

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Point Location in Trapezoidal Maps

Claudio Mirolo

Dip. di Scienze Matematiche, Informatiche e Fisiche Università di Udine, via delle Scienze 206 – Udine

claudio.mirolo@uniud.it

Computational Geometry

users.dimi.uniud.it/~claudio.mirolo

Outline

- Trapezoidal map
 - map layout
 - trapezoids
 - map structure
- Incremental construction
 - search structure
 - incremental algorithm
- 3 Computation costs
 - point location
 - storage
 - preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Planar *point location* problem

• For a planar subdivison *S* with *n* edges

• Given a query point q

- Report the face *f* (edge *e*, vertex *v*) of *S* such that *q* ∈ *f* (*q* ∈ *e*, *q* = *v*)
- Efficiently! (Preprocessing)

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

- For a planar subdivsion *S* with *n* edges
- Given a query point q
- Report the face *f* (edge *e*, vertex *v*) of *S* such that *q* ∈ *f* (*q* ∈ *e*, *q* = *v*)
- Efficiently! (Preprocessing)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- For a planar subdivison *S* with *n* edges
- Given a query point q
- Report the face f (edge e, vertex v) of S such that q ∈ f (q ∈ e, q = v)
- Efficiently! (Preprocessing)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- For a planar subdivison *S* with *n* edges
- Given a query point q
- Report the face f (edge e, vertex v) of S such that q ∈ f (q ∈ e, q = v)
- Efficiently! (Preprocessing)

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

- For a planar subdivison *S* with *n* edges
- Given a query point q
- Report the face *f* (edge *e*, vertex *v*) of *S* such that *q* ∈ *f* (*q* ∈ *e*, *q* = *v*)
- Efficiently! (Preprocessing)

map layout trapezoids map structure

Outline

- Trapezoidal map
 - map layout
 - trapezoids
 - map structure
- Incremental construction
 - search structure
 - incremental algorithm
- 3 Computation costs
 - opint location
 - storage
 - preprocessing

map layout trapezoids map structure

Naïve trapezoidal map of a planar subdivision

map layout trapezoids map structure

Naïve trapezoidal map of a planar subdivision

C. Mirolo

map layout trapezoids map structure

Naïve trapezoidal map of a planar subdivision: slab

C. Mirolo

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Bounding box (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
- Vertical *slabs* are sorted left to right (array, BST ...)
- *Trapezoids* within a slab are sorted bottom to top (arrays, BSTs ...)

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Bounding box (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
- Vertical *slabs* are sorted left to right (array, BST ...)
- *Trapezoids* within a slab are sorted bottom to top (arrays, BSTs ...)

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Bounding box (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
- Vertical *slabs* are sorted left to right (array, BST ...)
- *Trapezoids* within a slab are sorted bottom to top (arrays, BSTs ...)

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Bounding box (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
- Vertical *slabs* are sorted left to right (array, BST ...)
- *Trapezoids* within a slab are sorted bottom to top (arrays, BSTs ...)

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Bounding box (just for the sake of simplicity)
- Vertical lines are drawn through all vertices
- Vertical *slabs* are sorted left to right (array, BST ...)
- Trapezoids within a slab are sorted bottom to top (arrays, BSTs ...)

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Point location

• Binary search for the *slab* containing the query point q

 Binary search within the slab for the *trapezoid* containing the query point q

- No more than 2n + 1 slabs and n + 1 trapezoids within a slab
- Point location cost: $O(\log n)$ per query

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Binary search for the *slab* containing the query point q
- Binary search within the slab for the *trapezoid* containing the query point q
- No more than 2n + 1 slabs and n + 1 trapezoids within a slab
- Point location cost: O(log n) per query

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Binary search for the *slab* containing the query point q
- Binary search within the slab for the *trapezoid* containing the query point q
- No more than 2n + 1 slabs and n + 1 trapezoids within a slab
- Point location cost: $O(\log n)$ per query

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Binary search for the *slab* containing the query point *q*
- Binary search within the slab for the *trapezoid* containing the query point q
- No more than 2n + 1 slabs and n + 1 trapezoids within a slab
- Point location cost: $O(\log n)$ per query

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Binary search for the *slab* containing the query point *q*
- Binary search within the slab for the *trapezoid* containing the query point q
- No more than 2n + 1 slabs and n + 1 trapezoids within a slab
- Point location cost: $O(\log n)$ per query (good! but...)

map layout trapezoids map structure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Heavy data structure

Easy to figure out worst-case arrangements requiring $O(n^2)$ raw storage

map layout trapezoids map structure

Heavy data structure

Easy to figure out worst-case arrangements requiring $O(n^2)$ raw storage

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Provisional general position assumption: no two vertices of S with the same x
- Upward and downward *vertical extensions* from each vertex of *S*
- The extensions stop when they meet an edge of *S* or a wall of the bounding box *B*
- *Trapezoidal map* of *S* = subdivision induced by *S*, *B* + *upper* and *lower* vertical extensions

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Provisional general position assumption: no two vertices of S with the same x
- Upward and downward *vertical extensions* from each vertex of *S*
- The extensions stop when they meet an edge of *S* or a wall of the bounding box *B*
- *Trapezoidal map* of *S* = subdivision induced by *S*, *B* + *upper* and *lower* vertical extensions

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Provisional general position assumption: no two vertices of S with the same x
- Upward and downward *vertical extensions* from each vertex of *S*
- The extensions stop when they meet an edge of *S* or a wall of the bounding box *B*
- *Trapezoidal map* of *S* = subdivision induced by *S*, *B* + *upper* and *lower* vertical extensions

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Provisional general position assumption: no two vertices of S with the same x
- Upward and downward *vertical extensions* from each vertex of *S*
- The extensions stop when they meet an edge of *S* or a wall of the bounding box *B*
- *Trapezoidal map* of *S* = subdivision induced by *S*, *B* + *upper* and *lower* vertical extensions

Trapezoidal map

Incremental construction

Computation costs

map layout trapezoids map structur

Trapezoidal map of a planar subdivision

C. Mirolo Trapezoidal Maps

Trapezoidal map

ncremental construction

Computation costs

map layout trapezoids map structur

Trapezoidal map of a planar subdivision

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices
- What results is still a planar subdivision: O(n) faces

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices
- What results is still a planar subdivision: O(n) faces

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices
- What results is still a planar subdivision: O(n) faces

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges and $\Theta(n)$ original vertices
- Two new vertices added for each original vertex
- Overall $\Theta(n)$ edges and vertices
- What results is still a planar subdivision: O(n) faces

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)
- Possibly one degenerate vertical wall \rightarrow point
- Possibly bounding box's wall(s) instead of original segment(s) or vertical extension(s)
- Trapezoids and triangles (= degenerate trapezoids)

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)
- \bullet Possibly one degenerate vertical wall $\,\rightarrow\,$ point
- Possibly bounding box's wall(s) instead of original segment(s) or vertical extension(s)
- Trapezoids and triangles (= degenerate trapezoids)

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)
- Possibly one degenerate vertical wall \rightarrow point
- Possibly bounding box's wall(s) instead of original segment(s) or vertical extension(s)
- Trapezoids and triangles (= degenerate trapezoids)
map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Type of regions

- Regions between two original segments (above/below) and two vertical extensions (left/right)
- Possibly one degenerate vertical wall \rightarrow point
- Possibly bounding box's wall(s) instead of original segment(s) or vertical extension(s)
- Trapezoids and triangles (= degenerate trapezoids)

map layout trapezoids map structure

Items defining a trapezoid

Trapezoid τ :

- Top edge: t_{τ}
- Bottom edge: b_{τ}
- Left vertex: I_{τ}
- Right vertex: r_{τ}

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• (possibly horizontal walls / vertices of the bounding box)

map layout trapezoids map structure

t_T

b,

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Items defining a trapezoid

Trapezoid τ :

- Top edge: t_{τ}
- Bottom edge: b_{τ}
- Left vertex: I_{τ}
- Right vertex: r_{τ}
- (possibly horizontal walls / vertices of the bounding box)

 I_{τ}

map layout trapezoids map structure

t_T

b,

・ロト (周) (E) (E) (E) (E)

Items defining a trapezoid

Trapezoid au :

- Top edge: t_{τ}
- Bottom edge: b_τ
- Left vertex: I_{τ}
- Right vertex: r_{τ}

• (possibly horizontal walls / vertices of the bounding box)

 I_{τ}

map layout trapezoids map structure

Items defining a trapezoid

Trapezoid au :

- Top edge: t_{τ}
- Bottom edge: b_τ
- Left vertex: I_{τ}
- Right vertex: r_{τ}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

• (possibly horizontal walls / vertices of the bounding box)

computation costs

map layout trapezoids map structur

Classification based on left boundary

whole vertical extension of original endpoint I_{τ}

lower vertical extension of original endpoint I_{τ}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

cremental construction Computation costs map layout trapezoids map structur

Classification based on left boundary

whole vertical extension of original endpoint I_{τ}

lower vertical extension of original endpoint I_{τ}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

cremental construction Computation costs map layout trapezoids map structur

Classification based on left boundary

whole vertical extension of original endpoint I_{τ}

lower vertical extension of original endpoint I_{τ}

・ロト (周) (E) (E) (E) (E)

cremental construction Computation costs map layout trapezoids

Classification based on left boundary

upper vertical extension of original endpoint I_{τ}

meeting point l_{τ} of two original segments degenerate case of \leftarrow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ncremental construction Computation costs map layout trapezoids

Classification based on left boundary

upper vertical extension of original endpoint I_{τ}

meeting point l_{τ} of two original segments degenerate case of \leftarrow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ncremental construction Computation costs map layout trapezoids

Classification based on left boundary

upper vertical extension of original endpoint I_{τ}

meeting point I_{τ} of two original segments

・ロト (周) (E) (E) (E) (E)

emental construction Computation costs map layout trapezoids

Classification based on left boundary

upper vertical extension of original endpoint I_{τ}

meeting point I_{τ} of two original segments degenerate case of \leftarrow

・ロト (周) (E) (E) (E) (E)

map layout trapezoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classification based on left boundary

left wall of the bounding box only one such trapezoid

map layout trapezoids map structu

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classification based on left boundary

left wall of the bounding box

only one such trapezoid

map layout trapezoids map structu

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classification based on left boundary

left wall of the bounding box only one such trapezoid

map layout trapezoids map structure

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

- *n* original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- + 4 corners of the bounding box
- $\rightarrow \leq 6n + 4$ vertices in total

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- + 4 corners of the bounding box
- $\rightarrow \leq 6n + 4$ vertices in total

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- + 4 corners of the bounding box
- $\rightarrow \leq 6n+4$ vertices in total

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- + 4 corners of the bounding box
- $\rightarrow \leq 6n + 4$ vertices in total

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges...
- $\rightarrow \leq 2n$ original endpoints
- $\rightarrow \leq 2 \times 2n$ additional vertices
- + 4 corners of the bounding box
- $\rightarrow \leq 6n+4$ vertices in total

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Refined subdivision: Finer analysis

• *n* original edges...

- each original left endpoint is I_{τ} for at most two trapezoids
- each original right endpoint is I_{τ} for at most one trapezoid
- *l*_τ is the bottom-left corner of the bounding box for exactly one trapezoid
- I_{τ} is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n+1$ trapezoids in total

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges...
- each original left endpoint is I_{τ} for at most two trapezoids
- each original right endpoint is I_{τ} for at most one trapezoid
- *l*_τ is the bottom-left corner of the bounding box for exactly one trapezoid
- I_{τ} is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n+1$ trapezoids in total

map layout trapezoids map structure

・ロト (周) (E) (E) (E) (E)

- *n* original edges...
- each original left endpoint is l_{τ} for at most two trapezoids
- each original right endpoint is I_{τ} for at most one trapezoid
- *l_τ* is the bottom-left corner of the bounding box for exactly one trapezoid
- I_{τ} is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n+1$ trapezoids in total

map layout trapezoids map structure

・ロト (周) (E) (E) (E) (E)

- *n* original edges...
- each original left endpoint is I_{τ} for at most two trapezoids
- each original right endpoint is I_{τ} for at most one trapezoid
- *l*_τ is the bottom-left corner of the bounding box for exactly one trapezoid
- I_{τ} is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n+1$ trapezoids in total

map layout trapezoids map structure

・ロト (周) (E) (E) (E) (E)

- *n* original edges...
- each original left endpoint is I_{τ} for at most two trapezoids
- each original right endpoint is I_{τ} for at most one trapezoid
- *l*_τ is the bottom-left corner of the bounding box for exactly one trapezoid
- I_{τ} is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n+1$ trapezoids in total

map layout trapezoids map structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- *n* original edges...
- each original left endpoint is I_{τ} for at most two trapezoids
- each original right endpoint is I_{τ} for at most one trapezoid
- *l*_τ is the bottom-left corner of the bounding box for exactly one trapezoid
- I_{τ} is an original endpoint for all the other trapezoids
- $\rightarrow \leq 3n+1$ trapezoids in total

map layout trapezoids map structure

・ロト (周) (E) (E) (E) (E)

Refined subdivision: Adjacencies

• τ , τ' adjacent if they share a vertical extension

- ullet ightarrow same face of the original subdivision
- At most four adjacencies (general position assumption):
- au' lower-left neighbor of au : $b_{ au'} = b_{ au}$, $r_{ au'} = l_{ au}$
- au' upper-left neighbor of au : $t_{ au'} = t_{ au}$, $r_{ au'} = l_{ au}$
- and so on...
- This suggests to represent the map by a more specialized data structure than a DCEL

map layout trapezoids map structure

・ロト (周) (E) (E) (E) (E)

- τ , τ' adjacent if they share a vertical extension
- $\bullet \quad \rightarrow \quad \text{same face of the original subdivision}$
- At most four adjacencies (general position assumption):
- au' lower-left neighbor of au : $b_{ au'} = b_{ au}$, $r_{ au'} = l_{ au}$
- au' upper-left neighbor of au : $t_{ au'} = t_{ au}$, $r_{ au'} = l_{ au}$
- and so on...
- This suggests to represent the map by a more specialized data structure than a DCEL

map layout trapezoids map structure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- τ , τ' adjacent if they share a vertical extension
- ullet \to same face of the original subdivision
- At most four adjacencies (general position assumption):
- τ' lower-• τ' upper-• and so or • This sugg by a more b_{τ}

map layout trapezoids map structure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- τ , τ' adjacent if they share a vertical extension
- ullet \to same face of the original subdivision
- At most four adjacencies (general position assumption):

map layout trapezoids map structure

31= 990

- τ , τ' adjacent if they share a vertical extension
- $\bullet \quad \rightarrow \quad \text{same face of the original subdivision}$
- At most four adjacencies (general position assumption):

map layout trapezoids map structure

・ロト (周) (E) (E) (E) (E)

Refined subdivision: Adjacencies

- τ , τ' adjacent if they share a vertical extension
- $\bullet \quad \rightarrow \quad \text{same face of the original subdivision}$
- At most four adjacencies (general position assumption):
- au' lower-left neighbor of au : $b_{ au'} = b_{ au}$, $r_{ au'} = l_{ au}$
- au' upper-left neighbor of au: $t_{ au'} = t_{ au}$, $r_{ au'} = l_{ au}$

• and so on...

 This suggests to represent the map by a more specialized data structure than a DCEL

map layout trapezoids map structure

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- τ , τ' adjacent if they share a vertical extension
- ullet \to same face of the original subdivision
- At most four adjacencies (general position assumption):
- au' lower-left neighbor of au : $b_{ au'} = b_{ au}$, $r_{ au'} = l_{ au}$
- au' upper-left neighbor of au : $t_{ au'} = t_{ au}$, $r_{ au'} = l_{ au}$
- and so on...
- This suggests to represent the map by a more specialized data structure than a DCEL

map layout trapezoids map structure

・ロト (周) (E) (E) (E) (E)

- τ , τ' adjacent if they share a vertical extension
- ullet \to same face of the original subdivision
- At most four adjacencies (general position assumption):
- au' lower-left neighbor of au : $b_{ au'} = b_{ au}$, $r_{ au'} = l_{ au}$
- au' upper-left neighbor of au : $t_{ au'} = t_{ au}$, $r_{ au'} = l_{ au}$
- and so on...
- This suggests to represent the map by a more specialized data structure than a DCEL

search structure incremental algorithm

Outline

- Trapezoidal map
 - map layout
 - trapezoids
 - map structure
- Incremental construction
 - search structure
 - incremental algorithm
- 3 Computation costs
 - opint location
 - storage
 - preprocessing

earch structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Plane sweep to build the map?

• Events: O(n) vertices of the original subdivision S

- Sweep line: b_{τ}/t_{τ} of trapezoids being constructed
- Adjacency information: computed in O(1) per trapezoid
- Efficient algorithm: $O(n \log n)$
- But what about *point location* costs?
search structure ncremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Events: O(n) vertices of the original subdivision S
- Sweep line: b_{τ}/t_{τ} of trapezoids being constructed
- Adjacency information: computed in O(1) per trapezoid
- Efficient algorithm: $O(n \log n)$
- But what about *point location* costs?

search structure ncremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Events: O(n) vertices of the original subdivision S
- Sweep line: b_{τ}/t_{τ} of trapezoids being constructed
- Adjacency information: computed in O(1) per trapezoid
- Efficient algorithm: $O(n \log n)$
- But what about *point location* costs?

search structure ncremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Events: O(n) vertices of the original subdivision S
- Sweep line: b_{τ}/t_{τ} of trapezoids being constructed
- Adjacency information: computed in O(1) per trapezoid
- Efficient algorithm: $O(n \log n)$
- But what about *point location* costs?

search structure ncremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Events: O(n) vertices of the original subdivision S
- Sweep line: b_{τ}/t_{τ} of trapezoids being constructed
- Adjacency information: computed in O(1) per trapezoid
- Efficient algorithm: $O(n \log n)$
- But what about *point location* costs?

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Point-location structure

• Directed Acyclic Graph (DAG)

- Just one root
- One leaf for each trapezoid of the map
- Non-leaf nodes have out-degree 2 (two "children")
- Two types of non-leaf nodes: x-nodes and y-nodes

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Directed Acyclic Graph (DAG)
- Just one root
- One leaf for each trapezoid of the map
- Non-leaf nodes have out-degree 2 (two "children")
- Two types of non-leaf nodes: x-nodes and y-nodes

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Directed Acyclic Graph (DAG)
- Just one root
- One leaf for each trapezoid of the map
- Non-leaf nodes have out-degree 2 (two "children")
- Two types of non-leaf nodes: x-nodes and y-nodes

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Directed Acyclic Graph (DAG)
- Just one root
- One leaf for each trapezoid of the map
- Non-leaf nodes have out-degree 2 (two "children")
- Two types of non-leaf nodes: x-nodes and y-nodes

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Directed Acyclic Graph (DAG)
- Just one root
- One leaf for each trapezoid of the map
- Non-leaf nodes have out-degree 2 (two "children")
- Two types of non-leaf nodes: x-nodes and y-nodes

search structure incremental algorithm

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

DAG's nodes

• *x*-Node ν is connected with vertex $v_{\nu} \in S$

- *y*-Node ν is connected with edge $e_{\nu} \in S$
- Leaf node ν represents trapezoid τ_{ν} of the map, i.e. a final destination of the search

search structure incremental algorithm

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

DAG's nodes

- *x*-Node ν is connected with vertex $v_{\nu} \in S$
- y-Node ν is connected with edge $e_{\nu} \in S$
- Leaf node ν represents trapezoid τ_{ν} of the map, i.e. a final destination of the search

search structure incremental algorithm

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

DAG's nodes

- *x*-Node ν is connected with vertex $v_{\nu} \in S$
- y-Node ν is connected with edge $e_{\nu} \in S$
- Leaf node ν represents trapezoid τ_{ν} of the map, i.e. a final destination of the search

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Point-location logic

Query point: q

- Starting from the *root*...
- At x-node ν test if q is to the left/right of v_ν and move to ν's corresponding child
- At *y*-node ν test if *q* is below/above *e*_ν and move to ν's corresponding child
- At leaf node ν we know that q lies in τ_{ν} (for the sake of simplicity assume that q lies strictly inside a trapezium)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Query point: q
- Starting from the root...
- At x-node ν test if q is to the left/right of v_ν and move to ν's corresponding child
- At *y*-node ν test if *q* is below/above *e*_ν and move to ν's corresponding child
- At leaf node ν we know that q lies in τ_ν
 (for the sake of simplicity assume that q lies strictly inside a trapezium)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Query point: q
- Starting from the root...
- At x-node ν test if q is to the left/right of v_ν and move to ν's corresponding child
- At *y*-node ν test if *q* is below/above *e*_ν and move to ν's corresponding child
- At leaf node ν we know that q lies in τ_{ν} (for the sake of simplicity assume that q lies strictly inside a trapezium)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Query point: q
- Starting from the root...
- At x-node ν test if q is to the left/right of v_ν and move to ν's corresponding child
- At *y*-node ν test if *q* is below/above *e*_ν and move to ν's corresponding child
- At leaf node ν we know that q lies in τ_{ν} (for the sake of simplicity assume that q lies strictly inside a trapezium)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Query point: q
- Starting from the root...
- At x-node ν test if q is to the left/right of v_ν and move to ν's corresponding child
- At *y*-node ν test if *q* is below/above *e*_ν and move to ν's corresponding child
- At leaf node ν we know that q lies in τ_ν
 (for the sake of simplicity assume that q lies strictly inside a trapezium)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Query point: q
- Starting from the root...
- At x-node ν test if q is to the left/right of v_ν and move to ν's corresponding child
- At *y*-node ν test if *q* is below/above *e*_ν and move to ν's corresponding child
- At leaf node ν we know that q lies in τ_{ν} (for the sake of simplicity assume that q lies strictly inside a trapezium)

Trapezoidal map Incremental construction

search structure incremental algorithm

Trapezoidal map and related DAG

search structure incremental algorithm

Search through the DAG

search structure incremental algorithm

Search through the DAG

search structure incremental algorithm

Search through the DAG

search structure incremental algorithm

Search through the DAG

search structure incremental algorithm

Search through the DAG

search structure incremental algorithm

Search through the DAG

search structure incremental algorithm

◆◎ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ● ● ● ● ● ●

Randomized incremental algorithm

• Edges are added one at a time

- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The "efficiency" of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance

search structure incremental algorithm

◆◎ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ● ● ● ● ● ● ●

Randomized incremental algorithm

- Edges are added one at a time
- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The "efficiency" of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance

search structure incremental algorithm

▲冊▶ ▲目▶ ▲目▶ 目目 ののの

Randomized incremental algorithm

- Edges are added one at a time
- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The "efficiency" of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance

search structure incremental algorithm

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Randomized incremental algorithm

- Edges are added one at a time
- The map and the DAG are incrementally updated to represent the trapezoidal map of the added edges
- The "efficiency" of the search structure (DAG) depends on the order in which edges are added
- Randomization ensures good expected performance

search structure incremental algorithm

・ロト (周) (E) (E) (E) (E)

Algorithm steps

• Initially the map contains only the *bounding box*

• \rightarrow one-node DAG

- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $au_1, au_2, \dots au_k$ in *conflict* with *e*
 - replace them with the new trapezoids determined by e
 - remove the DAG's leaves linked to $\tau_1, \tau_2, \ldots \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids

search structure incremental algorithm

・ロト (周) (E) (E) (E) (E)

Algorithm steps

- Initially the map contains only the bounding box
- \rightarrow one-node DAG

• For each edge $e \in S$ in randomized order...

- remove the trapezoids ${ au}_1,\ { au}_2,\ldots\,{ au}_k$ in *conflict* with *e*
- replace them with the new trapezoids determined by e
- remove the DAG's leaves linked to $\tau_1, \tau_2, \ldots \tau_k$
- replace these leaves with x-/y-nodes as appropriate
- create and link leaves for the new trapezoids

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Initially the map contains only the *bounding box*
- \rightarrow one-node DAG
- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \dots \tau_k$ in *conflict* with *e*
 - replace them with the new trapezoids determined by e
 - remove the DAG's leaves linked to $\tau_1, \tau_2, \dots \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Initially the map contains only the *bounding box*
- \rightarrow one-node DAG
- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \dots, \tau_k$ in *conflict* with *e*
 - replace them with the new trapezoids determined by e
 - remove the DAG's leaves linked to $\tau_1, \tau_2, \dots \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Initially the map contains only the *bounding box*
- \rightarrow one-node DAG
- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \dots, \tau_k$ in *conflict* with *e*
 - replace them with the new trapezoids determined by e
 - remove the DAG's leaves linked to $\tau_1, \tau_2, \dots \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Initially the map contains only the *bounding box*
- \rightarrow one-node DAG
- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \dots, \tau_k$ in *conflict* with *e*
 - replace them with the new trapezoids determined by e
 - remove the DAG's leaves linked to $\tau_1, \tau_2, \dots \tau_k$
 - replace these leaves with *x*-/*y*-nodes as appropriate
 - create and link leaves for the new trapezoids

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Initially the map contains only the *bounding box*
- \rightarrow one-node DAG
- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \dots \tau_k$ in *conflict* with *e*
 - replace them with the new trapezoids determined by e
 - remove the DAG's leaves linked to $\tau_1, \tau_2, \dots \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids
search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Algorithm steps

- Initially the map contains only the *bounding box*
- \rightarrow one-node DAG
- For each edge $e \in S$ in randomized order...
 - remove the trapezoids $\tau_1, \tau_2, \dots, \tau_k$ in *conflict* with *e*
 - replace them with the new trapezoids determined by e
 - remove the DAG's leaves linked to $\tau_1, \tau_2, \dots, \tau_k$
 - replace these leaves with x-/y-nodes as appropriate
 - create and link leaves for the new trapezoids

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Finding trapezoids in conflict with a new edge

• Point location of *e*'s left endpoint (current DAG)

- \rightarrow leftmost trapezoid au_1 in conflict with e
- Follow right-neighbor links from *τ*₁ to the trapezoid *τ_k* which contains *e*'s right endpoint (edges do not cross)
- The correct neighbor *τ_{i+1}* of *τ_i* is identified by testing where *r_{τi}* lies relative to *e*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Finding trapezoids in conflict with a new edge

- Point location of *e*'s left endpoint (current DAG)
- \rightarrow leftmost trapezoid au_1 in conflict with e
- Follow right-neighbor links from *τ*₁ to the trapezoid *τ_k* which contains *e*'s right endpoint (edges do not cross)
- The correct neighbor *τ_{i+1}* of *τ_i* is identified by testing where *r_{τi}* lies relative to *e*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Finding trapezoids in conflict with a new edge

- Point location of *e*'s left endpoint (current DAG)
- \rightarrow leftmost trapezoid τ_1 in conflict with e
- Follow right-neighbor links from *τ*₁ to the trapezoid *τ_k* which contains *e*'s right endpoint (edges do not cross)
- The correct neighbor τ_{i+1} of τ_i is identified by testing where r_{τi} lies relative to e

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Finding trapezoids in conflict with a new edge

- Point location of *e*'s left endpoint (current DAG)
- \rightarrow leftmost trapezoid τ_1 in conflict with *e*
- Follow right-neighbor links from *τ*₁ to the trapezoid *τ_k* which contains *e*'s right endpoint (edges do not cross)
- The correct neighbor τ_{i+1} of τ_i is identified by testing where r_{τi} lies relative to e

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)
- $\tau_2, \tau_3, \ldots, \tau_{k-1}$ are split
- Whenever possible, the resulting trapezoids bounded by *e* are merged
- All operations can be done in O(k) (in constant time for each involved trapezoid)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)
- $\tau_2, \tau_3, \dots \tau_{k-1}$ are split
- Whenever possible, the resulting trapezoids bounded by *e* are merged
- All operations can be done in O(k) (in constant time for each involved trapezoid)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)
- $\tau_2, \tau_3, \dots \tau_{k-1}$ are split
- Whenever possible, the resulting trapezoids bounded by *e* are merged
- All operations can be done in O(k) (in constant time for each involved trapezoid)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- τ_1 and τ_k are partitioned in three parts (four if $\tau_1 = \tau_k$)
- $\tau_2, \tau_3, \ldots \tau_{k-1}$ are split
- Whenever possible, the resulting trapezoids bounded by *e* are merged
- All operations can be done in O(k) (in constant time for each involved trapezoid)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Cross links between leaf nodes and trapezoids
- At most three new *x*-/*y*-nodes for each removed trapezoid
- Several nodes are linked to a new "merged" trapezoid
- All arrangements can be done in O(k)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Cross links between leaf nodes and trapezoids
- At most three new x-/y-nodes for each removed trapezoid
- Several nodes are linked to a new "merged" trapezoid
- All arrangements can be done in O(k)

search structure incremental algorithm

・ロト (周) (E) (E) (E) (E)

- Cross links between leaf nodes and trapezoids
- At most three new *x*-/*y*-nodes for each removed trapezoid
- Several nodes are linked to a new "merged" trapezoid
- All arrangements can be done in O(k)

search structure incremental algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Cross links between leaf nodes and trapezoids
- At most three new *x*-/*y*-nodes for each removed trapezoid
- Several nodes are linked to a new "merged" trapezoid
- All arrangements can be done in O(k)

search structure incremental algorithm

In summary: Locate leftmost endpoint of new edge...

search structure incremental algorithm

In summary: ... by stepping down the DAG

search structure incremental algorithm

In summary: ... by stepping down the DAG

search structure incremental algorithm

In summary: ... by stepping down the DAG

search structure incremental algorithm

In summary: ... by stepping down the DAG

search structure incremental algorithm

In summary: Start from leftmost trapezoid in conflict

search structure incremental algorithm

In summary: Update trapezoid...

Trapezoidal map Incremental construction

search structure incremental algorithm

In summary: ... and walk along edge

Trapezoidal map Incremental construction

search structure incremental algorithm

In summary: Split & merge new trapezoids...

search structure incremental algorithm

In summary: ... up to the rightmost endpoint

search structure incremental algorithm

In summary: At the end Map and DAG are updated

point location storage preprocessing

Outline

- Trapezoidal map
 - map layout
 - trapezoids
 - map structure
- 2 Incremental construction
 - search structure
 - incremental algorithm
- 3 Computation costs
 - point location
 - storage
 - preprocessing

point location storage preprocessing

・ロト (周) (E) (E) (E) (E)

Point location costs

- For given planar subdivision S and query point q
- Follow q's point location path π through the DAG
- Reflecting its construction steps:

 $S_0 = B, S_1, S_2, \ldots S_n = S$

point location storage preprocessing

・ロト (周) (E) (E) (E) (E)

Point location costs

- For given planar subdivision *S* and query point *q*
- Follow q's point location path π through the DAG
- Reflecting its construction steps:

$S_0 = B$, S_1 , S_2 , \ldots $S_n = S$

point location storage preprocessing

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Point location costs

- For given planar subdivision *S* and query point *q*
- Follow q's point location path π through the DAG
- Reflecting its construction steps:

 $S_0 = B, S_1, S_2, \ldots S_n = S$

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Point location costs

- For given planar subdivision *S* and query point *q*
- Follow q's point location path π through the DAG
- Reflecting its construction steps:

$$S_0 = B, S_1, S_2, \ldots S_n = S$$

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Point location costs

- For given planar subdivision S and query point q
- Follow q's point location path π through the DAG
- Reflecting its construction steps:

$$S_0 = B, S_1, S_2, \ldots S_n = S$$

point location storage preprocessing

Point location costs: Path π to τ_i

point location storage preprocessing

Point location costs: Path π to τ_{i-1}

point location storage preprocessing

Point location costs: Trapezoid τ_i is created at step *i*

point location storage preprocessing

Point location costs: Trapezoid τ_i is created at step *i*

point location storage preprocessing

Point location costs: Step *i* contributes N_i nodes on π

point location storage preprocessing

... But may not contribute nodes on a different path

point location storage preprocessing

....But may not contribute nodes on a different path

point location storage preprocessing

... But may not contribute nodes on a different path

point location storage preprocessing

Point location costs

Expected path length:

$$E[\sum_{i=1}^{n} N_i] = \sum_{i=1}^{n} E[N_i]$$

• Of course
$$N_i \leq 3$$

• For P_i = probability that nodes are added on π at step *i*:

 $E[N_i] \leq 3P_i$

point location storage preprocessing

Point location costs

Expected path length:

$$E[\sum_{i=1}^{n} N_i] = \sum_{i=1}^{n} E[N_i]$$

• Of course $N_i \leq 3$

• For P_i = probability that nodes are added on π at step *i*:

 $E[N_i] \leq 3P_i$

point location storage preprocessing

Point location costs

Expected path length:

$$E\left[\sum_{i=1}^{n} N_{i}\right] = \sum_{i=1}^{n} E[N_{i}]$$

- Of course $N_i \leq 3$
- For P_i = probability that nodes are added on π at step *i*:

$$E[N_i] \leq 3P_i$$

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- At step *i*: $q \in \tau_i$ of S_i
- Step *i* contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$
- $\rightarrow \tau_i$ was created at step *i*
- $\rightarrow \tau_i$ is bounded by the edge e_i added at step i
- or meets one of its endpoints

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- At step *i*: $q \in \tau_i$ of S_i
- Step *i* contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$
- $\rightarrow \tau_i$ was created at step *i*
- $\rightarrow \tau_i$ is bounded by the edge e_i added at step i
- or meets one of its endpoints

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- At step *i*: $q \in \tau_i$ of S_i
- Step *i* contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$
- $\rightarrow \tau_i$ was created at step *i*
- $\rightarrow \tau_i$ is bounded by the edge e_i added at step *i*
- or meets one of its endpoints

point location storage preprocessing

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

- At step *i*: $q \in \tau_i$ of S_i
- Step *i* contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$
- $\rightarrow \tau_i$ was created at step *i*
- $\rightarrow \tau_i$ is bounded by the edge e_i added at step *i*
- or meets one of its endpoints

point location storage preprocessing

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

- At step *i*: $q \in \tau_i$ of S_i
- Step *i* contributes nodes to π precisely when $\tau_i \neq \tau_{i-1}$
- $\rightarrow \tau_i$ was created at step *i*
- $\rightarrow \tau_i$ is bounded by the edge e_i added at step *i*
- or meets one of its endpoints

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Backward analysis

• Let us choose a particular set of *i* edges

- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i ?
- $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or I_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
- Each of the above cases arises with probability 1/i (some technicalities should possibly be considered here, i.e. r₁ disappears if e₁ is the only edge incident at l_n/r_n)

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Let us choose a particular set of *i* edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i ?
- $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or I_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
- Each of the above cases arises with probability 1/i (some technicalities should possibly be considered here, i.e. r₁ disappears if e₁ is the only edge incident at l_n/r_n)

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Let us choose a particular set of *i* edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i ?
- $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or I_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
- Each of the above cases arises with probability 1/i (some technicalities should possibly be considered here, i.e. r₁ disappears if e₁ is the only edge incident at l_n/r_n)

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Let us choose a particular set of *i* edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i ?
- $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
- Each of the above cases arises with probability 1/i (some technicalities should possibly be considered here, i.e. r₁ disappears if e₁ is the only edge incident at l_n/r_n)

point location storage preprocessing

- Let us choose a particular set of *i* edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i ?
- $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
- Each of the above cases arises with probability 1/i (some technicalities should possibly be considered here, i.e. τ_i disappears if e_i is the only edge incident at I_{τi}/r_{τi})

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Let us choose a particular set of *i* edges
- Also the resulting subdivision S_i is then fixed
- Which probability that τ_i disappears by removing e_i ?
- $e_i = b_{\tau_i}$ or $e_i = t_{\tau_i}$ or l_{τ_i} endpoint of e_i or r_{τ_i} endpoint of e_i
- Each of the above cases arises with probability 1/i (some technicalities should possibly be considered here, i.e. τ_i disappears if e_i is the only edge incident at I_{τ_i}/r_{τ_i})

point location storage preprocessing

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Backward analysis

• To sum up:

$$E[N_i] \leq 3P_i \leq 3 imes rac{4}{i}$$

• This bound does not depend on some specific *S_i*, hence it holds for the *i*-th step unconditionally

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Backward analysis

• To sum up:

$$E[N_i] \leq 3P_i \leq 3 imes rac{4}{i}$$

• This bound does not depend on some specific *S_i*, hence it holds for the *i*-th step unconditionally

point location storage preprocessing

Backward analysis

To sum up:

$$E[N_i] \leq 3P_i \leq 3 imes rac{4}{i}$$

Thus:

$$E[\sum_{i=1}^{n} N_{i}] = \sum_{i=1}^{n} E[N_{i}] \leq 12 \sum_{i=1}^{n} \frac{1}{i}$$
$$= O(\log n)$$

point location storage preprocessing

Backward analysis

To sum up:

$$E[N_i] \leq 3P_i \leq 3 \times \frac{4}{i}$$

Thus:

$$E[\sum_{i=1}^{n} N_{i}] = \sum_{i=1}^{n} E[N_{i}] \leq 12 \sum_{i=1}^{n} \frac{1}{i}$$
$$= O(\log n)$$

point location storage preprocessing

Storage costs

- Size of trapezoidal map = O(n)
- \rightarrow Number of DAG's leaves = O(n)
- Then size of DAG

$$= O(n) + \sum_{i=1}^{n} |\{inner nodes created at step i\}|$$

point location storage preprocessing

Storage costs

- Size of trapezoidal map = O(n)
- \rightarrow Number of DAG's leaves = O(n)

• Then size of DAG

$$= O(n) + \sum_{i=1}^{n} |\{inner nodes created at step i\}|$$

point location storage preprocessing

Storage costs

- Size of trapezoidal map = O(n)
- \rightarrow Number of DAG's leaves = O(n)
- Then size of DAG

$$= O(n) + \sum_{i=1}^{n} |\{inner nodes created at step i\}|$$

point location storage preprocessing

Storage costs

- In the worst case
 - $|\{inner nodes created at step i\}| = O(i)$

And size of DAG

$$= O(n) + \sum_{i=1}^{n} O(i) = O(n^{2})$$

point location storage preprocessing

Storage costs

- In the worst case
 - $|\{inner nodes created at step i\}| = O(i)$

And size of DAG

$$= O(n) + \sum_{i=1}^{n} O(i) = O(n^{2})$$

point location storage preprocessing

Storage costs

$|\{inner nodes created at step i\}| < T_i$

• where T_i = number of trapezoids created at *i*-th step

point location storage preprocessing

Storage costs

$|\{inner nodes created at step i\}| < T_i$

• where T_i = number of trapezoids created at *i*-th step

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Backward analysis (again)

• Let us choose a particular set X_i of *i* edges

- Again, the resulting subdivision S_i is fixed
- $\tau \in S_i$ is created at step *i* if it is "constrained" by the last added edge *e* from X_i
- Each edge in S_i may play this role with probability 1/i

• Hence

$$E[T_i] = rac{1}{i} \sum_{e \in X_i} | \{ au \in S_i : e \text{ constrains } au \} |$$

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Backward analysis (again)

- Let us choose a particular set X_i of i edges
- Again, the resulting subdivision S_i is fixed
- *τ* ∈ *S_i* is created at step *i* if it is "constrained" by the last added edge *e* from *X_i*
- Each edge in S_i may play this role with probability 1/i

• Hence

$$E[T_i] = rac{1}{i} \sum_{e \in X_i} | \{ au \in S_i : e \text{ constrains } au \} |$$

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Backward analysis (again)

- Let us choose a particular set X_i of i edges
- Again, the resulting subdivision S_i is fixed
- *τ* ∈ *S_i* is created at step *i* if it is "constrained" by the last added edge *e* from *X_i*
- Each edge in S_i may play this role with probability 1/i

Hence

$$E[T_i] = rac{1}{i} \sum_{e \in X_i} | \{ au \in S_i : e \text{ constrains } au \} |$$

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Backward analysis (again)

- Let us choose a particular set X_i of i edges
- Again, the resulting subdivision S_i is fixed
- *τ* ∈ *S_i* is created at step *i* if it is "constrained" by the last added edge *e* from *X_i*
- Each edge in S_i may play this role with probability 1/i

Hence

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} | \{ \tau \in S_i : e \text{ constrains } \tau \} |$$

point location storage preprocessing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Backward analysis (again)

- Let us choose a particular set X_i of i edges
- Again, the resulting subdivision S_i is fixed
- *τ* ∈ *S_i* is created at step *i* if it is "constrained" by the last added edge *e* from *X_i*
- Each edge in S_i may play this role with probability 1/i
- Hence

$$E[T_i] = rac{1}{i} \sum_{m{e} \in X_i} |\{ au \in S_i : m{e} ext{ constrains } au \}|$$

point location storage preprocessing

Backward analysis (again)

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} | \{ \tau \in S_i : e \text{ constrains } \tau \} |$$
$$= \frac{1}{i} \sum_{e \in X_i} \sum_{\tau \in S_i} \delta_{\tau}^e = \frac{1}{i} \sum_{\tau \in S_i} \sum_{e \in X_i} \delta_{\tau}^e$$
$$= \frac{1}{i} \sum_{\tau \in S_i} | \{ e \in X_i : e \text{ constrains } \tau \} |$$

• where $\delta_{\tau}^{e} = 1$ if *e* constriains τ ; otherwise $\delta_{\tau}^{e} = 0$

point location storage preprocessing

Backward analysis (again)

$$E[T_i] = \frac{1}{i} \sum_{e \in X_i} | \{ \tau \in S_i : e \text{ constrains } \tau \} |$$
$$= \frac{1}{i} \sum_{e \in X_i} \sum_{\tau \in S_i} \delta_{\tau}^e = \frac{1}{i} \sum_{\tau \in S_i} \sum_{e \in X_i} \delta_{\tau}^e$$
$$= \frac{1}{i} \sum_{\tau \in S_i} | \{ e \in X_i : e \text{ constrains } \tau \} |$$

• where $\delta_{\tau}^{e} = 1$ if *e* constriains τ ; otherwise $\delta_{\tau}^{e} = 0$

point location storage preprocessing

Backward analysis (again)

We already know that

$$|\{e \in X_i : e \text{ constrsains } \tau\}| \leq 4$$

• Then, independent of the specific S_i:

$$egin{array}{rl} {\sf E}[T_i] &=& \displaystylerac{1}{i} \, \sum_{ au \in S_i} \, \mid \{ e \in X_i \, : \, e \ constrsains \, au \} \mid \ &\leq& \displaystylerac{4}{i} \, |S_i| \, = \, \displaystylerac{4}{i} \, {\it O}(\, i\,) \, = \, {\it O}(\, 1\,) \end{array}$$

point location storage preprocessing

Backward analysis (again)

We already know that

$$|\{e \in X_i : e \text{ constrsains } \tau\}| \leq 4$$

• Then, independent of the specific S_i:

$$\begin{split} \mathsf{E}[\mathsf{T}_i] \ &= \ \frac{1}{i} \ \sum_{\tau \in \mathcal{S}_i} \ | \ \{ e \in X_i \ : \ e \ \textit{constrains} \ \tau \} \ | \\ &\leq \ \frac{4}{i} \ |\mathcal{S}_i| \ &= \ \frac{4}{i} \ \mathcal{O}(\ i \) \ &= \ \mathcal{O}(\ 1 \) \end{split}$$
point location storage preprocessing

Backward analysis (again)

We already know that

$$|\{e \in X_i : e \text{ constrsains } \tau\}| \leq 4$$

• Then, independent of the specific *S_i*:

$$egin{array}{rl} E[T_i] &=& \displaystylerac{1}{i} \, \sum_{ au \in \mathcal{S}_i} \, \mid \{ m{e} \in X_i \, : \, m{e} \ {\it constrains} \ au \} \mid \ & \leq \displaystylerac{4}{i} \, |m{S}_i| \, = \, \displaystylerac{4}{i} \, \mathit{O}(\ i \) \, = \, \mathit{O}(\ 1 \) \end{array}$$

point location storage preprocessing

Expected size of DAG

As a consequence:

 $E[| \{ inner nodes created at step i \} |] = O(1)$

• And
$$E[DAG's size]$$

$$= O(n) + E[\sum_{i=1}^{n} | \{inner nodes created at step i\} |]$$

$$= O(n) + \sum_{i=1}^{n} E[| \{inner nodes created at step i\} |]$$

$$= O(n) + \sum_{i=1}^{n} O(1) = O(n)$$

point location storage preprocessing

・ロト (周) (E) (E) (E) (E)

Expected size of DAG

As a consequence:

 $E[| \{ inner nodes created at step i \} |] = O(1)$

$$= O(n) + E[\sum_{i=1}^{n} | \{inner nodes created at step i\} |]$$

 $= O(n) + \sum_{i=1}^{n} E[|\{inner nodes created at step i\}|]$

$$= O(n) + \sum_{i=1}^{n} O(1) = O(n)$$

point location storage preprocessing

・ロト (周) (E) (E) (E) (E)

Expected preprocessing costs

• At *i*-th step...

• Point location (*e*'s leftmost endpoint): $O(\log i)$

• New trapezoids + updating DAG: $O(E[T_i]) = O(1)$

• Overall:

 $\sum_{i=1}^{n} [O(\log i) + O(1)] = O(n \log n)$

point location storage preprocessing

・ロト (周) (E) (E) (E) (E)

Expected preprocessing costs

- At *i*-th step...
- Point location (*e*'s leftmost endpoint): $O(\log i)$
- New trapezoids + updating DAG: $O(E[T_i]) = O(1)$
- Overall:

 $\sum_{i=1}^{n} [O(\log i) + O(1)] = O(n \log n)$

point location storage preprocessing

・ロト (周) (E) (E) (E) (E)

Expected preprocessing costs

- At *i*-th step...
- Point location (*e*'s leftmost endpoint): $O(\log i)$
- New trapezoids + updating DAG: $O(E[T_i]) = O(1)$
- Overall: $\sum_{i=1}^{n} [O(\log i) + O(1)] = O(n \log n)$

point location storage preprocessing

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Expected preprocessing costs

- At *i*-th step...
- Point location (*e*'s leftmost endpoint): $O(\log i)$
- New trapezoids + updating DAG: $O(E[T_i]) = O(1)$
- Overall:

$$\sum_{i=1}^{n} [O(\log i) + O(1)] = O(n \log n)$$

storage preprocessing

Summing up...

• Preprocessing: $O(n \log n)$

- Storage: O(n)
- Point location: $O(\log n)$
- Expected costs!

storage preprocessing

Summing up...

- Preprocessing: $O(n \log n)$
- Storage: *O*(*n*)
- Point location: $O(\log n)$
- Expected costs!

storage preprocessing

Summing up...

- Preprocessing: $O(n \log n)$
- Storage: O(n)
- Point location: $O(\log n)$
- Expected costs!

storage preprocessing

Summing up...

- Preprocessing: $O(n \log n)$
- Storage: *O*(*n*)
- Point location: $O(\log n)$
- Expected costs!

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Provisional assumptions

• vertices in general position

- i.e. vertices not vertically aligned w.r.t. each other
- query points not vertically aligned with vertices

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Provisional assumptions

- vertices in general position
- i.e. vertices not vertically aligned w.r.t. each other

• query points not vertically aligned with vertices

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Provisional assumptions

- vertices in general position
- i.e. vertices not vertically aligned w.r.t. each other
- query points not vertically aligned with vertices

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Treatment of "degeneracies"

ullet Very small rotation/affine transformation $\,\phi$

•
$$\phi(x,y) = (x + \epsilon y, y)$$

• Actually, just symbolic perturbation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Treatment of "degeneracies"

ullet Very small rotation/affine transformation $\,\phi$

•
$$\phi(\mathbf{x},\mathbf{y}) = (\mathbf{x} + \epsilon \mathbf{y}, \mathbf{y})$$

• Actually, just symbolic perturbation

Treatment of "degeneracies"

ullet Very small rotation/affine transformation ϕ

•
$$\phi(\mathbf{x},\mathbf{y}) = (\mathbf{x} + \epsilon \mathbf{y}, \mathbf{y})$$

• Actually, just symbolic perturbation

- The algorithm does not compute new geometric items: Only two simple operations...
- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!
- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges

Original vs. transformed items

• The algorithm does not compute new geometric items: Only two simple operations...

- If $x' \neq x$ same order (ϵ small)
- If $x' = x \rightarrow$ lexicographic order!
- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges

- The algorithm does not compute new geometric items: Only two simple operations...
- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!
- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges

- The algorithm does not compute new geometric items: Only two simple operations...
- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!
- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges

- The algorithm does not compute new geometric items: Only two simple operations...
- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!
- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges

- The algorithm does not compute new geometric items: Only two simple operations...
- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!
- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges

- The algorithm does not compute new geometric items: Only two simple operations...
- Left-to-right order
 - If $x' \neq x$ same order (ϵ small)
 - If $x' = x \rightarrow$ lexicographic order!
- Above/on/below edge e
 - In essence, ϕ preserves such relations
 - Just some specific treatment for vertical (original) edges

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Original items: (x, y), (x', y')
- Transformed items: $(x + \epsilon y, y), (x' + \epsilon y', y')$

•
$$(X' + \epsilon y') - (X + \epsilon y) = (X' - X) + \epsilon(y' - y)$$

- If $x' \neq x$ assume ϵ small enough: $\epsilon |y' y| < |x' x|$
- If x' = x just consider y' y

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Original items: (x, y), (x', y')
- Transformed items: $(x + \epsilon y, y), (x' + \epsilon y', y')$

•
$$(X' + \epsilon y') - (X + \epsilon y) = (X' - X) + \epsilon(y' - y)$$

- If $x' \neq x$ assume ϵ small enough: $\epsilon |y' y| < |x' x|$
- If x' = x just consider y' y

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Original items: (x, y), (x', y')
- Transformed items: $(x + \epsilon y, y)$, $(x' + \epsilon y', y')$

•
$$(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon(y' - y)$$

- If $x' \neq x$ assume ϵ small enough: $\epsilon |y' y| < |x' x|$
- If x' = x just consider y' y

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

- Original items: (x, y), (x', y')
- Transformed items: $(x + \epsilon y, y), (x' + \epsilon y', y')$

•
$$(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon(y' - y)$$

- If $x' \neq x$ assume ϵ small enough: $\epsilon |y' y| < |x' x|$
- If x' = x just consider y' y

Left-to-right order

- Original items: (x, y), (x', y')
- Transformed items: $(x + \epsilon y, y), (x' + \epsilon y', y')$

•
$$(x' + \epsilon y') - (x + \epsilon y) = (x' - x) + \epsilon(y' - y)$$

• If $x' \neq x$ assume ϵ small enough: $\epsilon |y' - y| < |x' - x|$

• If
$$x' = x$$
 just consider $y' - y$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Above/on/below edge

• Point $q:(x,y) \rightarrow (x+\epsilon y,y)$

- Edge $e: [(x', y') (x'', y'')] \rightarrow [(x' + \epsilon y', y') (x'' + \epsilon y'', y'')]$
- Suppose without loss of generality that $x' \leq x''$
- ullet The algorithm tests ϕq against ϕe only if

$$x' + \epsilon y' \leq x + \epsilon y \leq x'' + \epsilon y''$$

$$\Rightarrow x' \leq x \leq x'' \quad (\epsilon \text{ small})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Above/on/below edge

- Point $q:(x,y) \rightarrow (x+\epsilon y,y)$
- Edge $e: [(x', y') (x'', y'')] \rightarrow [(x' + \epsilon y', y') (x'' + \epsilon y'', y'')]$
- Suppose without loss of generality that $x' \leq x''$
- ullet The algorithm tests ϕq against ϕe only if

$$x' + \epsilon y' \leq x + \epsilon y \leq x'' + \epsilon y''$$

$$\Rightarrow x' \leq x \leq x'' \quad (\epsilon \text{ small})$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Above/on/below edge

- Point $q:(x,y) \rightarrow (x+\epsilon y,y)$
- Edge $e: [(x', y') (x'', y'')] \rightarrow [(x' + \epsilon y', y') (x'' + \epsilon y'', y'')]$
- Suppose without loss of generality that $x' \leq x''$
- ullet The algorithm tests ϕq against ϕe only if

$$x' + \epsilon y' \leq x + \epsilon y \leq x'' + \epsilon y''$$

$$\Rightarrow x' \leq x \leq x'' \quad (\epsilon \text{ small})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Above/on/below edge

- Point $q:(x,y) \rightarrow (x+\epsilon y,y)$
- Edge $e: [(x', y') (x'', y'')] \rightarrow [(x' + \epsilon y', y') (x'' + \epsilon y'', y'')]$
- Suppose without loss of generality that $x' \leq x''$
- The algorithm tests $\phi {m q}$ against $\phi {m e}$ only if

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Above/on/below edge

• If
$$x' = x''$$
 then $x' = x = x''$ and $y' \le y \le y''$

• This means that $q \in e$ and ϕ preserves incidence:

 $(X + \epsilon y, y) \in [(X + \epsilon y', y') (X + \epsilon y'', y'')]$

• Otherwise *y* is to be tested against

$$y^* = y' + \frac{(x + \epsilon y) - (x' + \epsilon y')}{(x'' + \epsilon y'') - (x' + \epsilon y')} (y'' - y')$$

= $y' + \frac{(x - x') + \epsilon(y - y')}{(x'' - x') + \epsilon(y'' - y')} (y'' - y')$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Above/on/below edge

• If
$$x' = x''$$
 then $x' = x = x''$ and $y' \le y \le y''$

• This means that $q \in e$ and ϕ preserves incidence:

$$(\mathbf{x} + \epsilon \mathbf{y}, \mathbf{y}) \in [(\mathbf{x} + \epsilon \mathbf{y}', \mathbf{y}') \ (\mathbf{x} + \epsilon \mathbf{y}'', \mathbf{y}'')]$$

• Otherwise *y* is to be tested against

$$y^{*} = y' + \frac{(x + \epsilon y) - (x' + \epsilon y')}{(x'' + \epsilon y'') - (x' + \epsilon y')} (y'' - y')$$
$$= y' + \frac{(x - x') + \epsilon(y - y')}{(x'' - x') + \epsilon(y'' - y')} (y'' - y')$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Above/on/below edge

• If
$$x' = x''$$
 then $x' = x = x''$ and $y' \le y \le y''$

• This means that $q \in e$ and ϕ preserves incidence:

$$(\mathbf{x} + \epsilon \mathbf{y}, \mathbf{y}) \in [(\mathbf{x} + \epsilon \mathbf{y}', \mathbf{y}') \ (\mathbf{x} + \epsilon \mathbf{y}'', \mathbf{y}'')]$$

• Otherwise y is to be tested against

$$y^{*} = y' + \frac{(x + \epsilon y) - (x' + \epsilon y')}{(x'' + \epsilon y'') - (x' + \epsilon y')} (y'' - y')$$

= y' + $\frac{(x - x') + \epsilon(y - y')}{(x'' - x') + \epsilon(y'' - y')} (y'' - y')$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Above/on/below edge

 By making
 e smaller and smaller, *y*^{*} gets as close as we like to

$$y' + \frac{x - x'}{x'' - x'} (y'' - y')$$

• i.e. the corresponding expression for the original items

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Above/on/below edge

- By making ϵ smaller and smaller, v^* gots as close as we like to
 - y^* gets as close as we like to

$$y' + \frac{x-x'}{x''-x'}(y''-y')$$

• i.e. the corresponding expression for the original items

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

- Moreover, *incidences* are invariant by linear transformation
- ... and we know if points are the same or if a point lies on some edge
- To sum up: we *can* compute everything *without* carrying out any transformation
- But of course we build a trapezoidal map for the *transformed* edges! (e.g. "very thin" trapezoids)

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

- Moreover, *incidences* are invariant by linear transformation
- ... and we know if points are the same or if a point lies on some edge
- To sum up: we *can* compute everything *without* carrying out any transformation
- But of course we build a trapezoidal map for the *transformed* edges! (e.g. "very thin" trapezoids)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Moreover, *incidences* are invariant by linear transformation
- ... and we know if points are the same or if a point lies on some edge
- To sum up: we *can* compute everything *without* carrying out any transformation
- But of course we build a trapezoidal map for the *transformed* edges! (e.g. "very thin" trapezoids)

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 = つへで

- Moreover, *incidences* are invariant by linear transformation
- ... and we know if points are the same or if a point lies on some edge
- To sum up: we *can* compute everything *without* carrying out any transformation
- But of course we build a trapezoidal map for the transformed edges! (e.g. "very thin" trapezoids)

∃ ► Ξ = 𝔄 𝔄 𝔄

- Moreover, *incidences* are invariant by linear transformation
- ... and we know if points are the same or if a point lies on some edge
- To sum up: we *can* compute everything *without* carrying out any transformation
- But of course we build a trapezoidal map for the *transformed* edges! (e.g. "very thin" trapezoids)

Degeneracies References

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

What about query points?

Since we don't actually compute anything related to ε...

• We can think of a sufficiently small ϵ to accommodate for every query point q

▲□ → ▲ □ → ▲ □ → ▲□ → ● ● ●

What about query points?

• Since we don't actually compute anything related to ϵ ...

 We can think of a sufficiently small *ϵ* to accommodate for every query point *q* Degeneracies References

Degeneracies References

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

K. Mulmuley (1990)

A fast planar partition algorithm – I

Journal of Symbolic Computation, 10(3)

R. Seidel (1991)

A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons

Computational Geometry: Theory & Applications, 1(1)