preamble

Convex Hull Algorithms

Claudio Mirolo
Dip. di Scienze Matematiche, Informatiche e Fisiche

Universita di Udine, via delle Scienze 206 — Udine
claudio.mirolo@uniud.it

Computational Geometry
www.dimi.uniud.it/claudio

C. Mirolo Convex Hull

preamble

Outline

0 Incremental algorithm
@ degeneracies
@ correctness
@ computational costs

e Divide-et-impera algorithm
@ recursive approach
@ corrrectness
@ computational costs

e Randomized algorithm
@ conflict graph
@ corrrectness
@ computational costs

C. Mirolo Convex Hull

preamble

Convex hull

@ Given a set P of n points in the plane (space)

C. Mirolo Convex Hull

preamble

Convex hull

@ Given a set P of n points in the plane (space)

@ “Smaller” convex region containing all points in P

C. Mirolo Convex Hull

preamble

Convex hull

@ Given a set P of n points in the plane (space)

@ “Smaller” convex region containing all points in P

@ Region = convex polygon (polyhedron)

C. Mirolo Convex Hull

preamble

Convex hull: Motivations

@ “Classical” problem in the field

C. Mirolo Convex Hull

preamble

Convex hull: Motivations

@ “Classical” problem in the field

o Easy to state...

C. Mirolo Convex Hull

preamble

Convex hull: Motivations

@ “Classical” problem in the field
o Easy to state...

@ ...and easy to solve, even efficiently

C. Mirolo Convex Hull

preamble

Convex hull: Motivations

@ “Classical” problem in the field
o Easy to state...
@ ...and easy to solve, even efficiently

@ Amenable to application of different
general algorithmic approaches to CG problems

C. Mirolo Convex Hull

preamble

From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion

C. Mirolo Convex Hull

preamble

From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion

@ Convex hull={H: PC H}, H halfplane

C. Mirolo Convex Hull

preamble

From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion
@ Convex hull={H: PC H}, H halfplane

C. Mirolo Convex Hull

preamble

From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion
@ Convex hull={H: PC H}, H halfplane

@ Directed segment pq: halfplane interior on its left

C. Mirolo Convex Hull

preamble

From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion
@ Convex hull={H: PC H}, H halfplane
@ Convex hull = {Hpg : p,g € PA P C Hpq}
@ Directed segment pq: halfplane interior on its left

@ Minimal (and finite!) set of halfplanes

C. Mirolo Convex Hull

preamble

From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq

C. Mirolo Convex Hull

preamble

From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq

@ CGAL::left_turn(pl, p2, g) — code

C. Mirolo Convex Hull

preamble

From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq
@ CGAL::left_turn(pl, p2, g) — code

@ When applied to a (small) set of random points
it seems to work properly

C. Mirolo Convex Hull

preamble

From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq
@ CGAL::left_turn(pl, p2, g) — code

@ When applied to a (small) set of random points
it seems to work properly

@ But what about the algorithm’s robustness?

C. Mirolo Convex Hull

preamble

From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq
@ CGAL::left_turn(pl, p2, g) — code

@ When applied to a (small) set of random points
it seems to work properly

@ But what about the algorithm’s robustness?

@ Indeed, a more accurate analysis is usually required

C. Mirolo Convex Hull

preamble

Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

C. Mirolo Convex Hull

preamble

Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

@ Assuming some “general configuration”
(e.g. no three colinear points)

C. Mirolo Convex Hull

preamble

Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

@ Assuming some “general configuration”
(e.g. no three colinear points)

@ How to deal with colinear points
on the boundary of the convex hull?

C. Mirolo Convex Hull

preamble

Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

@ Assuming some “general configuration”
(e.g. no three colinear points)

@ How to deal with colinear points
on the boundary of the convex hull?

@ ! CGAL::right_turn(pl, p2, g) (?) — code

C. Mirolo Convex Hull

preamble

Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

@ Assuming some “general configuration”
(e.g. no three colinear points)

@ How to deal with colinear points
on the boundary of the convex hull?

@ ! CGAL::right_turn(pl, p2, g) (?) — code

@ Structural integrity for small perturbations
(e.g. floating-point inaccuracies). . .

C. Mirolo Convex Hull

preamble

Convex hull representation

@ What is, exactly, the intended output representation?

C. Mirolo Convex Hull

preamble

Convex hull representation

@ What is, exactly, the intended output representation?

@ Topological/relational information

C. Mirolo Convex Hull

preamble

Convex hull representation

@ What is, exactly, the intended output representation?
@ Topological/relational information

@ Polygon sides in counterclockwise order

C. Mirolo Convex Hull

preamble

Convex hull representation

@ What is, exactly, the intended output representation?
@ Topological/relational information
@ Polygon sides in counterclockwise order

@ Related structural integrity issues. ..

C. Mirolo Convex Hull

preamble

Convex hull representation

@ What is, exactly, the intended output representation?
@ Topological/relational information

@ Polygon sides in counterclockwise order

@ Related structural integrity issues. ..

@ However: the output adds only relational information
to the input! (selection + coupling of input points)

C. Mirolo Convex Hull

preamble

Analysis of computational costs

@ |dentification of convex hull sides (brute force):

C. Mirolo Convex Hull

preamble

Analysis of computational costs

@ Identification of convex hull sides (brute force): O(n®)

@ Incidence between sides (brute force):

C. Mirolo Convex Hull

preamble

Analysis of computational costs

@ Identification of convex hull sides (brute force): O(n®)

@ Incidence between sides (brute force): O(n?)

@ Overall: O(n?)

C. Mirolo Convex Hull

preamble

Looking for improvements. ..

@ Can this approach be improved?

C. Mirolo Convex Hull

preamble

Looking for improvements. ..

@ Can this approach be improved?

@ Walking along the convex hull boundary

C. Mirolo Convex Hull

preamble

Looking for improvements. ..

@ Can this approach be improved?
@ Walking along the convex hull boundary

@ Starting vertex...

C. Mirolo Convex Hull

preamble

Looking for improvements. ..

@ Can this approach be improved?
@ Walking along the convex hull boundary
@ Starting vertex...

@ Jarvis’ March (1973)

C. Mirolo Convex Hull

preamble

Jarvis’ March

@ h-sided convex hull:

C. Mirolo Convex Hull

preamble

Jarvis’ March

@ h-sided convex hull: O(hn))

@ Worst case:

C. Mirolo Convex Hull

preamble

Jarvis’ March

@ h-sided convex hull: O(hn))
@ Worstcase: O(n?)

@ However, it may be efficient if h < n

C. Mirolo Convex Hull

preamble

Jarvis’ March

@ h-sided convex hull: O(hn))
@ Worstcase: O(n?)
@ However, it may be efficient if h < n

@ — code

C. Mirolo Convex Hull

preamble

Is a better solution conceivable?

@ How much room to improve performances?

C. Mirolo Convex Hull

preamble

Is a better solution conceivable?

@ How much room to improve performances?

@ Convex hull sides must be ordered. ..

C. Mirolo Convex Hull

preamble

Is a better solution conceivable?

@ How much room to improve performances?
@ Convex hull sides must be ordered. ..

@ Let us consider the following point set:
P={(xi,x?):1<i<nAx;€R}

C. Mirolo Convex Hull

preamble

Is a better solution conceivable?

@ How much room to improve performances?
@ Convex hull sides must be ordered. ..

@ Let us consider the following point set:
P={(xi,x?):1<i<nAx;€R}

@ P’sconvex hull sorts {x; : 1 <i<n} CR!

C. Mirolo Convex Hull

preamble

Is a better solution conceivable?

How much room to improve performances?

Convex hull sides must be ordered. ..

Let us consider the following point set:
P={(xi,x?):1<i<nAx;€R}

P’s convex hull sorts {x; : 1 <i<n} CR!

Lower bound to computational costs:

C. Mirolo Convex Hull

preamble

Is a better solution conceivable?

@ How much room to improve performances?
@ Convex hull sides must be ordered. ..

@ Let us consider the following point set:
P={(x,x?):1<i<nAx;€R}

@ P’sconvex hull sorts {x;: 1 <i<n} CR!

@ Lower bound to computational costs: Q(nlogn)

C. Mirolo Convex Hull

preamble

Convex hull: Instrinsic complexity

@ Jarvis’ March is then interesting for h= O(logn)

C. Mirolo Convex Hull

preamble

Convex hull: Instrinsic complexity

@ Jarvis’ March is then interesting for h= O(logn)

@ But what about the (expected) number of sides?

C. Mirolo Convex Hull

preamble

Convex hull: Instrinsic complexity

@ Jarvis’ March is then interesting for h= O(logn)
@ But what about the (expected) number of sides?

@ Clearly, it depends on point distribution

C. Mirolo Convex Hull

preamble

Convex hull: Instrinsic complexity

@ Jarvis’ March is then interesting for h= O(logn)
@ But what about the (expected) number of sides?
@ Clearly, it depends on point distribution

@ See, e.g. (students’ projects):
e Har-Peled (1997, 2011)
o Golin & Sedgewick (1988)

C. Mirolo Convex Hull

preamble

Har-Peled (1997, 2011)

@ Uniform point distribution in a disc: O(¥/n)

C. Mirolo Convex Hull

preamble

Har-Peled (1997, 2011)

@ Uniform point distribution in a disc: O(¥/n)

@ Uniform distribution in a square/triangle: O(logn)

C. Mirolo Convex Hull

preamble

Har-Peled (1997, 2011)

@ Uniform point distribution in a disc: O(¥/n)
@ Uniform distribution in a square/triangle: O(logn)

@ Uniform distribution in a k-sided polygon: O(klogn)

C. Mirolo Convex Hull

preamble

Har-Peled (1997, 2011)

@ Uniform point distribution in a disc: O(¥/n)
@ Uniform distribution in a square/triangle: O(logn)
@ Uniform distribution in a k-sided polygon: O(klogn)

@ Jarvis’ March Ok for uniform distributions
in rectangles/triangles?

C. Mirolo Convex Hull

preamble

Har-Peled (1997, 2011)

@ Uniform point distribution in a disc: O(¥/n)
@ Uniform distribution in a square/triangle: O(logn)
@ Uniform distribution in a k-sided polygon: O(klogn)

@ Jarvis’ March Ok for uniform distributions
in rectangles/triangles?

@ Or we could do something better
under similar assumptions?

C. Mirolo Convex Hull

preamble

Har-Peled (2011)

Theorem 2.3 The expected number of vertices of the convex hull of n points, chosen uni-
formly and independently from the unit disk, is O(n'/?).

Proof: We claim that the expected area of the convex hull of n points, chosen uniformly
and independently from the unit disk, is at least 7 — O (n’z/ 3).

Indeed, let D denote the unit disk, and assume without loss of generality, that n = m?,
where m is a positive integer. Partition D into m sectors, Si,...,S,,, by placing m equally
spaced points on the boundary of D and connecting them to the origin. Let Dy, ..., D,,2
denote the m? disks centered at the origin, such that (i) D; = D, and (ii) Area(D;_;) —
Area(D;) = w/m?, for i = 2,...,m?% Let r; denote the radius of D;, fori =1,...,m?

Let Sij = (D;\ Diz1) NS;, and Sp2j = Dypye NSy, fori=1,....m> =1, j =1
The set S;; is called the i-th tile of the sector S;, and its area is w/n, for i = 1,...,m
J=1,...,m.

Sm.

C. Mirolo Convex Hull

preamble

Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

C. Mirolo Convex Hull

preamble

Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O(n)

C. Mirolo Convex Hull

preamble

Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O(n)

@ Expected number of remaining candidates: O(v/n)

C. Mirolo Convex Hull

preamble

Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O(n)

@ Expected number of remaining candidates: O(v/n)

@ h=0(+/n) = Jarvis’Marchin O(v/n-v/n)=0(n)

C. Mirolo Convex Hull

preamble

Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O(n)

@ Expected number of remaining candidates: O(v/n)
@ h=0(+/n) = Jarvis’Marchin O(v/n-v/n)=0(n)

@ We certainly can’t do better than this!

C. Mirolo Convex Hull

preamble

Questions still to be addressed. ..

@ Can the optimal O(nlog n) trend be achieved in general?

C. Mirolo Convex Hull

preamble

Questions still to be addressed. ..

@ Can the optimal O(nlog n) trend be achieved in general?

@ In the worst case?

C. Mirolo Convex Hull

preamble

Questions still to be addressed. ..

@ Can the optimal O(nlog n) trend be achieved in general?

@ In the worst case?

@ In the expected case,
but regardless of assumptions on the point distribution?

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Outline

0 Incremental algorithm
@ degeneracies
@ correctness
@ computational costs

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Graham’s scan

@ Lower hull first

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Graham’s scan

@ Lower hull first

@ Adding points one by one, sorted left-to-right

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Graham’s scan

@ Lower hull first
@ Adding points one by one, sorted left-to-right

@ Lower hull is updated after each addition

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Scan step

@ From lower_hull({ p1, P2, P3, ..., Pi—1})---

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Scan step

@ From lower_hull({ p1, P2, P3, ..., Pi—1})---

o ... to lower_hull({ p1, P2, P3; ---, Pi-1, Pi })

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Scan step

@ From lower_hull({ p1, P2, P3, ..., Pi—1})---

o ... to lower_hull({ p1, P2, P3; ---, Pi-1, Pi })

@ Basic idea: Animation

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Lower hull

@ After the i-th step, p; and p; belong to the lower hull

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Lower hull

@ After the i-th step, p; and p; belong to the lower hull

@ p; and p, belong to both the lower and upper hull

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Lower hull

@ After the i-th step, p; and p; belong to the lower hull
@ p; and p, belong to both the lower and upper hull

@ Lower hull construction: Code

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Upper hull

@ Upper hull: similar processing, by symmetry

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Upper hull

@ Upper hull: similar processing, by symmetry

@ E.g., adding points in backward order

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Upper hull

@ Upper hull: similar processing, by symmetry
@ E.g., adding points in backward order

@ Upper hull construction: Code

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Vertically aligned points

@ Lexicographic order

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Vertically aligned points

@ Lexicographic order

@ Geometric interpretation of lexicographic order

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Vertically aligned points

@ Lexicographic order
@ Geometric interpretation of lexicographic order

@ “Symbolic perturbation”

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Geometric interpretation

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Geometric interpretation

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Collinear hull vertices

@ Strict left turn

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Collinear hull vertices

@ Strict left turn

@ Which is the result?

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Collinear hull vertices

@ Strict left turn
@ Which is the result?

@ Animation (vertical/horizontal point alignments)

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Collinear hull vertices

@ Strict left turn
@ Which is the result?
@ Animation (vertical/horizontal point alignments)

@ Code details. ..

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Robustness?

@ What about inaccurate floating-point calculations?

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Robustness?

@ What about inaccurate floating-point calculations?

@ Structural integrity is preserved!

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Robustness?

@ What about inaccurate floating-point calculations?
@ Structural integrity is preserved!

@ ... As opposed to the “brute force” algorithm

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:

o After i-th step: Pi = {p1a P2, P3, ..., Pi-1, pl}

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:

o After i-th step: Pi = {p1a P2, P3, ..., Pi-1, pl}

@ No point of P; lies below (to the right of) lower_hull(P;)

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:

o After i-th step: Pi = {p1a P2, P3, ..., Pi-1, pl}

@ No point of P; lies below (to the right of) lower_hull(P;)

@ Jower_hull(P;) is convex (left turn at each vertex)

C. Mirolo Convex Hull

Incremental algorithm degeneracie:
correctness
computation

Proof: Induction step

no pc
sl

lower_hull(Pi_ ;) convex

no point of P_ here

C. Mirolo Convex Hull

S

al costs

dint in ve
b betwe

P._, and

rtical
en

Incremental algorithm degeneracies
correctness
computational costs

Proof: Induction step

no point in vertical
slab between
P. and p

lower_hull(Pi_ ;) convex

no point of P._ here

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn')

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn')

@ Adding points incrementally: O(n) for iterations

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn')
@ Adding points incrementally: O(n) for iterations

@ Updating lower/upper hull: O(n) while iterations...

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn')
@ Adding points incrementally: O(n) for iterations
@ Updating lower/upper hull: O(n) while iterations...

@ ... over all for iterations
(at each further iteration a hull vertex is removed!)

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Optimality of nlogn

@ May any better algorithm be conceived?

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Optimality of nlogn

@ May any better algorithm be conceived?

@ Sorting xq,Xo, ... Xp can be reduced to convex hull. . .

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Optimality of nlogn

@ May any better algorithm be conceived?
@ Sorting xq,Xo, ... Xp can be reduced to convex hull. . .

@ Consider pointset P = { (x1,x2), (x2,X3), ..., (Xn,x2) }

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Optimality of nlogn

@ May any better algorithm be conceived?
@ Sorting xq,Xo, ... Xp can be reduced to convex hull. . .
@ Consider pointset P = { (x1,x2), (x2,X3), ..., (Xn,x2) }

@ Convex hull (sorted vertices): nlogn lower bound

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Variations on the theme. ..

@ Graham’s scan for “angular” order of points
(around a convex hull vertex)

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Variations on the theme. ..

@ Graham’s scan for “angular” order of points
(around a convex hull vertex)

@ Animation ...

C. Mirolo Convex Hull

Incremental algorithm degeneracies
correctness
computational costs

Variations on the theme. ..

@ Graham’s scan for “angular” order of points
(around a convex hull vertex)

@ Animation ...

@ ... Try it yourself!

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Outline

e Divide-et-impera algorithm
@ recursive approach
@ corrrectness
@ computational costs

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically

@ Balanced bipartition through a vertical line

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically
@ Balanced bipartition through a vertical line

@ Convex hull of the left half (recursively)

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically
@ Balanced bipartition through a vertical line
@ Convex hull of the left half (recursively)

@ Convex hull of the right half (recursively)

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Boundary walks to draw the connecting edges
(common tangent lines above and below)

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Boundary walks to draw the connecting edges
(common tangent lines above and below)

@ Cut & sew appropriate (half)chains of points
and connecting edges

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Boundary walks to draw the connecting edges
(common tangent lines above and below)

@ Cut & sew appropriate (half)chains of points
and connecting edges

@ Animation / Code

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Correctness

@ Recursive constructions are assumed to be correct
(and base cases are)

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Correctness

@ Recursive constructions are assumed to be correct
(and base cases are)

@ Walk(s) to determine connecting edges must come
to an end and the resulting chain will be convex

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Correctness

convex here

@-walk stops)

in this area .

/
whatever the
linked point *

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn)

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn)

@ Walks + cut & sew: O(n)

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn)
@ Walks + cut & sew: O(n)

@ Well known equation: T(n) = 2T(n/2) + O(n)

C. Mirolo Convex Hull

recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O(nlogn)
@ Walks + cut & sew: O(n)
@ Well known equation: T(n) = 2T(n/2) + O(n)

@ Solution: T(n) = O(nlogn)

C. Mirolo Convex Hull

conflict graph

corrrectness
Randomized algorithm computational costs

Outline

e Randomized algorithm
@ conflict graph
@ corrrectness
@ computational costs

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomization and conflict graph

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomization and conflict graph

Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomization and conflict graph

Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions: identified by O(1) objects

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomization and conflict graph

Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions: identified by O(1) objects

@ Conflicts: relationship between regions and objects

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomization and conflict graph

Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions: identified by O(1) objects

@ Conflicts: relationship between regions and objects

Result: Set of regions defined by the objects in S
without conflicts with these objects

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph

Assumptions (static approach):

@ Links in both directions
between regions and objects in conflict

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph

Assumptions (static approach):

@ Links in both directions
between regions and objects in conflict

@ Direct link from object to conflict region

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph

Assumptions (static approach):

@ Links in both directions
between regions and objects in conflict

@ Direct link from object to conflict region

@ Direct link from region to entry point
(“iterator”) to list of conflicting objects

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects
@ Regions

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X

@ Conflicts: [x;, x;] and x are in conflict if x €]x;, x;[

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X
@ Conflicts: [x;, x;] and x are in conflict if x €]x;, x;[

Result: pairs of numbers identifying intervals without conflicts
are consecutive in the sorted sequence of X’s elements

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph as a general framework

Simple example: A different point of view on quick-sort?
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X
@ Conflicts: [x;, x;] and x are in conflict if x €]x;, x;[

Result: pairs of numbers identifying intervals without conflicts
are consecutive in the sorted sequence of X’s elements

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector

Result: edge chain H such that no point p € P lies outside H

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector

Result: edge chain H such that no point p € P lies outside H
... Animation

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector

Result: edge chain H such that no point p € P lies outside H
... Animation ... incremental approach, indeed

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Conflict-graph approach to the convex hull

Conflict-graph framework:

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Points p; from finite set P

Conflict-graph framework:

@ Objects

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Outer sector of hull edge p;p;

Conflict-graph framework:
@ Objects

@ Regions

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

p € P falls in one such outer sector

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

p € P falls in one such outer sector

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts

Result: no pointp € P
lies outside H,

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Correctness

@ Straightforward

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Correctness

@ Straightforward

@ Walk(s) to get rid of non-convex vertices must come
to an end and the updated hull will be convex

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Computational costs

At each stage, to update the convex hull from Hy to Hy 1,
the algorithm accomplishes three main tasks:

@ It removes a few “old” edges from Hj

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Computational costs

At each stage, to update the convex hull from Hy to Hy 1,
the algorithm accomplishes three main tasks:

@ It removes a few “old” edges from Hj

@ |t adds two “new” edges to build Hy 1

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Computational costs

At each stage, to update the convex hull from Hy to Hy 1,
the algorithm accomplishes three main tasks:

@ It removes a few “old” edges from Hj
@ |t adds two “new” edges to build Hy 1
@ It re-arranges the links of the conflict graph between

the outer regions of the new edges and all the points
in the conflict lists of the removed edges

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Removing and creating edges

@ Only edges that have been created can be removed

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Removing and creating edges

@ Only edges that have been created can be removed

@ Two edges are created at each of the O(n) stages

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Removing and creating edges

@ Only edges that have been created can be removed
@ Two edges are created at each of the O(n) stages

@ Hence, the overall costs of both
removing and creating edges are bound by O(n)

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Updating the conflict graph

@ Expected cost

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Updating the conflict graph

@ Expected cost

@ Approach: backward analysis

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Updating the conflict graph

@ Expected cost
@ Approach: backward analysis

@ Points which do not fall outside Hi at some stage
will no longer be taken into account

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Updating the conflict graph

@ Expected cost
@ Approach: backward analysis

@ Points which do not fall outside Hi at some stage
will no longer be taken into account

@ Focus on a set P, C P of k points (k-th stage) ...

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k

@ Let p be this last added point

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k

@ Let p be this last added point

@ Then, either pis interior to Hk (no related processing)
or p is a vertex of Hy with incident edges € and ¢”

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k

@ Let p be this last added point

@ Then, either pis interior to Hk (no related processing)
or p is a vertex of Hy with incident edges € and ¢”

@ Graph links re-arranged at the k-th stage
(only) for points in the conflict lists of & and €” . ..

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
2

1 ! ! 1
— < —
E o+ = E 2 0(1) Oo(n)
pEPk ecHj

since the conflict lists contain n — k < n points overall

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
2

1 ! ! 1
— < —
E P our+1r = E 2 O(I) O(n)
pE Py ecHj

since the conflict lists contain n — k < n points overall’

Tactually // + I may underestimate the costs at stage k,
but O(n) recovers anything lost, or...

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
Stor+ry = LY 200 < 2om)
k k -k
pe Py ecHyg

since the conflict lists contain n — k < n points overall’

Tactually // + I may underestimate the costs at stage k,
but O(n) recovers anything lost, or...
only re-assigned conflicts need to be accounted for,
since a point can be removed from the conflict lists
at most once

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
Stor+ry = LY 200 < 2om)
k k -k
pe Py ecHyg

since the conflict lists contain n — k < n points overall’

Tactually // + I may underestimate the costs at stage k,
but O(n) recovers anything lost, or...
only re-assigned conflicts need to be accounted for,
since a point can be removed from the conflict lists
atmostonce — O(n) overall.

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ Expected cost of the k-th stage: O(n)/k

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ Expected cost of the k-th stage: O(n)/k

@ Notice that O(n)/k does not depend on the specific Py,
but the result would be the same for any Px C P of size k

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ Expected cost of the k-th stage: O(n)/k

@ Notice that O(n)/k does not depend on the specific Py,
but the result would be the same for any Px C P of size k

@ O(n)/k is the expected cost of the k-th stage. ..

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ O(n)/k is the expected cost of the k-th stage

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ O(n)/k is the expected cost of the k-th stage

@ Then, the expected overall cost of re-arranging links is

>0 - om g
k=4

k=4

i.,e. O(nlogn)

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ O(n)/k is the expected cost of the k-th stage

@ Then, the expected overall cost of re-arranging links is

>0 - om g
k=4

k=4

i.e. O(nlogn) [1,%,%, ce %, ... harmonic series]

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Backward analysis

@ O(n)/k is the expected cost of the k-th stage

@ Then, the expected overall cost of re-arranging links is

>0 - om g
k=4

k=4

g
—_
—_

i.e. O(nlogn) [1,5,5, -5 %» --- harmonic series]

@ ...which dominates the running time of the algorithm

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Log trend of the harmonic series: Why?

C. Mirolo Convex Hull

conflict graph
corrrectness
Randomized algorithm computational costs

Log trend of the harmonic series: Why?

g 111
7273747

C. Mirolo Convex Hull

{

conflict graph
corrrectness

Randomized algorithm computational costs

Log trend of the harmonic series: Why?

L A 11
) 27 37 47 57 67 77 87 97) 157 167
~——
< 1 <1 <1

C. Mirolo Convex Hull

conflict graph

corrrectness
Randomized algorithm computational costs

Incremental algorithm: Worst-case point sequence

C. Mirolo Convex Hull

Semi-dynamic algorithms

Outline

0 Semi-dynamic algorithms

C. Mirolo Convex Hull

Semi-dynamic algorithms

Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph

C. Mirolo Convex Hull

Semi-dynamic algorithms

Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph

@ Influence graph: tree-like, incrementally updated structure

C. Mirolo Convex Hull

Semi-dynamic algorithms

Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph
@ Influence graph: tree-like, incrementally updated structure

@ static algorithm — semi-dynamic algorithm

C. Mirolo Convex Hull

Semi-dynamic algorithms

Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph
@ Influence graph: tree-like, incrementally updated structure
@ static algorithm — semi-dynamic algorithm

@ Same computational trend, for random input data,
provided the cost of each graph update is O(logn)

C. Mirolo Convex Hull

Semi-dynamic algorithms

Devillers (1996)

xs3 T T4 1 x2 To
>
P~ = e o . i
—-— initialisation
/ \ insertion of xg
—r
/v insertion of x1

—\\ V\ . .
/ \\ —— insertion of x2
A

insertion of x3

insertion of x4

regions visited during the location of x5

irolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic convex hull algorithm: Embedded tree

C. Mirolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic convex hull algorithm: Embedded tree

C. Mirolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic convex hull algorithm: Embedded tree

created ray-nodes are
never removed from trees

C. Mirolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic convex hull algorithm: Embedded tree

created ray-nodes are
never removed from trees
even if the ray’s origin

is no longer a vertex

of the convex hull

C. Mirolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic algorithm: Point location

C. Mirolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic algorithm: Point location

C. Mirolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic algorithm: Point location

C. Mirolo Convex Hull

Semi-dynamic algorithms

Semi-dynamic algorithm: Point location

C. Mirolo Convex Hull

Convex hull'in 3D

Related results

Miscellaneous results

Outline

e Related results
@ Convex hull in 3D
@ Miscellaneous results

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Convex hull in 3D

@ No straightforward 3D generalization of Graham’s scan

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Convex hull in 3D

@ No straightforward 3D generalization of Graham’s scan

@ Divide-et-impera approach:
Preparata & Hong (1977), O(nlogn)

C. Mirolo Convex Hull

Convex hull in 3D
Miscellaneous results

Related results

Convex hull in 3D

@ No straightforward 3D generalization of Graham’s scan

@ Divide-et-impera approach:
Preparata & Hong (1977), O(nlogn)

@ Randomized incremental approach:
E.g. see survey in Devillers (1996), O(nlogn)

C. Mirolo Convex Hull

Convex hull in 3D
Miscellaneous results

Related results

Preparata & Hong (1977)

Fig. 4. Merging two convex hulls. Construction of 7.

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph

° V+F=E+C+1

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph

© V+F=E+C+1

@ Proof. adding vertex or edge connecting two vertices

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph

° V+F=E+C+1
@ Proof. adding vertex or edge connecting two vertices

@ Basecase (1vertex): V=1, F=1, E=0, C=1

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..
@ Adding a disconnected vertex:
Vi=V+1, F=F E'=E, C'=C+1

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..

@ Adding a disconnected vertex:
Vi=V+1, FF=F, E'=E, C'=C+1

@ Adding an edge between disconnected components:
Vi=V,F=F EE=E+1,C=C-1

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..

@ Adding a disconnected vertex:
Vi=V+1, FF=F, E'=E, C'=C+1

@ Adding an edge between disconnected components:
Vi=V,F=F EE=E+1,C=C-1

@ Adding an edge within a connected component:
V=V, F=F+4+1, EE=E+1,C =C

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2

@ No disconnected vertices: V < 2E

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2

@ No disconnected vertices: V < 2E
@ No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2

@ No disconnected vertices: V < 2E
@ No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face
@ Hence: E=V+F-2<V+2E/3

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

Invariant (C = 1): V4+F=E+2

No disconnected vertices: V <2E

No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face
Hence: E=V+F-2<V+2E/3
= E<3V and F <2V

C. Mirolo Convex Hull

Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

Invariant (C = 1): V4+F=E+2

No disconnected vertices: V <2E

No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face
Hence: E=V+F-2<V+2E/3
= E<3V and F <2V
To sum up:
V=O(E), E=0(V), F=0(V)=0(E)

C. Mirolo Convex Hull

Convex hull'in 3D

Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)

C. Mirolo Convex Hull

Convex hull'in 3D

Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)
e simple to code
e running time: O(nh)

e h=hull vertices: may it be convenient?

C. Mirolo Convex Hull

Convex hull'in 3D

Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)
e simple to code
e running time: O(nh)

e h=hull vertices: may it be convenient?

@ Optimal output sensitive algorithms

C. Mirolo Convex Hull

Convex hull'in 3D

Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)
e simple to code
e running time: O(nh)

e h=hull vertices: may it be convenient?

@ Optimal output sensitive algorithms
e E.g., Chan (1996)
e running time: O(nlogh)

@ more complex structure

C. Mirolo Convex Hull

References

Outline

e References

C. Mirolo Convex Hull

References

Epilogue. ..

“Convex hull is the favorite paradigm
of computational geometers.

Although the description of the problem is
fairly simple, its solution takes into account
all aspects of computational geometry.”

Olivier Devillers (1996)

C. Mirolo Convex Hull

References

References

@ R.L. Graham (1972)
An efficient algorithm for determining
the convex hull of a finite planar set
Information Processing Letters, 1

[§ R.A.Jarvis (1973)
On the identification of the convex hull
of a finite set of points in the plane
Information Processing Letters, 2

C. Mirolo Convex Hull

References

References

[4 F.P Preparata & S.J. Hong (1977)
Convex hulls of finite sets of points
in two and three dimensions
Communications of the ACM, 157

[O. Devillers (1996)
An introduction to randomization
in computational geometry
Theoretical Computer Science, 20(2)

C. Mirolo Convex Hull

References

References

[{ T.M. Chan (1996)
Optimal output-sensitive convex hull algorithms
in two and three dimensions
Discrete & Computational Geometry, 16

[@ S.Har-Peled (2011)
On the expected complexity of random convex hulls
ArXiv e-prints

@ M. Golin & R. Sedgewick (1988)
Analysis of a simple yet efficient convex hull algorithm
Proc. of the 4th Symp. on Computational Geometry

C. Mirolo Convex Hull

	preamble
	Incremental algorithm
	degeneracies
	correctness
	computational costs

	Divide-et-impera algorithm
	recursive approach
	corrrectness
	computational costs

	Randomized algorithm
	conflict graph
	corrrectness
	computational costs

	Appendix
	Semi-dynamic algorithms
	Related results
	Convex hull in 3D
	Miscellaneous results

	References

