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Planar point location problem

For a planar subdivsion S with n edges

Given a query point q

Report the face f (edge e, vertex v ) of S
such that q ∈ f (q ∈ e, q = v )

Efficiently! (Preprocessing)
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Naïve trapezoidal map of a planar subdivision: slab
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Preprocessing

Bounding box (just for the sake of simplicity)

Vertical lines are drawn through all vertices

Vertical slabs are sorted left to right
(array, BST . . . )

Trapezoids within a slab are sorted bottom to top
(arrays, BSTs . . . )
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Point location

Binary search for the slab containing the query point q

Binary search within the slab
for the trapezoid containing the query point q

No more than 2n + 1 slabs
and n + 1 trapezoids within a slab

Point location cost: O( log n ) per query
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Easy to figure out worst-case arrangements
requiring O( n2 ) raw storage
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Map features

Provisional general position assumption:
no two vertices of S with the same x

Upward and downward vertical extensions
from each vertex of S

The extensions stop when they meet an edge of S
or a wall of the bounding box B

Trapezoidal map of S = subdivision induced by
S, B + upper and lower vertical extensions
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Refined subdivision

n original edges and Θ( n ) original vertices

Two new vertices added for each original vertex

Overall Θ( n ) edges and vertices

What results is still a planar subdivision: O( n ) faces
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Type of regions

Regions between two original segments (above/below)
and two vertical extensions (left/right)

Possibly one degenerate vertical wall → point

Possibly bounding box’s wall(s)
instead of original segment(s) or vertical extension(s)

Trapezoids and triangles (= degenerate trapezoids)
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Items defining a trapezoid

Trapezoid τ :

Top edge: tτ

Bottom edge: bτ

Left vertex: lτ

Right vertex: rτ

(possibly horizontal walls / vertices of the bounding box)
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Refined subdivision: Finer analysis

n original edges. . .

→ ≤ 2n original endpoints

→ ≤ 2 × 2n additional vertices

+ 4 corners of the bounding box

→ ≤ 6n + 4 vertices in total
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for exactly one trapezoid
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Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps




t


b


l




l



l

s


b




l




l


b



l


t


b


r



Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps




t


b


l




l



l

s


b




l




l


b



l


t


b


r



Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps




t


b


l




l



l

s


b




l




l


b



l


t


b


r




l



l


b


b

'
'



Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Outline

1 Trapezoidal map
map layout
trapezoids
map structure

2 Incremental construction
search structure
incremental algorithm

3 Computation costs
point location
storage
preprocessing

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Plane sweep to build the map?

Events: O( n ) vertices of the original subdivision S

Sweep line: bτ/tτ of trapezoids being constructed

Adjacency information: computed in O( 1 ) per trapezoid

Efficient algorithm: O( n log n )

But what about point location costs?
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DAG’s nodes

x-Node ν is connected with vertex vν ∈ S

y -Node ν is connected with edge eν ∈ S

Leaf node ν represents trapezoid τ ν of the map,
i.e. a final destination of the search
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Point-location logic

Query point: q

Starting from the root. . .

At x-node ν test if q is to the left/right of vν
and move to ν’s corresponding child

At y -node ν test if q is below/above eν

and move to ν’s corresponding child

At leaf node ν we know that q lies in τ ν

(for the sake of simplicity assume that q lies strictly inside a trapezium)
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Computation costs

search structure
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Randomized incremental algorithm

Edges are added one at a time

The map and the DAG are incrementally updated
to represent the trapezoidal map of the added edges

The “efficiency” of the search structure (DAG)
depends on the order in which edges are added

Randomization ensures good expected performance
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Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids
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Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Finding trapezoids in conflict with a new edge

Point location of e’s left endpoint (current DAG)

→ leftmost trapezoid τ 1 in conflict with e

Follow right-neighbor links from τ 1 to the trapezoid τ k
which contains e’s right endpoint (edges do not cross)

The correct neighbor τ i+1 of τ i is identified
by testing where rτi lies relative to e
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Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the map

τ 1 and τ k are partitioned in three parts (four if τ 1 = τ k )

τ 2, τ 3, . . . τ k−1 are split

Whenever possible, the resulting trapezoids
bounded by e are merged

All operations can be done in O( k )
(in constant time for each involved trapezoid)
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Updating the DAG

Cross links between leaf nodes and trapezoids

At most three new x-/y -nodes for each removed trapezoid

Several nodes are linked to a new “merged” trapezoid

All arrangements can be done in O( k )
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In summary: Locate leftmost endpoint of new edge. . .


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5


6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5 

6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2

e
v

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5


6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5 

6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2

e
v

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5


6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5 

6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2

e
v

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5


6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5 

6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2

e
v

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5


6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2


1

e
1

e
2

v
1

v
2

v
3

v
4


2


3


4


5 

6


7

e
2

v
2

v
4


7


4

v
3


6

e
1


5


3

v
1


1

e
1


2

e
v

C. Mirolo Trapezoidal Maps



Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: Start from leftmost trapezoid in conflict
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In summary: Update trapezoid. . .
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In summary: . . . and walk along edge
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In summary: Split & merge new trapezoids. . .
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In summary: . . . up to the rightmost endpoint
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In summary: At the end Map and DAG are updated
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Outline

1 Trapezoidal map
map layout
trapezoids
map structure

2 Incremental construction
search structure
incremental algorithm

3 Computation costs
point location
storage
preprocessing
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Point location costs

For given planar subdivision S and query point q

Follow q’s point location path π through the DAG

Reflecting its construction steps:

S0 = B, S1, S2, . . . Sn = S

Ni = number of nodes created on π at step i ∈ [1,n]
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Point location costs: Path π to τi
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Point location costs: Path π to τi−1
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Point location costs: Trapezoid τi is created at step i
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Point location costs: Trapezoid τi is created at step i
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Point location costs: Step i contributes Ni nodes on π
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. . . But may not contribute nodes on a different path
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Point location costs

Expected path length:

E [
n∑

i=1

Ni ] =
n∑

i=1

E [Ni ]

Of course Ni ≤ 3

For Pi = probability that nodes are added on π at step i :

E [Ni ] ≤ 3Pi
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Point location costs

At step i : q ∈ τ i of Si

Step i contributes nodes to π precisely when τ i ̸= τ i−1

→ τ i was created at step i

→ τ i is bounded by the edge ei added at step i

or meets one of its endpoints
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Backward analysis

Let us choose a particular set of i edges

Also the resulting subdivision Si is then fixed

Which probability that τ i disappears by removing ei?

ei = bτi or ei = tτi or
lτi endpoint of ei or rτi endpoint of ei

Each of the above cases arises with probability 1/i
(some technicalities should possibly be considered here,
i.e. τ i disappears if ei is the only edge incident at lτi/rτi )
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Backward analysis

To sum up:

E [Ni ] ≤ 3Pi ≤ 3 × 4
i

This bound does not depend on some specific Si ,
hence it holds for the i-th step unconditionally
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Storage costs

Size of trapezoidal map = O( n )

→ Number of DAG’s leaves = O( n )

Then size of DAG

= O( n ) +
n∑

i=1

| {inner nodes created at step i} |
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In the worst case

| {inner nodes created at step i} | = O( i )

And size of DAG

= O( n ) +
n∑

i=1

O( i ) = O( n2 )
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However

| {inner nodes created at step i} | < Ti

where Ti = number of trapezoids created at i-th step
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Backward analysis (again)

Let us choose a particular set Xi of i edges

Again, the resulting subdivision Si is fixed

τ ∈ Si is created at step i if it is “constrained”
by the last added edge e from Xi

Each edge in Si may play this role with probability 1/i

Hence

E [Ti ] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrains τ} |
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Hence

E [Ti ] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrains τ} |
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E [Ti ] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrsains τ} |

=
1
i

∑
e∈Xi

∑
τ∈Si

δe
τ =

1
i

∑
τ∈Si

∑
e∈Xi

δe
τ

=
1
i

∑
τ∈Si

| {e ∈ Xi : e constrsains τ} |

where δe
τ = 1 if e constrsains τ ; otherwise δe

τ = 0
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Backward analysis (again)

We already know that

| {e ∈ Xi : e constrsains τ} | ≤ 4

Then, independent of the specific Si :

E [Ti ] =
1
i

∑
τ∈Si

| {e ∈ Xi : e constrsains τ} |

≤ 4
i
|Si | =

4
i

O( i ) = O( 1 )
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Expected size of DAG
As a consequence:

E [ | {inner nodes created at step i} | ] = O( 1 )

And E [ DAG′s size ]

= O( n ) + E [
n∑

i=1

| {inner nodes created at step i} | ]

= O( n ) +
n∑

i=1

E [ | {inner nodes created at step i} | ]

= O( n ) +
n∑

i=1

O( 1 ) = O( n )
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Trapezoidal map
Incremental construction
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point location
storage
preprocessing

Expected preprocessing costs

At i-th step. . .

Point location (e’s leftmost endpoint): O( log i )

New trapezoids + updating DAG: O( E [Ti ] ) = O( 1 )

Overall:
n∑

i=1

[ O( log i ) + O( 1 ) ]

= O( n log n )
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Provisional assumptions

vertices in general position

i.e. vertices not vertically aligned w.r.t. each other

query points not vertically aligned with vertices
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Treatment of “degeneracies”

Very small rotation/affine transformation ϕ

ϕ(x , y) = (x + ϵy , y)

Actually, just symbolic perturbation
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Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges
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Left-to-right order

Original items: (x , y), (x ′, y ′)

Transformed items: (x + ϵy , y), (x ′ + ϵy ′, y ′)

(x ′ + ϵy ′)− (x + ϵy) = (x ′ − x) + ϵ(y ′ − y)

If x ′ ̸= x assume ϵ small enough: ϵ|y ′ − y | < |x ′ − x |

If x ′ = x just consider y ′ − y
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Above/on/below edge

Point q : (x , y) → (x + ϵy , y)

Edge e : [(x ′, y ′) (x ′′, y ′′)] → [(x ′ + ϵy ′, y ′) (x ′′ + ϵy ′′, y ′′)]

Suppose without loss of generality that x ′ ≤ x ′′

The algorithm tests ϕq against ϕe only if

x ′ + ϵy ′ ≤ x + ϵy ≤ x ′′ + ϵy ′′

⇒ x ′ ≤ x ≤ x ′′ (ϵ small)
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Above/on/below edge

If x ′ = x ′′ then x ′ = x = x ′′ and y ′ ≤ y ≤ y ′′

This means that q ∈ e and ϕ preserves incidence:

(x + ϵy , y) ∈ [(x + ϵy ′, y ′) (x + ϵy ′′, y ′′)]

Otherwise y is to be tested against

y∗ = y ′ +
(x + ϵy)− (x ′ + ϵy ′)

(x ′′ + ϵy ′′)− (x ′ + ϵy ′)
(y ′′ − y ′)

= y ′ +
(x − x ′) + ϵ(y − y ′)

(x ′′ − x ′) + ϵ(y ′′ − y ′)
(y ′′ − y ′)
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Above/on/below edge

By making ϵ smaller and smaller,
y∗ gets as close as we like to

y ′ +
x − x ′

x ′′ − x ′ (y
′′ − y ′)

i.e. the corresponding expression for the original items
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Original vs. transformed items

Moreover, incidences are invariant
by linear transformation

. . . and we know if points are the same
or if a point lies on some edge

To sum up: we can compute everything
without carrying out any transformation

But of course we build a trapezoidal map for the
transformed edges! (e.g. “very thin” trapezoids)
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What about query points?

Since we don’t actually compute anything related to ϵ. . .

We can think of a sufficiently small ϵ
to accommodate for every query point q
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