Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS

D. Della Monica, A. Murano

Istituto Nazionale di Alta Matematica "F. Severi" (INdAM)

Università di Napoli "Federico II" Universidad Complutense de Madrid

dario.dellamonica@unina.it

AAMAS 2018 Stockholm, July 13, 2018

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

Outline

The logic pe-ATLpe-ATL at work

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

э

< 🗇 🕨

Outline

- The logic pe-ATLpe-ATL at work
- 3 Model checking pe-ATL
- 4 Conclusions

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

< E

• • • • • • • • • • •

Several agents

- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

・ロト ・ 同ト ・ ヨト ・ ヨト

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

▶ < ∃ >

- Several agents
- Intelligent (take decisions, moves)
- Independent

Next state univocally identified by joint moves (all agents)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

▶ < ∃ >

• • • • • • • • • •

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

< ∃⇒

• • • • • • • • • • •

• **Syntax.** Formulae of ATL are given by the grammar: $\varphi ::= p | \neg \varphi | \varphi \land \varphi | \langle \langle A \rangle \rangle \bigcirc \varphi | \langle \langle A \rangle \rangle \Box \varphi | \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)


D. Della Monica, A. Murano

э.

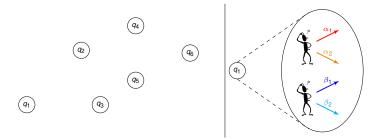
ヘロン ヘアン ヘビン ヘビン

• Syntax. Formulae of ATL are given by the grammar: $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \bigcirc \varphi \mid \langle \langle A \rangle \rangle \Box \varphi \mid \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$

• Models. CGS's (concurrent game structure) are labeled transition systems:

vertices labeled by atomic propositions

- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

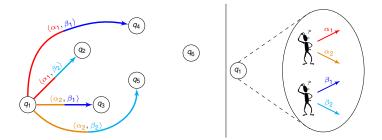

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Syntax. Formulae of ATL are given by the grammar:
 φ ::= p | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩ ○ φ | ⟨⟨A⟩⟩□φ | ⟨⟨A⟩⟩φUφ

• **Models.** CGS's (concurrent game structure) are labeled transition systems:

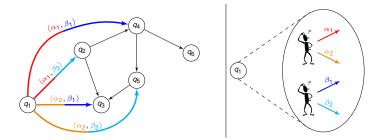

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

• Syntax. Formulae of ATL are given by the grammar: $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \bigcirc \varphi \mid \langle \langle A \rangle \rangle \Box \varphi \mid \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$

• **Models.** CGS's (concurrent game structure) are labeled transition systems:


- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

Syntax. Formulae of ATL are given by the grammar:
 φ ::= p | ¬φ | φ ∧ φ | ⟨⟨A⟩⟩ ○ φ | ⟨⟨A⟩⟩□φ | ⟨⟨A⟩⟩φUφ

• **Models.** CGS's (concurrent game structure) are labeled transition systems:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations
 → transitions (edges of the graph)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

▶ < Ξ >

• • • • • • • • • •

 $\langle \langle A \rangle \rangle \bigcirc \varphi$ next

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 $\langle \langle A \rangle \rangle \bigcirc \varphi$ next $\langle \langle A \rangle \rangle \Box \varphi$ always

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

э.

ヘロン ヘアン ヘビン ヘビン

 $\langle \langle A \rangle \rangle \bigcirc \varphi \quad \text{next} \\ \langle \langle A \rangle \rangle \Box \varphi \quad \text{always} \\ \langle \langle A \rangle \rangle \varphi \mathcal{U} \psi \quad \text{until } \psi$

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

= 990

ヘロン ヘアン ヘビン ヘビン

 $\langle \langle A \rangle \rangle \bigcirc \varphi$ next $\langle \langle A \rangle \rangle \Box \varphi$ always

 $\langle \langle \boldsymbol{A} \rangle \rangle \varphi \mathcal{U} \psi$ until ψ

regardless of actions performed by other agents (opponent)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

= 990

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

2

ヘロト 人間 とくほとくほとう

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- n + m agents (n printers + m users/environment)
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- n + m agents (n printers + m users/environment)
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

pe-ATL abilities

• avoid errors (*i* printers do *print* and queue only contains j < i jobs)

```
(safety \mapsto coalition+temporal)
```

• queue is emptied infinitely often

(Büchi \mapsto parity)

• users send infinitely many jobs \Rightarrow queue is filled up infinitely often

(fairness \mapsto parity)

devices' turnover

(alternation \mapsto energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- n + m agents (n printers + m users/environment)
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

pe-ATL abilities

• avoid errors (in the expressed in standard ATL) contains j < i jobs) (safety \mapsto coalition+temporal)

• queue is emptied infinitely often

(Büchi → parity)

• users send infinitely many jobs \Rightarrow queue is filled up infinitely often

(fairness \mapsto parity)

(alternation \mapsto energy)

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

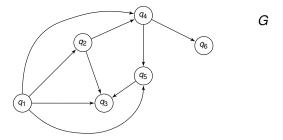
devices' turnover

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

Outline

Introduction and motivations


- 3 Model checking pe-ATL
- 4 Conclusions

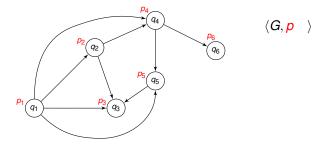
Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

ъ

- Syntax. The same as ATL
- Models. pe-CGS = CGS + parity + energy conditions

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)
- parity condition
- energy condition


Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

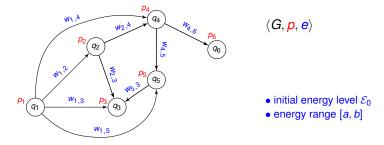
D. Della Monica, A. Murano

< E

• • • • • • • • • • • • •

- Syntax. The same as ATL
- Models. pe-CGS = CGS + parity + energy conditions

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → **transitions** (edges of the graph)
- parity condition
- energy condition


Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

э

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Syntax. The same as ATL
- **Models.** pe-CGS = CGS + parity + energy conditions

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → **transitions** (edges of the graph)
- parity condition
- energy condition

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $\langle \langle \boldsymbol{A} \rangle \rangle \bigcirc \varphi$ next
- $\langle \langle A \rangle \rangle \Box \varphi$ always
- $\langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \psi$ until ψ

regardless of actions performed by other agents (opponent)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

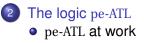
D. Della Monica, A. Murano

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\langle \langle A \rangle \rangle \bigcirc \varphi$ next
- $\langle \langle A \rangle \rangle \Box \varphi$ always
- $\langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \psi$ until ψ

regardless of actions performed by other agents (opponent)

strategies must be (p, e)-strategies, i.e., they only produce plays satisfying parity and energy conditions

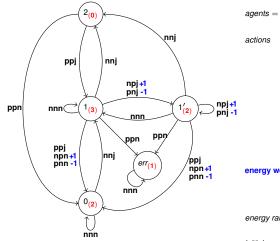

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

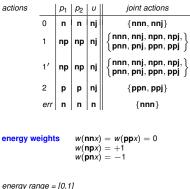
ヘロト ヘアト ヘビト ヘビト

Outline

Introduction and motivations



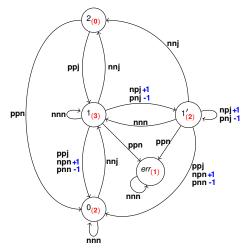
4 Conclusions


Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

э

agents = { p_1, p_2, u }

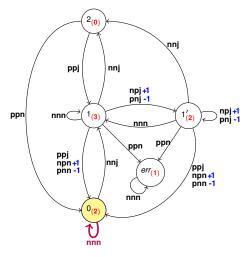


イロン 不同 とくほう イヨン

initial energy level $\mathcal{E}_0 = 0$

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano


$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

э

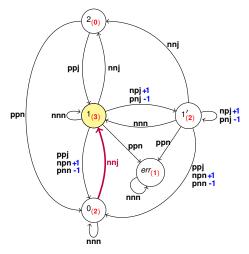
▶ < Ξ >

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)

・ロト ・ 同ト ・ ヨト ・ ヨト


- all jobs are processed (parity)
- printers alternate (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

0

∈ [0, 1]

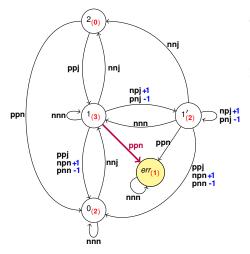
D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)

・ロト ・ 同ト ・ ヨト ・ ヨト


- all jobs are processed (parity)
- printers alternate (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

0

∈ [0, 1]

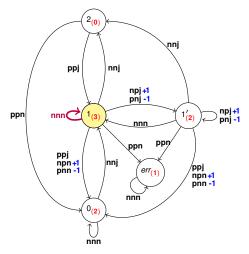
D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)

・ロト ・ 同ト ・ ヨト ・ ヨト


- all jobs are processed (parity)
- printers alternate (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

0

∈ [0, 1]

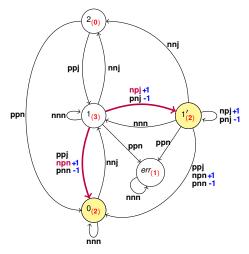
D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)

・ロト ・ 同ト ・ ヨト ・ ヨト


- all jobs are processed (parity)
- printers alternate (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

0

∈ [0, 1]

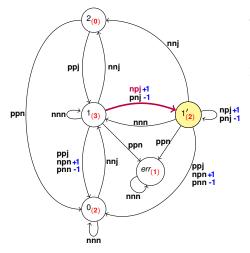
D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)

・ロト ・ 同ト ・ ヨト ・ ヨト


- all jobs are processed (parity)
- printers alternate (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

01

∈ [0, 1]

D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)

ヘロト ヘワト ヘビト ヘビト

- all jobs are processed (parity)
- printers alternate (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

01

∈ [0, 1]

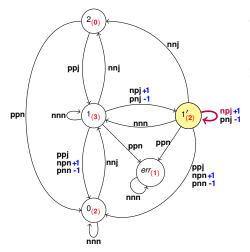
D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)

・ロト ・ 同ト ・ ヨト ・ ヨト


- all jobs are processed (parity)
- printers alternate (energy)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

∈ [0, 1]

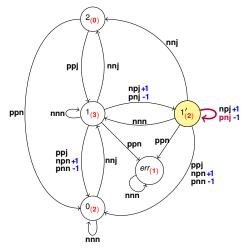
010

D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)


・ロト ・ 同ト ・ ヨト ・ ヨト

- all jobs are processed (parity)
- printers alternate (energy)

 $0 \ 1 \ 0 \ 1$ $\in [0, 1]$

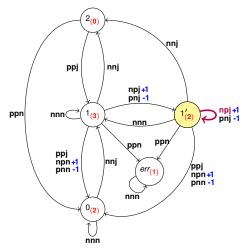
Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

error state is avoided (temporal)


・ロト ・ 同ト ・ ヨト ・ ヨト

- all jobs are processed (parity)
- printers alternate (energy)

01010 Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

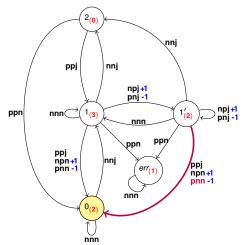
∈ [0, 1]

D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

• error state is avoided (temporal)


・ロト ・ 同ト ・ ヨト ・ ヨト

- all jobs are processed (parity)
- printers alternate (energy)

0 1 0 1 0 1 \in [0, 1]

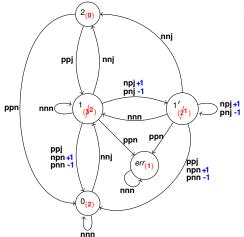
Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

error state is avoided (temporal)


・ロト ・ 同ト ・ ヨト ・ ヨト

- all jobs are processed (parity)
- printers alternate (energy)

$0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ = [0, 1]$

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

$$\mathcal{G}, \mathbf{0} \models \langle \langle \{ p_1, p_2 \} \rangle \rangle \Box \neg err$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- if user sends infinitely many jobs, then queue is filled up infinitely often (parity)

・ロト ・ 同ト ・ ヨト ・ ヨト

printers alternate (energy)

Outline

Introduction and motivations

- The logic pe-ATLpe-ATL at work
- 3 Model checking pe-ATL
- 4 Conclusions

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

< E

< E

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition (pe-ATL model checking problem)

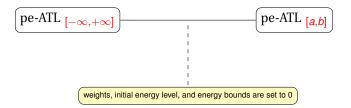
Given a pe-CGS $\mathcal{G} = \langle G, p, e \rangle$ and a pe-ATL formula φ , establish whether $\mathcal{G} \models \varphi$

We consider the following cases:

- unbounded energy range $[-\infty, +\infty]$
- bounded energy range $[a, b] \in \mathbb{Q}$
- left-bounded energy range [a, +∞] (right-bounded is symmetric)

NP NEXPTIME NP

go to Conclusions


Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

ヘロン 人間 とくほ とくほ とう

Unbounded energy range $[-\infty, +\infty]$

Reduction to the case of bounded energy range [a, b]

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

イロト イポト イヨト イヨト

Bounded energy range [a, b]

•
$$a \neq -\infty$$
, $b \neq +\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range ($a, b \in \mathbb{Z}$)
- integer initial energy level ($\mathcal{E}^{init} \in \mathbb{Z}$)
- weights over transitions are integers as well

Lemma (positional strategies)

• a (p, e)-strategy exists iff a uniform one exists (bounded instance)

• a (*p*, *e*)strategy exists iff a memoryless one exists (unbounded instance)

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

ヘロア ヘビア ヘビア・

Bounded energy range [a, b]

•
$$a \neq -\infty$$
, $b \neq +\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range ($a, b \in \mathbb{Z}$)
- integer initial energy level ($\mathcal{E}^{init} \in \mathbb{Z}$)
- weights over transitions are integers as well

Lemma (positional strategies)

• a (p, e)-strategy exists iff a uniform one exists (bounded instance)

• a (*p*, *e*)strategy exists iff a memoryless one exists (unbounded instance)

イロト イポト イヨト イヨト

(Un)Bounded energy range [a, b]: Complexity

- uniform strategies are positional in $Q \times [a, b]$
 - exponentially many positions (q, energy-level) when a and b are in binary—thanks to normalization
- memoryless strategies are positional in Q
 - polynomially many positions q
- A non-deterministic algorithm:
 - guess the strategy
 - return *false* when a loop with odd parity or an out-of-range is detected
 - no position is visited twice
 - bounded case: exponential time
 - unbounded case: polynomial time

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Left-bounded energy range $[a, +\infty]$

(right-bounded energy range $[-\infty, b]$ is symmetric)

- Model-theoretic argument (technically quite involved)
- Difficulty: the space of positions (q, energy-level) is infinite
- We define suitable structures (witnesses)
 - compact representations for strategies
 - bounded size
 - we prove it to be complete for strategies
- A non-deterministic algorithm guesses one such structure and check that it is indeed a witness for the desired strategy

A witness (for a (⟨A⟩)□ψ formula) is a pair of graphs (S₁, S₂)

Elements of such graphs are positions (q, energy-level)

 $(q, energy-level) \in S$ iff there is a *winning* strategy for A, i.e., a (p, e)-strategy that guarantees the invarian

• Left-bounded range ensures monotonicity a strategy exists from (q, energy-level) iff a strategy exists from(q, E) for all $E \ge energy-level$

• Thus, only the smallest energy level appears in S_1 and S_2 for each q

S₁ represents the strategy for parity and temporal goals
 S₂ contains increasing loops to increase the energy levels

-

・ロト ・ 理 ト ・ ヨ ト ・

A witness (for a ((A)) □ψ formula) is a pair of graphs

 (S_1, S_2)

• Elements of such graphs are positions (*q*, *energy-level*)

 $(q, energy-level) \in S$ iff there is a *winning* strategy for *A*, i.e., a (p, e)-strategy that guarantees the invariant ψ

• Left-bounded range ensures monotonicity a strategy exists from (q, energy-level) iff (q, E) for all $E \ge energy-level$

• Thus, only the smallest energy level appears in S_1 and S_2 for each q $|S_1| < |Q|, |S_2| < |Q|$

S₁ represents the strategy for parity and temporal goals
 S₂ contains increasing loops to increase the energy levels

3

・ロト ・ 理 ト ・ ヨ ト ・

A witness (for a ((A)) □ψ formula) is a pair of graphs

 (S_1, S_2)

• Elements of such graphs are positions (*q*, *energy-level*)

 $(q, energy-level) \in S$ iff there is a *winning* strategy for *A*, i.e., a (p, e)-strategy that guarantees the invariant ψ

- Left-bounded range ensures monotonicity a strategy exists from (q, energy-level) iff a strategy exists from(q, E) for all $E \ge energy-level$
- Thus, only the smallest energy level appears in S_1 and S_2 for each q $|S_1| \le |Q|, \qquad |S_2| \le |Q|$
- S₁ represents the strategy for parity and temporal goals
 S₂ contains increasing loops to increase the energy levels

= 990

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

A witness (for a ((A)) □ψ formula) is a pair of graphs

 (S_1, S_2)

• Elements of such graphs are positions (*q*, *energy-level*)

 $(q, energy-level) \in S$ iff there is a *winning* strategy for *A*, i.e., a (p, e)-strategy that guarantees the invariant ψ

- Left-bounded range ensures monotonicity a strategy exists from (q, energy-level) iff a strategy exists from $(q, E) \text{ for all } E \ge energy-level}$
- Thus, only the smallest energy level appears in S_1 and S_2 for each q $|S_1| \le |Q|, \qquad |S_2| \le |Q|$
- S₁ represents the strategy for parity and temporal goals
 S₂ contains increasing loops to increase the energy levels

= 990

・ロト ・ 理 ト ・ ヨ ト ・

A witness (for a ((A)) □ψ formula) is a pair of graphs

 (S_1, S_2)

• Elements of such graphs are positions (*q*, *energy-level*)

 $(q, energy-level) \in S$ iff there is a *winning* strategy for *A*, i.e., a (p, e)-strategy that guarantees the invariant ψ

- Left-bounded range ensures monotonicity a strategy exists from (q, energy-level) iff a strategy exists from $(q, E) \text{ for all } E \ge energy-level}$
- Thus, only the smallest energy level appears in S₁ and S₂ for each q

 $|S_1| \le |Q|, \qquad |S_2| \le |Q|$

S₁ represents the strategy for parity and temporal goals
 S₂ contains increasing loops to increase the energy levels

Alechina, Logan, Nguyen, Raimondi, JCSS (2017)

Model-checking for Resource-Bounded ATL with production and consumption of resources, p. 126–144

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

internal constraints

- e.g., elements of S_1 and S_2 satisfy the invariant ψ in a formula $\langle\langle A \rangle\rangle \Box \psi$
- o diagonal constraints
 - e.g., elements of S₁ with low energy level also occur as (and can be merged with) elements of S₂
- the unfolding/merging of S₁ and S₂ corresponds to the outcome of a winning strategy for A

ヘロン ヘアン ヘビン ヘビン

Witness construction (from the tree T of outcomes of a winning strategy for *A*)

- q appears in the witness iff it appears in the tree \mathcal{T}
- suitably cut tree \mathcal{T} into a finite (not bounded) prefix
- for every q, a representative node in the cut of T is chosen
 - based on their topological order and their energy level in the tree
- energy level and outgoing transition for *q* in the witness are determined by its representative in the cut of *T*

-

ヘロン ヘアン ヘビン ヘビン

Outline

Introduction and motivations

- 2 The logic pe-ATL• pe-ATL at work
- 3 Model checking pe-ATL

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Conclusions

- pe-ATL: coalitional abilities to pursue temporal goals while satisfying qualitative (parity) and quantitative (energy) conditions
- pe-ATL model checking problem

Theorem

The model checking problem for $\operatorname{pe-ATL}$ is:

- in NEXPTIME if the energy range is bounded ([*a*, *b*])
- in NPTIME if the energy range is unbounded $([-\infty, +\infty])$
- in NPTIME if the energy range is left- or right-unbounded
 ([a, +∞] or [-∞, b])

Notice that ATL * is 2EXPTIME-complete

= nan

ヘロン 人間 とくほ とくほ とう

- to establish thigh complexity bounds (parity game complexity)
- to extend the proposed framework to ATL*
 - comparison of the expressive power with ATL* and other logics for strategic reasoning, e.g., Strategy Logic (SL)
- different modeling choices
 - energy level evolves along the entire game
 - limit opponent power with parity and energy conditions as well
 - multiple quantitative dimension (several resources besides energy)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Thank you!

For more details visit the poster session at 15:30-17:00

Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS (AAMAS 2018)

D. Della Monica, A. Murano