
Trapezoidal map
Incremental construction

Computation costs

Point Location in Trapezoidal Maps

Claudio Mirolo

Dip. di Scienze Matematiche, Informatiche e Fisiche
Università di Udine, via delle Scienze 206 – Udine

claudio.mirolo@uniud.it

Computational Geometry
users.dimi.uniud.it/∼claudio.mirolo

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

Outline

1 Trapezoidal map
map layout
trapezoids
map structure

2 Incremental construction
search structure
incremental algorithm

3 Computation costs
point location
storage
preprocessing

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

Planar point location problem

For a planar subdivsion S with n edges

Given a query point q

Report the face f (edge e, vertex v) of S
such that q ∈ f (q ∈ e, q = v)

Efficiently! (Preprocessing)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

Planar point location problem

For a planar subdivsion S with n edges

Given a query point q

Report the face f (edge e, vertex v) of S
such that q ∈ f (q ∈ e, q = v)

Efficiently! (Preprocessing)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

Planar point location problem

For a planar subdivsion S with n edges

Given a query point q

Report the face f (edge e, vertex v) of S
such that q ∈ f (q ∈ e, q = v)

Efficiently! (Preprocessing)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

Planar point location problem

For a planar subdivsion S with n edges

Given a query point q

Report the face f (edge e, vertex v) of S
such that q ∈ f (q ∈ e, q = v)

Efficiently! (Preprocessing)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

Planar point location problem

For a planar subdivsion S with n edges

Given a query point q

Report the face f (edge e, vertex v) of S
such that q ∈ f (q ∈ e, q = v)

Efficiently! (Preprocessing)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Outline

1 Trapezoidal map
map layout
trapezoids
map structure

2 Incremental construction
search structure
incremental algorithm

3 Computation costs
point location
storage
preprocessing

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Naïve trapezoidal map of a planar subdivision

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Naïve trapezoidal map of a planar subdivision

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Naïve trapezoidal map of a planar subdivision: slab

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Preprocessing

Bounding box (just for the sake of simplicity)

Vertical lines are drawn through all vertices

Vertical slabs are sorted left to right
(array, BST . . .)

Trapezoids within a slab are sorted bottom to top
(arrays, BSTs . . .)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Preprocessing

Bounding box (just for the sake of simplicity)

Vertical lines are drawn through all vertices

Vertical slabs are sorted left to right
(array, BST . . .)

Trapezoids within a slab are sorted bottom to top
(arrays, BSTs . . .)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Preprocessing

Bounding box (just for the sake of simplicity)

Vertical lines are drawn through all vertices

Vertical slabs are sorted left to right
(array, BST . . .)

Trapezoids within a slab are sorted bottom to top
(arrays, BSTs . . .)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Preprocessing

Bounding box (just for the sake of simplicity)

Vertical lines are drawn through all vertices

Vertical slabs are sorted left to right
(array, BST . . .)

Trapezoids within a slab are sorted bottom to top
(arrays, BSTs . . .)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Preprocessing

Bounding box (just for the sake of simplicity)

Vertical lines are drawn through all vertices

Vertical slabs are sorted left to right
(array, BST . . .)

Trapezoids within a slab are sorted bottom to top
(arrays, BSTs . . .)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Point location

Binary search for the slab containing the query point q

Binary search within the slab
for the trapezoid containing the query point q

No more than 2n + 1 slabs
and n + 1 trapezoids within a slab

Point location cost: O(log n) per query

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Point location

Binary search for the slab containing the query point q

Binary search within the slab
for the trapezoid containing the query point q

No more than 2n + 1 slabs
and n + 1 trapezoids within a slab

Point location cost: O(log n) per query

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Point location

Binary search for the slab containing the query point q

Binary search within the slab
for the trapezoid containing the query point q

No more than 2n + 1 slabs
and n + 1 trapezoids within a slab

Point location cost: O(log n) per query

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Point location

Binary search for the slab containing the query point q

Binary search within the slab
for the trapezoid containing the query point q

No more than 2n + 1 slabs
and n + 1 trapezoids within a slab

Point location cost: O(log n) per query

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Point location

Binary search for the slab containing the query point q

Binary search within the slab
for the trapezoid containing the query point q

No more than 2n + 1 slabs
and n + 1 trapezoids within a slab

Point location cost: O(log n) per query (good! but. . .)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Heavy data structure

Easy to figure out worst-case arrangements
requiring O(n2) raw storage

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Heavy data structure

Easy to figure out worst-case arrangements
requiring O(n2) raw storage

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Map features

Provisional general position assumption:
no two vertices of S with the same x

Upward and downward vertical extensions
from each vertex of S

The extensions stop when they meet an edge of S
or a wall of the bounding box B

Trapezoidal map of S = subdivision induced by
S, B + upper and lower vertical extensions

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Map features

Provisional general position assumption:
no two vertices of S with the same x

Upward and downward vertical extensions
from each vertex of S

The extensions stop when they meet an edge of S
or a wall of the bounding box B

Trapezoidal map of S = subdivision induced by
S, B + upper and lower vertical extensions

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Map features

Provisional general position assumption:
no two vertices of S with the same x

Upward and downward vertical extensions
from each vertex of S

The extensions stop when they meet an edge of S
or a wall of the bounding box B

Trapezoidal map of S = subdivision induced by
S, B + upper and lower vertical extensions

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Map features

Provisional general position assumption:
no two vertices of S with the same x

Upward and downward vertical extensions
from each vertex of S

The extensions stop when they meet an edge of S
or a wall of the bounding box B

Trapezoidal map of S = subdivision induced by
S, B + upper and lower vertical extensions

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Trapezoidal map of a planar subdivision

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Trapezoidal map of a planar subdivision

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision

n original edges and Θ(n) original vertices

Two new vertices added for each original vertex

Overall Θ(n) edges and vertices

What results is still a planar subdivision: O(n) faces

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision

n original edges and Θ(n) original vertices

Two new vertices added for each original vertex

Overall Θ(n) edges and vertices

What results is still a planar subdivision: O(n) faces

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision

n original edges and Θ(n) original vertices

Two new vertices added for each original vertex

Overall Θ(n) edges and vertices

What results is still a planar subdivision: O(n) faces

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision

n original edges and Θ(n) original vertices

Two new vertices added for each original vertex

Overall Θ(n) edges and vertices

What results is still a planar subdivision: O(n) faces

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Type of regions

Regions between two original segments (above/below)
and two vertical extensions (left/right)

Possibly one degenerate vertical wall → point

Possibly bounding box’s wall(s)
instead of original segment(s) or vertical extension(s)

Trapezoids and triangles (= degenerate trapezoids)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Type of regions

Regions between two original segments (above/below)
and two vertical extensions (left/right)

Possibly one degenerate vertical wall → point

Possibly bounding box’s wall(s)
instead of original segment(s) or vertical extension(s)

Trapezoids and triangles (= degenerate trapezoids)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Type of regions

Regions between two original segments (above/below)
and two vertical extensions (left/right)

Possibly one degenerate vertical wall → point

Possibly bounding box’s wall(s)
instead of original segment(s) or vertical extension(s)

Trapezoids and triangles (= degenerate trapezoids)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Type of regions

Regions between two original segments (above/below)
and two vertical extensions (left/right)

Possibly one degenerate vertical wall → point

Possibly bounding box’s wall(s)
instead of original segment(s) or vertical extension(s)

Trapezoids and triangles (= degenerate trapezoids)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Items defining a trapezoid

Trapezoid τ :

Top edge: tτ

Bottom edge: bτ

Left vertex: lτ

Right vertex: rτ

(possibly horizontal walls / vertices of the bounding box)

C. Mirolo Trapezoidal Maps

t

b

l

r

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Items defining a trapezoid

Trapezoid τ :

Top edge: tτ

Bottom edge: bτ

Left vertex: lτ

Right vertex: rτ

(possibly horizontal walls / vertices of the bounding box)

C. Mirolo Trapezoidal Maps

t

b

l

r

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Items defining a trapezoid

Trapezoid τ :

Top edge: tτ

Bottom edge: bτ

Left vertex: lτ

Right vertex: rτ

(possibly horizontal walls / vertices of the bounding box)

C. Mirolo Trapezoidal Maps

t

b

l

r

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Items defining a trapezoid

Trapezoid τ :

Top edge: tτ

Bottom edge: bτ

Left vertex: lτ

Right vertex: rτ

(possibly horizontal walls / vertices of the bounding box)

C. Mirolo Trapezoidal Maps

t

b

l

r

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

whole vertical extension lower vertical extension
of original endpoint lτ of original endpoint lτ

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

whole vertical extension lower vertical extension
of original endpoint lτ of original endpoint lτ

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

whole vertical extension lower vertical extension
of original endpoint lτ of original endpoint lτ

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

upper vertical extension meeting point lτ
of original endpoint lτ of two original segments

degenerate case of←

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

upper vertical extension meeting point lτ
of original endpoint lτ of two original segments

degenerate case of←

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

upper vertical extension meeting point lτ
of original endpoint lτ of two original segments

degenerate case of←

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

upper vertical extension meeting point lτ
of original endpoint lτ of two original segments

degenerate case of←

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

left wall of the bounding box
only one such trapezoid

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

left wall of the bounding box
only one such trapezoid

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Classification based on left boundary

t

b

l

l

l

s

b

l

l

b

left wall of the bounding box
only one such trapezoid

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

→ ≤ 2n original endpoints

→ ≤ 2 × 2n additional vertices

+ 4 corners of the bounding box

→ ≤ 6n + 4 vertices in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

→ ≤ 2n original endpoints

→ ≤ 2 × 2n additional vertices

+ 4 corners of the bounding box

→ ≤ 6n + 4 vertices in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

→ ≤ 2n original endpoints

→ ≤ 2 × 2n additional vertices

+ 4 corners of the bounding box

→ ≤ 6n + 4 vertices in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

→ ≤ 2n original endpoints

→ ≤ 2 × 2n additional vertices

+ 4 corners of the bounding box

→ ≤ 6n + 4 vertices in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

→ ≤ 2n original endpoints

→ ≤ 2 × 2n additional vertices

+ 4 corners of the bounding box

→ ≤ 6n + 4 vertices in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

each original left endpoint is lτ for at most two trapezoids

each original right endpoint is lτ for at most one trapezoid

lτ is the bottom-left corner of the bounding box
for exactly one trapezoid

lτ is an original endpoint for all the other trapezoids

→ ≤ 3n + 1 trapezoids in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

each original left endpoint is lτ for at most two trapezoids

each original right endpoint is lτ for at most one trapezoid

lτ is the bottom-left corner of the bounding box
for exactly one trapezoid

lτ is an original endpoint for all the other trapezoids

→ ≤ 3n + 1 trapezoids in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

each original left endpoint is lτ for at most two trapezoids

each original right endpoint is lτ for at most one trapezoid

lτ is the bottom-left corner of the bounding box
for exactly one trapezoid

lτ is an original endpoint for all the other trapezoids

→ ≤ 3n + 1 trapezoids in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

each original left endpoint is lτ for at most two trapezoids

each original right endpoint is lτ for at most one trapezoid

lτ is the bottom-left corner of the bounding box
for exactly one trapezoid

lτ is an original endpoint for all the other trapezoids

→ ≤ 3n + 1 trapezoids in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

each original left endpoint is lτ for at most two trapezoids

each original right endpoint is lτ for at most one trapezoid

lτ is the bottom-left corner of the bounding box
for exactly one trapezoid

lτ is an original endpoint for all the other trapezoids

→ ≤ 3n + 1 trapezoids in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Finer analysis

n original edges. . .

each original left endpoint is lτ for at most two trapezoids

each original right endpoint is lτ for at most one trapezoid

lτ is the bottom-left corner of the bounding box
for exactly one trapezoid

lτ is an original endpoint for all the other trapezoids

→ ≤ 3n + 1 trapezoids in total

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

t

b

l

l

l

s

b

l

l

b

l

t

b

r

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

t

b

l

l

l

s

b

l

l

b

l

t

b

r

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

t

b

l

l

l

s

b

l

l

b

l

t

b

r

l

l

b

b

'
'

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

map layout
trapezoids
map structure

Refined subdivision: Adjacencies

τ , τ ′ adjacent if they share a vertical extension

→ same face of the original subdivision

At most four adjacencies (general position assumption):

τ ′ lower-left neighbor of τ : bτ ′ = bτ , rτ ′ = lτ

τ ′ upper-left neighbor of τ : tτ ′ = tτ , rτ ′ = lτ

and so on. . .

This suggests to represent the map
by a more specialized data structure than a DCEL

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Outline

1 Trapezoidal map
map layout
trapezoids
map structure

2 Incremental construction
search structure
incremental algorithm

3 Computation costs
point location
storage
preprocessing

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Plane sweep to build the map?

Events: O(n) vertices of the original subdivision S

Sweep line: bτ/tτ of trapezoids being constructed

Adjacency information: computed in O(1) per trapezoid

Efficient algorithm: O(n log n)

But what about point location costs?

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Plane sweep to build the map?

Events: O(n) vertices of the original subdivision S

Sweep line: bτ/tτ of trapezoids being constructed

Adjacency information: computed in O(1) per trapezoid

Efficient algorithm: O(n log n)

But what about point location costs?

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Plane sweep to build the map?

Events: O(n) vertices of the original subdivision S

Sweep line: bτ/tτ of trapezoids being constructed

Adjacency information: computed in O(1) per trapezoid

Efficient algorithm: O(n log n)

But what about point location costs?

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Plane sweep to build the map?

Events: O(n) vertices of the original subdivision S

Sweep line: bτ/tτ of trapezoids being constructed

Adjacency information: computed in O(1) per trapezoid

Efficient algorithm: O(n log n)

But what about point location costs?

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Plane sweep to build the map?

Events: O(n) vertices of the original subdivision S

Sweep line: bτ/tτ of trapezoids being constructed

Adjacency information: computed in O(1) per trapezoid

Efficient algorithm: O(n log n)

But what about point location costs?

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location structure

Directed Acyclic Graph (DAG)

Just one root

One leaf for each trapezoid of the map

Non-leaf nodes have out-degree 2 (two “children”)

Two types of non-leaf nodes: x-nodes and y -nodes

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location structure

Directed Acyclic Graph (DAG)

Just one root

One leaf for each trapezoid of the map

Non-leaf nodes have out-degree 2 (two “children”)

Two types of non-leaf nodes: x-nodes and y -nodes

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location structure

Directed Acyclic Graph (DAG)

Just one root

One leaf for each trapezoid of the map

Non-leaf nodes have out-degree 2 (two “children”)

Two types of non-leaf nodes: x-nodes and y -nodes

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location structure

Directed Acyclic Graph (DAG)

Just one root

One leaf for each trapezoid of the map

Non-leaf nodes have out-degree 2 (two “children”)

Two types of non-leaf nodes: x-nodes and y -nodes

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location structure

Directed Acyclic Graph (DAG)

Just one root

One leaf for each trapezoid of the map

Non-leaf nodes have out-degree 2 (two “children”)

Two types of non-leaf nodes: x-nodes and y -nodes

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

DAG’s nodes

x-Node ν is connected with vertex vν ∈ S

y -Node ν is connected with edge eν ∈ S

Leaf node ν represents trapezoid τ ν of the map,
i.e. a final destination of the search

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

DAG’s nodes

x-Node ν is connected with vertex vν ∈ S

y -Node ν is connected with edge eν ∈ S

Leaf node ν represents trapezoid τ ν of the map,
i.e. a final destination of the search

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

DAG’s nodes

x-Node ν is connected with vertex vν ∈ S

y -Node ν is connected with edge eν ∈ S

Leaf node ν represents trapezoid τ ν of the map,
i.e. a final destination of the search

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location logic

Query point: q

Starting from the root. . .

At x-node ν test if q is to the left/right of vν
and move to ν’s corresponding child

At y -node ν test if q is below/above eν

and move to ν’s corresponding child

At leaf node ν we know that q lies in τ ν

(for the sake of simplicity assume that q lies strictly inside a trapezium)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location logic

Query point: q

Starting from the root. . .

At x-node ν test if q is to the left/right of vν
and move to ν’s corresponding child

At y -node ν test if q is below/above eν

and move to ν’s corresponding child

At leaf node ν we know that q lies in τ ν

(for the sake of simplicity assume that q lies strictly inside a trapezium)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location logic

Query point: q

Starting from the root. . .

At x-node ν test if q is to the left/right of vν
and move to ν’s corresponding child

At y -node ν test if q is below/above eν

and move to ν’s corresponding child

At leaf node ν we know that q lies in τ ν

(for the sake of simplicity assume that q lies strictly inside a trapezium)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location logic

Query point: q

Starting from the root. . .

At x-node ν test if q is to the left/right of vν
and move to ν’s corresponding child

At y -node ν test if q is below/above eν

and move to ν’s corresponding child

At leaf node ν we know that q lies in τ ν

(for the sake of simplicity assume that q lies strictly inside a trapezium)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location logic

Query point: q

Starting from the root. . .

At x-node ν test if q is to the left/right of vν
and move to ν’s corresponding child

At y -node ν test if q is below/above eν

and move to ν’s corresponding child

At leaf node ν we know that q lies in τ ν

(for the sake of simplicity assume that q lies strictly inside a trapezium)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Point-location logic

Query point: q

Starting from the root. . .

At x-node ν test if q is to the left/right of vν
and move to ν’s corresponding child

At y -node ν test if q is below/above eν

and move to ν’s corresponding child

At leaf node ν we know that q lies in τ ν

(for the sake of simplicity assume that q lies strictly inside a trapezium)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Trapezoidal map and related DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Search through the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Search through the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Search through the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Search through the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Search through the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Search through the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Randomized incremental algorithm

Edges are added one at a time

The map and the DAG are incrementally updated
to represent the trapezoidal map of the added edges

The “efficiency” of the search structure (DAG)
depends on the order in which edges are added

Randomization ensures good expected performance

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Randomized incremental algorithm

Edges are added one at a time

The map and the DAG are incrementally updated
to represent the trapezoidal map of the added edges

The “efficiency” of the search structure (DAG)
depends on the order in which edges are added

Randomization ensures good expected performance

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Randomized incremental algorithm

Edges are added one at a time

The map and the DAG are incrementally updated
to represent the trapezoidal map of the added edges

The “efficiency” of the search structure (DAG)
depends on the order in which edges are added

Randomization ensures good expected performance

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Randomized incremental algorithm

Edges are added one at a time

The map and the DAG are incrementally updated
to represent the trapezoidal map of the added edges

The “efficiency” of the search structure (DAG)
depends on the order in which edges are added

Randomization ensures good expected performance

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Algorithm steps

Initially the map contains only the bounding box

→ one-node DAG

For each edge e ∈ S in randomized order. . .
remove the trapezoids τ 1, τ 2, . . . τ k in conflict with e

replace them with the new trapezoids determined by e

remove the DAG’s leaves linked to τ 1, τ 2, . . . τ k

replace these leaves with x-/y -nodes as appropriate

create and link leaves for the new trapezoids

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Finding trapezoids in conflict with a new edge

Point location of e’s left endpoint (current DAG)

→ leftmost trapezoid τ 1 in conflict with e

Follow right-neighbor links from τ 1 to the trapezoid τ k
which contains e’s right endpoint (edges do not cross)

The correct neighbor τ i+1 of τ i is identified
by testing where rτi lies relative to e

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Finding trapezoids in conflict with a new edge

Point location of e’s left endpoint (current DAG)

→ leftmost trapezoid τ 1 in conflict with e

Follow right-neighbor links from τ 1 to the trapezoid τ k
which contains e’s right endpoint (edges do not cross)

The correct neighbor τ i+1 of τ i is identified
by testing where rτi lies relative to e

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Finding trapezoids in conflict with a new edge

Point location of e’s left endpoint (current DAG)

→ leftmost trapezoid τ 1 in conflict with e

Follow right-neighbor links from τ 1 to the trapezoid τ k
which contains e’s right endpoint (edges do not cross)

The correct neighbor τ i+1 of τ i is identified
by testing where rτi lies relative to e

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Finding trapezoids in conflict with a new edge

Point location of e’s left endpoint (current DAG)

→ leftmost trapezoid τ 1 in conflict with e

Follow right-neighbor links from τ 1 to the trapezoid τ k
which contains e’s right endpoint (edges do not cross)

The correct neighbor τ i+1 of τ i is identified
by testing where rτi lies relative to e

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the map

τ 1 and τ k are partitioned in three parts (four if τ 1 = τ k)

τ 2, τ 3, . . . τ k−1 are split

Whenever possible, the resulting trapezoids
bounded by e are merged

All operations can be done in O(k)
(in constant time for each involved trapezoid)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the map

τ 1 and τ k are partitioned in three parts (four if τ 1 = τ k)

τ 2, τ 3, . . . τ k−1 are split

Whenever possible, the resulting trapezoids
bounded by e are merged

All operations can be done in O(k)
(in constant time for each involved trapezoid)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the map

τ 1 and τ k are partitioned in three parts (four if τ 1 = τ k)

τ 2, τ 3, . . . τ k−1 are split

Whenever possible, the resulting trapezoids
bounded by e are merged

All operations can be done in O(k)
(in constant time for each involved trapezoid)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the map

τ 1 and τ k are partitioned in three parts (four if τ 1 = τ k)

τ 2, τ 3, . . . τ k−1 are split

Whenever possible, the resulting trapezoids
bounded by e are merged

All operations can be done in O(k)
(in constant time for each involved trapezoid)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the DAG

Cross links between leaf nodes and trapezoids

At most three new x-/y -nodes for each removed trapezoid

Several nodes are linked to a new “merged” trapezoid

All arrangements can be done in O(k)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the DAG

Cross links between leaf nodes and trapezoids

At most three new x-/y -nodes for each removed trapezoid

Several nodes are linked to a new “merged” trapezoid

All arrangements can be done in O(k)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the DAG

Cross links between leaf nodes and trapezoids

At most three new x-/y -nodes for each removed trapezoid

Several nodes are linked to a new “merged” trapezoid

All arrangements can be done in O(k)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

Updating the DAG

Cross links between leaf nodes and trapezoids

At most three new x-/y -nodes for each removed trapezoid

Several nodes are linked to a new “merged” trapezoid

All arrangements can be done in O(k)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: Locate leftmost endpoint of new edge. . .

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

e
v

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

e
v

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

e
v

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

e
v

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . by stepping down the DAG

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

e
v

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: Start from leftmost trapezoid in conflict

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

e
v

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: Update trapezoid. . .

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

v
1

1

e
1

2

ev

v

3

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . and walk along edge

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

v
1

1

e
1

2

ev

v

3

e

8

9

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: Split & merge new trapezoids. . .

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

v
1

1

e
1

2

ev

v

3

e

8

9

e

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: . . . up to the rightmost endpoint

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

v
1

1

e
1

2

ev

v

3

e

8

9

e

v'

v'

e

10

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

search structure
incremental algorithm

In summary: At the end Map and DAG are updated

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

3

v
1

1

e
1

2

1

e
1

e
2

v
1

v
2

v
3

v
4

2

3

4

5

6

7

e
2

v
2

v
4

7

4

v
3

6

e
1

5

v
1

1

e
1

2

ev

v

3

e

8

9

e

v'

v'

e

10

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Outline

1 Trapezoidal map
map layout
trapezoids
map structure

2 Incremental construction
search structure
incremental algorithm

3 Computation costs
point location
storage
preprocessing

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

For given planar subdivision S and query point q

Follow q’s point location path π through the DAG

Reflecting its construction steps:

S0 = B, S1, S2, . . . Sn = S

Ni = number of nodes created on π at step i ∈ [1,n]

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

For given planar subdivision S and query point q

Follow q’s point location path π through the DAG

Reflecting its construction steps:

S0 = B, S1, S2, . . . Sn = S

Ni = number of nodes created on π at step i ∈ [1,n]

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

For given planar subdivision S and query point q

Follow q’s point location path π through the DAG

Reflecting its construction steps:

S0 = B, S1, S2, . . . Sn = S

Ni = number of nodes created on π at step i ∈ [1,n]

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

For given planar subdivision S and query point q

Follow q’s point location path π through the DAG

Reflecting its construction steps:

S0 = B, S1, S2, . . . Sn = S

Ni = number of nodes created on π at step i ∈ [1,n]

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

For given planar subdivision S and query point q

Follow q’s point location path π through the DAG

Reflecting its construction steps:

S0 = B, S1, S2, . . . Sn = S

Ni = number of nodes created on π at step i ∈ [1,n]

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs: Path π to τi

τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ7τ4 v3

τ6

e1
τ5

v1

τ1 e1

τ2

e3v

v

τ3 e3

τ8 τ9

e3v'

v'

e3

τ10

τ9

q

S i–1

p i–1

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs: Path π to τi−1

τ7

τ3
τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ4 v3

τ6e1
τ5

v1

τ1 e1

τ2

p i–1

S i–1

q

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs: Trapezoid τi is created at step i

τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ7τ4 v3

τ6

e1
τ5

v1

τ1 e1

τ2

e3v

v

τ3 e3

τ8 τ9

e3v'

v'

e3

τ10

τ9

q

S i–1

p i–1

(p i–1)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs: Trapezoid τi is created at step i

τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ7τ4 v3

τ6

e1
τ5

v1

τ1 e1

τ2

e3v

v

τ3 e3

τ8 τ9

e3v'

v'

e3

τ10

τ9

q

S i–1

p i–1

(p i–1)

C. Mirolo Trapezoidal Maps

since ei constrains τi !

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs: Step i contributes Ni nodes on π

τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ7τ4 v3

τ6

e1
τ5

v1

τ1 e1

τ2

e3v

v

τ3 e3

τ8 τ9

e3v'

v'

e3

τ10

τ9

q

S i–1

p i–1

(p i–1)

N i–1

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

. . . But may not contribute nodes on a different path

τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ7τ4 v3

τ6

e1
τ5

v1

τ1 e1

τ2

e3v

v

τ3 e3

τ8 τ9

e3v'

v'

e3

τ10

τ9

q

S i–1

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

. . . But may not contribute nodes on a different path

τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ7τ4 v3

τ6

e1
τ5

v1

τ1 e1

τ2

e3v

v

τ3 e3

τ8 τ9

e3v'

v'

e3

τ10

τ9

q

S i–1

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

. . . But may not contribute nodes on a different path

τ1

e1

e2

v1

v2

v3

v4
τ2

τ3

τ4

τ5 τ6
τ7

e2

v2

v4

τ7τ4 v3

τ6

e1
τ5

v1

τ1 e1

τ2

e3v

v

τ3 e3

τ8 τ9

e3v'

v'

e3

τ10

τ9

q

S i–1

C. Mirolo Trapezoidal Maps

when ei does not
constrain τi !

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

Expected path length:

E [
n∑

i=1

Ni] =
n∑

i=1

E [Ni]

Of course Ni ≤ 3

For Pi = probability that nodes are added on π at step i :

E [Ni] ≤ 3Pi

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

Expected path length:

E [
n∑

i=1

Ni] =
n∑

i=1

E [Ni]

Of course Ni ≤ 3

For Pi = probability that nodes are added on π at step i :

E [Ni] ≤ 3Pi

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

Expected path length:

E [
n∑

i=1

Ni] =
n∑

i=1

E [Ni]

Of course Ni ≤ 3

For Pi = probability that nodes are added on π at step i :

E [Ni] ≤ 3Pi

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

At step i : q ∈ τ i of Si

Step i contributes nodes to π precisely when τ i ̸= τ i−1

→ τ i was created at step i

→ τ i is bounded by the edge ei added at step i

or meets one of its endpoints

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

At step i : q ∈ τ i of Si

Step i contributes nodes to π precisely when τ i ̸= τ i−1

→ τ i was created at step i

→ τ i is bounded by the edge ei added at step i

or meets one of its endpoints

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

At step i : q ∈ τ i of Si

Step i contributes nodes to π precisely when τ i ̸= τ i−1

→ τ i was created at step i

→ τ i is bounded by the edge ei added at step i

or meets one of its endpoints

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

At step i : q ∈ τ i of Si

Step i contributes nodes to π precisely when τ i ̸= τ i−1

→ τ i was created at step i

→ τ i is bounded by the edge ei added at step i

or meets one of its endpoints

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Point location costs

At step i : q ∈ τ i of Si

Step i contributes nodes to π precisely when τ i ̸= τ i−1

→ τ i was created at step i

→ τ i is bounded by the edge ei added at step i

or meets one of its endpoints

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

Let us choose a particular set of i edges

Also the resulting subdivision Si is then fixed

Which probability that τ i disappears by removing ei?

ei = bτi or ei = tτi or
lτi endpoint of ei or rτi endpoint of ei

Each of the above cases arises with probability 1/i
(some technicalities should possibly be considered here,
i.e. τ i disappears if ei is the only edge incident at lτi/rτi)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

Let us choose a particular set of i edges

Also the resulting subdivision Si is then fixed

Which probability that τ i disappears by removing ei?

ei = bτi or ei = tτi or
lτi endpoint of ei or rτi endpoint of ei

Each of the above cases arises with probability 1/i
(some technicalities should possibly be considered here,
i.e. τ i disappears if ei is the only edge incident at lτi/rτi)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

Let us choose a particular set of i edges

Also the resulting subdivision Si is then fixed

Which probability that τ i disappears by removing ei?

ei = bτi or ei = tτi or
lτi endpoint of ei or rτi endpoint of ei

Each of the above cases arises with probability 1/i
(some technicalities should possibly be considered here,
i.e. τ i disappears if ei is the only edge incident at lτi/rτi)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

Let us choose a particular set of i edges

Also the resulting subdivision Si is then fixed

Which probability that τ i disappears by removing ei?

ei = bτi or ei = tτi or
lτi endpoint of ei or rτi endpoint of ei

Each of the above cases arises with probability 1/i
(some technicalities should possibly be considered here,
i.e. τ i disappears if ei is the only edge incident at lτi/rτi)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

Let us choose a particular set of i edges

Also the resulting subdivision Si is then fixed

Which probability that τ i disappears by removing ei?

ei = bτi or ei = tτi or
lτi endpoint of ei or rτi endpoint of ei

Each of the above cases arises with probability 1/i
(some technicalities should possibly be considered here,
i.e. τ i disappears if ei is the only edge incident at lτi/rτi)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

Let us choose a particular set of i edges

Also the resulting subdivision Si is then fixed

Which probability that τ i disappears by removing ei?

ei = bτi or ei = tτi or
lτi endpoint of ei or rτi endpoint of ei

Each of the above cases arises with probability 1/i
(some technicalities should possibly be considered here,
i.e. τ i disappears if ei is the only edge incident at lτi/rτi)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

To sum up:

E [Ni] ≤ 3Pi ≤ 3 × 4
i

This bound does not depend on some specific Si ,
hence it holds for the i-th step unconditionally

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

To sum up:

E [Ni] ≤ 3Pi ≤ 3 × 4
i

This bound does not depend on some specific Si ,
hence it holds for the i-th step unconditionally

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

To sum up:

E [Ni] ≤ 3Pi ≤ 3 × 4
i

Thus:

E [
n∑

i=1

Ni] =
n∑

i=1

E [Ni] ≤ 12
n∑

i=1

1
i

= O(log n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis

To sum up:

E [Ni] ≤ 3Pi ≤ 3 × 4
i

Thus:

E [
n∑

i=1

Ni] =
n∑

i=1

E [Ni] ≤ 12
n∑

i=1

1
i

= O(log n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Storage costs

Size of trapezoidal map = O(n)

→ Number of DAG’s leaves = O(n)

Then size of DAG

= O(n) +
n∑

i=1

| {inner nodes created at step i} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Storage costs

Size of trapezoidal map = O(n)

→ Number of DAG’s leaves = O(n)

Then size of DAG

= O(n) +
n∑

i=1

| {inner nodes created at step i} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Storage costs

Size of trapezoidal map = O(n)

→ Number of DAG’s leaves = O(n)

Then size of DAG

= O(n) +
n∑

i=1

| {inner nodes created at step i} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Storage costs

In the worst case

| {inner nodes created at step i} | = O(i)

And size of DAG

= O(n) +
n∑

i=1

O(i) = O(n2)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Storage costs

In the worst case

| {inner nodes created at step i} | = O(i)

And size of DAG

= O(n) +
n∑

i=1

O(i) = O(n2)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Storage costs

However

| {inner nodes created at step i} | < Ti

where Ti = number of trapezoids created at i-th step

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Storage costs

However

| {inner nodes created at step i} | < Ti

where Ti = number of trapezoids created at i-th step

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

Let us choose a particular set Xi of i edges

Again, the resulting subdivision Si is fixed

τ ∈ Si is created at step i if it is “constrained”
by the last added edge e from Xi

Each edge in Si may play this role with probability 1/i

Hence

E [Ti] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrains τ} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

Let us choose a particular set Xi of i edges

Again, the resulting subdivision Si is fixed

τ ∈ Si is created at step i if it is “constrained”
by the last added edge e from Xi

Each edge in Si may play this role with probability 1/i

Hence

E [Ti] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrains τ} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

Let us choose a particular set Xi of i edges

Again, the resulting subdivision Si is fixed

τ ∈ Si is created at step i if it is “constrained”
by the last added edge e from Xi

Each edge in Si may play this role with probability 1/i

Hence

E [Ti] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrains τ} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

Let us choose a particular set Xi of i edges

Again, the resulting subdivision Si is fixed

τ ∈ Si is created at step i if it is “constrained”
by the last added edge e from Xi

Each edge in Si may play this role with probability 1/i

Hence

E [Ti] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrains τ} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

Let us choose a particular set Xi of i edges

Again, the resulting subdivision Si is fixed

τ ∈ Si is created at step i if it is “constrained”
by the last added edge e from Xi

Each edge in Si may play this role with probability 1/i

Hence

E [Ti] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrains τ} |

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

E [Ti] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrsains τ} |

=
1
i

∑
e∈Xi

∑
τ∈Si

δe
τ =

1
i

∑
τ∈Si

∑
e∈Xi

δe
τ

=
1
i

∑
τ∈Si

| {e ∈ Xi : e constrsains τ} |

where δe
τ = 1 if e constrsains τ ; otherwise δe

τ = 0

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

E [Ti] =
1
i

∑
e∈Xi

| {τ ∈ Si : e constrsains τ} |

=
1
i

∑
e∈Xi

∑
τ∈Si

δe
τ =

1
i

∑
τ∈Si

∑
e∈Xi

δe
τ

=
1
i

∑
τ∈Si

| {e ∈ Xi : e constrsains τ} |

where δe
τ = 1 if e constrsains τ ; otherwise δe

τ = 0

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

We already know that

| {e ∈ Xi : e constrsains τ} | ≤ 4

Then, independent of the specific Si :

E [Ti] =
1
i

∑
τ∈Si

| {e ∈ Xi : e constrsains τ} |

≤ 4
i
|Si | =

4
i

O(i) = O(1)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

We already know that

| {e ∈ Xi : e constrsains τ} | ≤ 4

Then, independent of the specific Si :

E [Ti] =
1
i

∑
τ∈Si

| {e ∈ Xi : e constrsains τ} |

≤ 4
i
|Si | =

4
i

O(i) = O(1)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Backward analysis (again)

We already know that

| {e ∈ Xi : e constrsains τ} | ≤ 4

Then, independent of the specific Si :

E [Ti] =
1
i

∑
τ∈Si

| {e ∈ Xi : e constrsains τ} |

≤ 4
i
|Si | =

4
i

O(i) = O(1)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Expected size of DAG
As a consequence:

E [| {inner nodes created at step i} |] = O(1)

And E [DAG′s size]

= O(n) + E [
n∑

i=1

| {inner nodes created at step i} |]

= O(n) +
n∑

i=1

E [| {inner nodes created at step i} |]

= O(n) +
n∑

i=1

O(1) = O(n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Expected size of DAG
As a consequence:

E [| {inner nodes created at step i} |] = O(1)

And E [DAG′s size]

= O(n) + E [
n∑

i=1

| {inner nodes created at step i} |]

= O(n) +
n∑

i=1

E [| {inner nodes created at step i} |]

= O(n) +
n∑

i=1

O(1) = O(n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Expected preprocessing costs

At i-th step. . .

Point location (e’s leftmost endpoint): O(log i)

New trapezoids + updating DAG: O(E [Ti]) = O(1)

Overall:
n∑

i=1

[O(log i) + O(1)]

= O(n log n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Expected preprocessing costs

At i-th step. . .

Point location (e’s leftmost endpoint): O(log i)

New trapezoids + updating DAG: O(E [Ti]) = O(1)

Overall:
n∑

i=1

[O(log i) + O(1)]

= O(n log n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Expected preprocessing costs

At i-th step. . .

Point location (e’s leftmost endpoint): O(log i)

New trapezoids + updating DAG: O(E [Ti]) = O(1)

Overall:
n∑

i=1

[O(log i) + O(1)]

= O(n log n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Expected preprocessing costs

At i-th step. . .

Point location (e’s leftmost endpoint): O(log i)

New trapezoids + updating DAG: O(E [Ti]) = O(1)

Overall:
n∑

i=1

[O(log i) + O(1)]

= O(n log n)

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Summing up. . .

Preprocessing: O(n log n)

Storage: O(n)

Point location: O(log n)

Expected costs!

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Summing up. . .

Preprocessing: O(n log n)

Storage: O(n)

Point location: O(log n)

Expected costs!

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Summing up. . .

Preprocessing: O(n log n)

Storage: O(n)

Point location: O(log n)

Expected costs!

C. Mirolo Trapezoidal Maps

Trapezoidal map
Incremental construction

Computation costs

point location
storage
preprocessing

Summing up. . .

Preprocessing: O(n log n)

Storage: O(n)

Point location: O(log n)

Expected costs!

C. Mirolo Trapezoidal Maps

Degeneracies
References

Outline

4 Degeneracies

5 References

C. Mirolo Trapezoidal Maps

Degeneracies
References

Provisional assumptions

vertices in general position

i.e. vertices not vertically aligned w.r.t. each other

query points not vertically aligned with vertices

C. Mirolo Trapezoidal Maps

Degeneracies
References

Provisional assumptions

vertices in general position

i.e. vertices not vertically aligned w.r.t. each other

query points not vertically aligned with vertices

C. Mirolo Trapezoidal Maps

Degeneracies
References

Provisional assumptions

vertices in general position

i.e. vertices not vertically aligned w.r.t. each other

query points not vertically aligned with vertices

C. Mirolo Trapezoidal Maps

Degeneracies
References

Treatment of “degeneracies”

Very small rotation/affine transformation ϕ

ϕ(x , y) = (x + ϵy , y)

Actually, just symbolic perturbation

C. Mirolo Trapezoidal Maps

Degeneracies
References

Treatment of “degeneracies”

Very small rotation/affine transformation ϕ

ϕ(x , y) = (x + ϵy , y)

Actually, just symbolic perturbation

C. Mirolo Trapezoidal Maps

Degeneracies
References

Treatment of “degeneracies”

Very small rotation/affine transformation ϕ

ϕ(x , y) = (x + ϵy , y)

Actually, just symbolic perturbation

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

The algorithm does not compute new geometric items:
Only two simple operations. . .

Left-to-right order
If x ′ ̸= x same order (ϵ small)

If x ′ = x → lexicographic order!

Above/on/below edge e

In essence, ϕ preserves such relations

Just some specific treatment for vertical (original) edges

C. Mirolo Trapezoidal Maps

Degeneracies
References

Left-to-right order

Original items: (x , y), (x ′, y ′)

Transformed items: (x + ϵy , y), (x ′ + ϵy ′, y ′)

(x ′ + ϵy ′)− (x + ϵy) = (x ′ − x) + ϵ(y ′ − y)

If x ′ ̸= x assume ϵ small enough: ϵ|y ′ − y | < |x ′ − x |

If x ′ = x just consider y ′ − y

C. Mirolo Trapezoidal Maps

Degeneracies
References

Left-to-right order

Original items: (x , y), (x ′, y ′)

Transformed items: (x + ϵy , y), (x ′ + ϵy ′, y ′)

(x ′ + ϵy ′)− (x + ϵy) = (x ′ − x) + ϵ(y ′ − y)

If x ′ ̸= x assume ϵ small enough: ϵ|y ′ − y | < |x ′ − x |

If x ′ = x just consider y ′ − y

C. Mirolo Trapezoidal Maps

Degeneracies
References

Left-to-right order

Original items: (x , y), (x ′, y ′)

Transformed items: (x + ϵy , y), (x ′ + ϵy ′, y ′)

(x ′ + ϵy ′)− (x + ϵy) = (x ′ − x) + ϵ(y ′ − y)

If x ′ ̸= x assume ϵ small enough: ϵ|y ′ − y | < |x ′ − x |

If x ′ = x just consider y ′ − y

C. Mirolo Trapezoidal Maps

Degeneracies
References

Left-to-right order

Original items: (x , y), (x ′, y ′)

Transformed items: (x + ϵy , y), (x ′ + ϵy ′, y ′)

(x ′ + ϵy ′)− (x + ϵy) = (x ′ − x) + ϵ(y ′ − y)

If x ′ ̸= x assume ϵ small enough: ϵ|y ′ − y | < |x ′ − x |

If x ′ = x just consider y ′ − y

C. Mirolo Trapezoidal Maps

Degeneracies
References

Left-to-right order

Original items: (x , y), (x ′, y ′)

Transformed items: (x + ϵy , y), (x ′ + ϵy ′, y ′)

(x ′ + ϵy ′)− (x + ϵy) = (x ′ − x) + ϵ(y ′ − y)

If x ′ ̸= x assume ϵ small enough: ϵ|y ′ − y | < |x ′ − x |

If x ′ = x just consider y ′ − y

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

Point q : (x , y) → (x + ϵy , y)

Edge e : [(x ′, y ′) (x ′′, y ′′)] → [(x ′ + ϵy ′, y ′) (x ′′ + ϵy ′′, y ′′)]

Suppose without loss of generality that x ′ ≤ x ′′

The algorithm tests ϕq against ϕe only if

x ′ + ϵy ′ ≤ x + ϵy ≤ x ′′ + ϵy ′′

⇒ x ′ ≤ x ≤ x ′′ (ϵ small)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

Point q : (x , y) → (x + ϵy , y)

Edge e : [(x ′, y ′) (x ′′, y ′′)] → [(x ′ + ϵy ′, y ′) (x ′′ + ϵy ′′, y ′′)]

Suppose without loss of generality that x ′ ≤ x ′′

The algorithm tests ϕq against ϕe only if

x ′ + ϵy ′ ≤ x + ϵy ≤ x ′′ + ϵy ′′

⇒ x ′ ≤ x ≤ x ′′ (ϵ small)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

Point q : (x , y) → (x + ϵy , y)

Edge e : [(x ′, y ′) (x ′′, y ′′)] → [(x ′ + ϵy ′, y ′) (x ′′ + ϵy ′′, y ′′)]

Suppose without loss of generality that x ′ ≤ x ′′

The algorithm tests ϕq against ϕe only if

x ′ + ϵy ′ ≤ x + ϵy ≤ x ′′ + ϵy ′′

⇒ x ′ ≤ x ≤ x ′′ (ϵ small)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

Point q : (x , y) → (x + ϵy , y)

Edge e : [(x ′, y ′) (x ′′, y ′′)] → [(x ′ + ϵy ′, y ′) (x ′′ + ϵy ′′, y ′′)]

Suppose without loss of generality that x ′ ≤ x ′′

The algorithm tests ϕq against ϕe only if

x ′ + ϵy ′ ≤ x + ϵy ≤ x ′′ + ϵy ′′

⇒ x ′ ≤ x ≤ x ′′ (ϵ small)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

If x ′ = x ′′ then x ′ = x = x ′′ and y ′ ≤ y ≤ y ′′

This means that q ∈ e and ϕ preserves incidence:

(x + ϵy , y) ∈ [(x + ϵy ′, y ′) (x + ϵy ′′, y ′′)]

Otherwise y is to be tested against

y∗ = y ′ +
(x + ϵy)− (x ′ + ϵy ′)

(x ′′ + ϵy ′′)− (x ′ + ϵy ′)
(y ′′ − y ′)

= y ′ +
(x − x ′) + ϵ(y − y ′)

(x ′′ − x ′) + ϵ(y ′′ − y ′)
(y ′′ − y ′)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

If x ′ = x ′′ then x ′ = x = x ′′ and y ′ ≤ y ≤ y ′′

This means that q ∈ e and ϕ preserves incidence:

(x + ϵy , y) ∈ [(x + ϵy ′, y ′) (x + ϵy ′′, y ′′)]

Otherwise y is to be tested against

y∗ = y ′ +
(x + ϵy)− (x ′ + ϵy ′)

(x ′′ + ϵy ′′)− (x ′ + ϵy ′)
(y ′′ − y ′)

= y ′ +
(x − x ′) + ϵ(y − y ′)

(x ′′ − x ′) + ϵ(y ′′ − y ′)
(y ′′ − y ′)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

If x ′ = x ′′ then x ′ = x = x ′′ and y ′ ≤ y ≤ y ′′

This means that q ∈ e and ϕ preserves incidence:

(x + ϵy , y) ∈ [(x + ϵy ′, y ′) (x + ϵy ′′, y ′′)]

Otherwise y is to be tested against

y∗ = y ′ +
(x + ϵy)− (x ′ + ϵy ′)

(x ′′ + ϵy ′′)− (x ′ + ϵy ′)
(y ′′ − y ′)

= y ′ +
(x − x ′) + ϵ(y − y ′)

(x ′′ − x ′) + ϵ(y ′′ − y ′)
(y ′′ − y ′)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

By making ϵ smaller and smaller,
y∗ gets as close as we like to

y ′ +
x − x ′

x ′′ − x ′ (y
′′ − y ′)

i.e. the corresponding expression for the original items

C. Mirolo Trapezoidal Maps

Degeneracies
References

Above/on/below edge

By making ϵ smaller and smaller,
y∗ gets as close as we like to

y ′ +
x − x ′

x ′′ − x ′ (y
′′ − y ′)

i.e. the corresponding expression for the original items

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

Moreover, incidences are invariant
by linear transformation

. . . and we know if points are the same
or if a point lies on some edge

To sum up: we can compute everything
without carrying out any transformation

But of course we build a trapezoidal map for the
transformed edges! (e.g. “very thin” trapezoids)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

Moreover, incidences are invariant
by linear transformation

. . . and we know if points are the same
or if a point lies on some edge

To sum up: we can compute everything
without carrying out any transformation

But of course we build a trapezoidal map for the
transformed edges! (e.g. “very thin” trapezoids)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

Moreover, incidences are invariant
by linear transformation

. . . and we know if points are the same
or if a point lies on some edge

To sum up: we can compute everything
without carrying out any transformation

But of course we build a trapezoidal map for the
transformed edges! (e.g. “very thin” trapezoids)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

Moreover, incidences are invariant
by linear transformation

. . . and we know if points are the same
or if a point lies on some edge

To sum up: we can compute everything
without carrying out any transformation

But of course we build a trapezoidal map for the
transformed edges! (e.g. “very thin” trapezoids)

C. Mirolo Trapezoidal Maps

Degeneracies
References

Original vs. transformed items

Moreover, incidences are invariant
by linear transformation

. . . and we know if points are the same
or if a point lies on some edge

To sum up: we can compute everything
without carrying out any transformation

But of course we build a trapezoidal map for the
transformed edges! (e.g. “very thin” trapezoids)

C. Mirolo Trapezoidal Maps

Degeneracies
References

What about query points?

Since we don’t actually compute anything related to ϵ. . .

We can think of a sufficiently small ϵ
to accommodate for every query point q

C. Mirolo Trapezoidal Maps

Degeneracies
References

What about query points?

Since we don’t actually compute anything related to ϵ. . .

We can think of a sufficiently small ϵ
to accommodate for every query point q

C. Mirolo Trapezoidal Maps

Degeneracies
References

Outline

4 Degeneracies

5 References

C. Mirolo Trapezoidal Maps

Degeneracies
References

References

K. Mulmuley (1990)
A fast planar partition algorithm – I
Journal of Symbolic Computation, 10(3)

R. Seidel (1991)
A Simple and Fast Incremental Randomized Algorithm
for Computing Trapezoidal Decompositions
and for Triangulating Polygons
Computational Geometry: Theory & Applications, 1(1)

C. Mirolo Trapezoidal Maps

	Trapezoidal map
	map layout
	trapezoids
	map structure

	Incremental construction
	search structure
	incremental algorithm

	Computation costs
	point location
	storage
	preprocessing

	Appendix
	Degeneracies
	References

