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ABSTRACT
In this paper, we introduce a new logic suitable to reason about
strategic abilities of multi-agent systems where (teams of) agents
are subject to qualitative (parity) and quantitative (energy) con-
straints and where goals are represented, as usual, by means of
temporal properties. We formally define such a logic, named parity-
energy-ATL (pe-ATL, for short), and we study its model checking
problem, which we prove to be decidable with different complexity
upper bounds, depending on different choices for the energy range.
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1 INTRODUCTION
In recent years, game theory has been demonstrated to be very use-
ful in open-system verification, where the game evolution emerges
from the coordination of different parts viewed as autonomous and
proactive agents [13, 22]. This has encouraged the development of
several frameworks aimed at reasoning about strategies and their
interaction [3, 9, 17, 19, 20, 23, 25, 27].

An important contribution in this field has been the develop-
ment of Alternating-Time Temporal Logic (ATL, for short) by Alur,
Henzinger, and Kupferman [3]. Formally, it is obtained as a gen-
eralization of the branching-time logic CTL [12], where the path
quantifiers there exists “E” and for all “A” are replaced with strategic
modalities of the form “⟨⟨𝐴⟩⟩” and “[[𝐴]]”, for a set 𝐴 of agents.
These modalities are used to express cooperation and competition
among agents in order to achieve a temporal goal. Several decision
problems have been investigated about ATL. In particular, the model
checking problem is proved to be solvable in polynomial time [3].

ATL can efficiently express qualitative objectives, that is, specific
temporal properties that are required to hold by coalitions of agents.
Conversely, ATL (at least in the classical definition) cannot be used
to express quantitative objectives. This is unfortunate as games
dealing with quantitative aspects are recently receiving a lot of
attention in the context of automated design and synthesis [5, 29].
Even more, quantitative games are central in economics, where
players aim at optimizing a desired payoff.

In the context of games equipped with quantitative objectives,
an important contribution is given by energy parity games [10].
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These are games played on weighted graphs in which (i) states are
partitioned between two players, namely player 0 and player 1, (ii)
a priority is associated to each state, and (iii) an integer weight is
associated to each edge. In each round, the player owning the state
chooses an outgoing edge to a successor state. The play consisting
of an infinite number of rounds is won by player 0 if (i) the least
priority occurring infinitely often is even and (2) the sum of the
weights (namely the energy) along the play remains always positive.
Deciding an energy parity game amounts to checking if there is an
initial energy level such that player 0 has a strategy to maintain the
level of energy positive while satisfying the parity condition. This
problem is known to lie in NP ∩ coNP, as it is for parity games.

In this paper we combine energy parity games and ATL specifi-
cations in a new logical formalisms, named parity-energy-ATL (pe-
ATL), and we solve the related model checking question. Roughly
speaking, pe-ATL allows one to check the satisfaction of a parity
condition while keeping the energy level within a given range along
system evolutions determined by coalitions along the ATL formula.
We show that the addressed model checking question lies in P, NP,
or EXPTIME, depending on the type of energy range given in input.

The conceived framework can be successfully used in several
contexts. In practice, it can be used in smart-city applications, which
are multi-agent systems where one has to deal with both energy
constraints and temporal goals [8, 26]. As another application sce-
nario, consider a multi-agent system model for task allocation in
which every odd priority represents a task request, whose allocation
is represented by an even smaller priority (similar to what happens
in prompt parity games [4, 15, 24]). Assume now that along the
process we need to use, as well as recharge, some working energy,
represented by the weights over the edges. Finally, assume that
we want to check that no matter which tasks are supplied by a set
of Request agents, the Allocation agents can always guarantee a
correct allocation. Then, such a scenario can be easily modeled and
verified using our setting. Notice that fairness requirements such as
the above one can be expressed by ATL∗ formulas, at the price of a
more expensive model checking procedure (2ExpTime-complete).
Relatedworks. The interest in combining qualitative and quantita-
tive reasoning in multi-agent systems has grown in the last decade.
In [7], a logical framework combining agents abilities to achieve
quantitative and qualitative objectives is proposed. In [5, 11], the au-
thors propose the use of preference models that combine qualitative
and quantitative objectives. More recently, in [18] a well-behaved
model combining qualitative (Büchi) and quantitative (energy) con-
ditions in a lexicographic setting is proposed. Finally, we mention a
line of work on rational verification/synthesis [2, 16, 21, 28], where
agents are assumed to be rational, i.e., they act according to equi-
librium notions, but have no abilities of joining in coalitions.

However, the setting we investigate is new. The logic proposed
in [7] flows quickly into undecidability. The other aforementioned
works adopt a game-theoretic perspective, mostly focusing on the
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search for equilibria subject to lexicographic preferences rather
than aiming at developing a logical framework for reasoning about
these games. On the other hand, some proposal towards enriching
ATL with resource constraints has been presented in [1, 6, 14], but
none of the logics presented there deals with parity objectives.
Outline. In Section 2, we introduce the logic pe-ATL and the model
checking problem for it. Sections 3 and 4 contain our technical
contribution: they address, respectively, easy and difficult issues
towards solving the pe-ATL model checking problem. In Section 5,
we put our results together to provide a solution and a complexity
analysis for the pe-ATL model checking problem, and we outline
future research directions.

2 pe-ATL: QUALITATIVE AND
QUANTITATIVE REASONING IN MAS

We denote by N the set of natural numbers, by N>0 the set of
positive naturals, i.e.,N>0 = N\{0}, and by 𝑆𝑛 the set of vectors of𝑛
components ranging over 𝑆 , for every set 𝑆 and 𝑛 ∈ N>0. According
to the standard notation, for any given set 𝑆 we denote by 𝑆∗ (resp.,
𝑆𝜔 ) the set of finite (resp., infinite) words over the alphabet 𝑆 . The
length of a word 𝜌 ∈ 𝑆∗∪𝑆𝜔 is denoted by |𝜌 | (we assume |𝜌 | = +∞
for 𝜌 ∈ 𝑆𝜔 ). Finally, for every 𝜌 ∈ 𝑆∗ ∪ 𝑆𝜔 and 𝑖, 𝑗 ∈ N>0, with
𝑖 ≤ 𝑗 ≤ |𝜌 |, we write 𝜌 [𝑖] to refer to the 𝑖th element of 𝜌 and 𝜌 [𝑖, 𝑗]
to refer to the finite sequence 𝜌 [𝑖]𝜌 [𝑖 + 1] . . . 𝜌 [ 𝑗 − 1]𝜌 [ 𝑗] ∈ 𝑆∗.

2.1 Concurrent game structures and strategies
We fix a finite, non-empty set Agt = {𝑎1, . . . , 𝑎𝑛} of 𝑛 agents and a
finite set A of atomic propositions. A subset of Agt is called team.

Definition 2.1 (CGS). A concurrent game structure (CGS) 𝐺 (over
Agt and A) is a tuple ⟨𝑄,𝑞init , 𝜋, 𝑑, 𝛿⟩, where:
• 𝑄 is the finite set of states;
• 𝑞init ∈ 𝑄 is a distinguished state in 𝑄 , called initial state;
• 𝜋 : A → 2𝑄 is the evaluation function, which determines the
states where propositions hold true;
• 𝑑 : 𝑄 × Agt → N>0 is the action function: 𝑑 (𝑞, 𝑎) denotes the
(number of) actions available to an agent 𝑎 ∈ Agt at a state 𝑞 ∈ 𝑄 .
For each 𝑞 ∈ 𝑄 we denote by𝐷 (𝑞) the set {1, . . . , 𝑑 (𝑞, 𝑎1)}× . . .×
{1, . . . , 𝑑 (𝑞, 𝑎𝑛)} of action profiles available at 𝑞. A generic action
(resp., action profile) is usually denoted by 𝛼 (resp., ®𝛼);
• 𝛿 :𝑄 ×N𝑛→𝑄 is the transition function, defined on pairs (𝑞,®𝛼) ∈
𝑄 ×N𝑛 with ®𝛼 ∈𝐷 (𝑞) and undefinedwhen ®𝛼 ∉𝐷 (𝑞). If𝛿 (𝑞,®𝛼) =𝑞′
for some 𝑞, 𝑞′ ∈𝑄 and ®𝛼 ∈𝐷 (𝑞), we say that there is a transition
from 𝑞 to 𝑞′ triggered by the action profile ®𝛼 (denoted by 𝑞 ®𝛼−→𝑞′).

For every CGS 𝐺 , we denote by 𝑄𝐺 , 𝑞init𝐺
, 𝜋𝐺 , 𝑑𝐺 , and 𝛿𝐺 its

components (we omit the subscript when clear from the context).
Let 𝐺 be a CGS. We generalize the notion of action profile to

any given team: an 𝐴-action profile, with 𝐴 ⊆ Agt, is a function
from 𝐴 to N>0. We denote by Λ𝐴 the set of 𝐴-action profiles, and
we usually use ®𝛼𝐴 to denote a generic element of Λ𝐴 . Moreover,
for every 𝑞 ∈ 𝑄 and 𝐴 ⊆ Agt, we denote by 𝐷𝐴 (𝑞) the set of 𝐴-
action profiles available at 𝑞, that is, 𝐷𝐴 (𝑞) = { ®𝛼𝐴 ∈ Λ𝐴 | ®𝛼𝐴 (𝑎) ≤
𝑑 (𝑞, 𝑎) for every 𝑎 ∈ 𝐴}.

A computation (over a CGS 𝐺) is an infinite sequence of pairs
(𝑞1, ®𝛼1) (𝑞2, ®𝛼2) . . . such that 𝑞𝑖

®𝛼𝑖−−→𝑞𝑖+1 for every 𝑖 . If, in addition,
𝑞1 = 𝑞init , then the computation is initial. We denote by C𝐺 the

set of all computations over𝐺 (once again, we omit the subscript
when there is no ambiguity). The 𝑄-projection of a computation
𝑐 = (𝑞1, ®𝛼1) (𝑞2, ®𝛼2) . . . ∈ C, denoted by 𝑐 |𝑄 , is the infinite se-
quence of states 𝑞1𝑞2 . . .. A history ℎ is a pair (𝑐, 𝑞), where 𝑐 =

(𝑞1, ®𝛼1) (𝑞2, ®𝛼2) . . . (𝑞𝑘 , ®𝛼𝑘 ) is a (possibly empty) prefix of a com-
putation and 𝑞 ∈ 𝑄 is such that 𝑞𝑘

®𝛼𝑘−−→𝑞, unless 𝑐 is the empty
sequence; we denote by H the set of histories.

Definition 2.2 ((memoryless) strategy). A strategy (for a team 𝐴

over a CGS 𝐺) is a function 𝐹𝐴 : H → Λ𝐴 such that 𝐹𝐴 (𝑐, 𝑞) ∈
𝐷𝐴 (𝑞), for every (𝑐, 𝑞) ∈ H. A memoryless strategy is a strategy 𝐹𝐴
such that 𝐹𝐴 (𝑐, 𝑞) = 𝐹𝐴 (𝑐 ′, 𝑞) for every 𝑐 , 𝑐 ′, and 𝑞.

Let ®𝛼𝐴 be an 𝐴-action profile, i.e., ®𝛼𝐴 ∈ Λ𝐴 . We define the set of
its extensions as ext ( ®𝛼𝐴) = { ®𝛼 ∈ ΛAgt | ®𝛼𝐴 (𝑎) = ®𝛼 (𝑎) for every 𝑎 ∈
𝐴}, and, for every 𝑞 ∈ 𝑄 , we let 𝛿 ®𝛼𝐴 (𝑞) = {𝑞′ ∈ 𝑄 | 𝑞′ =

𝛿 (𝑞, ®𝛼) for some ®𝛼 ∈ ext ( ®𝛼) ∩ 𝐷 (𝑞)}.
Definition 2.3 (outcome). The outcome of a strategy 𝐹𝐴 from a

state 𝑞 ∈ 𝑄 is the set out(𝐹𝐴, 𝑞) = {(𝑞1, ®𝛼1) (𝑞2, ®𝛼2) . . . ∈ C | 𝑞1 = 𝑞

and ®𝛼𝑖 ∈ ext (𝐹𝐴 ((𝑞1, ®𝛼1) . . . (𝑞𝑖−1, ®𝛼𝑖−1), 𝑞𝑖 )) ∩ 𝐷 (𝑞𝑖 ) for all 𝑖 > 0}.
Let 𝑖, 𝑔 ⊆ 𝑄 (elements of 𝑖 are called invariants while elements

of 𝑔 are called goals). A strategy 𝐹𝐴 guarantees 𝑖 from 𝑞 ∈ 𝑄 to
mean that, for every 𝑐 ∈ out(𝐹𝐴, 𝑞), 𝑐 |𝑄 only features invariants
(𝑞′ ∈ 𝑖 , for every 𝑞′ occurring in 𝑐 |𝑄 before the first occurrence of
a state in 𝑔); 𝐹𝐴 guarantees 𝑖 until 𝑔 from 𝑞 ∈ 𝑄 to mean that, for
every 𝑐 ∈ out(𝐹𝐴, 𝑞), 𝑐 |𝑄 features at least one goal (state in 𝑔) and
is such that only invariants occur in 𝑐 |𝑄 before the first occurrence
of a goal (𝑞′ ∈ 𝑖 , for every 𝑞′ occurring in 𝑐 |𝑄 before the first
occurrence of a state in 𝑔); finally, we say that 𝐹𝐴 is (𝑖, 𝑔, 𝑜)-friendly
(with 𝑜 ∈ {U,□}) from 𝑞 ∈ 𝑄 if:
• 𝑜 = □ and 𝐹𝐴 guarantees 𝑖 , or
• 𝑜 = U and 𝐹𝐴 guarantees 𝑖 until 𝑔.
Without loss of generality, from now on we assume 𝑖 ∩ 𝑔 = ∅.

In what follows, we refine the notions of CGS and correspond-
ing strategies to comply with qualitative (parity condition) and
quantitative (energy condition) requirements.

Definition 2.4 (parity condition). A parity condition (over a CGS
𝐺) is a function 𝑝 :𝑄→N assigning natural numbers to states in𝐺 .

Energy conditions are based on weight assignments. A weight

assignment (over a CGS𝐺) is a function𝑤 : 𝑄×ΛAgt → Q assigning
a rational weight to every transition of 𝐺 (𝑤 (𝑞, ®𝛼) is undefined
whenever ®𝛼 ∉ 𝐷 (𝑞)). For every 𝑥,𝑦 ∈ Q∪ {−∞, +∞}, we denote by
[𝑥,𝑦] the set {𝑧 ∈ R | 𝑥 ≤ 𝑧 ≤ 𝑦}.

Definition 2.5 (energy condition). An energy condition (over a CGS
𝐺) is a triple 𝑒 = ⟨𝑤, Einit , [𝑎, 𝑏]⟩, where𝑤 is a weight assignment
over 𝐺 , Einit ∈ [𝑎, 𝑏] is the initial energy level of 𝑒 , and [𝑎, 𝑏] is its
energy bound, with 𝑎 ∈ Q ∪ {−∞}, 𝑏 ∈ Q ∪ {+∞}, and 𝑎 ≤ 𝑏.

Definition 2.6 (pe-CGS). A parity-energy CGS (pe-CGS) is a triple
G = ⟨𝐺, 𝑝, 𝑒⟩, where𝐺 is a CGS, and 𝑝 and 𝑒 = ⟨𝑤, Einit , [𝑎, 𝑏]⟩ are,
respectively, a parity and an energy condition over it. A position of
G is a pair (𝑞, E) ∈ 𝑄 × Q; (𝑞init , Einit ) is the initial position of G.

We lift any given parity condition 𝑝 from the domain 𝑄 to the
domain 𝑄𝜔 in the natural way, by defining 𝑝 : 𝑄𝜔 → N𝜔 as
𝑝 (𝑞1𝑞2 . . .) = 𝑝 (𝑞1)𝑝 (𝑞2) . . . ∈ N𝜔 for every 𝑞1𝑞2 . . . ∈ 𝑄𝜔 . More-
over, for 𝜌 ∈ 𝑄𝜔 , we let infinite𝑝 (𝜌) be the set of naturals that
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occur infinitely many times in 𝑝 (𝜌). The parity of an infinite word
𝜌 ∈ 𝑄𝜔 wrt. 𝑝 is defined as min(infinite𝑝 (𝜌)).

Let 𝑒=⟨𝑤, Einit , [𝑎, 𝑏]⟩ be an energy condition. For every com-
putation 𝑐=(𝑞1, ®𝛼1) (𝑞2, ®𝛼2) . . ., the energy-contribution of a prefix
𝑐 [1, 𝑘] of 𝑐 (𝑘∈N>0) wrt. 𝑒 , denoted by e-contrib(𝑒, 𝑐 [1, 𝑘]), is Einit+∑𝑘

𝑖=1𝑤 (𝑞𝑖 , ®𝛼𝑖 ); the energy bottom of 𝑐 wrt. 𝑒 , denoted by e(𝑒, 𝑐), is
defined as e(𝑒, 𝑐)= inf𝑘→∞ e-contrib(𝑒, 𝑐 [1, 𝑘]); the energy peak of 𝑐
wrt. 𝑒 is defined analogously: E(𝑒, 𝑐)= sup𝑘→∞ e-contrib(𝑒, 𝑐 [1, 𝑘]).
Finally, for any given strategy 𝐹𝐴 and 𝑞∈𝑄 , the energy range of 𝐹𝐴
from 𝑞 wrt. 𝑒 , denoted by e-range(𝑒, 𝐹𝐴, 𝑞), is the set [min,max],
wheremin = inf{e(𝑒, 𝑐 ′) | 𝑐 ′ ∈ out(𝐹𝐴, 𝑞)} andmax= sup{E(𝑒, 𝑐 ′) |
𝑐 ′ ∈ out(𝐹𝐴, 𝑞)}.

We are now ready to define strategies that are compliant with
parity- and/or energy-conditions.

Definition 2.7 ((𝑝,𝑒)-strategy). Let G = ⟨𝐺, 𝑝, 𝑒⟩ be a pe-CGS,
with 𝑒 = ⟨𝑤, Einit , [𝑎, 𝑏]⟩ and 𝑞 ∈ 𝑄 . A strategy 𝐹𝐴 is said to be:
- 𝑝-compliant (or a 𝑝-strategy) from 𝑞 if for every 𝑐 ∈ out(𝐹𝐴, 𝑞)
𝑐 |𝑄 has even parity wrt. 𝑝;

- 𝑒-compliant (or a 𝑒-strategy) from 𝑞 if its energy range from 𝑞

wrt. 𝑒 is within the energy bound of 𝑒 , i.e., e-range(𝑒, 𝐹𝐴, 𝑞) ⊆ [𝑎,𝑏];
- (𝑝, 𝑒)-compliant (or a (𝑝,𝑒)-strategy) from 𝑞 if it is both 𝑝- and
𝑒-compliant from 𝑞.

Let G=⟨𝐺, 𝑝, 𝑒⟩ be a pe-CGS with 𝑒 = ⟨𝑤,Einit ,[𝑎,𝑏]⟩. Before con-
cluding this sub-section, we observe that a history (𝑐, 𝑞) univocally
identifies in G the position (𝑞, E), where E = Einit + e-contrib(𝑒, 𝑐);
therefore, we say that history (𝑐, 𝑞) leads (in G) to position (𝑞, E).

2.2 Syntax and semantics
The syntax of pe-ATL is the same as the one for ATL [3], and it is
given by the following grammar:

𝜑 ::= 𝔭 | ¬𝜑 | 𝜑 ∧ 𝜑 | ⟨⟨𝐴⟩⟩ ⃝ 𝜑 | ⟨⟨𝐴⟩⟩𝜑U𝜑 | ⟨⟨𝐴⟩⟩□𝜑 ,
where 𝔭 ∈A and 𝐴 ⊆Agt. Constants ⊤ and ⊥, as well as other
Boolean connectives and team operators (e.g., ∨ and ⟨⟨𝐴⟩⟩^), can be
seen as abbreviations (e.g., ⟨⟨𝐴⟩⟩^𝜑 is a shorthand for ⟨⟨𝐴⟩⟩⊤U𝜑).

Formulas of pe-ATL are interpreted wrt. (states of) pe-CGS’s. Let
G = ⟨𝐺, 𝑝, 𝑒⟩ be a pe-CGS and 𝑞 ∈ 𝑄 . The truth of a pe-ATL formula
over G and 𝑞 is inductively defined by the following clauses:
• G, 𝑞 |= 𝔭 iff 𝑞 ∈ 𝜋 (𝔭);
• G, 𝑞 |= ¬𝜑 iff it is not the case that G, 𝑞 |= 𝜑 ;
• G, 𝑞 |= 𝜑1 ∧ 𝜑2 iff G, 𝑞 |= 𝜑1 and G, 𝑞 |= 𝜑2;
• G, 𝑞 |= ⟨⟨𝐴⟩⟩ ⃝ 𝜑 iff there exists a (𝑝,𝑒)-strategy 𝐹𝐴 from 𝑞 such
that G, 𝑐 |𝑄 [2] |= 𝜑 for every 𝑐 ∈ out(𝐹𝐴, 𝑞);
• G, 𝑞 |=⟨⟨𝐴⟩⟩𝜑1U𝜑2 iff there exists a (𝑝,𝑒)-strategy 𝐹𝐴 from 𝑞 such
that for every 𝑐 ∈ out(𝐹𝐴, 𝑞) there is 𝑖∈N>0 for whichG, 𝑐 |𝑄 [𝑖] |=
𝜑2 and for every 𝑗 ∈ N with 1 ≤ 𝑗 < 𝑖 it holds G, 𝑐 |𝑄 [ 𝑗] |= 𝜑1;
• G, 𝑞 |= ⟨⟨𝐴⟩⟩□𝜑 iff there exists a (𝑝,𝑒)-strategy 𝐹𝐴 from 𝑞 such
that for every 𝑐 ∈ out(𝐹𝐴, 𝑞) and every 𝑖 ∈ N>0 it holdsG, 𝑐 |𝑄 [𝑖] |=
𝜑 .

Using standard notation, given a pe-ATL formula 𝜑 and a pe-CGS
G, we write J𝜑KG to denote the set {𝑞 | G, 𝑞 |= 𝜑}, and we omit the
subscript when there is no risk of ambiguity, thus writing, e.g., J𝜑K
instead of J𝜑KG . Therefore, the clauses for the operatorsU and □
can be rewritten as follows:
• G, 𝑞 |= ⟨⟨𝐴⟩⟩𝜑1U𝜑2 iff there exists a (J𝜑1K\J𝜑2K, J𝜑2K,U)-
friendly (𝑝,𝑒)-strategy 𝐹𝐴 from 𝑞. (†)

• G, 𝑞 |= ⟨⟨𝐴⟩⟩□𝜑1 iff there exists a (J𝜑1K, ∅,□)-friendly
(𝑝,𝑒)-strategy 𝐹𝐴 from 𝑞. (‡)

By simultaneously replacing |=p for |= and 𝑝-strategy for (𝑝,𝑒)-
strategy, or, alternatively, |=e for |= and 𝑒-strategy for (𝑝,𝑒)-strategy,
we obtain two alternative semantics, the 𝑝- and the 𝑒-semantics.
We name the resulting logics p-ATL and e-ATL, respectively.

Given a pe-ATL formula𝜑 and a pe-CGSG, we say thatG satisfies
𝜑 , denoted by G |= 𝜑 , if G, 𝑞init |= 𝜑 . Moreover, we say that G
satisfies 𝜑 in the 𝑝-semantics (resp., 𝑒-semantics), denoted by G |=p
𝜑 (resp., G |=e 𝜑), if, and only if, G, 𝑞init |=p 𝜑 (resp., G, 𝑞init |=e 𝜑).

2.3 The model checking problem
Themodel checking problem for pe-ATL (resp., p-ATL, e-ATL) consists
in verifying, given a pe-CGS G and a pe-ATL formula 𝜑 , whether
G |= 𝜑 (resp., G |=p 𝜑 , G |=e 𝜑) holds. It is easy to show that the
model checking problem for p-ATL (resp., e-ATL) can be reduced to
the model checking problem for pe-ATL. Indeed, for a G = ⟨𝐺, 𝑝, 𝑒⟩,
with 𝑒 = ⟨𝑤, Einit , [𝑎, 𝑏]⟩, let 𝑝𝑐𝑔𝑠 and 𝑒𝑐𝑔𝑠 be defined as:
• 𝑝𝑐𝑔𝑠 (G) = ⟨𝐺, 𝑝, 𝑒 ′⟩, where 𝑒 ′ = ⟨𝑤 ′, E, [𝑎, 𝑏]⟩, E = 𝑎, and
𝑤 ′(𝑞, ®𝛼) = 0 for every 𝑞 ∈ 𝑄 and every ®𝛼 ∈ 𝐷 (𝑞);
• 𝑒𝑐𝑔𝑠 (G) = ⟨𝐺, 𝑝 ′, 𝑒⟩, with 𝑝 ′(𝑞) = 0 for every 𝑞 ∈ 𝑄 .
The following results easily hold.

Proposition 2.8. For every pe-CGS G and pe-ATL formula 𝜑 :

• G |=p 𝜑 if and only if 𝑝𝑐𝑔𝑠 (G) |= 𝜑 , and

• G |=e 𝜑 if and only if 𝑒𝑐𝑔𝑠 (G) |= 𝜑 .

Lemma 2.9. There are polynomial time reductions from the model

checking problem for p-ATL to the one for pe-ATL and from the model

checking problem for e-ATL to the one for pe-ATL.

Without loss of generality, we only consider integer energy condi-
tions, i.e., energy conditions 𝑒 = ⟨𝑤, Einit , [𝑎, 𝑏]⟩ such that𝑤 ranges
over integer, Einit ∈ Z, and 𝑎, 𝑏 ∈ Z∪ {−∞, +∞}. Details on how to
convert a general model checking instance into an equivalent one
featuring an integer energy condition are omitted for lack of space.
We fix a pe-CGS G = ⟨𝐺, 𝑝, 𝑒⟩, where 𝑒 = ⟨𝑤, Einit , [𝑎, 𝑏]⟩ is an inte-
ger energy condition. Moreover, we ignore the case where 𝑎 = −∞
and 𝑏 ≠ +∞, as it can be dealt with analogously to the one where
𝑎 ≠ −∞ and 𝑏 = +∞, and we only consider the remaining three
cases: (𝑖) [𝑎, 𝑏] = [−∞, +∞] (unbounded instances), (𝑖𝑖) 𝑎, 𝑏 ∈ Z
(bounded instances), (𝑖𝑖𝑖) 𝑎 ∈ Z and 𝑏 = +∞ (mixed instances).

3 SOLVING THE EASY CASES
The hardest case to solve when addressing the model checking
problem for pe-ATL concerns formulas of the kind ⟨⟨𝐴⟩⟩𝜑1U𝜑2. As
a consequence of (†) and (‡), deciding these formulas amounts to
establishing whether there exists an (𝑖, 𝑔, 𝑜)-friendly (𝑝,𝑒)-strategy
𝐹𝐴 , for a suitable 𝑜 ∈ {U,□}, denoting the operator, and suitable
sets 𝑖 and 𝑔 denoting the semantics of 𝜑1 and 𝜑2, respectively.

In this section, we address this latter problem. More precisely,
we devise a procedure to decide if there is an (𝑖, 𝑔, 𝑜)-friendly (𝑝,𝑒 ′)-
strategy for a team 𝐴 from a state 𝑞, for any given 𝑖 , 𝑔, 𝑜 , 𝐴, and 𝑞,
and where 𝑒 ′ = ⟨𝑤, E, [𝑎, 𝑏]⟩ for a given E, that is, 𝑒 ′ is obtained
from 𝑒 = ⟨𝑤, Einit , [𝑎, 𝑏]⟩ by replacing its initial energy level Einit
with the given one E.

We focus here on bounded and unbounded instances, that is,
those in which either [𝑎, 𝑏] = [−∞, +∞] or 𝑎 ≠ −∞ and 𝑏 ≠ +∞.
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These cases are easier to deal with. In the next section, we will
handle the more complex mixed instances.

Unbounded instances can be treated as particular cases of
bounded ones. Indeed, an unbounded instance having energy condi-
tion 𝑒=⟨𝑤, Einit , [−∞, +∞]⟩ can be easily converted into an equiv-
alent bounded one by replacing 𝑒 with 𝑒 ′=⟨𝑤 ′, 0, [0, 0]⟩, where𝑤 ′
assign weight 0 to every transition. In what follows, we focus on
bounded instances, unless differently specified.

The algorithm hinges on some characterizations of strategies
(Lemma 3.2 and Corollary 3.3 below) in terms of memoryless and
uniform ones, the latter being defined as follows.

Definition 3.1 (uniform strategies). A uniform strategy is a strat-
egy 𝐹𝐴 such that 𝐹𝐴 (𝑐, 𝑞) = 𝐹𝐴 (𝑐 ′, 𝑞) for every 𝑐 , 𝑐 ′, and 𝑞 such that
e-contrib(𝑒, 𝑐) = e-contrib(𝑒, 𝑐 ′).

Lemma 3.2. If 𝑎 ≠ −∞ and 𝑏 ≠ +∞ (bounded instance), then

(𝑎) a (𝑝,𝑒)-strategy from 𝑞 exists if and only if a uniform one exists,

(𝑏) for every 𝑖, 𝑔 ∈ 𝑄 , an (𝑖, 𝑔,U)-friendly strategy from 𝑞 exists if

and only if a uniform one exists, and

(𝑐) for every 𝑖 ∈ 𝑄 , an (𝑖, ∅,□)-friendly (𝑝,𝑒)-strategy from 𝑞 exists

if and only if a uniform one exists.

Notice also that, despite the results in Lemma 3.2 and unlike the
case of (𝑖, 𝑔,□)-friendly (𝑝,𝑒)-strategies, an (𝑖, 𝑔,U)-friendly (𝑝,𝑒)-
strategy is not necessarily uniform, as the strategy can associate
different action profiles to the same position depending on which
the current phase is: intuitively, a strategy is followed to satisfy the
(𝑖, 𝑔,U)-friendliness and another one to meet the parity condition.

Clearly, a memoryless strategy (Definition 2.2) is also uniform.
Even if the converse is not necessarily true, both kinds of strategies
can be considered to be positional: two histories (𝑐, 𝑞), (𝑐 ′, 𝑞) with
e-contrib(𝑒, 𝑐) = e-contrib(𝑒, 𝑐 ′) lead to the same position (𝑞, E) of
G, and thus a uniform strategy 𝐹𝐴 forces 𝐴 to behave uniformly
whenever the game is in the same position.

Aswe have already observed, unbounded instances can be treated
as special bounded ones where energy never changes. Thus, there
is a bijection between states and reachable positions, from which
the following corollary follows.

Corollary 3.3. If [𝑎, 𝑏] = [−∞, +∞] (unbounded instance), then
• a (𝑝,𝑒)-strategy from 𝑞 exists if and only if a memoryless one exists,

• for every 𝑖, 𝑔 ∈ 𝑄 , an (𝑖, 𝑔,U)-friendly strategy from 𝑞 exists if and

only if a memoryless one exists, and

• for every 𝑖 ∈ 𝑄 , an (𝑖, ∅,□)-friendly (𝑝,𝑒)-strategy from 𝑞 exists if

and only if a memoryless one exists.

Having these results in mind, it is not difficult to devise algo-
rithms to look for (𝑖, 𝑔, 𝑜)-friendly (𝑝,𝑒)-strategies (see Algorithm 1
for full details). In the following, we give an intuitive description
only for the case when 𝑜 = U, i.e., (𝑖, 𝑔,U)-friendly (𝑝,𝑒)-strategies.

The algorithm consists of two phases. During the first phase, it
focuses on the (𝑖, 𝑔,U)-friendliness: it explores all strategies for
𝐴 trying to reach a goal in 𝑔 while guaranteeing invariants in 𝑖 .
Once a goal is reached, the second phase begins, during which
the algorithm focuses on the parity condition by searching for the
existence of a (𝑝,𝑒)-strategy. The step from the first phase to the
second one is triggered when a goal is reached, at which point the
flag variable igU_friendly is set to TRUE and the history is reset

Alg. 1 For bounded instances, it checks for the existence of a (𝑖, 𝑔, 𝑜)-friendly (𝑝,𝑒′)-strategy for
𝐴 from 𝑞, where 𝑒′ = ⟨𝑤, E, [𝑎,𝑏 ] ⟩.
1: procedure ∃-strategy-bounded(G, 𝑖,𝑔,𝑜,𝐴,𝑞, E, history, igU_friendly)

⊲ G = ⟨𝐺, 𝑝, 𝑒 ⟩,𝐺 = ⟨𝑄,𝑞init , 𝜋,𝑑, 𝛿 ⟩, 𝑒 = ⟨𝑤, Einit , [𝑎,𝑏 ] ⟩
2: if 𝑜 = □ then𝑔← ∅ ⊲ no goals when searching for (𝑖, 𝑔, 𝑜)-friendly (𝑝,𝑒′)-strategy
3: if E ∉ [𝑎,𝑏 ] then return FALSE
4: if not igU_friendly then
5: if 𝑞 ∉ 𝑖 ∪𝑔 then return FALSE
6: if 𝑞 ∈ 𝑔 then ⊲when a goal is reached . . .
7: igU_friendly← TRUE ⊲ . . . a flag is set to true,
8: delete-history(history) ⊲ . . . history is reset, and the second phase begins
9: if history[𝑞, E] ≠ NULL then ⊲ position (𝑞, E) is visited for the second time
10: if 𝑜 = U and igU_friendly and history[𝑞, E] is even then return TRUE
11: if 𝑜 = □ and history[𝑞, E] is even then return TRUE
12: return FALSE
13: else
14: update-history(history, 𝑎,𝑏, 𝑝,𝑞, E)
15: found_strategy← FALSE
16: Guess ®𝛼𝐴 ∈ 𝐷𝐴 (𝑞) ⊲ proponent’s strategy is guessed non-deterministically
17: for ®𝛼 ∈ 𝐷 (𝑞) ∩ ext ( ®𝛼𝐴 ) do ⊲ cycle over opponent’s strategies
18: 𝑞 ← 𝛿 (𝑞, ®𝛼 )
19: E ← E +𝑤 (𝑞, ®𝛼 )
20: ifnot ∃-strategy-bounded(G,𝑖,𝑔,𝑜,𝐴,𝑞,E,history,igU_friendly) then return FALSE
21: return TRUE

22: procedure update-history(history, 𝑎,𝑏, 𝑝,𝑞, E)
⊲ history keeps track of all visited positions and, for each such positions, stores the min-
imum parity occurred since the last visit to that position

23: history[𝑞, E] ← 𝑝 (𝑞)
24: for (𝑞′, E′) ∈ 𝑄 × [𝑎,𝑏 ] s.t. history[𝑞, E] ≠ NULL do
25: history[𝑞′, E′] ← min{history[𝑞′, E′], 𝑝 (𝑞) }

(lines 6–8 in Algorithm 1). Notice that when searching for (𝑖, 𝑔,□)-
friendly (𝑝,𝑒)-strategies, no goal is ever reached (𝑔 is in fact set to
empty at line 2 in Algorithm 1), so the history is never reset and
the search is performed in only one phase; this is coherent with
the result in Lemma 3.2 (𝑐), which states that a uniform strategy is
enough to search for (𝑖, 𝑔,□)-friendly (𝑝,𝑒)-strategies. Throughout
the whole process, the energy condition is checked as well, that is,
the algorithm verifies that in each position (𝑞, E) the energy level
E is within the allowed range [𝑎, 𝑏].

A strategy is discharged if during one of its outcomes the same
position is reached twice without reaching a goal (in the first phase)
or being able to guarantee the parity condition by, intuitively, reach-
ing a cycle with even parity (in the second phase). Observe that it
is safe to adopt such a termination condition thanks to Lemma 3.2.
Complexity. The computational complexity of the procedure is
given by the number of recursive calls. In the worst case, the algo-
rithm visits each position once in each phase (that is, before and
after reaching a goal), and a recursive call is made for each such
visits, thus yielding 2 × |𝑄 | × (𝑏 − 𝑎 + 1) calls. Assuming that 𝑎
and 𝑏 are represented in binary, the complexity of the algorithm is
exponential in the size of the input.

Theorem 3.4. The procedure ∃-strategy-bounded runs in non-

deterministic exponential time in the size of the input.

The following corollary comes in handy to deal with unbounded
instances, as they can be treated as bounded ones where 𝑎 = 𝑏 = 0.

Corollary 3.5. If 𝑎=𝑏, then the procedure ∃-strategy-bounded
runs in non-deterministic polynomial time in the size of the input.

4 SOLVING THE DIFFICULT MIXED CASE
In this section we deal with mixed instances, where the energy
bound is bounded below and unbounded above. This case is much
technical involved (the case in which the energy bound is bounded
only above can be dealt with analogously and thus omitted).
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We first observe in Section 4.1 that there is a natural correspon-
dence between strategies (resp., (𝑝,𝑒)-strategies) for a team 𝐴 and
a suitable class of infinite trees, named 𝐴-trees (resp., (𝑝,𝑒)-𝐴-trees),
the latter being easier to manipulate and deal with.

Then, in Section 4.2 we define appropriate finite structures,
named witnesses, which are shown, in Sections 4.3 and 4.4, to be
expressively complete for (𝑝,𝑒)-strategies, meaning that every such
witness corresponds to a particular (𝑝,𝑒)-strategy (Section 4.3), and,
vice versa, every (𝑝,𝑒)-strategy can be compactly encoded into a
witness which keeps enough information about the strategy it-
self (Section 4.4). As a consequence, the search for a (𝑝,𝑒)-strategy
amounts to looking for a witness for it.

Finally, we establish a bound for the size of a witness correspond-
ing to a strategy; thus, the search space to search for witnesses is
finite, and a decision procedure follows.

4.1 Tree-based representation for strategies
Trees are particularly apt to express the possible evolutions of a
multi-agent system (represented as a pe-CGS) that are consistent
with a strategy adopted by a team of agents.

A node is a tuple 𝑁 = ⟨𝑞, E, ®𝛼, 𝑁1 . . . 𝑁𝑘 ⟩, where 𝑞 ∈ 𝑄 , E ∈ Z
is the energy level associated with the node, ®𝛼 ∈ 𝐷 (𝑞) ∪ {#} (# is
a placeholder for an undefined action profile; it is used for root
nodes), and 𝑁1 . . . 𝑁𝑘 is a finite (possibly empty) sequence of nodes,
representing the path to𝑁 . We useN to refer to the set of all nodes.
We denote by state(𝑁 ), e-level(𝑁 ), in-action(𝑁 ), and ancestors(𝑁 )
the first, second, third, and fourth component of𝑁 , respectively, and
we write path-to(𝑁 ) to denote the sequence obtained by enqueuing
𝑁 to the sequence ancestors(𝑁 ), i.e., path-to(𝑁 ) = 𝑁1 . . . 𝑁𝑘𝑁 . If
𝑁1 and𝑁2 are two nodes such that𝑁1 ∈ ancestors(𝑁2), then we say
that 𝑁1 (resp., 𝑁2) is an ancestor (resp., a descendant) of 𝑁2 (resp.,
𝑁1); we denote by desc (𝑁 ) the set of descendant of a node 𝑁 , i.e.,
desc (𝑁 ) = {𝑁 ′ ∈ N | 𝑁 ∈ ancestors(𝑁 ′)}, and, for 𝑋 ⊆ N , we
let desc (𝑋 ) = ⋃

𝑁 ∈𝑋 desc (𝑁 ). Moreover, 𝑁2 is a child of 𝑁1 if it is
an immediate descendant of 𝑁1 (i.e., path-to(𝑁1) = ancestors(𝑁2)):
in this case we also say that 𝑁1 is the father of 𝑁2, and we use
father (𝑁2) to denote 𝑁1. A root node, or simply root, is a node 𝑁
for which ancestors(𝑁 ) = 𝜀 (𝜀 denotes the empty sequence). A
tree T is a set of nodes that contains exactly one root, denoted by
rootT , and such that for every 𝑁 ∈ T and every ancestor 𝑁 ′ of
𝑁 it holds: (𝑖) 𝑁 ′ ∈ T , and (𝑖𝑖) ancestors(𝑁 ′) is a proper prefix
of ancestors(𝑁 ). For a tree T and a node 𝑁 ∈ T , we denote by
childrenT (𝑁 ) the set of children of 𝑁 in T , i.e., childrenT (𝑁 ) =
{𝑁 ′ ∈ T | 𝑁 ′ is a child of 𝑁 }. A leaf of T is a node 𝑁 that has no
children in T (i.e., childrenT (𝑁 ) = ∅); we denote by leavesT the
set of leaves of T . A branch B of T is a maximal subset of T such
that every two different nodes in B are one an ancestor of the other.
By the maximality requirement, if B is a branch of T and 𝑁 ∈ B
is not a leaf of T , then |childrenB (𝑁 ) | = 1; a branch of T is finite
if and only if it contains a leaf of T . (Notice that a branch of a tree
is a tree itself; moreover, since a branch is a linearly ordered set of
nodes, we treat it as a sequence whenever we find it convenient.)

For a (finite or infinite) sequence of nodes N = 𝑁1𝑁2 . . ., we de-
note by state(N) the sequence of states state(𝑁1)state(𝑁2) . . ., and
by state-action(N) the sequence of pairs (state(𝑁1), in-action(𝑁2))
(state(𝑁2), in-action(𝑁3)) . . .. A node 𝑁 is (𝑖, 𝑔)-friendly (for 𝑖, 𝑔 ⊆

𝑄) if there is𝑁 ′∈path-to(𝑁 ) such that state(𝑁 ′)∈𝑔 and state(𝑁 ′′)∈𝑖
for every 𝑁 ′′ ∈ ancestors(𝑁 ′). A tree T is (𝑖, 𝑔)-friendly if every
branch B of T features at least one (𝑖, 𝑔)-friendly node; moreover,
we say that T is 𝑖-invariant if state(𝑁 ) ∈ 𝑖 for every 𝑁 ∈ T and
that T ranges within [𝑎, 𝑏] if e-level(𝑁 ) ∈ [𝑎, 𝑏] for every 𝑁 ∈ T .

For 𝑘 pairs of nodes 𝑁1, 𝑁 ′1, . . . , 𝑁𝑘 , 𝑁
′
𝑘
∈T , T[𝑁1← [𝑁 ′1,...,𝑁𝑘←[𝑁 ′

𝑘
]

is the tree obtained from T by replacing, for every 𝑖 = 1, . . . , 𝑘 ,
the sub-tree rooted in 𝑁𝑖 with the one rooted in 𝑁 ′

𝑖
. Towards a

formal definition, we first inductively define, for 𝑁1, 𝑁2 ∈ T , the
node transformation function 𝜏T[𝑁1←[𝑁2 ] : for every 𝑁 ∈ T that is
a descendant of 𝑁2, with 𝑁 = ⟨𝑞,E,®𝛼,path-to(𝑁2)𝑁 ′′1 . . . 𝑁 ′′

ℎ
⟩ and

ℎ ≥ 0
𝜏T[𝑁1←[𝑁2 ] (𝑁 ) = ⟨𝑞, E − e-level(𝑁2) + e-level(𝑁1), ®𝛼,N ′⟩,
where N ′ = path-to(𝑁1)𝜏T[𝑁1←[𝑁2 ] (𝑁

′′
1 ) . . . 𝜏

T
[𝑁1← [𝑁2 ] (𝑁

′′
ℎ
) . (1)

We omit superscript and subscript from the above notation when
they are clear from the context; e.g., we simply write 𝜏 [𝑁1←[𝑁2 ]
or 𝜏 in place of 𝜏T[𝑁1←[𝑁2 ] . Notice that 𝜏 is an injection. Then,
T[𝑁1←[𝑁 ′1,...,𝑁𝑘←[𝑁 ′

𝑘
] is defined as:

T \ ⋃𝑖∈{1,...,𝑘 }{𝑁 | 𝑁 is a descendant of 𝑁𝑖 in T }
∪⋃𝑖∈{1,...,𝑘 }{𝜏 [𝑁𝑖←[𝑁 ′

𝑖
] (𝑁 ) | 𝑁 is a descendant of 𝑁 ′

𝑖
in T }.

In order to be able to use trees to capture the possible ways pe-
CGS’s can evolve according to team strategies, we make use of the
following notions. First, for every (𝑞,E) ∈𝑄 × [𝑎,𝑏], we define its ®𝛼-
successor, for ®𝛼 ∈𝐷 (𝑞), as succ ®𝛼 (𝑞, E) = (𝑞 ®𝛼 ,E ®𝛼 ), where 𝑞 ®𝛼 =𝛿 (𝑞,®𝛼)
and E ®𝛼 = E +𝑤 (𝑞,®𝛼). Then, we define, for a team𝐴 and ®𝛼𝐴 ∈ 𝐷𝐴 (𝑞),
the set succ-set ®𝛼𝐴 (𝑞, E) = {succ ®𝛼 (𝑞, E) | ®𝛼 ∈ ext ( ®𝛼𝐴) ∩ 𝐷 (𝑞)}. Fi-
nally, we lift the definition of succ ®𝛼 and succ-set ®𝛼𝐴 to the domain of
nodes: for a node 𝑁 we define succ ®𝛼 (𝑁 ) = ⟨𝑞 ®𝛼 , E ®𝛼 , ®𝛼, path-to(𝑁 )⟩,
where (𝑞 ®𝛼 , E ®𝛼 ) = succ ®𝛼 (state(𝑁 ), e-level(𝑁 )) and succ-set ®𝛼𝐴 (𝑁 ) =
{succ ®𝛼 (𝑁 ) | ®𝛼 ∈ ext ( ®𝛼𝐴) ∩ 𝐷 (state(𝑁 ))}.

Definition 4.1 (𝐴-tree). Let 𝐴 be a team. An 𝐴-strategy tree (𝐴-
tree for short) rooted in 𝑞 ∈ 𝑄 is a tree T having ⟨𝑞, Einit , #, 𝜀⟩
as root and such that for every 𝑁 ∈ T either 𝑁 is a leaf of T or
childrenT (𝑁 ) = succ-set ®𝛼𝐴 (𝑁 ) for some ®𝛼𝐴 ∈ 𝐷𝐴 (state(𝑁 )). An
𝐴-tree is partial if it contains leaves, it is complete otherwise.

For an 𝐴-tree T and 𝑁∈T\leavesT , 𝐴-profileT (𝑁 ) is the 𝐴-
action profile ®𝛼𝐴∈𝐷𝐴 (state(𝑁 )) such that childrenT (𝑁 )=succ-set ®𝛼𝐴 (𝑁 ).
Every complete𝐴-tree T identifies a strategy, denoted by 𝐹 T

𝐴
, as fol-

lows: for every 𝜌=state-action(ancestors(𝑁 )) for some𝑁∈T , we set
𝐹 T
𝐴
(𝜌, state(𝑁 ))=𝐴-profileT (𝑁 ), and we set 𝐹 T

𝐴
(𝜌, state(𝑁 )) (𝑎)=1

for every other (𝜌, 𝑁 ) and every 𝑎∈𝐴. Therefore, a complete 𝐴-tree
T rooted in 𝑞 describes the outcome of 𝐹 T

𝐴
from 𝑞. Conversely, it

is clear that, for a given 𝑞∈𝑄 , a strategy 𝐹𝐴 univocally identifies a
complete 𝐴-tree rooted in 𝑞, which we denote by T 𝐹𝐴 .

Proposition 4.2. For a complete 𝐴-tree T rooted in 𝑞, we have

that out(𝐹 T
𝐴
, 𝑞) = {state-action(B) | B is a branch of T }, and for a

strategy 𝐹𝐴 and 𝑞 ∈ 𝑄 , we have out(𝐹𝐴, 𝑞) = {state-action(B) | B
is a branch of T 𝐹𝐴 }.

Definition 4.3 ((𝑝,𝑒)-𝐴-tree). A (𝑝,𝑒)-𝐴-tree is a complete 𝐴-tree
T such that 𝐹 T is a (𝑝,𝑒)-strategy for 𝐴.

We omit the team whenever it is clear from the context or not
relevant; e.g., we write (𝑝,𝑒)-tree instead of (𝑝,𝑒)-𝐴-tree.
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Theorem 4.4. An (𝑖, 𝑔,U)-friendly (𝑝,𝑒)-strategy from 𝑞 exists

if and only if there is an (𝑖, 𝑔)-friendly (𝑝,𝑒)-tree rooted in 𝑞; an

(𝑖, 𝑔,□)-friendly (𝑝,𝑒)-strategy from 𝑞 exists if and only if there is an

𝑖-invariant (𝑝,𝑒)-tree rooted in 𝑞.

4.2 Witnesses
We introduce here the notion of witness (based on the ones of partial
witness and accumulator, see below), and we show in the next
sections that it is possible to reduce the existence of strategies (trees)
to the existence of witnesses of bounded sizes. In the reminder, let
𝐴 denote a team.

Definition 4.5 (pw). A partial witness (pw, for short) for 𝐴 is an
LTS (labeled transition system) 𝑆 = (𝑉 = 𝑉 ′ ⊎𝑉 fin,𝑇 = 𝑇> ⊎𝑇= ⊎
𝑇<, ℓ), where the set of vertices 𝑉 ⊆ 𝑄 (partitioned into {𝑉 ′,𝑉 fin}),
the set of transitions 𝑇 ⊆ 𝛿 (partitioned into {𝑇>,𝑇=,𝑇<}), and the
labeling function ℓ : 𝑉 → Z, associating an energy level with each
vertex, are subjects to the following constraints:
• for every 𝑞 ∈ 𝑉 there is (𝑞, ®𝛼, 𝑞′) ∈ 𝑇 if and only if 𝑞 ∈ 𝑉 ′;
• for every 𝑞 ∈ 𝑉 , ℓ (𝑞) ≥ 𝑎 ;
• for every ∼∈ {<,=, >} and (𝑞, ®𝛼, 𝑞′) ∈ 𝑇∼, ℓ (𝑞) +𝑤 (𝑞, ®𝛼) ∼ ℓ (𝑞′);
• for every 𝑞 ∈ 𝑉 ′ there is a unique ®𝛼𝐴 ∈ 𝐷𝐴 (𝑞) for which
𝐷 (𝑞) ∩ ext ( ®𝛼𝐴) = { ®𝛼 | (𝑞, ®𝛼, 𝑞′) ∈ 𝑇 for some 𝑞′}; we denote
by 𝐴-profile𝑆 (𝑞) such an unique 𝐴-action profile ®𝛼𝐴 .

Unless otherwise stated, we use the following notation: the first
component of a pw 𝑆 (resp., 𝑆𝑖 , with 𝑖 ∈ {1, 2, 3, 4}) is denoted by
𝑉 (resp., 𝑉𝑖 ), its second component is denoted by 𝑇 (resp., 𝑇𝑖 ), and
its third component is denoted by ℓ (resp., ℓ𝑖 ); moreover, even if
not explicitly said, 𝑉 (resp., 𝑉𝑖 ) is assumed to be partitioned into
{𝑉 ′,𝑉 fin} (resp., {𝑉 ′

𝑖
,𝑉

fin

𝑖
}), while 𝑇 (resp., 𝑇𝑖 ) is assumed to be

partitioned into {𝑇>,𝑇=,𝑇<} (resp., {𝑇>
𝑖
,𝑇=
𝑖
,𝑇<
𝑖
}).

Let 𝑆 be a pw. We denote by 𝑉 < the set {𝑞 ∈ 𝑉 ′ | (𝑞, ®𝛼, 𝑞′) ∈
𝑇< for some ®𝛼 and 𝑞′}; we say that 𝑆 is (𝑖, 𝑔)-friendly if𝑉 ′ ⊆ 𝑖 and
𝑉 fin ⊆ 𝑔 and that 𝑆 is 𝑖-invariant if 𝑉 ⊆ 𝑖 . Moreover, we define
an 𝑆-path from 𝑞1 to 𝑞𝑟 as a sequence 𝜎 = ⟨𝑞1 ®𝛼1𝑞2 . . . 𝑞𝑟−1 ®𝛼𝑟−1𝑞𝑟 ⟩
with 𝑟 > 1 and (𝑞𝑖 , ®𝛼𝑖 , 𝑞𝑖+1) ∈ 𝑇 for every 𝑖 ∈ {1, . . . , 𝑟 − 1}; if
(𝑞𝑖 , ®𝛼𝑖 , 𝑞𝑖+1)∈𝑇=∪𝑇> for every 𝑖 ∈ {1, . . . , 𝑟 −1} and (𝑞𝑖 , ®𝛼𝑖 , 𝑞𝑖+1) ∈
𝑇> for at least one 𝑖 ∈ {1, . . . , 𝑟 − 1}, then 𝜎 is said to be increasing.
We use the notation 𝑞1 ⇒𝑆 𝑞𝑟 to denote the existence of an 𝑆-path
from 𝑞1 to 𝑞𝑟 and we denote by 𝜎 |𝑉 the restriction of 𝜎 to elements
of𝑉 , i.e., 𝜎 |𝑉 = 𝑞1𝑞2 . . . 𝑞𝑟 . Finally, an 𝑆-cycle is an 𝑆-path 𝑞1 ⇒𝑆 𝑞𝑟
with 𝑞1 = 𝑞𝑟 .

Definition 4.6 (accumulator). An 𝐴-accumulator is a pair A =

(𝑆1, 𝑆2) of pw’s for 𝐴 such that:
• 𝑇<

2 = ∅,
• every 𝑆2-cycle is increasing,
• every 𝑞 ∈ 𝑉 ′2 occurs in some 𝑆2-cycle,
• 𝑉 ′2 ⊆ 𝑉

′
1 ,

• 𝑉 fin

2 ⊆ 𝑉1 and ℓ2 (𝑞) ≥ ℓ1 (𝑞) for every 𝑞 ∈ 𝑉 fin

2 ,
• 𝑉 <

1 ⊆ 𝑉
′
2 and ℓ1 (𝑞) ≥ ℓ2 (𝑞) for every 𝑞 ∈ 𝑉 <

1 .

LetA = (𝑆1, 𝑆2) be an 𝐴-accumulator. It is said to be acyclic if it
features no 𝑆1-cycles and ℓ2 (𝑞) > ℓ1 (𝑞) holds for every 𝑞 ∈ 𝑉 fin

2 for
which there is 𝑞′ ∈ 𝑉 ′2 such that 𝑞′ ⇒𝑆2 𝑞 and 𝑞 ⇒𝑆1 𝑞

′. Its parity
function wrt. 𝑝 , denoted by 𝑝A : 𝑉1 → N, is defined as:

𝑝A (𝑞) =
{

min{𝑝 (𝑞′) | 𝑞 ⇒𝑆2 𝑞
′ and 𝑞′ ⇒𝑆2 𝑞} if 𝑞 ∈ 𝑉 <

1
𝑝 (𝑞) otherwise.

A has even parity if 𝑝A (𝜎) = min{𝑝A (𝑞) | 𝑞 ∈ 𝜎 |𝑉 } is even, for
every 𝑆1-cycle 𝜎 .

Definition 4.7 (witness). AU-witness for (𝐴, 𝑖, 𝑔) is a quadruple
W = (𝑆1, 𝑆2, 𝑆3, 𝑆4), where
(a) (𝑆1, 𝑆2) is an acyclic 𝐴-accumulator, with 𝑆1 (𝑖, 𝑔)-friendly pw,
(b) (𝑆3, 𝑆4) is an 𝐴-accumulator with even parity and 𝑉 fin

3 = ∅,
(c) 𝑉

fin

1 ⊆ 𝑉3 and ℓ1 (𝑞) ≥ ℓ3 (𝑞) for every 𝑞 ∈ 𝑉 fin

1 .
A □-witness for (𝐴, 𝑖, 𝑔) is an 𝑖-invariant 𝐴-accumulatorW =

(𝑆1, 𝑆2) with even parity and 𝑉 fin

1 = ∅.
Notice that 𝑔 plays no role in the definition of □-witness and could
be omitted; however, we decided to keep it for the sake of a uniform
notation. For a witnessW = (𝑆1, 𝑆2, 𝑆3, 𝑆4), we use init (W) to
refer to the set 𝑉1 of vertices of 𝑆1.

4.3 From witnesses to (𝑝,𝑒)-trees
We first define a transformation from a accumulators to (𝑝,𝑒)-trees.
This gives us a way to convert a □-witnesses for (𝐴, 𝑖) into an
(𝑖, 𝑔,□)-friendly (𝑝,𝑒)-trees. Then, based on such a transformation,
we show how to build, from an U-witnessW for (𝐴, 𝑖, 𝑔) with
𝑞 ∈ init (W), an (𝑖, 𝑔,U)-friendly (𝑝,𝑒)-tree rooted in 𝑞.

4.3.1 Converting □-witnesses. Let A = (𝑆1, 𝑆2) be an 𝐴-
accumulator, 𝑞 ∈ 𝑉1, and 𝐸 ≥ ℓ1 (𝑞). We define tree 𝜏A,𝑞,𝐸 as the
smallest set of nodes such that: (In what follows, for the sake of a
lighter notation, for a node 𝑁 we denote state(𝑁 ) by 𝑞𝑁 and, for
𝑖 ∈ {1, 2}, we let ®𝛼𝑖

𝑁
= 𝐴-profile𝑆𝑖 (𝑞𝑁 ); notice that𝐴-profile𝑆𝑖 (𝑞𝑁 ),

and thus ®𝛼𝑖
𝑁
, is undefined whenever 𝑞𝑁 ∉ 𝑉 ′

𝑖
.)

• (𝑞, 𝐸, 𝜀, 𝜀) ∈ 𝜏A,𝑞,𝐸 ;
• for every 𝑁 ∈ 𝜏A,𝑞,𝐸 with 𝑞𝑁 ∈ 𝑉 ′1 :
– if there is (𝑞𝑁 , ®𝛼, 𝑞′) ∈ 𝑇1 such that e-level(𝑁 ) +𝑤 (𝑞𝑁 , ®𝛼) <
ℓ1 (𝑞′), then 𝜏 ′A,𝑁

⊆ 𝜏A,𝑞,𝐸 , where 𝜏 ′A,𝑁
is the smallest set of

nodes such that:
(i) succ-set ®𝛼2

𝑁
(𝑁 ) ⊆ 𝜏 ′A,𝑁

;
(ii) for every 𝑁 ′ ∈ 𝜏 ′A,𝑁

, if 𝑞𝑁 ′ ∈ 𝑉 ′2 and either e-level(𝑁 ′) ≤
ℓ1 (𝑞𝑁 ′) or there is𝑁 ′′ ∈ ancestors(𝑁 ′)with𝑞𝑁 ′ = 𝑞𝑁 ′′ and
e-level(𝑁 ′′) ≥ e-level(𝑁 ′), then succ-set ®𝛼2

𝑁 ′
(𝑁 ′) ⊆ 𝜏 ′A,𝑁

;
– if e-level(𝑁 ) ≥ ℓ1 (𝑞𝑁 ), e-level(𝑁 ) + 𝑤 (𝑞𝑁 , ®𝛼) ≥ ℓ1 (𝑞′) for
every ( ®𝛼, 𝑞′) such that (𝑞𝑁 , ®𝛼, 𝑞′) ∈ 𝑇1, and succ-set ®𝛼2

𝑁
(𝑁 ) ⊈

𝜏A,𝑞,𝐸 (this last condition is needed to avoid expanding 𝑁

following transitions of 𝑆1 when 𝑁 has already been expanded
following transitions of 𝑆2), then succ-set ®𝛼1

𝑁
(𝑁 ) ⊆ 𝜏A,𝑞,𝐸 .

Lemma 4.8. For every 𝐴-accumulator A = (𝑆1, 𝑆2), every 𝑞 ∈ 𝑉1,
and every 𝐸 ≥ ℓ1 (𝑞), 𝜏A,𝑞,𝐸 is an 𝐴-tree rooted in 𝑞 and ranging

within [𝑎, +∞]. Moreover:

• 𝜏A,𝑞,𝐸 is complete if and only if 𝑉
fin

1 = ∅ and
• 𝜏A,𝑞,𝐸 is finite if and only if A is acyclic.

Lemma 4.9. If A = (𝑆1, 𝑆2) is an acyclic 𝐴-accumulator, with 𝑆1
being an (𝑖, 𝑔)-friendly pw, then 𝜏A,𝑞,ℓ1 (𝑞) is a finite (𝑖, 𝑔)-friendly
𝐴-tree ranging within [𝑎, +∞] and rooted in 𝑞, for every 𝑞 ∈ 𝑉1.

Lemma 4.10. IfA = (𝑆1, 𝑆2) is an𝐴-accumulator with even parity

and𝑉
fin

1 = ∅, then 𝜏A,𝑞,ℓ1 (𝑞) is a (𝑝,𝑒)-tree rooted in 𝑞, for all 𝑞 ∈ 𝑉1.
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Corollary 4.11. For every □-witneessW for (𝐴, 𝑖, 𝑔) and every
𝑞 ∈ init (W), 𝜏W,𝑞,ℓ1 (𝑞) is an 𝑖-invariant (𝑝,𝑒)-tree rooted in 𝑞.

4.3.2 ConvertingU-witnesses. LetW = (𝑆1, 𝑆2, 𝑆3, 𝑆4) be aU-
witness for (𝐴, 𝑖, 𝑔) and 𝑞 ∈ init (W). We define 𝜏W,𝑞 as the tree
obtained from 𝜏 (𝑆1,𝑆2),𝑞,ℓ1 (𝑞) , by appending, to every leaf 𝑁 ′ ∈
leaves𝜏 (𝑆1,𝑆2 ),𝑞,ℓ1 (𝑞) the tree 𝜏 (𝑆3,𝑆4),state (𝑁 ′),e-level (𝑁 ′) .

Lemma 4.12. For everyU-witnessW for (𝐴, 𝑖, 𝑔) and every 𝑞 ∈
init (W), 𝜏W,𝑞 is an (𝑖, 𝑔)-friendly (𝑝,𝑒)-tree rooted in 𝑞.

4.4 From (𝑝,𝑒)-trees to witnesses
In this section, we first define a transformation from an (𝑖, 𝑔)-
friendly (𝑝,𝑒)-tree T rooted in 𝑞 to aU-witnessWT for (𝐴, 𝑖, 𝑔)
with𝑞 ∈ init (WT ). Then, we show how to adapt such a transforma-
tion to suitably convert an 𝑖-invariant (𝑝,𝑒)-tree into a □-witness.

At a very high level, we proceed as follows. First, we show how
to obtain, from an (infinite) (𝑖, 𝑔)-friendly (𝑝,𝑒)-tree, a finite 𝐴-tree
which maintains enough significant information about the strategy
represented by the original tree. From such a finite tree, we suitably
choose nodes that are used as representatives for the vertices of
the four partial witnesses that form the desired witness. Roughly
speaking, each of these nodes define the behavior of a vertex in a pw
by carrying information about its label (energy level) and outgoing
transitions. A detailed outline of the transformation follows.
1. Build T ′.We obtain the finite 𝐴-tree T ′ from the infinite (𝑝,𝑒)-
tree T , by suitably cutting its branches. To this end, we identify the
set of nodes of T whose descendant will be discharged to obtain
T ′, or, in other words, the set of nodes that will be leaves in T ′,
namely leavesT′ . Since T is a (𝑝,𝑒)-tree, every branch B of T satis-
fies the parity condition, that is, there are along B infinitely many
occurrences of a state, let us call it 𝑞B , such that 𝑝 (𝑞B) is even and
𝑝 (𝑞B) ≤ min{𝑝 (𝑞′′) | 𝑞′′ occurs infinitely often along B}; more-
over, since T is (𝑖, 𝑔)-friendly, B features at least one occurrence of
a state from 𝑔. Thus, for every branch B of T , there exists 𝑁 ∈ B
for which there are 𝑁1, 𝑁2 ∈ B, with 𝑁2 ∈ ancestors(𝑁 ) and 𝑁1 ∈
path-to(𝑁2), such that state(𝑁1) ∈ 𝑔, state(𝑁2) = state(𝑁 ) = 𝑞B ,
e-level(𝑁2) ≤ e-level(𝑁 ); let 𝑁 B be the earliest node in B meeting
these conditions (i.e., no 𝑁 ′ ∈ ancestors(𝑁 B) exists with the same
properties). We define leavesT′ = {𝑁 B | B is a branch of T } and
T ′ = T \ desc (leavesT′). By König’s Lemma, T ′ is finite.
2. Build T ′′. Analogously, we obtain the auxiliary finite tree
T ′′ from T ′ by suitably cutting its branches: we first define the
set leavesT′′ and then discharging descendants of nodes in such
a set. Let leavesT′′ = {𝑁 ∈ T ′ | state(𝑁 ) ∈ 𝑔 and ∀𝑁 ′ ∈
ancestors(𝑁 ).state(𝑁 ′) ∉ 𝑔}; we define T ′′ = T ′ \ desc (leavesT′′).

Note that both T ′ and T ′′ are 𝐴-trees. Moreover, we have that
(𝑖) T ′′ ⊆ T ′ ⊆ T , (𝑖𝑖) state(𝑁 ) ∈ 𝑖 for every 𝑁 ∈ T ′′ \ leavesT′′ ,
and (𝑖𝑖𝑖) state(𝑁 ) ∈ 𝑔 for every 𝑁 ∈ leavesT′′ .
3. Define a linear order ≺ over nodes in T ′ \ leavesT′ . We fix
a linear order ≺ over T ′ \ leavesT′ such that
∀𝑁, 𝑁 ′ ∈ T ′ \ leavesT′ .

(
𝑁 ′ ∈ ancestors(𝑁 ) ⇒ 𝑁 ≺ 𝑁 ′

)
.

More precisely, ≺ can be thought of as any reverse topological
ordering of nodes in T ′ \ leavesT′ (since T ′ \ leavesT′ is a DAG, a
topological order over it exists).
4. Define two representative functions schemas. A represen-

tative function is a function r : 𝑉 → T ′, where 𝑉 ⊆ 𝑄 .

Let T̂ ⊆ T ′ be a set of nodes in T ′ and let ≺ be the linear order
defined above. Moreover, let

𝑉T̂ = {𝑞 ∈ 𝑄 | 𝑞 = state(𝑁 ) for some 𝑁 ∈ T̂ }.
We define two representative functions schemas (parametric in T̂ ).
• earliestT̂ : 𝑉T̂ → T

′ s.t. for every 𝑞 ∈ 𝑉T̂ earliestT̂ (𝑞) is the
earliest node 𝑁 ∈ T̂ (according to ≺) with state 𝑞; formally:

(a) state(𝑁 ) = 𝑞 and
(b) ∀𝑁 ′ ∈ T̂ . 𝑁 ′ ≺ 𝑁 ⇒ state(𝑁 ′) ≠ 𝑠𝑡𝑎𝑡𝑒𝑁

• lowest-energyT̂ : 𝑉T̂ → T ′ such that for every 𝑞 ∈ 𝑉T̂
lowest-energyT̂ (𝑞) is the earliest node 𝑁 ∈ T̂ (according to
≺) with state 𝑞 and lowest energy level; formally:

(a) state(𝑁 ) = 𝑞,
(b) ∀𝑁 ′ ∈ T̂ with state(𝑁 ′) = state(𝑁 )

– 𝑁 ′ ≺ 𝑁 ⇒ e-level(𝑁 ′) > e-level(𝑁 ) and
– 𝑁 ≺ 𝑁 ′ ⇒ e-level(𝑁 ′) ≥ e-level(𝑁 ).

5. Define function pw(·, ·).We show how a set of vertices𝑉 ⊆ 𝑄

and a representative function r : 𝑉 → T ′ univocally identify a pw.
Intuitively, the resulting pw has𝑉 as set of vertices; the behavior of
each vertex 𝑞 ∈ 𝑉 , i.e., its label (function ℓ) and the way it evolves
(relation 𝑇 ), is determined by r(𝑞), its representative node in T ′.

Formally, let𝑉=𝑉 ′⊎𝑉 fin ⊆ 𝑄 and r : 𝑉 → T ′ be a representative
function. The pw for 𝐴 induced by (𝑉 ′,𝑉 fin, r) is (𝑉 ,𝑇 , ℓ), where:
• 𝑇 is the smallest set such that if𝑞 ∈ 𝑉 ′ and𝑁 ′ ∈ childrenT′ (r(𝑞)),
then (𝑞, in-action(𝑁 ′), state(𝑁 ′)) ∈ 𝑇 , and
• ℓ (𝑞) = e-level(r(𝑞)) for every 𝑞 ∈ 𝑉 .
6. Build witnessWT = (𝑆1, 𝑆2, 𝑆3, 𝑆4). We show separately how
to build (𝑆1, 𝑆2) and (𝑆3, 𝑆4).
6.1. Definition of 𝑆1 and 𝑆2. As a preliminary step, we build two
auxiliary pw’s for 𝐴:
• 𝑆

1,2
low

= (𝑉 1,2
low

,𝑇
1,2
low

, ℓ
1,2
low
) is the pw induced by

(𝑉T′′\leavesT′′ ,𝑉leavesT′′ , lowest-energyT′′)
• 𝑆

1,2
early

= (𝑉 1,2
early

,𝑇
1,2
early

, ℓ
1,2
early
) is the pw induced by

(𝑉T′′\leavesT′′ ,𝑉leavesT′′ , earliestT′′).
Intuitively, vertices of 𝑆1,2

low
are also vertices of 𝑆1; in addition,

vertices of 𝑆1,2
low

occurring in some 𝑆1,2
low

-cycle also belong to 𝑆2, along
with their successors in 𝑆

1,2
low

. Vertices of 𝑆2 behave in 𝑆2 as they do
in 𝑆

1,2
low

; vertices of 𝑆1 not belonging to 𝑆2 behave in 𝑆1 as they do
in 𝑆

1,2
low

; vertices of 𝑆1 also belonging to 𝑆2 behave in 𝑆1 as they do
in 𝑆

1,2
early

. Formally, components ofWT are obtained as follows.
• 𝑉 ′1 = {state(𝑁 ) | 𝑁 ∈ T ′′ \ leavesT′′} ⊆ 𝑖 ,
• 𝑉 fin

1 = {state(𝑁 ) | 𝑁 ∈ leavesT′′} ⊆ 𝑔,
• 𝑉1 = 𝑉T′′ = 𝑉 ′1 ∪𝑉

fin,
• (vertices occurring in 𝑆

1,2
low

-cycles and their successors in 𝑆
1,2
low

belong

to 𝑆2)𝑉2 is the smallest set such that, for every 𝑞 ∈ 𝑉 ′1 , if 𝑞 occurs
in an 𝑆

1,2
low

-cycle then {𝑞, 𝑞′} ⊆ 𝑉2 for every (𝑞, ®𝛼, 𝑞′) ∈ 𝑇 1,2
low

,
• (vertices of 𝑆2 behave in 𝑆2 as they do in 𝑆

1,2
low

)

– 𝑇2={(𝑞, ®𝛼, 𝑞′) ∈ 𝑇 1,2
low
| 𝑞 ∈ 𝑉 ′1 and 𝑞 occurs in an 𝑆

1,2
low

-cycle},
– ℓ2 (𝑞) = ℓ

1,2
low
(𝑞) for every 𝑞 ∈ 𝑉2,

• (vertices of 𝑆1 not belonging to 𝑆2 behave in 𝑆1 as they do in 𝑆
1,2
low

)

– 𝑇1 ⊇ {(𝑞, ®𝛼, 𝑞′) ∈ 𝑇 1,2
low
| 𝑞 ∈ 𝑉 ′1 \𝑉2},

– ℓ1 (𝑞) = ℓ
1,2
low
(𝑞) for every 𝑞 ∈ 𝑉1 \𝑉2,
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Alg. 2 In mixed instances, it checks for the existence of a (𝑖, 𝑔, 𝑜)-friendly (𝑝,𝑒′)-strategy for 𝐴
from 𝑞, where 𝑒′ = ⟨𝑤, E, [𝑎,𝑏 ] ⟩.
1: procedure ∃-strategy-mixed(G, 𝑖,𝑔,𝑜,𝐴,𝑞, E)
2: if 𝑜 = U then guessW = (𝑆1, 𝑆2, 𝑆3, 𝑆4 )
3: else guessW = (𝑆1, 𝑆2 )
4: if check(W, 𝑜,𝐴, 𝑖,𝑔,𝑞) then return TRUE ⊲ checks ifW is an 𝑜-witness . . .
5: return FALSE ⊲ . . . for (𝐴, 𝑖, 𝑔) with 𝑞 ∈ init (W)

• (vertices of 𝑆1 also belonging to 𝑆2 behave in 𝑆1 as they do in 𝑆
1,2
early

)

– 𝑇1 ⊇ {(𝑞, ®𝛼, 𝑞′) ∈ 𝑇 1,2
early
| 𝑞 ∈ 𝑉 ′1 ∩𝑉2},

– ℓ1 (𝑞) = ℓ
1,2
early
(𝑞) for every 𝑞 ∈ 𝑉1 ∩𝑉2,

• no other transition belongs to 𝑇1.
6.2. Definition of 𝑆3 and 𝑆4. The definition of 𝑆3 and 𝑆4 is very
similar to the one of 𝑆1 and 𝑆2, respectively, the only differences
being (we let X = ((T ′ \ T ′′) ∪ leavesT′′) \ leavesT′ ):
• functions lowest-energyX and earliestX replace
lowest-energyT′′ and earliestT′′ , respectively, as represen-
tative functions, and the two auxiliary pw’s 𝑆3,4

low
and 𝑆3,4

early
for 𝐴

are defined as:
– 𝑆

3,4
low

= (𝑉 3,4
low

,𝑇
3,4
low

, ℓ
3,4
low
) is the pw induced by

(𝑉X, ∅, lowest-energyX)
– 𝑆

3,4
early

= (𝑉 3,4
early

,𝑇
3,4
early

, ℓ
3,4
early
) is the pw induced by

(𝑉X, ∅, earliestX).
• 𝑉 fin

3 = ∅ (whereas, possibly, 𝑉 fin

1 ≠ ∅) and thus 𝑉3 = 𝑉 ′3 = 𝑉X ,
It is possible to show the converse correspondence between

witnesses and (𝑝, 𝑒)-trees, as stated in the following lemma.

Lemma 4.13. If T is an (𝑖, 𝑔)-friendly (𝑝, 𝑒)-tree rooted in 𝑞, then
WT is aU-witness for (𝐴, 𝑖, 𝑔) with 𝑞 ∈ init (W).

The above procedure can be easily adapted as follows, to suitably
convert 𝑖-invariant (𝑝, 𝑒)-trees into □-witnesses for (𝐴, 𝑖, 𝑔). By
assuming 𝑔 = 𝑄 , the procedure yieldsWT = (𝑆1, 𝑆2, 𝑆3, 𝑆4), where
𝐴-accumulator (𝑆1, 𝑆2) can be ignored (it is a trivial 𝐴-accumulator
such that 𝑆1 = 𝑆2, 𝑉1 = {state(rootT )} and 𝑇1 = ∅) as there is no
need to search for goals; on the other hand, the 𝐴-accumulator
(𝑆3, 𝑆4) is the desired □-witness.

Lemma 4.14. If T is an 𝑖-invariant (𝑝, 𝑒)-tree rooted in 𝑞, then

WT is a □-witness for (𝐴, 𝑖, 𝑔) with 𝑞 ∈ init (W).

Finally, the next theorem immediately follows from Theorem 4.4,
Corollary 4.11, Lemma 4.12, Lemma 4.13, and Lemma 4.14.

Theorem 4.15. An (𝑖, 𝑔, 𝑜)-friendly (𝑝,𝑒)-strategy from 𝑞 exists if

and only if there is an 𝑜-witnessW for (𝐴, 𝑖, 𝑔) with 𝑞 ∈ init (W).

Now, a simple algorithm (see Algorithm 2) to search for an
(𝑖, 𝑔,U)-friendly strategy non-deterministically guesses four pw’s
𝑆1, 𝑆2, 𝑆3, and 𝑆4, and then checks that conditions (a)-(c) of Defini-
tion 4.7 are satisfied. Similarly, when looking for (𝑖, 𝑔,□)-friendly
strategies the algorithm non-deterministically guesses 𝑆1 and 𝑆2,
and then checks that they form a □-witness (see Definition 4.7).
Since such checks can be done in polynomial time, we have the
following result.

Theorem 4.16. The procedure ∃-strategy-mixed runs in non-

deterministic polynomial time in the size of the input.

5 HARVEST AND CONCLUSIONS
We are finally ready to employ the results of the previous sections
into a procedure for model checking pe-ATL, presented in Algo-
rithm 3. The case of formulas of the kind ⟨⟨𝐴⟩⟩ ⃝𝜓1 is worked out
as one might expect; the only worthwhile remark is about line 22,
where, towards the validation of a strategy, the algorithm checks
that for all successors 𝑞′′ of the state 𝑞′ under investigation there is
a (𝑝,𝑒)-strategy from 𝑞′′ (besides checking that 𝑞′′satisfy formula
𝜓1): this is done by using the procedure ∃-strategy-𝑥 (suitably in-
stantiated depending on the type of instance in input) developed in
the previous section to search for a (𝑄, ∅,□)-friendly (𝑝,𝑒)-strategy
or, more intuitively, the algorithm checks that 𝑞′′ satisfies formula
⟨⟨𝐴⟩⟩□⊤. Formulas of kinds ⟨⟨𝐴⟩⟩𝜓1U𝜓2 and ⟨⟨𝐴⟩⟩□𝜓1 are handled
using the procedures described in the previous sections.

It is clear that complexity of the whole procedure is governed by
the one of procedure ∃-strategy-𝑥 (𝑥 ∈ {bounded,mixed}). Thus,
we have the following theorem, which comes from Theorem 3.4,
Corollary 3.5, and Theorem 4.16.

Theorem 5.1. The model checking problem for pe-ATL is:

• in NEXPTIME if 𝑎, 𝑏 ∈ Z (bounded instances),
• in NPTIME if [𝑎, 𝑏] = [−∞, +∞] (unbounded instances),
• in NPTIME P

NP
if 𝑎 ∈ Z and 𝑏 = +∞ (mixed instances).

1

The proposed setting follows a recent and promising trend de-
voted to the study of systems enabling qualitative and quantitative
reasoning in MAS. Before the last decade, these two aspects have
been mostly kept separate, despite their interplay in many natural
application scenarios (e.g., allocation systems subject to energy
constraints—see Introduction). Our proposal aims at developing a
logical system able to deal with these two aspects jointly.

As future work, we aim at establishing thigh complexity bounds
for the problems considered here, as well as considering different
choices for modeling energy condition: at least another option is
worth being considered, according to which energy level evolves
while trying to satisfy the formula along the entire game (in our
setting the energy level is reset whenever a new search for strategy
by a possibly different team begins—see [6] for a comparison on
the two approaches in the setting of ATL without parity condition).
Moreover, we plan to extend the proposed framework to ATL∗.

Acknowledgements. We thank David de Frutos for helpful com-
ments on uniform, bounded, and memoryless strategies. Work par-
tially supported by a 2018 GNCS project.

1The published version of this paper (in the Proceedings of the 17th AAMAS, pages
1441–1449, 2018) contains an error: there the complexity of the problem for mixed
instances is mistakenly claimed to be in NPTIME; however, we are only able to show a
higher upper bound, namely PNP . We thank Stéphane Demri and Francesco Belardinelli
for spotting the mistake and kindly drawing our attention to it.
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Alg. 3 It solves the model checking problem for pe-ATL.

1: procedure pe-atl-mc(G, 𝑞,𝜑 )
2: if 𝑎 ≠ −∞ and𝑏 ≠ +∞ then 𝑥 = bounded ⊲ 𝑥 is set to bounded or mixed . . .
3: if 𝑎 ≠ −∞ and𝑏 = +∞ then 𝑥 = mixed ⊲ . . . to suitably instantiate . . .
4: if [𝑎,𝑏 ] = [−∞, +∞] then ⊲ . . .∃-strategy-𝑥 as . . .
5: 𝑥 ← bounded ⊲ . . .∃-strategy-bounded or . . .
6: [𝑎,𝑏 ] ← [0, 0] ⊲ . . .∃-strategy-mixed
7: Einit ← 0 ⊲ unbounded instances are . . .
8: 𝑤 (𝑞, ®𝛼 ) ← 0 for all (𝑞, ®𝛼 ) ⊲ . . . treated as special bounded ones
9: for𝜓 ∈ Sub(𝜑 ) (increasingly ordered by size) do
10: J𝜓K← ∅
11: if𝜓 = 𝔭 then J𝜓K← 𝜋 (𝑝 ) ⊲ atomic propositon
12: if𝜓 = ¬𝜓1 then J𝜓K←𝑄 \ J𝜓1K
13: if𝜓 =𝜓1 ∧𝜓2 then J𝜓K← J𝜓1K ∩ J𝜓2K
14: if𝜓 = ⟨⟨𝐴⟩⟩ ⃝𝜓1 then
15: for𝑞′ ∈ 𝑄 do
16: for ®𝛼𝐴 ∈ 𝐷𝐴 (𝑞) do ⊲ cycle over proponent’s strategies
17: good_strategy← TRUE
18: for ®𝛼 ∈ 𝐷 (𝑞) ∩ ext ( ®𝛼𝐴 ) do ⊲ cycle over opponent’s strategies
19: 𝑞′′ ← 𝛿 (𝑞′, ®𝛼 )
20: E ← Einit +𝑤 (𝑞, ®𝛼 )
21: if 𝑞′′ ∉ J𝜓1Kor not ∃-strategy-𝑥 (G,𝑄, ∅,□,𝐴,𝑞′′, E)
22: then good_strategy← FALSE
23: if good_strategy then J𝜓K← J𝜓K ∪ {𝑞}
24: if𝜓 = ⟨⟨𝐴⟩⟩𝜓1U𝜓2 then
25: for𝑞′ ∈ 𝑄 do
26: if∃-strategy-𝑥(G,J𝜑1K,J𝜑2K,U,𝐴,𝑞′,Einit )thenJ𝜓K←J𝜓K∪{𝑞}
27: if𝜓 = ⟨⟨𝐴⟩⟩□𝜓1 then
28: for𝑞′ ∈ 𝑄 do
29: if∃-strategy-𝑥(G,J𝜑1K,∅,□,𝐴,𝑞′,Einit ) thenJ𝜓K←J𝜓K∪{𝑞}
30: return𝑞 ∈ J𝜑K
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A ERRATA
There is a mistake in the definition of parity function of an accu-
mulator wrt. 𝑝 and in the consequent definition of even parity of
an accumulator – cf. page 1446, after Definition 4.6. The correct
definitions are as follows.

Let A = (𝑆1, 𝑆2) be an 𝐴-accumulator. Its parity function wrt. 𝑝 ,
denoted by 𝑝A : 𝑉1 → N, is defined as:

𝑝A (𝑞) =
min⪯{𝑝 (𝜎) | 𝜎 is an 𝑆2-cycle

starting and ending in 𝑞} if 𝑞 ∈ 𝑉 <
1

𝑝 (𝑞) otherwise
where
• min⪯ is the function returning the least element of a set of
naturals according to the linear order ⪯, which is in turn
defined as:
𝑥 ⪯ 𝑦 if and only if both 𝑥 and 𝑦 are odd and 𝑥 ≤ 𝑦

or both 𝑥 and 𝑦 are even and 𝑥 ≥ 𝑦

or 𝑥 is odd and 𝑦 is even
• 𝑝 (𝜎) = min{𝑝 (𝑞) | 𝑞 ∈ 𝜎 |𝑉2 }, for every 𝑆2-cycle 𝜎 .

A has even parity if 𝑝A (𝜎) = min{𝑝A (𝑞) | 𝑞 ∈ 𝜎 |𝑉1 } is even, for
every 𝑆1-cycle 𝜎 .

B PROOFS FOR SECTION 3
Note: proofs presented here may use notions introduced in Sec-
tion 4; in particular, the notions of trees and (𝑝,𝑒)-trees, along with
their expressive completeness for (𝑝,𝑒)-strategies, are used.

We introduce the equivalence relation ≡ between nodes: 𝑁 ≡ 𝑁 ′

if and only if
• [𝑎, 𝑏] = [−∞, +∞] and state(𝑁 ) = state(𝑁 ′), or
• 𝑎 ≠ −∞, 𝑏 ≠ +∞, state(𝑁 ) = state(𝑁 ′), and e-level(𝑁 ) =
e-level(𝑁 ′).

For a node 𝑁 , we let [𝑁 ]≡ = {𝑁 ′ | 𝑁 ′ ≡ 𝑁 } and, for a set of nodes
T and a node 𝑁 ∈ T , we let [𝑁 ]T≡ = [𝑁 ]≡ ∩ T ; moreover, we
denote by T/≡ the quotient set of T modulo ≡.

The parity of an infinite branch B, with B
inf

= {𝑞 ∈ 𝑄 |
there are infinitely many nodes 𝑁 ∈ B with state(𝑁 ) = 𝑞}, is de-
noted by 𝑝 (B) and defined as: 𝑝 (B) = min{𝑝 (𝑞) | 𝑞 ∈ B

inf
};

Lemma B.1. For every (𝑝,𝑒)-tree T and every [𝑁 ]T≡ ∈ T/≡, there
is a node 𝑁 ′ ∈ [𝑁 ]T≡ (i.e., 𝑁 ′ ≡ 𝑁 ) such that for every 𝑁 ′′ ∈
desc (𝑁 ′) ∩ T if 𝑁 ′′ ≡ 𝑁 ′ then min{𝑝 (𝑁 ′′′) | 𝑁 ′′′ ∈ desc (𝑁 ′) ∩
path-to(𝑁 ′′)} is even.

Proof. Assume, towards contradiction, that there are a (𝑝,𝑒)-
tree T and [𝑁 ]T≡ ∈ T/≡ such that for every 𝑁 ′ ∈ [𝑁 ]T≡ there is
𝑁 ′′ ∈ desc (𝑁 ′) ∩ T for which 𝑁 ′′ ≡ 𝑁 ′ and min{𝑝 (𝑁 ′′′) | 𝑁 ′′′ ∈
desc (𝑁 ′) ∩ path-to(𝑁 ′′)} is odd.

Then, there is an infinite sequence of nodes 𝑁1, 𝑁2, . . . of T
such that, for every 𝑖 , 𝑁𝑖 ∈ [𝑁 ]T≡ , 𝑁𝑖 ∈ ancestors(𝑁𝑖+1), and
min{𝑝 (𝑁 ′′′) | 𝑁 ′′′ ∈ desc (𝑁𝑖 )∩path-to(𝑁𝑖+1)} is odd. This means
that the infinite branch containing such a sequence has odd parity,
contradicting the hypothesis of T being a (𝑝,𝑒)-tree. □

Two nodes 𝑁 ∈ T and 𝑁 ′ ∈ T ′ are uniform (wrt. T and
T ′) if 𝑁 ≡ 𝑁 ′ and there is a bijection 𝜎 between childrenT (𝑁 )
and childrenT′ (𝑁 ′) that maps nodes into equivalent ones, i.e., if

𝜎 (𝑁 ′′) = 𝑁 ′′′, then 𝑁 ′′ ≡ 𝑁 ′′′. A tree T is uniform if every cou-
ple of nodes 𝑁, 𝑁 ′ ∈ T with 𝑁 ≡ 𝑁 ′ is such that 𝑁 and 𝑁 ′ are
uniform; moreover en equivalence class [𝑁 ]≡ ∈ T/≡ is uniform
(wrt. T ) if its nodes are pairwise uniform.

Lemma B.2. A (𝑝,𝑒)-tree exists if and only if there is a uniform

one with the same root.

Proof. The right-to-left direction holds trivially.
In order to prove the converse direction, we let T be a (𝑝,𝑒)-tree

with root 𝑁 and we show how to get a uniform (𝑝,𝑒)-tree T ′ with
root 𝑁 . We also assume that 𝑁1, 𝑁2 ∈ T , with 𝑁1 ≡ 𝑁2, are not
uniform.

In order to obtain the desired tree T ′, we show how to obtain,
from T , a (𝑝,𝑒)-tree T ′′, with root 𝑁 , such that [𝑁1]T

′′
≡ is uniform

and, in addition, uniformity is preserved from T to T ′′ for equiv-
alence classes in T/≡, i.e., for every 𝑁 ′ ∈ T , if [𝑁 ′]T≡ is uniform,
then [𝑁 ′]T′′≡ is uniform as well. Since the root is preserved along
with the property of being a (𝑝,𝑒)-tree and all existing uniformities
for equivalence classes in T/≡, by repeating the process for all equiv-
alence classes in T ′′/≡ that are not uniform, we obtain the desired
(𝑝,𝑒)-tree T ′.
From T to T ′′. By Lemma B.1, there is 𝑁 ′ ∈ T such that 𝑁 ′ ≡ 𝑁1
and for every 𝑁 ′′ ∈ desc (𝑁 ′) ∩ T if 𝑁 ′′ ≡ 𝑁 ′ then min{𝑝 (𝑁 ′′′) |
𝑁 ′′′ ∈ desc (𝑁 ′) ∩path-to(𝑁 ′′)} is even. Starting from the sub-tree
of T rooted in 𝑁 ′ (let us call it T𝑁 ′ ), we build an auxiliary tree
(let us call it T1) by discharging all nodes that are descendant of
some node 𝑁 ′′, different from the root 𝑁 ′ and such that 𝑁 ′′ ≡ 𝑁 ′;
formally:

T1 = T𝑁 ′ \ desc ({𝑁 ′′ ∈ T𝑁 ′ \ {𝑁 ′} | 𝑁 ′′ ≡ 𝑁 ′}).
T1 is such that 𝑁 ′′ ≡ 𝑁 ′ for every 𝑁 ′′ ∈ leavesT1 ∪ rootT1 and
𝑁 ′′ . 𝑁 ′ for every 𝑁 ′′ ∈ T1 \ (leavesT1 ∪ rootT1 ). Moreover,
due to Lemma B.1, for every finite branch B in T1 we have that
min{𝑝 (𝑁 ′′) | 𝑁 ′′ ∈ B} is even.

Let T1,T2,T3, . . . be the infinite sequence of trees obtained as fol-
lows: for every 𝑖 > 1, T𝑖+1 is the tree obtained from T𝑖 by appending
T1 to each leaf in T𝑖 . Finally, let T𝜔 be the complete tree (i.e., all of
its branches are infinite or, equivalently, it does not contain leaves)
defined as the limit of such sequence. Tree T𝜔 is such that [𝑁 ′]T𝜔≡ is
uniform; in addition, for every 𝑁 ′′ ∈ T with [𝑁 ′′]T≡ being uniform,
we have that [𝑁 ′′]T𝜔≡ is uniform as well: this is due to the fact that
every 𝑁 ′′ ∈ T𝜔 with 𝑁 ′′ . 𝑁 ′ is uniform with some 𝑁 ′′′ ∈ T , as
children 𝑁 ′′ are left unchanged for every 𝑁 ′′ ∈ T𝜔 with 𝑁 ′′ . 𝑁 ′.
Moreover, T𝜔 is a (𝑝,𝑒)-tree: on the one hand, branches visiting
infinitely many nodes in [𝑁 ′]T𝜔≡ have even parity as the lowest
parity occurring between two consecutive occurrences of a node in
[𝑁 ′]T𝜔≡ is even; on the other hand, branches visiting only finitely
many nodes in [𝑁 ′]T𝜔≡ feature a suffix that is a branch in T , and
thus the parity of such branches is even as well (observe that the
parity of an infinite branch is a prefix-independent property).

Now, we define the desired tree T ′′ as the tree obtained from T
by replacing 𝑇𝜔 for every sub-tree rooted in a earliest occurrence
𝑁 ′′ of node equivalent to 𝑁 ′, i.e., 𝑁 ′′ is such that 𝑁 ′′ ≡ 𝑁 ′ and
𝑁 ′′′ . 𝑁 ′ for every 𝑁 ′′′ ∈ ancestors(𝑁 ′′). Once again, it is easy
to see, using the same arguments used above, that T ′′ is a (𝑝,𝑒)-
tree such that [𝑁 ′]T′′≡ is uniform and uniformities for equivalence
classes in T/≡ are preserved from T to T ′′. □
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C PROOFS FOR SECTION 4
We show that it is possible to verify in polynomial time that a
given quadrupleW = (𝑆1, 𝑆2, 𝑆3, 𝑆4) is a U-witness for (𝐴, 𝑖, 𝑔)
with 𝑞 ∈ init (W).

The steps to check that W is a U-witness for (𝐴, 𝑖, 𝑔) with
𝑞 ∈ init (W) are as follows.

(1) Verify that all 𝑆𝑖 are pw’s. This can be clearly done in PTIME.
(2) Verify that (𝑆1, 𝑆2) and (𝑆3, 𝑆4) are accumulators. Let only

consider (𝑆1, 𝑆2). The less trivial checks are showing that
every 𝑆2-cycle is increasing and that every 𝑞 ∈ 𝑉 ′2 occurs in
some 𝑆2-cycle.
As for the former, we first remove all increasing transitions,
i.e., (𝑞, ®𝛼, 𝑞′) ∈ 𝑇2 with ℓ (𝑞) + 𝑤 (𝑞, ®𝛼) > ℓ (𝑞′), and then
we look for 𝑆2 cycles: if a cycle is met then it is not true
that every 𝑆2-cycle is increasing, otherwise every 𝑆2-cycle is
increasing. Searching for a cycle in an LTS can be done in
linear time.
The latter check (every 𝑞 ∈ 𝑉 ′2 occurs in some 𝑆2-cycle)
can also be performed in linear time, by finding its strongly
connected components and checking if there is a singleton
strongly connected component {𝑞}, with no self-transition
involving 𝑞: if this is the case, then the check fails, otherwise
it succeeds.

(3) Verify that (𝑆1, 𝑆2) is an acyclic accumulator and that 𝑆1 is
an (𝑖, 𝑔)-friendly pw. The second check can clearly be done
in polynomial time. In order to see that also the former one
can be done in polynomial time, it helps observing that it is
possible to decide, in polynomial time, whether 𝑞1 ⇒𝑆1 𝑞2
and 𝑞1 ⇒𝑆2 𝑞2, for every 𝑞1, 𝑞2. Thus, both checks can be
done in polynomial time.

(4) Verify that A = (𝑆3, 𝑆4) is an accumulator with even parity.
In order to see that this can be done in polynomial time, we
proceed as follows.

First, we compute the parity function 𝑝A of A wrt. 𝑝 . This
can be done in polynomial time. Indeed, for 𝑞 ∈ 𝑉3 \𝑉 <

3 , we
simply set 𝑝A (𝑞) = 𝑝 (𝑞); computing 𝑝A (𝑞) for any given
𝑞 ∈ 𝑉 <

3 can be done in polynomial time as follows:
• identify the strongly connected component 𝑆 ′ of 𝑆4 that
contains 𝑞 and let𝑚 be the number of states in 𝑆 ′ (notice
that, by the definition of accumulator, we have that 𝑉 <

3 ⊆
𝑉 ′4 and that every state in𝑉 ′4 occurs in some 𝑆4-cycle, and
thus𝑚 > 1);
• order states of 𝑆 ′ so that their parity are in non-decreasing
order according to ⪯, i.e., obtain a sequence ⟨𝑞1, . . . , 𝑞𝑚⟩
containing exactly the states of 𝑆 ′ and such that 𝑝 (𝑞𝑖 ) ⪯
𝑝 (𝑞 𝑗 ) whenever 𝑖 ≤ 𝑗 ;
• for 𝑖 = 1 . . .𝑚
– obtain 𝑆 ′′ from 𝑆 ′ by removing all states 𝑞′′ with
𝑝 (𝑞′′) < 𝑝 (𝑞𝑖 )

– if there is a cycle in 𝑆 ′′ involving both 𝑞 and 𝑞𝑖 , then
return 𝑝 (𝑞𝑖 ).

Second, we verify that 𝑝A (𝜎) = min{𝑝A (𝑞) | 𝑞 ∈ 𝜎 |𝑉3 } is
even for every 𝑆3-cycle 𝜎 , by checking the (non-)existence
of a counterexample (an 𝑆3-cycle 𝜎 such that min{𝑝A (𝑞) |
𝑞 ∈ 𝜎 |𝑉3 }). Obviously, we can limit our search for such a
counterexample to strongly connected components of 𝑆3.
The algorithm proceeds as follows:
• for every strongly connected component 𝑆 ′ of 𝑆3
– for every state 𝑞′ in 𝑆 ′ for which 𝑝A (𝑞′) is odd
∗ obtain 𝑆 ′′ from 𝑆 ′ by removing every 𝑞′′ with
𝑝A (𝑞′′) < 𝑝A (𝑞′);
∗ check for 𝑆 ′′-cycles involving 𝑞′: if there is one, then
return false (there is a counterexample);

• if no counterexample is found along the whole process,
then return true (𝑝A (𝜎) is even for every 𝑆3-cycle 𝜎).

The procedure is polynomial.
(5) Finally, verify that condition (c) of Definition 4.7 is satisfied

as well. This can clearly be done in polynomial time.
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