈ Q iff z ∈ Q, and [0, 3]RO[w, z] does not hold (that is, it is not the

case that 0 < w < 3 < z).

Then, we define the relation Z between intervals of M1 and intervals of M2 as: [x, y]Z[w, z]⇔
[x, y] ∈ V1(p) iff [w, z] ∈ V2(p). It is immediate to see that [0, 3]Z[0, 3], M1, [0, 3]  〈O〉p, but
M2, [0, 3]  ¬〈O〉p.

We show that Z is an ABEAED-bisimulation between M1 and M2. The local condition
immediately follows from the definition. As for the forward condition, it can be checked as
follows. Let [x, y] and [w, z] be two Z-related intervals, and let us assume that [x, y]RX [x′, y′]
holds for some X ∈ {A, B, E, A, E, D}. We have to exhibit an interval [w′, z′] such that [x′, y′]
and [w′, z′] are Z-related, and [w, z] and [w′, z′] are RX -related. We proceed by a case analysis
on X ∈ {A, B, E, A, E, D}.
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– If X = A, then we distinguish the following cases: (a) if 0 < z < 3, then we select a point
z′ such that z < z′ < 3 and z′ ∈ Q iff y′ ∈ Q (the existence of such a point is guaranteed
by density of Q and Q); (b) otherwise, we select a point z′ such that z′ > z and z′ ∈ Q iff
y′ ∈ Q (the existence of such a point is guaranteed by right-unboundedness of Q and Q).
In both cases, the interval [z, z′] is such that [x′, y′]Z[z, z′] and [w, z]RA[z, z′].

– If X = B, the argument is similar to the previous one. We distinguish the following cases:
(a) if 0 < w < 3, then we choose a point z′ such that w < z′ < min{3, z} and z′ ∈ Q iff
y′ ∈ Q; (b) otherwise, we choose a point z′ such that w < z′ < z and z′ ∈ Q iff y′ ∈ Q. In
both cases, the interval [w, z′] is such that [x′, y′]Z[w, z′] and [w, z]RB [w, z′].

– If X = E, then we distinguish the following cases: (a) if z > 3, then we choose a point w′

such that max{3, w} < w′ < z and w′ ∈ Q iff x′ ∈ Q; (b) otherwise, we choose a point w′

such that w < w′ < z and w′ ∈ Q iff x′ ∈ Q. In both cases, the interval [w′, z] is such that
[x′, y′]Z[w′, z] and [w, z]RE [w′, z].

– If X = A, then we choose a point w′ such that w′ < min{0, w} and w′ ∈ Q iff x′ ∈ Q. The
interval [w′, w] is such that [x′, y′]Z[w′, w] and [w, z]R

A
[w′, w].

– If X = E, then we choose a point w′ such that w′ < min{0, w} and w′ ∈ Q iff x′ ∈ Q. The
interval [w′, z] is such that [x′, y′]Z[w′, z] and [w, z]R

E
[w′, z].

– If X = D, then we first choose a point w′ such that w′ < min{0, w} and w′ ∈ Q iff x′ ∈ Q.
Next, we choose a point z′ such that z′ > z and z′ ∈ Q iff y′ ∈ Q. The interval [w′, z′] is
such that [x′, y′]Z[w′, z′] and [w, z]R

D
[w′, z′].

The backward condition can be verified in a very similar way and thus we omit the details of
the proof. Therefore, Z is an ABEAED-bisimulation that violates 〈O〉. The thesis immediately
follows. ut

H Complete proof of Lemma 15

Lemma 15 〈O〉 is not definable in ABDABE relative to the classes Lin and Den.

Proof The ABDABE-bisimulation that we present here has some similarities with the ABOABE-
bisimulation that violates 〈D〉, presented in the proof of Lemma 12. However, we need to
‘rearrange’ the partitions of Q and Q that we exploited to prove Lemma 12. More precisely,
we still need two infinite countable partitions P(Q) of Q and P(Q) of Q, whose elements
are dense in R, but it is useful to provide a more suitable enumeration for both of them, as
follows: P(Q) = {Qc

q | c ∈ {a, b}, q ∈ Q} and P(Q) = {Qc
q | c ∈ {a, b}, q ∈ Q}. Analogously to

Lemma 12, we require these partitions to be such that, for each c ∈ {a, b} and q ∈ Q, sets Qc
q and

Qc
q are dense in R. Now, we define the partition P(R) of R as: P(R) = {Rc

q | c ∈ {a, b}, q ∈ Q},
where Rc

q = Qc
q ∪ Qc

q , for each c ∈ {a, b} and q ∈ Q. We use Qc (resp., Qc, Rc) as an
abbreviation for

⋃
q∈Q Qc

q (resp.,
⋃

q∈Q Qc
q ,
⋃

q∈Q Rc
q), for each c ∈ {a, b}. In addition, we

define S1,S2 ⊆ I(R) as follows:

S1 = {[x, y] | x, y ∈ Rc, c ∈ {a, b}} and
S2 = {[w, z] | w, z ∈ Rc, c ∈ {a, b}} \ {[w, z] | 0 < w < 3 < z}.

Finally, for each i ∈ {1, 2}, we use Si to denote the set I(R) \ Si. It is easy to verify that,
for every pair of points x, y ∈ I(R), if x < y, then there exist y1, y2, y3, y4 ∈ R such that
x < yi < y, for each i ∈ {1, 2, 3, 4}, and:

y1 ∈ Q and [x, y1] ∈ S1 (resp., S2),
y2 ∈ Q and [x, y2] ∈ S1 (resp., S2),
y3 ∈ Q and [x, y3] ∈ S1 (resp., S2),
y4 ∈ Q and [x, y4] ∈ S1 (resp., S2).

(4)

We define now a pair of functions that will be used in the definition of the models involved
in the bisimulation relation Z. Let g : R→ Q be a function defined as follows (notice the strong
similarity with the definition of g in Lemma 12): for each x ∈ R, g(x) = q, where q ∈ Q is the
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unique rational number such that x ∈ Ra
q ∪Rb

q . The functions f1 : R→ Q and f2 : R→ Q are
defined as follows:

f1(x) =
{

g(x) if x < g(x)
dx + 3e otherwise

f2(x) =

{
g(x) if x < g(x) and ([0, 3], [x, g(x)]) 6∈ RO

dx + 3e if x ≥ g(x) and x 6∈ (0, 3)
an′ otherwise

where an′ is the least element of the series an = 3− ( 1
n

) (n ≥ 1) such that x < an′ . It is not
hard to verify that the functions fi (i ∈ {1, 2}) fulfill the following conditions:

(i) fi(x) > x for every x ∈ R;
(ii) for each x ∈ Q, f−1

i (x) ∩ Qa, f−1
i (x) ∩ Qb, f−1

i (x) ∩ Qa, and f−1
i (x) ∩ Qb are left-

unbounded (notice that surjectivity of fi immediately follows);
(iii) for each x, y ∈ R, if x < y, then there exist:

– u1 ∈ Qa such that x < u1 < y and y > fi(u1),
– u2 ∈ Qb such that x < u2 < y and y > fi(u2),
– u3 ∈ Qa such that x < u3 < y and y > fi(u3), and
– u4 ∈ Qb such that x < u4 < y and y > fi(u4).

In addition, function f2 satisfies the following property:
(iv) for each w ∈ (0, 3), f2(w) < 3.
At this point, we are ready to define the models M1 and M2, and the bisimulation relation

between their intervals. Let i ∈ {1, 2} and Mi = 〈I(R), Vfi
〉, where the valuation functions

Vi : AP → 2I(R) is defined as follows:

[x, y] ∈ Vi(p)⇔ either y = fi(x) or both y < fi(x) and [x, y] ∈ Si.

The relation Z is defined as follows:

[x, y]Z[w, z]⇔ x ≡ w, y ≡ z, and [x, y] ≡l [w, z],

where the relations ≡ and ≡l are defined, respectively, in the following way:

x ≡ w ⇔ x ∈ Q iff w ∈ Q

[x, y] ≡l [w, z]⇔

{
either y > f1(x) and z > f2(w)
or y = f1(x) and z = f2(w)
or y < f1(x), z < f2(w), and ([x, y] ∈ S1 iff [w, z] ∈ S2)

Now, by the definition of Z, we have that [0, 3]Z[0, 3] (notice that this is also a consequence
of the facts that f1(0) = f2(0) and that [0, 3]RO, [0, 3] does not hold). Moreover, it is easy to
see that M1, [0, 3]  〈O〉p, while M2, [0, 3]  ¬〈O〉p (this is a direct consequence of property
(iv) of f2 and of the fact that f1(x) > 3 for some x ∈ (0, 3)).

We show that Z is an ABDABE- bisimulation. For the local condition, consider two intervals
[x, y] and [w, z] such that [x, y]Z[w, z]. First, we assume that [x, y] ∈ V1(p) and we show that
[w, z] ∈ V2(p) follows. Since [x, y] ∈ V1(p), either y = f1(x) holds or both y < f1(x) and
[x, y] ∈ S1 hold. In the former case, by the definition of Z, it must be z = f2(w), which implies
[w, z] ∈ V2(p). In the latter case, by the definition of Z, both z < f2(w) and [w, z] ∈ S2 hold,
and thus [w, z] ∈ V2(p). Second, we assume that [w, z] ∈ V2(p) and we show that [x, y] ∈ V1(p)
follows. Since [w, z] ∈ V2(p), either z = f2(w) holds or both z < f2(w) and [w, z] ∈ S2 hold. In
the former case, by the definition of Z, it must be y = f1(x), which implies [x, y] ∈ V1(p). In the
latter case, by the definition of Z, both y < f1(x) and [x, y] ∈ S1 hold, and thus [x, y] ∈ V1(p).

In order to prove that the forward condition is satisfied, we assume that [x, y]Z[w, z] and
[x, y]RX [x′, y′], for some X ∈ {A, B, D, A, B, E} and some [x, y], [w, z], [x′, y′] ∈ I(R), and
we show the existence of an interval [w′, z′] such that [x′, y′]Z[w′, z′] and [w, z]RX [w′, z′]. As
usual, we proceed by considering each case in turn.
– If X = A, then we distinguish three cases.
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– If y′ > f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then we select z′ such that z′ > f2(z) and
z′ ∈ Q (resp., z′ ∈ Q).

– If y′ = f1(x′), then y′ ∈ Q, and we select z′ = f2(z).
– If y′ < f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then, by property (3) on page 21, there exists

a point z′ ∈ Q (resp., z′ ∈ Q) such that z < z′ < f2(z) and [x′, y′] ∈ S1 iff [z, z′] ∈ S2
(notice that property (i) of f2 plays a role here).

In all cases, the interval [z, z′] is such that [x′, y′]Z[z, z′] and [w, z]RA[z, z′].
– If X = B, then we distinguish three cases.

– If y′ > f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then it must be y > f1(x) (as y > y′ and
x = x′), which implies z > f2(w), and we select z′ such that f2(w) < z′ < z and
z′ ∈ Q (resp., z′ ∈ Q).

– If y′ = f1(x′), then y′ ∈ Q and y > f1(x) (as y > y′ and x = x′), which implies
z > f2(w), and we select z′ = f2(w).

– If y′ < f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then, by property (3) on page 21, there
exists a point z′ ∈ Q (resp., z′ ∈ Q) such that w < z′ < f2(w) and [x′, y′] ∈ S1 iff
[w, z′] ∈ S2 (notice that property (i) of f2 plays a role here).

In all cases, the interval [w, z′] is such that [x′, y′]Z[w, z′] and [w, z]RB [w, z′].
– If X = D, then we first select a point w′ such that w < w′ < z, w′ ∈ Q iff x′ ∈ Q, and

f2(w′) < z (the existence of such a point is guaranteed by property (iii) of f2). Then, we
select a point z′ as follows.
– If y′ > f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then we select z′ such that f2(w) < z′ < z

and z′ ∈ Q (resp., z′ ∈ Q).
– If y′ = f1(x′), then y′ ∈ Q, and we select z′ = f2(w). Notice that z′ ∈ Q as well.
– If y′ < f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then, by property (3) on page 21, there

exists a point z′ ∈ Q (resp., z′ ∈ Q), such that w′ < z′ < f2(w′) and [x′, y′] ∈ S1 iff
[w′, z′] ∈ S2 (notice that property (i) of f2 plays a role here).

In all cases, the interval [w′, z′] is such that [x′, y′]Z[w′, z′] and [w, z]RD[w′, z′].
– If X = A, then we distinguish three cases.

– If y′ > f1(x′) and x′ ∈ Q (resp., x′ ∈ Q), then consider a point z ∈ Q such that z < w.
We select a point w′ ∈ Q (resp., w′ ∈ Q) such that w′ < z < w and f2(w′) = z (the
existence of such a point is guaranteed by property (ii) of f2).

– If y′ = f1(x′) and x′ ∈ Q (resp., x′ ∈ Q), then y′ = x ∈ Q, which implies w ∈ Q. We
select a point w′ ∈ Q (resp., w′ ∈ Q) such that w′ < w and f2(w′) = w (the existence
of such a point is guaranteed by property (ii) of f2).

– If y′ < f1(x′) and x′ ∈ Q (resp., x′ ∈ Q), then consider a point z ∈ Q such that z > w.
We select a point w′ ∈ Q (resp., w′ ∈ Q) such that w′ < min{0, w}, f2(w′) = z, and
[w′, w] ∈ S2 iff [x′, y′] ∈ S1 (the existence of such a point is guaranteed by property
(ii) of f2). Notice that, since w′ < 0, it is not the case that [0, 3]RO[w′, w].

In all cases, the interval [w′, w] is such that [x′, y′]Z[w′, w] and [w, z]R
A

[w′, w].
– If X = B, then we distinguish three cases.

– If y′ > f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then we select z′ such that z′ > z and z′ ∈ Q
(resp., z′ ∈ Q),

– If y′ = f1(x′), then y′ ∈ Q and y < f1(x) (as y < y′ and x = x′), which implies
z < f2(w), and we select z′ = f2(w).

– If y′ < f1(x′) and y′ ∈ Q (resp., y′ ∈ Q), then it must be the case that y < f1(x) (as
y < y′ and x = x′). This yields z < f2(w), and we select z′ ∈ Q (resp., z′ ∈ Q) such
that z < z′ < f2(w) and [x′, y′] ∈ S1 iff [w, z′] ∈ S2 Notice that the existence of such a
point strongly depends on the fact that it is not the case that [0, 3]RO[w, z′]. By way
of contradiction, suppose that [0, 3]RO[w, z′] holds. Then, we have 0 < w < 3 < z′.
By property (iv) of f2, 0 < w < 3 implies f2(w) < 3, and thus z′ < 3 (as z′ < f2(w)),
contradicting the fact that 0 < w < 3 < z′ holds.

In all cases, the interval [w, z′] is such that [x′, y′]Z[w, z′] and [w, z]R
B

[w, z′].
– If X = E, then we distinguish three cases.

– If y′ > f1(x′) and x′ ∈ Q (resp., x′ ∈ Q), then consider a point z ∈ Q such that
z < z. We select a point w′ ∈ Q (resp., w′ ∈ Q) such that w′ < w and f2(w′) = z (the
existence of such a point is guaranteed by property (ii) of f2).

– If y′ = f1(x′) and x′ ∈ Q (resp., x′ ∈ Q), then y′ = y ∈ Q, which implies z ∈ Q. We
select a point w′ ∈ Q (resp., w′ ∈ Q) such that w′ < w and f2(w′) = z (the existence
of such a point is guaranteed by property (ii) of f2).
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– If y′ < f1(x′) and x′ ∈ Q (resp., x′ ∈ Q), then consider a point z ∈ Q such that z > z.
We select a point w′ ∈ Q (resp., w′ ∈ Q) such that w′ < min{0, w}, f2(w′) = z, and
that [w′, w] ∈ S2 if and only if [x′, y′] ∈ S1 (the existence of such a point is guaranteed
by property (ii) of f2). Notice that, since w′ < 0, it is not the case that [0, 3]RO[w′, z].

In all cases, the interval [w′, z] is such that [x′, y′]Z[w′, z] and [w, z]R
E

[w′, z].
The backward condition can be verified in a very similar way and thus we omit the details of
the proof. Therefore, Z is an ABDABE-bisimulation that violates 〈O〉, hence the thesis. ut


