Point Location in Trapezoidal Maps

Claudio Mirolo

Dip. di Scienze Matematiche, Informatiche e Fisiche
Università di Udine, via delle Scienze 206 – Udine
claudio.mirolo@uniud.it

Computational Geometry
www.dimi.uniud.it/claudio
Outline

1. Trapezoidal map
 - map layout
 - trapezoids
 - map structure

2. Incremental construction
 - search structure
 - incremental algorithm

3. Computation costs
 - point location
 - storage
 - preprocessing
Planar point location problem

- For a planar subdivision S with n edges
 - Given a query point q
 - Report the face f (edge e, vertex v) of S such that $q \in f$ ($q \in e$, $q = v$)
- Efficiently! (Preprocessing)
Planar point location problem

- For a planar subdivision S with n edges
- Given a query point q
 - Report the face f (edge e, vertex v) of S such that $q \in f$ ($q \in e$, $q = v$)
- Efficiently! (Preprocessing)
Planar point location problem

- For a planar subdivision S with n edges
- Given a query point q
- Report the face f (edge e, vertex v) of S such that $q \in f$ ($q \in e$, $q = v$)
- Efficiently! (Preprocessing)
Planar point location problem

- For a planar subdivision S with n edges
- Given a query point q
- Report the face f (edge e, vertex v) of S such that $q \in f$ ($q \in e$, $q = v$)
- Efficiently! (Preprocessing)
Planar *point location* problem

- For a planar subdivision S with n edges
- Given a query point q
- Report the face f (edge e, vertex v) of S such that $q \in f$ ($q \in e$, $q = v$)
- Efficiently! (*Preprocessing*)
Outline

1. Trapezoidal map
 - map layout
 - trapezoids
 - map structure

2. Incremental construction
 - search structure
 - incremental algorithm

3. Computation costs
 - point location
 - storage
 - preprocessing
Naïve trapezoidal map of a planar subdivision
Naïve trapezoidal map of a planar subdivision
Naïve trapezoidal map of a planar subdivision: slab
Preprocessing

- **Bounding box** (just for the sake of simplicity)

- Vertical lines are drawn through all vertices

- Vertical *slabs* are sorted left to right
 (array, BST ...)

- *Trapezoids* within a slab are sorted bottom to top
 (arrays, BSTs ...)

Trapezoidal Maps
Preprocessing

- **Bounding box** (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
 - Vertical *slabs* are sorted left to right (array, BST . . .)
 - *Trapezoids* within a slab are sorted bottom to top (arrays, BSTs . . .)
Preprocessing

- **Bounding box** (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
- Vertical slabs are sorted left to right (array, BST . . .)
- Trapezoids within a slab are sorted bottom to top (arrays, BSTs . . .)
Preprocessing

- **Bounding box** (just for the sake of simplicity)

- Vertical lines are drawn through all vertices

- Vertical **slabs** are sorted left to right
 (array, BST . . .)

- **Trapezoids** within a slab are sorted bottom to top
 (arrays, BSTs . . .)
Preprocessing

- *Bounding box* (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
- Vertical *slabs* are sorted left to right (array, BST . . .)
- *Trapezoids* within a slab are sorted bottom to top (arrays, BSTs . . .)
Point location

- Binary search for the *slab* containing the query point q
- Binary search within the slab for the *trapezoid* containing the query point q
- No more than $2n$ slabs and $n + 1$ trapezoids within a slab
- Point location cost: $O(\log n)$ per query
Point location

- Binary search for the *slab* containing the query point q
- Binary search within the slab for the *trapezoid* containing the query point q
- No more than $2n$ slabs and $n + 1$ trapezoids within a slab
- Point location cost: $O(\log n)$ per query
Point location

- Binary search for the *slab* containing the query point \(q \)
- Binary search within the slab for the *trapezoid* containing the query point \(q \)
- No more than \(2n \) slabs and \(n + 1 \) trapezoids within a slab
- Point location cost: \(O(\log n) \) per query
Point location

- Binary search for the *slab* containing the query point q

- Binary search within the slab for the *trapezoid* containing the query point q

- No more than $2n$ slabs and $n + 1$ trapezoids within a slab

- Point location cost: $O(\log n)$ per query
Point location

- Binary search for the slab containing the query point q
- Binary search within the slab for the trapezoid containing the query point q
- No more than $2n$ slabs and $n + 1$ trapezoids within a slab
- Point location cost: $O(\log n)$ per query (good! but...)
Heavy data structure

Easy to figure out worst-case arrangements requiring $O(n^2)$ raw storage
Heavy data structure

Easy to figure out worst-case arrangements requiring $O(n^2)$ raw storage
Provisional *general position* assumption: no two vertices of S with the same x

- Upward and downward *vertical extensions* from each vertex of S
- The extensions stop when they meet an edge of S or a wall of the bounding box B

Trapezoidal map of $S = \text{subdivision induced by } S, B + \text{upper and lower vertical extensions}
Map features

- Provisional *general position* assumption: no two vertices of S with the same x

- Upward and downward *vertical extensions* from each vertex of S

- The extensions stop when they meet an edge of S or a wall of the bounding box B

- *Trapezoidal map* of S = subdivision induced by S, $B +$ upper and lower vertical extensions
Map features

- Provisional *general position* assumption: no two vertices of S with the same x

- Upward and downward *vertical extensions* from each vertex of S

- The extensions stop when they meet an edge of S or a wall of the bounding box B

- *Trapezoidal map* of $S = \text{subdivision induced by } S, B + \text{upper and lower vertical extensions}
Map features

- Provisional *general position* assumption: no two vertices of S with the same x

- Upward and downward *vertical extensions* from each vertex of S

- The extensions stop when they meet an edge of S or a wall of the bounding box B

- *Trapezoidal map* of $S = \text{subdivision induced by } S, B + \text{upper and lower vertical extensions}
Trapezoidal map of a planar subdivision
Trapezoidal map of a planar subdivision
Refined subdivision

- n original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices
- What results is still a planar subdivision: $O(n)$ faces
Refined subdivision

- n original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices
- What results is still a planar subdivision: $O(n)$ faces
Refined subdivision

- n original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices

What results is still a planar subdivision: $O(n)$ faces
Refined subdivision

- n original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices
- What results is still a planar subdivision: $O(n)$ faces
Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)
 - Possibly one degenerate vertical wall → point
 - Possibly bounding box’s wall(s) instead of original segment(s) or vertical extension(s)
 - Trapezoids and triangles (= degenerate trapezoids)
Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)
- Possibly one degenerate vertical wall → point
- Possibly bounding box’s wall(s) instead of original segment(s) or vertical extension(s)
- Trapezoids and triangles (= degenerate trapezoids)
Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)
- Possibly one degenerate vertical wall → point
- Possibly bounding box’s wall(s) instead of original segment(s) or vertical extension(s)

Trapezoids and triangles (= degenerate trapezoids)
Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)

- Possibly one degenerate vertical wall \(\rightarrow\) point

- Possibly *bounding box*'s wall(s) instead of original segment(s) or vertical extension(s)

- *Trapezoids* and *triangles* (= degenerate trapezoids)
Items defining a trapezoid

Trapezoid \(\tau \) :

- Top edge: \(t_\tau \)
- Bottom edge: \(b_\tau \)
- Left vertex: \(l_\tau \)
- Right vertex: \(r_\tau \)

(possibly horizontal walls / vertices of the bounding box)
Items defining a trapezoid

Trapezoid τ:

- Top edge: t_τ
- Bottom edge: b_τ
- Left vertex: l_τ
- Right vertex: r_τ

(possibly horizontal walls / vertices of the bounding box)
Items defining a trapezoid

Trapezoid \(\tau \):

- Top edge: \(t_\tau \)
- Bottom edge: \(b_\tau \)
- Left vertex: \(l_\tau \)
- Right vertex: \(r_\tau \)

(possibly horizontal walls / vertices of the bounding box)
Items defining a trapezoid

Trapezoid τ:

- Top edge: t_τ
- Bottom edge: b_τ
- Left vertex: l_τ
- Right vertex: r_τ

(possibly horizontal walls / vertices of the bounding box)
Classification based on left boundary

whole vertical extension of original endpoint \(l_{\tau} \)

lower vertical extension of original endpoint \(l_{\tau} \)
Classification based on left boundary

whole vertical extension of original endpoint l_τ

lower vertical extension of original endpoint l_τ
Classification based on left boundary

whole vertical extension of original endpoint l_{τ}

lower vertical extension of original endpoint l_{τ}
Classification based on left boundary

upper vertical extension meeting point \(l_{\tau} \) of original endpoint \(l_{\tau} \)

meeting point \(l_{\tau} \)
Classification based on left boundary

upper vertical extension of original endpoint l_{τ}

meeting point l_{τ}
Classification based on left boundary

- upper vertical extension of original endpoint \(l_\tau \)
- meeting point \(l_\tau \) of two original segments

\[\tau \]

\[l_\tau \quad b_\tau \]

\[l_\tau \quad b_\tau \]
Classification based on left boundary

upper vertical extension of original endpoint l_{τ}

meeting point l_{τ}
degenerate case of the left one
Classification based on left boundary

left wall of the bounding box
only one such trapezoid
Classification based on left boundary

left wall of the bounding box
only one such trapezoid
Classification based on left boundary

left wall of the bounding box
only one such trapezoid
Refined subdivision: Finer analysis

- n original edges...
 - $\rightarrow \leq 2n$ original endpoints
 - $\rightarrow \leq 2 \times 2n$ additional vertices
 - $+ 4$ corners of the bounding box
 - $\rightarrow \leq 6n + 4$ vertices in total
Refined subdivision: Finer analysis

- n original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- $+4$ corners of the bounding box
- $\rightarrow \leq 6n + 4$ vertices in total
Refined subdivision: Finer analysis

- n original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- $+$ 4 corners of the bounding box
- $\rightarrow \leq 6n + 4$ vertices in total
Refined subdivision: Finer analysis

- n original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- + 4 corners of the bounding box
- $\rightarrow \leq 6n + 4$ vertices in total
Refined subdivision: Finer analysis

- n original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- $+ 4$ corners of the bounding box
- $\rightarrow \leq 6n + 4$ vertices in total
Refined subdivision: Finer analysis

- n original edges...
- Each original left endpoint is l_τ for at most two trapezoids.
- Each original right endpoint is l_τ for at most one trapezoid.
- l_τ is the bottom-left corner of the bounding box for exactly one trapezoid.
- l_τ is an original endpoint for all the other trapezoids.
- $\rightarrow \leq 3n + 1$ trapezoids in total.
Refined subdivision: Finer analysis

- n original edges...
- Each original left endpoint is $l_τ$ for at most two trapezoids
- Each original right endpoint is $l_τ$ for at most one trapezoid
- $l_τ$ is the bottom-left corner of the bounding box for exactly one trapezoid
- $l_τ$ is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n + 1$ trapezoids in total
Refined subdivision: Finer analysis

- n original edges...
- Each original left endpoint is l_T for at most two trapezoids
- Each original right endpoint is l_T for at most one trapezoid

- l_T is the bottom-left corner of the bounding box for exactly one trapezoid
- l_T is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n + 1$ trapezoids in total
Refined subdivision: Finer analysis

- n original edges...
- each original left endpoint is l_τ for at most two trapezoids
- each original right endpoint is l_τ for at most one trapezoid
- l_τ is the bottom-left corner of the bounding box for exactly one trapezoid
- l_τ is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n + 1$ trapezoids in total
Refined subdivision: Finer analysis

- n original edges...
- Each original left endpoint is l_τ for at most two trapezoids
- Each original right endpoint is l_τ for at most one trapezoid
- l_τ is the bottom-left corner of the bounding box for exactly one trapezoid
- l_τ is an original endpoint for all the other trapezoids

$\rightarrow \leq 3n + 1$ trapezoids in total
Refined subdivision: Finer analysis

- n original edges...
- Each original left endpoint is l_τ for at most two trapezoids.
- Each original right endpoint is l_τ for at most one trapezoid.
- l_τ is the bottom-left corner of the bounding box for exactly one trapezoid.
- l_τ is an original endpoint for all the other trapezoids.
- $\rightarrow \leq 3n + 1$ trapezoids in total.
Refined subdivision: Adjacencies

- \(\tau, \tau' \) adjacent if they share a vertical extension
- \(\rightarrow \) same face of the original subdivision
- At most four adjacencies \((\text{general position assumption})\):
 - \(\tau' \) lower-left neighbor of \(\tau \): \(b_{\tau'} = b_{\tau}, \quad r_{\tau'} = l_{\tau} \)
 - \(\tau' \) upper-left neighbor of \(\tau \): \(t_{\tau'} = t_{\tau}, \quad r_{\tau'} = l_{\tau} \)
- and so on…
- This suggests to represent the map by a more specialized data structure than a DCEL
Refined subdivision: Adjacencies

- \(\tau, \tau' \) adjacent if they share a vertical extension
- \(\tau' \rightarrow \) same face of the original subdivision
- At most four adjacencies (general position assumption):
 - \(\tau' \) lower-left neighbor of \(\tau \): \(b_{\tau'} = b_\tau, \quad r_{\tau'} = l_\tau \)
 - \(\tau' \) upper-left neighbor of \(\tau \): \(t_{\tau'} = t_\tau, \quad r_{\tau'} = l_\tau \)
 - and so on...
- This suggests to represent the map by a more specialized data structure than a DCEL
Refined subdivision: Adjacencies

- τ, τ' *adjacent* if they share a vertical extension
- \rightarrow same face of the original subdivision
- At most four adjacencies (*general position assumption*):
 - τ' lower-left neighbor of τ:
 \[b_{\tau'} = b_{\tau}, \quad r_{\tau'} = l_{\tau} \]
 - τ' upper-left neighbor of τ:
 \[t_{\tau'} = t_{\tau}, \quad r_{\tau'} = l_{\tau} \]
 - and so on...

This suggests to represent the map by a more specialized data structure than a DCEL.
Refined subdivision: Adjacencies

- τ, τ' adjacent if they share a vertical extension
- \rightarrow same face of the original subdivision
- At most four adjacencies (general position assumption):
 - τ' lower-left neighbor of τ
 - τ' upper-left neighbor of τ
 - and so on...
 - This suggests to represent the map by a more specialized data structure than a DCEL.
Refined subdivision: Adjacencies

- \(\tau, \tau' \) adjacent if they share a vertical extension
- \(\rightarrow \) same face of the original subdivision
- At most four adjacencies (general position assumption):
 - \(\tau' \) lower-left neighbor of \(\tau \): \(b_{\tau'} = b_{\tau}, \ r_{\tau'} = l_{\tau} \)

\[\begin{align*}
\tau' & \quad \text{lower-left neighbor of } \tau: \quad b_{\tau'} = b_{\tau}, \ r_{\tau'} = l_{\tau} \\
\tau & \quad \text{upper-left neighbor of } \tau: \quad t_{\tau'} = t_{\tau}, \ r_{\tau'} = l_{\tau}
\end{align*} \]
Refined subdivision: Adjacencies

- \(\tau, \tau' \) adjacent if they share a vertical extension

- \(\rightarrow \) same face of the original subdivision

At most four adjacencies (general position assumption):

- \(\tau' \) lower-left neighbor of \(\tau \): \(b_{\tau'} = b_\tau, \quad r_{\tau'} = l_\tau \)

- \(\tau' \) upper-left neighbor of \(\tau \): \(t_{\tau'} = t_\tau, \quad r_{\tau'} = l_\tau \)

and so on...

This suggests to represent the map by a more specialized data structure than a DCEL
Refined subdivision: Adjacencies

- \(\tau, \tau' \) adjacent if they share a vertical extension
- \(\rightarrow \) same face of the original subdivision
- At most four adjacencies (general position assumption):
 - \(\tau' \) lower-left neighbor of \(\tau \): \(b_{\tau'} = b_\tau, \quad r_{\tau'} = l_\tau \)
 - \(\tau' \) upper-left neighbor of \(\tau \): \(t_{\tau'} = t_\tau, \quad r_{\tau'} = l_\tau \)
 - and so on...

This suggests to represent the map by a more specialized data structure than a DCEL.
Refined subdivision: Adjacencies

- τ, τ' *adjacent* if they share a vertical extension
- \rightarrow same face of the original subdivision
- At most four adjacencies (*general position* assumption):
 - τ' lower-left neighbor of τ: $b_{\tau'} = b_\tau$, $r_{\tau'} = l_\tau$
 - τ' upper-left neighbor of τ: $t_{\tau'} = t_\tau$, $r_{\tau'} = l_\tau$
- and so on...
- This suggests to represent the map by a more specialized data structure than a DCEL
Outline

1. Trapezoidal map
 - map layout
 - trapezoids
 - map structure

2. Incremental construction
 - search structure
 - incremental algorithm

3. Computation costs
 - point location
 - storage
 - preprocessing
Plane sweep to build the map?

Events: $O(n)$ vertices of the original subdivision S

Sweep line: b_T / t_T of trapezoids being constructed

Adjacency information: computed in $O(1)$ per trapezoid

Efficient algorithm: $O(n \log n)$

But what about point location costs?
Plane sweep to build the map?

- Events: $O(n)$ vertices of the original subdivision S
- Sweep line: b_{τ}/t_{τ} of trapezoids being constructed
- Adjacency information: computed in $O(1)$ per trapezoid
- Efficient algorithm: $O(n \log n)$
- But what about point location costs?
Plane sweep to build the map?

- Events: $O(n)$ vertices of the original subdivision S
- Sweep line: b_τ/t_τ of trapezoids being constructed
- Adjacency information: computed in $O(1)$ per trapezoid
- Efficient algorithm: $O(n \log n)$
- But what about point location costs?
Plane sweep to build the map?

- Events: \(O(n) \) vertices of the original subdivision \(S \)
- Sweep line: \(b_\tau/t_\tau \) of trapezoids being constructed
- Adjacency information: computed in \(O(1) \) per trapezoid
- Efficient algorithm: \(O(n \log n) \)

But what about point location costs?
Plane sweep to build the map?

- Events: \(O(n) \) vertices of the original subdivision \(S \)
- Sweep line: \(b_\tau/t_\tau \) of trapezoids being constructed
- Adjacency information: computed in \(O(1) \) per trapezoid
- Efficient algorithm: \(O(n \log n) \)
- But what about point location costs?
Point-location structure

- Directed Acyclic Graph (DAG)
 - Just one root
 - One leaf for each trapezoid of the map
 - Non-leaf nodes have out-degree 2 (two “children”)
 - Two types of non-leaf nodes: x-nodes and y-nodes
Point-location structure

- Directed Acyclic Graph (DAG)
- Just one root
 - One leaf for each trapezoid of the map
 - Non-leaf nodes have out-degree 2 (two “children”)
 - Two types of non-leaf nodes: x-nodes and y-nodes
Point-location structure

- Directed Acyclic Graph (DAG)
- Just one root
- One leaf for each trapezoid of the map
- Non-leaf nodes have out-degree 2 (two “children”)
- Two types of non-leaf nodes: x-nodes and y-nodes
Point-location structure

- Directed Acyclic Graph (DAG)
- Just one *root*
- One leaf for each trapezoid of the map
- Non-leaf nodes have *out-degree 2* (two “children”)
- Two types of non-leaf nodes: *x*-nodes and *y*-nodes
Point-location structure

- Directed Acyclic Graph (DAG)
- Just one root
- One leaf for each trapezoid of the map
- Non-leaf nodes have out-degree 2 (two “children”)
- Two types of non-leaf nodes: x-nodes and y-nodes
DAG’s nodes

- x-Node ν is connected with vertex $\nu \in S$

- y-Node ν is connected with edge $e_\nu \in S$

- Leaf node ν represents trapezoid τ_ν of the map, i.e. a final destination of the search
DAG’s nodes

- x-Node ν is connected with vertex $\nu, \in S$

- y-Node ν is connected with edge $e, \in S$

- Leaf node ν represents trapezoid τ, ν of the map, i.e. a final destination of the search
DAG’s nodes

- x-Node ν is connected with vertex $\nu \in S$

- y-Node ν is connected with edge $e_\nu \in S$

- Leaf node ν represents trapezoid τ_ν of the map, i.e. a final destination of the search
Point-location logic

- Query point: q
 - Starting from the root...
 - At x-node $ν$ test if q is to the left/right of $ν$ and move to $ν$’s corresponding child
 - At y-node $ν$ test if q is below/above $e_ν$ and move to $ν$’s corresponding child
 - At leaf node $ν$ we know that q lies in $τ_ν$
 (for the sake of simplicity assume that p lies strictly inside a trapezium)
Point-location logic

- Query point: \(q \)

- Starting from the root...

 - At \(x \)-node \(\nu \) test if \(q \) is to the left/right of \(\nu \),
 and move to \(\nu \)'s corresponding child

 - At \(y \)-node \(\nu \) test if \(q \) is below/above \(e_\nu \),
 and move to \(\nu \)'s corresponding child

 - At leaf node \(\nu \) we know that \(q \) lies in \(\tau_\nu \)
 (for the sake of simplicity assume that \(p \) lies strictly inside a trapezium)
Point-location logic

- Query point: \(q \)
- Starting from the \textit{root}. . .
- At \(x \)-node \(\nu \) test if \(q \) is to the left/right of \(e_\nu \) and move to \(\nu \)'s corresponding child
- At \(y \)-node \(\nu \) test if \(q \) is below/above \(e_\nu \) and move to \(\nu \)'s corresponding child
- At leaf node \(\nu \) we know that \(q \) lies in \(\tau_\nu \)
 (for the sake of simplicity assume that \(\rho \) lies strictly inside a trapezium)
Point-location logic

- Query point: q
- Starting from the root...
- At x-node ν test if q is to the left/right of e_{ν} and move to ν's corresponding child
- At y-node ν test if q is below/above e_{ν} and move to ν’s corresponding child
- At leaf node ν we know that q lies in τ_{ν}
 (for the sake of simplicity assume that ρ lies strictly inside a trapezium)
Point-location logic

- Query point: q
- Starting from the root . . .
- At x-node ν test if q is to the left/right of e_ν and move to ν's corresponding child
- At y-node ν test if q is below/above e_ν and move to ν's corresponding child
- At leaf node ν we know that q lies in τ_ν
 (for the sake of simplicity assume that p lies strictly inside a trapezium)
Point-location logic

- Query point: q
- Starting from the root...
- At x-node ν test if q is to the left/right of ν, and move to ν’s corresponding child.
- At y-node ν test if q is below/above e_ν, and move to ν’s corresponding child.
- At leaf node ν we know that q lies in τ_ν (for the sake of simplicity assume that p lies strictly inside a trapezium).
Trapezoidal map and related DAG
Search through the DAG

Trapezoidal map
Incremental construction
Computation costs

Search structure
Incremental algorithm
Trapezoidal map
Incremental construction
Computation costs

Search through the DAG

C. Mirolo
Trapezoidal Maps
Search through the DAG

Trapezoidal map
Incremental construction
Computation costs

Search structure
Incremental algorithm

C. Mirolo
Trapezoidal Maps
Search through the DAG
Search through the DAG
Search through the DAG
Randomized incremental algorithm

- Edges are added one at a time
- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The “efficiency” of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance
Randomized incremental algorithm

- Edges are added one at a time
- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The “efficiency” of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance
Randomized incremental algorithm

- Edges are added one at a time
- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The “efficiency” of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance
Randomized incremental algorithm

- Edges are added one at a time
- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The “efficiency” of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance
Initially the map contains only the \textit{bounding box}

\[\rightarrow \text{ one-node DAG} \]

For each edge \(e \in S \) in randomized order...

- remove the trapezoids \(T_1, T_2, \ldots, T_k \) in conflict with \(e \)
- replace them with the new trapezoids determined by \(e \)
- remove the DAG's leaves linked to \(T_1, T_2, \ldots, T_k \)
- replace these leaves with \(x-/y\)-nodes as appropriate
- create and link leaves for the new trapezoids
Algorithm steps

- Initially the map contains only the *bounding box*
- \rightarrow one-node DAG

For each edge $e \in S$ in randomized order...
- remove the trapezoids $\tau_1, \tau_2, \ldots, \tau_k$ in conflict with e
- replace them with the new trapezoids determined by e
- remove the DAG's leaves linked to $\tau_1, \tau_2, \ldots, \tau_k$
- replace these leaves with x-/y-nodes as appropriate
- create and link leaves for the new trapezoids
Algorithm steps

- Initially the map contains only the bounding box

- one-node DAG

- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \ldots \tau_k$ in conflict with e
 - replace them with the new trapezoids determined by e
 - remove the DAG’s leaves linked to $\tau_1, \tau_2, \ldots \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids
Algorithm steps

- Initially the map contains only the bounding box
- \(\rightarrow \) one-node DAG
- For each edge \(e \in S \) in randomized order...
 - remove the trapezoids \(T_1, T_2, \ldots T_k \) in conflict with \(e \)
 - replace them with the new trapezoids determined by \(e \)
 - remove the DAG's leaves linked to \(T_1, T_2, \ldots T_k \)
 - replace these leaves with \(x-/y- \) nodes as appropriate
 - create and link leaves for the new trapezoids
Algorithm steps

- Initially the map contains only the *bounding box*

- one-node DAG

- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \ldots, \tau_k$ in conflict with e
 - replace them with the new trapezoids determined by e
 - remove the DAG’s leaves linked to $\tau_1, \tau_2, \ldots, \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids
Algorithm steps

- Initially the map contains only the *bounding box*

- one-node DAG

- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \ldots, \tau_k$ in *conflict* with e
 - replace them with the new trapezoids determined by e
 - remove the DAG’s leaves linked to $\tau_1, \tau_2, \ldots, \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids
Algorithm steps

- Initially the map contains only the *bounding box*
- one-node DAG

For each edge \(e \in S \) in randomized order...

- remove the trapezoids \(\tau_1, \tau_2, \ldots, \tau_k \) in conflict with \(e \)
- replace them with the new trapezoids determined by \(e \)
- remove the DAG’s leaves linked to \(\tau_1, \tau_2, \ldots, \tau_k \)
- replace these leaves with \(x-/y-\)nodes as appropriate
- create and link leaves for the new trapezoids
Algorithm steps

- Initially the map contains only the *bounding box*

 → one-node DAG

- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \ldots \tau_k$ in *conflict* with e
 - replace them with the new trapezoids determined by e
 - remove the DAG’s leaves linked to $\tau_1, \tau_2, \ldots \tau_k$
 - replace these leaves with x-/ y-nodes as appropriate
 - create and link leaves for the new trapezoids
Finding trapezoids in conflict with a new edge

- Point location of e’s left endpoint (current DAG)
 - \rightarrow leftmost trapezoid τ_1 in conflict with e

- Follow right-neighbor links from τ_1 to the trapezoid τ_k which contains e’s right endpoint (edges do not cross)

- The correct neighbor τ_{i+1} of τ_i is identified by testing where r_{τ_i} lies relative to e
Finding trapezoids in conflict with a new edge

- Point location of e's left endpoint (current DAG)
 - \rightarrow leftmost trapezoid τ_1 in conflict with e

Follow right-neighbor links from τ_1 to the trapezoid τ_k which contains e's right endpoint (edges do not cross)

- The correct neighbor τ_{i+1} of τ_i is identified by testing where r_{τ_i} lies relative to e
Finding trapezoids in conflict with a new edge

- Point location of e’s left endpoint (current DAG)

 → leftmost trapezoid \(\tau_1 \) in conflict with \(e \)

- Follow right-neighbor links from \(\tau_1 \) to the trapezoid \(\tau_k \) which contains \(e \)’s right endpoint (edges do not cross)

- The correct neighbor \(\tau_{i+1} \) of \(\tau_i \) is identified by testing where \(r_{\tau_i} \) lies relative to \(e \)
Finding trapezoids in conflict with a new edge

- Point location of e's left endpoint (current DAG)
- \rightarrow leftmost trapezoid τ_1 in conflict with e
- Follow right-neighbor links from τ_1 to the trapezoid τ_k which contains e's right endpoint (edges do not cross)
- The correct neighbor τ_{i+1} of τ_i is identified by testing where r_{τ_i} lies relative to e
Updating the map

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)
- τ_2, τ_3, ..., τ_{k-1} are split
- Whenever possible, the resulting trapezoids bounded by e are merged
- All operations can be done in $O(k)$ (in constant time for each involved trapezoid)
Updating the map

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)
- τ_2, τ_3, ... τ_{k-1} are split
 - Whenever possible, the resulting trapezoids bounded by e are merged
 - All operations can be done in $O(k)$ (in constant time for each involved trapezoid)
Updating the map

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)
- $\tau_2, \tau_3, \ldots \tau_{k-1}$ are split
- Whenever possible, the resulting trapezoids bounded by e are merged
- All operations can be done in $O(k)$ (in constant time for each involved trapezoid)
Updating the map

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)

- $\tau_2, \tau_3, \ldots, \tau_{k-1}$ are split

- Whenever possible, the resulting trapezoids bounded by e are merged

- All operations can be done in $O(k)$ (in constant time for each involved trapezoid)
Updating the DAG

- Cross links between leaf nodes and trapezoids
- At most three new \(x-/y\)-nodes for each removed trapezoid
- Several nodes are linked to a new “merged” trapezoid
- All arrangements can be done in \(O(k)\)
Updating the DAG

- Cross links between leaf nodes and trapezoids
- At most three new x/-y-nodes for each removed trapezoid
- Several nodes are linked to a new “merged” trapezoid
- All arrangements can be done in $O(k)$
Updating the DAG

- Cross links between leaf nodes and trapezoids
- At most three new x-/ y-nodes for each removed trapezoid
- Several nodes are linked to a new “merged” trapezoid
- All arrangements can be done in $O(k)$
Updating the DAG

- Cross links between leaf nodes and trapezoids
- At most three new x-/y-nodes for each removed trapezoid
- Several nodes are linked to a new “merged” trapezoid
- All arrangements can be done in $O(k)$
In summary: Locate leftmost endpoint of new edge...
In summary: ... by stepping down the DAG
In summary: Start from leftmost trapezoid in conflict
In summary: Update trapezoid...
In summary: ... and walk along edge
In summary: Split & merge new trapezoids...
In summary: ... up to the rightmost endpoint
In summary: At the end Map and DAG are updated.
Outline

1. Trapezoidal map
 - map layout
 - trapezoids
 - map structure

2. Incremental construction
 - search structure
 - incremental algorithm

3. Computation costs
 - point location
 - storage
 - preprocessing
For given planar subdivision S and query point q

- Follow q's point location path π through the DAG
- Reflecting its construction steps:

 $$S_0 = B, \quad S_1, \quad S_2, \ldots \quad S_n = S$$

- $N_i =$ number of nodes created on π at step $i \in [1, n]$
Point location costs

- For given planar subdivision S and query point q
- Follow q’s point location path π through the DAG
- Reflecting its construction steps:
 $$S_0 = B, \quad S_1, \quad S_2, \ldots \quad S_n = S$$
- $N_i = \text{number of nodes created on } \pi \text{ at step } i \in [1, n]$
Point location costs

- For given planar subdivision S and query point q
- Follow q’s point location path π through the DAG
- Reflecting its construction steps:
 \[S_0 = B, \quad S_1, \quad S_2, \quad \ldots \quad S_n = S \]
 \[N_i = \text{number of nodes created on } \pi \text{ at step } i \in [1, n] \]
Point location costs

- For given planar subdivision S and query point q

- Follow q’s point location path π through the DAG

- Reflecting its construction steps:

 $$S_0 = B, \quad S_1, \quad S_2, \quad \ldots \quad S_n = S$$

- $N_i = \text{number of nodes created on } \pi \text{ at step } i \in [1, n]$
Point location costs

- For given planar subdivision S and query point q
- Follow q’s point location path π through the DAG
- Reflecting its construction steps:
 $$S_0 = B, \; S_1, \; S_2, \; \ldots \; S_n = S$$
- $N_i = \text{number of nodes created on } \pi \text{ at step } i \in [1, n]$
Expected path length:

$$E\left[\sum_{i=1}^{n} N_i \right] = \sum_{i=1}^{n} E[N_i]$$

Of course $N_i \leq 3$

For $P_i = \text{probability that nodes are added on } \pi \text{ at step } i$:

$$E[N_i] \leq 3P_i$$
Point location costs

- Expected path length:
 \[E\left[\sum_{i=1}^{n} N_i \right] = \sum_{i=1}^{n} E[N_i] \]

- Of course \(N_i \leq 3 \)

- For \(P_i \) = probability that nodes are added on \(\pi \) at step \(i \):
 \[E[N_i] \leq 3P_i \]
Point location costs

- Expected path length:

\[E \left[\sum_{i=1}^{n} N_i \right] = \sum_{i=1}^{n} E[N_i] \]

- Of course \(N_i \leq 3 \)

- For \(P_i \) = probability that nodes are added on \(\pi \) at step \(i \):

\[E[N_i] \leq 3P_i \]
Point location costs

- At step i: $q \in \tau_i$ of S_i

- Step i contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$
 - $\rightarrow \tau_i$ was created at step i
 - $\rightarrow \tau_i$ is bounded by the edge e_i added at step i
 - or meets one of its endpoints
Point location costs

- At step i: $q \in \mathcal{T}_i$ of S_i

- Step i contributes nodes to π precisely when $\mathcal{T}_i \neq \mathcal{T}_{i-1}$
 - $\Rightarrow \mathcal{T}_i$ was created at step i
 - $\Rightarrow \mathcal{T}_i$ is bounded by the edge e_i added at step i
 - or meets one of its endpoints
Point location costs

- At step i: $q \in \tau_i$ of S_i

- Step i contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$

- $\rightarrow \tau_i$ was created at step i

- $\rightarrow \tau_i$ is bounded by the edge e_i added at step i

- or meets one of its endpoints
Point location costs

- At step i: $q \in \tau_i$ of S_i

- Step i contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$

 $\rightarrow \tau_i$ was created at step i

 $\rightarrow \tau_i$ is bounded by the edge e_i added at step i

 or meets one of its endpoints
Point location costs

- At step i: $q \in \tau_i$ of S_i
- Step i contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$
 - $\rightarrow \tau_i$ was created at step i
 - $\rightarrow \tau_i$ is bounded by the edge e_i added at step i
- or meets one of its endpoints
Backward analysis

- Let us choose a particular set of i edges

- Also the resulting subdivision S_i is then fixed

- Which probability that τ_i disappears by removing e_i?

 $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or

 l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i

- Each of the above cases arises with probability $1/i$ (some technicalities should possibly be considered)
Backward analysis

- Let us choose a particular set of i edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i?
- $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or
 - l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
- Each of the above cases arises with probability $1/i$
 (some technicalities should possibly be considered)
Backward analysis

- Let us choose a particular set of i edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i?
 - $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
 - Each of the above cases arises with probability $1/i$ (some technicalities should possibly be considered)
Backward analysis

- Let us choose a particular set of i edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i?

$e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i

- Each of the above cases arises with probability $1/i$ (some technicalities should possibly be considered)
Backward analysis

- Let us choose a particular set of i edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i?

 $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or

 l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i

- Each of the above cases arises with probability $1/i$
 (some technicalities should possibly be considered)
To sum up:

\[E[N_i] \leq 3P_i \leq 3 \times \frac{4}{i} \]

This bound does not depend on some specific \(S_i \), hence it holds for the \(i \)-th step unconditionally.
Backward analysis

- To sum up:

\[E[N_i] \leq 3P_i \leq 3 \times \frac{4}{i} \]

- This bound does not depend on some specific \(S_i \), hence it holds for the \(i \)-th step unconditionally.
Backward analysis

To sum up:

\[E[N_i] \leq 3P_i \leq 3 \times \frac{4}{i} \]

Thus:

\[E\left[\sum_{i=1}^{n} N_i \right] = \sum_{i=1}^{n} E[N_i] \leq 12 \sum_{i=1}^{n} \frac{1}{i} \]

\[= O(\log n) \]
Backward analysis

- To sum up:

\[E[N_i] \leq 3P_i \leq 3 \times \frac{4}{i} \]

- Thus:

\[E\left[\sum_{i=1}^{n} N_i \right] = \sum_{i=1}^{n} E[N_i] \leq 12 \sum_{i=1}^{n} \frac{1}{i} \]

\[= O(\log n) \]
Storage costs

- Size of trapezoidal map $= O(n)$

- \rightarrow Number of DAG’s leaves $= O(n)$

- Then size of DAG

$$= O(n) + \sum_{i=1}^{n} |\{\text{inner nodes created at step } i\}|$$
Storage costs

- Size of trapezoidal map $= O(n)$

\rightarrow Number of DAG’s leaves $= O(n)$

Then size of DAG

$$= O(n) + \sum_{i=1}^{n} |\{\text{inner nodes created at step } i\}|$$
Storage costs

- Size of trapezoidal map \(= O(n) \)

\[\rightarrow \text{ Number of DAG's leaves } = O(n) \]

- Then size of DAG

\[= O(n) + \sum_{i=1}^{n} | \{ \text{inner nodes created at step } i \} | \]
Storage costs

- **In the worst case**

| | \{inner nodes created at step \(i \)\} | = O(\(i \)) |

- And size of DAG

\[
= O(n) + \sum_{i=1}^{n} O(i) = O(n^2)
\]
Storage costs

- In the *worst case*

 \[\left| \{ \text{inner nodes created at step } i \} \right| = O(i) \]

- And size of DAG

 \[
 = O(n) + \sum_{i=1}^{n} O(i) = O(n^2)
 \]
However

\[| \{ \text{inner nodes created at step } i \} | < T_i \]

where \(T_i = \text{number of trapezoids created at } i\text{-th step} \)
Storage costs

- However

 \[| \{ \text{inner nodes created at step } i \} | < T_i \]

- where \(T_i \) = number of trapezoids created at \(i \)-th step
Let us choose a particular set X_i of i edges

Again, the resulting subdivision S_i is fixed

$\tau \in S_i$ is created at step i if it is “constrained” by the last added edge e from X_i

Each edge in S_i may play this role with probability $1/i$

Hence

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} |\{\tau \in S_i \mid e \text{ constrains } \tau\}|$$
Backward analysis (again)

- Let us choose a particular set X_i of i edges
- Again, the resulting subdivision S_i is fixed
- $\tau \in S_i$ is created at step i if it is “constrained” by the last added edge e from X_i
- Each edge in S_i may play this role with probability $1/i$
- Hence

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} | \{ \tau \in S_i : e \text{ constrains } \tau \} |$$
Backward analysis (again)

- Let us choose a particular set X_i of i edges.
- Again, the resulting subdivision S_i is fixed.
- $\tau \in S_i$ is created at step i if it is “constrained” by the last added edge e from X_i.
- Each edge in S_i may play this role with probability $1/i$.
- Hence

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} |\{\tau \in S_i : e \text{ constrains } \tau\}|$$
Backward analysis (again)

- Let us choose a particular set X_i of i edges
- Again, the resulting subdivision S_i is fixed
- $\tau \in S_i$ is created at step i if it is “constrained” by the last added edge e from X_i
- Each edge in S_i may play this role with probability $1/i$
- Hence

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} |\{\tau \in S_i : e \text{ constrains } \tau\}|$$
Backward analysis (again)

- Let us choose a particular set X_i of i edges
- Again, the resulting subdivision S_i is fixed
- $\tau \in S_i$ is created at step i if it is “constrained” by the last added edge e from X_i
- Each edge in S_i may play this role with probability $1/i$
- Hence

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} | \{ \tau \in S_i : e \text{ constrains } \tau \} |$$
Backward analysis (again)

\[E[T_i] = \frac{1}{i} \sum_{e \in X_i} | \{ \tau \in S_i : e \text{ constrains } \tau \} | \]

\[= \frac{1}{i} \sum_{e \in X_i} \sum_{\tau \in S_i} \delta^e_{\tau} = \frac{1}{i} \sum_{\tau \in S_i} \sum_{e \in X_i} \delta^e_{\tau} \]

\[= \frac{1}{i} \sum_{\tau \in S_i} | \{ e \in X_i : e \text{ constrains } \tau \} | \]

where \(\delta^e_{\tau} = 1 \) if \(e \) constrains \(\tau \); otherwise \(\delta^e_{\tau} = 0 \)
Backward analysis (again)

\[E[T_i] = \frac{1}{i} \sum_{e \in X_i} | \{ \tau \in S_i : e \text{ constrains } \tau \} | \]

\[= \frac{1}{i} \sum_{e \in X_i} \sum_{\tau \in S_i} \delta_{e}^{\tau} = \frac{1}{i} \sum_{\tau \in S_i} \sum_{e \in X_i} \delta_{e}^{\tau} \]

\[= \frac{1}{i} \sum_{\tau \in S_i} | \{ e \in X_i : e \text{ constrains } \tau \} | \]

where \(\delta_{e}^{\tau} = 1 \) if \(e \) constrains \(\tau \); otherwise \(\delta_{e}^{\tau} = 0 \)
Backward analysis (again)

- We already know that

\[
| \{ e \in X_i : e \text{ constrains } \tau \} | \leq 4
\]

- Then

\[
E[T_i] = \frac{1}{i} \sum_{\tau \in S_i} | \{ e \in X_i : e \text{ constrains } \tau \} |
\]

\[
\leq \frac{4}{i} |S_i| = \frac{4}{i} O(i) = O(1)
\]
Backward analysis (again)

- We already know that

\[| \{ e \in X_i : e \text{ constrains } \tau \} | \leq 4 \]

- Then

\[
E[T_i] = \frac{1}{i} \sum_{\tau \in S_i} | \{ e \in X_i : e \text{ constrains } \tau \} |
\]

\[
\leq \frac{4}{i} |S_i| = \frac{4}{i} O(i) = O(1)
\]
Backward analysis (again)

- We already know that

\[| \{ e \in X_i : e \text{ constrains } \tau \} | \leq 4 \]

- Then, independent of the specific \(S_i \):

\[
E[T_i] = \frac{1}{i} \sum_{\tau \in S_i} | \{ e \in X_i : e \text{ constrains } \tau \} |
\]

\[
\leq \frac{4}{i} |S_i| = \frac{4}{i} O(i) = O(1)
\]
Expected size of DAG

As a consequence:

\[E[| \{\text{inner nodes created at step } i\} |] = O(1) \]

And \(E[\text{DAG's size}] \)

\[= O(n) + E[\sum_{i=1}^{n} | \{\text{inner nodes created at step } i\} |] \]

\[= O(n) + \sum_{i=1}^{n} E[| \{\text{inner nodes created at step } i\} |] \]

\[= O(n) + \sum_{i=1}^{n} O(1) = O(n) \]
Expected size of DAG

As a consequence:

\[E[\mid \{ \text{inner nodes created at step } i \} \mid] = O(1) \]

And \(E[\text{DAG's size}] \)

\[= O(n) + E[\sum_{i=1}^{n} \mid \{ \text{inner nodes created at step } i \} \mid] \]

\[= O(n) + \sum_{i=1}^{n} E[\mid \{ \text{inner nodes created at step } i \} \mid] \]

\[= O(n) + \sum_{i=1}^{n} O(1) = O(n) \]
Expected preprocessing costs

At i-th step...

- Point location (e’s leftmost endpoint): $O(\log i)$
- New trapezoids + updating DAG: $O(E[T_i]) = O(1)$

Overall:

$$\sum_{i=1}^{n} [O(\log i) + O(1)] = O(n \log n)$$
Expected preprocessing costs

- At i-th step...

- Point location (e's leftmost endpoint): $O(\log i)$

- New trapezoids + updating DAG: $O(E[T_i]) = O(1)$

- Overall:

 $$\sum_{i=1}^{n} [O(\log i) + O(1)] = O(n \log n)$$
Expected preprocessing costs

- At i-th step...
- Point location (e's leftmost endpoint): $O(\log i)$
- New trapezoids + updating DAG: $O(E[T_i]) = O(1)$

Overall:

$$\sum_{i=1}^{n} \left[O(\log i) + O(1) \right] = O(n \log n)$$
Expected preprocessing costs

- At i-th step...

- Point location (e's leftmost endpoint): $O(\log i)$

- New trapezoids + updating DAG: $O(E[T_i]) = O(1)$

Overall:

$$\sum_{i=1}^{n} [O(\log i) + O(1)] = O(n \log n)$$
Summing up...

- Preprocessing: $O(n \log n)$
- Storage: $O(n)$
- Point location: $O(\log n)$
- Expected costs!
Summing up...

- Preprocessing: \(O(n \log n) \)
- Storage: \(O(n) \)
- Point location: \(O(\log n) \)
- Expected costs!
Summing up...

- Preprocessing: $O(n \log n)$
- Storage: $O(n)$
- Point location: $O(\log n)$

Expected costs!
Summing up...

- Preprocessing: $O(n \log n)$
- Storage: $O(n)$
- Point location: $O(\log n)$
- Expected costs!
Outline

4 Degeneracies

5 References
Provisional assumptions

- vertices in *general position*
 - i.e. vertices not vertically aligned w.r.t. each other
 - query points not vertically aligned with vertices
Provisional assumptions

- vertices in *general position*
- i.e. vertices not vertically aligned w.r.t. each other
- query points not vertically aligned with vertices
Provisional assumptions

- vertices in *general position*
- i.e. vertices not vertically aligned w.r.t. each other
- query points not vertically aligned with vertices
Treatment of "degeneracies"

- Very small rotation/affine transformation ϕ

 $\phi(x, y) = (x + \epsilon y, y)$

 - Actually, just *symbolic perturbation*
Treatment of “degeneracies”

- Very small rotation/affine transformation ϕ

 $\phi(x, y) = (x + \epsilon y, y)$

- Actually, just symbolic perturbation
Very small rotation/affine transformation ϕ

$\phi(x, y) = (x + \epsilon y, y)$

Actually, just *symbolic perturbation*
Original vs. transformed items

- The algorithm does not compute new geometric items: Only two simple operations...

- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x$ → lexicographic order!

- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges
Original vs. transformed items

- The algorithm does not compute new geometric items: Only two simple operations...

- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x$ → lexicographic order!

- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges
Original vs. transformed items

- The algorithm does not compute new geometric items: Only two simple operations...

- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x$ \rightarrow lexicographic order!

- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges
The algorithm does not compute new geometric items: Only two simple operations...

Left-to-right order
- If $x' \neq x$ same order (ϵ small)
- If $x' = x$ → lexicographic order!

Above/on/below edge e
- In essence, ϕ preserves such relations
- Just some specific treatment for vertical (original) edges
Original vs. transformed items

- The algorithm does not compute new geometric items: Only two simple operations...

- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!

- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges
Original vs. transformed items

- The algorithm does not compute new geometric items: Only two simple operations...

- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!

- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges
The algorithm does not compute new geometric items: Only two simple operations...

Left-to-right order

- If $x' \neq x$ same order (ϵ small)
- If $x' = x \rightarrow$ lexicographic order!

Above/on/below edge e

- In essence, ϕ preserves such relations
- Just some specific treatment for vertical (original) edges
Left-to-right order

- Original items: \((x, y), (x', y')\)
- Transformed items: \((x + \epsilon y, y), (x' + \epsilon y', y')\)

\[(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon (y' - y)\]

- If \(x' \neq x\) assume \(\epsilon\) small enough: \(\epsilon |y' - y| < |x' - x|\)
- If \(x' = x\) just consider \(y' - y\)
Original items: \((x, y), (x', y')\)

Transformed items: \((x + \epsilon y, y), (x' + \epsilon y', y')\)

\[(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon(y' - y)\]

If \(x' \neq x\) assume \(\epsilon\) small enough: \(\epsilon|y' - y| < |x' - x|\)

If \(x' = x\) just consider \(y' - y\)
Left-to-right order

- Original items: \((x, y), (x', y')\)
- Transformed items: \((x + \epsilon y, y), (x' + \epsilon y', y')\)

\[(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon(y' - y)\]

If \(x' \neq x\) assume \(\epsilon\) small enough: \(\epsilon|y' - y| < |x' - x|\)

If \(x' = x\) just consider \(y' - y\)
Left-to-right order

- Original items: \((x, y), (x', y')\)

- Transformed items: \((x + \epsilon y, y), (x' + \epsilon y', y')\)

\[
(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon (y' - y)
\]

- If \(x' \neq x\) assume \(\epsilon\) small enough: \(\epsilon |y' - y| < |x' - x|\)

- If \(x' = x\) just consider \(y' - y\)
Left-to-right order

- Original items: \((x, y), (x', y')\)
- Transformed items: \((x + \epsilon y, y), (x' + \epsilon y', y')\)

\[
(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon(y' - y)
\]

- If \(x' \neq x\) assume \(\epsilon\) small enough: \(\epsilon|y' - y| < |x' - x|\)
- If \(x' = x\) just consider \(y' - y\)
Above/on/below edge

- **Point** \(q : (x, y) \rightarrow (x + \epsilon y, y) \)
- **Edge** \(e : [(x', y') (x'', y'')] \rightarrow [(x' + \epsilon y', y') (x'' + \epsilon y'', y'')] \)
- Suppose without loss of generality that \(x' \leq x'' \)
- The algorithm tests \(\phi q \) against \(\phi e \) only if
 \[
 x' + \epsilon y' \leq x + \epsilon y \leq x'' + \epsilon y''
 \]
 \[\Rightarrow x' \leq x \leq x'' \quad (\epsilon \text{ small})\]
Above/on/below edge

- **Point** \(q : (x, y) \rightarrow (x + \epsilon y, y) \)

- **Edge** \(e : [(x', y') \rightarrow (x'', y'')] \rightarrow [(x' + \epsilon y', y') \rightarrow (x'' + \epsilon y'', y'')] \)

Suppose without loss of generality that \(x' \leq x'' \)

The algorithm tests \(\phi q \) against \(\phi e \) only if

\[
\begin{align*}
x' + \epsilon y' &\leq x + \epsilon y \leq x'' + \epsilon y'' \\
\Rightarrow x' &\leq x \leq x'' \quad (\epsilon \text{ small})
\end{align*}
\]
Above/on/below edge

- **Point** \(q : (x, y) \rightarrow (x + \epsilon y, y) \)

- **Edge** \(e : [(x', y') (x'', y'')] \rightarrow [(x' + \epsilon y', y') (x'' + \epsilon y'', y'')] \)

- Suppose without loss of generality that \(x' \leq x'' \)

- The algorithm tests \(\phi q \) against \(\phi e \) only if

\[
x' + \epsilon y' \leq x + \epsilon y \leq x'' + \epsilon y''
\]

\[
\Rightarrow x' \leq x \leq x'' \quad (\epsilon \text{ small})
\]
Above/on/below edge

- Point $q : (x, y) \rightarrow (x + \epsilon y, y)$

- Edge $e : [(x', y') \ (x'', y'')] \rightarrow [(x' + \epsilon y', y') \ (x'' + \epsilon y'', y'')]$

Suppose without loss of generality that $x' \leq x''$

The algorithm tests ϕq against ϕe only if

$$x' + \epsilon y' \leq x + \epsilon y \leq x'' + \epsilon y''$$

$$\Rightarrow x' \leq x \leq x'' \quad (\epsilon \text{ small})$$
If $x' = x''$ then $x' = x = x''$ and $y' \leq y \leq y''$

This means that $q \in e$ and ϕ preserves incidence.

Otherwise y is to be tested against

$$y^* = y' + \frac{(x + \epsilon y) - (x' + \epsilon y')}{(x'' + \epsilon y'') - (x' + \epsilon y')} (y'' - y')$$

$$= y' + \frac{(x - x') + \epsilon(y - y')}{(x'' - x') + \epsilon(y'' - y')} (y'' - y')$$
If \(x' = x'' \) then \(x' = x = x'' \) and \(y' \leq y \leq y'' \)

This means that \(q \in e \) and \(\phi \) preserves incidence

Otherwise \(y \) is to be tested against

\[
y^* = y' + \frac{(x + \epsilon y) - (x' + \epsilon y')}{(x'' + \epsilon y'') - (x' + \epsilon y')} (y'' - y')
\]

\[
= y' + \frac{(x - x') + \epsilon(y - y')}{(x'' - x') + \epsilon(y'' - y')} (y'' - y')
\]
Above/on/below edge

- If \(x' = x'' \) then \(x' = x = x'' \) and \(y' \leq y \leq y'' \)

- This means that \(q \in e \) and \(\phi \) preserves incidence

- Otherwise \(y \) is to be tested against

\[
y^* = y' + \frac{(x + \epsilon y) - (x' + \epsilon y')}{(x'' + \epsilon y'') - (x' + \epsilon y')} (y'' - y')
\]

\[
= y' + \frac{(x - x') + \epsilon (y - y')}{(x'' - x') + \epsilon (y'' - y')} (y'' - y')
\]
By making ϵ smaller and smaller, y^* gets as close as we like to

$$y' + \frac{x - x'}{x'' - x'} (y'' - y')$$

i.e. the corresponding expression for the original items.
By making ϵ smaller and smaller, y^* gets as close as we like to

$$y' + \frac{x - x'}{x'' - x'} (y'' - y')$$

i.e. the corresponding expression for the original items
Moreover, *incidences* are invariant by linear transformation.

... and we know if points are the same or if a point lies on some edge.

To sum up: we *can* compute everything *without* carrying out any transformation.

But of course we build a trapezoidal map for the *transformed* edges! (e.g. “very thin” trapezoids)
Moreover, *incidences* are invariant by linear transformation.

... and we know if points are the same or if a point lies on some edge.

To sum up: we *can* compute everything *without* carrying out any transformation.

But of course we build a trapezoidal map for the *transformed* edges! (e.g. "very thin" trapezoids)
Moreover, *incidences* are invariant by linear transformation.

... and we know if points are the same or if a point lies on some edge.

To sum up: we *can* compute everything *without* carrying out any transformation.

But of course we build a trapezoidal map for the *transformed* edges! (e.g. “very thin” trapezoids)
Moreover, *incidences* are invariant by linear transformation.

... and we know if points are the same or if a point lies on some edge.

To sum up: we *can* compute everything *without* carrying out any transformation.

But of course we build a trapezoidal map for the *transformed* edges! (e.g. “very thin” trapezoids)
Moreover, *incidences* are invariant by linear transformation.

... and we know if points are the same or if a point lies on some edge.

To sum up: we *can* compute everything *without* carrying out any transformation.

But of course we build a trapezoidal map for the *transformed* edges! (e.g. “very thin” trapezoids)
What about query points?

- Since we don’t actually compute anything related to $\epsilon \ldots$

- We can think of a sufficiently small ϵ to accommodate for every query point q
What about query points?

- Since we don’t actually compute anything related to ϵ...

- We can think of a sufficiently small ϵ to accommodate for every query point q
Outline

4 Degeneracies

5 References
K. Mulmuley (1990)
A fast planar partition algorithm – I
Journal of Symbolic Computation, 10(3)

A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons
Computational Geometry: Theory & Applications, 1(1)