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Outline

0 Incremental algorithm
@ degeneracies
@ correctness
@ computational costs

e Divide-et-impera algorithm
@ recursive approach
@ corrrectness
@ computational costs

e Randomized algorithm
@ conflict graph
@ corrrectness
@ computational costs
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Convex hull

@ Given a set P of n points in the plane (space)
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Convex hull

@ Given a set P of n points in the plane (space)

@ “Smaller” convex region containing all points in P

@ Region = convex polygon (polyhedron)
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Convex hull: Motivations

@ “Classical” problem in the field
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Convex hull: Motivations

@ “Classical” problem in the field
o Easy to state...
@ ...and easy to solve, even efficiently

@ Amenable to application of different
general algorithmic approaches to CG problems
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From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion
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From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion
@ Convex hull={H: PC H}, H halfplane

@ Directed segment pq: halfplane interior on its left
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From definition to operational definition

@ Convex hull={C: P cC C}, C convexregion
@ Convex hull={H: PC H}, H halfplane
@ Convex hull = {Hpg : p,g € PA P C Hpq}
@ Directed segment pq: halfplane interior on its left

@ Minimal (and finite!) set of halfplanes

C. Mirolo Convex Hull



preamble

From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq
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From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq

@ CGAL::left_turn( pl, p2, g ) — code
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From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq
@ CGAL::left_turn( pl, p2, g ) — code

@ When applied to a (small) set of random points
it seems to work properly
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From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq
@ CGAL::left_turn( pl, p2, g ) — code

@ When applied to a (small) set of random points
it seems to work properly

@ But what about the algorithm’s robustness?
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From operational definition to “brute force” algorithm

@ pq bounds the convex hull & P\ {p, q} on the left of pq
@ CGAL::left_turn( pl, p2, g ) — code

@ When applied to a (small) set of random points
it seems to work properly

@ But what about the algorithm’s robustness?

@ Indeed, a more accurate analysis is usually required
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Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies
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Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

@ Assuming some “general configuration”
(e.g. no three colinear points)

@ How to deal with colinear points
on the boundary of the convex hull?
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Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

@ Assuming some “general configuration”
(e.g. no three colinear points)

@ How to deal with colinear points
on the boundary of the convex hull?

@ ! CGAL::right_turn( pl, p2, g ) (?) — code
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Degeneracies

@ In a first stage it can be useful to ignore
possible degenaracies

@ Assuming some “general configuration”
(e.g. no three colinear points)

@ How to deal with colinear points
on the boundary of the convex hull?

@ ! CGAL::right_turn( pl, p2, g ) (?) — code

@ Structural integrity for small perturbations
(e.g. floating-point inaccuracies). . .
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Convex hull representation

@ What is, exactly, the intended output representation?
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Convex hull representation

@ What is, exactly, the intended output representation?
@ Topological/relational information

@ Polygon sides in counterclockwise order

@ Related structural integrity issues. ..

@ However: the output adds only relational information
to the input! (selection + coupling of input points)
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Analysis of computational costs

@ |dentification of convex hull sides (brute force):
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Analysis of computational costs

@ Identification of convex hull sides (brute force):  O( n® )

@ Incidence between sides (brute force):
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Analysis of computational costs

@ Identification of convex hull sides (brute force): O( n® )

@ Incidence between sides (brute force):  O( n?)

@ Overall:  O(n?)
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Looking for improvements. ..

@ Can this approach be improved?
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@ Can this approach be improved?
@ Walking along the convex hull boundary

@ Starting vertex...
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Looking for improvements. ..

@ Can this approach be improved?
@ Walking along the convex hull boundary
@ Starting vertex...

@ Jarvis’ March (1973)
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Jarvis’ March

@ h-sided convex hull:
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Jarvis’ March

@ h-sided convex hull:  O( hn))
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Jarvis’ March

@ h-sided convex hull:  O( hn))
@ Worstcase: O(n?)

@ However, it may be efficient if h < n
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Jarvis’ March

@ h-sided convex hull:  O( hn))
@ Worstcase: O(n?)
@ However, it may be efficient if h < n

@ — code
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Is a better solution conceivable?

@ How much room to improve performances?
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Is a better solution conceivable?

@ How much room to improve performances?
@ Convex hull sides must be ordered. ..
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Is a better solution conceivable?

How much room to improve performances?

Convex hull sides must be ordered. ..

Let us consider the following point set:
P={(xi,x?):1<i<nAx;€R}

P’s convex hull sorts {x; : 1 <i<n} CR!

Lower bound to computational costs:
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Is a better solution conceivable?

@ How much room to improve performances?
@ Convex hull sides must be ordered. ..

@ Let us consider the following point set:
P={(x,x?):1<i<nAx;€R}

@ P’sconvex hull sorts {x;: 1 <i<n} CR!

@ Lower bound to computational costs:  Q( nlogn)
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Convex hull: Instrinsic complexity

@ Jarvis’ March is then interesting for h= O( logn )
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@ But what about the (expected) number of sides?

@ Clearly, it depends on point distribution

C. Mirolo Convex Hull



preamble

Convex hull: Instrinsic complexity

@ Jarvis’ March is then interesting for h= O( logn )
@ But what about the (expected) number of sides?
@ Clearly, it depends on point distribution

@ See, e.g. (students’ projects):
e Har-Peled (1997, 2011)
o Golin & Sedgewick (1988)

C. Mirolo Convex Hull



preamble

Har-Peled (1997, 2011)

@ Uniform point distribution in a disc:  O( ¥/n)
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Har-Peled (1997, 2011)

@ Uniform point distribution in a disc:  O( ¥/n)
@ Uniform distribution in a square/triangle:  O( logn)
@ Uniform distribution in a k-sided polygon:  O( klogn)

@ Jarvis’ March Ok for uniform distributions
in rectangles/triangles?
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Har-Peled (1997, 2011)

@ Uniform point distribution in a disc:  O( ¥/n)
@ Uniform distribution in a square/triangle:  O( logn)
@ Uniform distribution in a k-sided polygon:  O( klogn)

@ Jarvis’ March Ok for uniform distributions
in rectangles/triangles?

@ Or we could do something better
under similar assumptions?
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Har-Peled (2011)

Theorem 2.3 The expected number of vertices of the convex hull of n points, chosen uni-
formly and independently from the unit disk, is O(n'/?).

Proof: We claim that the expected area of the convex hull of n points, chosen uniformly
and independently from the unit disk, is at least 7 — O (n’z/ 3).

Indeed, let D denote the unit disk, and assume without loss of generality, that n = m?,
where m is a positive integer. Partition D into m sectors, Si,...,S,,, by placing m equally
spaced points on the boundary of D and connecting them to the origin. Let Dy, ..., D,,2
denote the m? disks centered at the origin, such that (i) D; = D, and (ii) Area(D;_;) —
Area(D;) = w/m?, for i = 2,...,m?% Let r; denote the radius of D;, fori =1,...,m?

Let Sij = (D;\ Diz1) NS;, and Sp2j = Dypye NSy, fori=1,....m> =1, j =1
The set S;; is called the i-th tile of the sector S;, and its area is w/n, for i = 1,...,m
J=1,...,m.

Sm.
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Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square
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Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O( n )
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Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O( n )

@ Expected number of remaining candidates: O( v/n)
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Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O( n )

@ Expected number of remaining candidates: O( v/n)

@ h=0(+/n) = Jarvis’Marchin O(v/n-v/n)=0(n)
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Golin & Sedgewick (1988)

@ Uniform distribution of n points in a square

@ Inner construction (quadrilateral) to remove
most points from further consideration in O( n )

@ Expected number of remaining candidates: O( v/n)
@ h=0(+/n) = Jarvis’Marchin O(v/n-v/n)=0(n)

@ We certainly can’t do better than this!
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Questions still to be addressed. ..

@ Can the optimal O( nlog n ) trend be achieved in general?
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Questions still to be addressed. ..

@ Can the optimal O( nlog n ) trend be achieved in general?

@ In the worst case?
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Questions still to be addressed. ..

@ Can the optimal O( nlog n ) trend be achieved in general?

@ In the worst case?

@ In the expected case,
but regardless of assumptions on the point distribution?
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Incremental algorithm degeneracies
correctness
computational costs

Outline

0 Incremental algorithm
@ degeneracies
@ correctness
@ computational costs
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Incremental algorithm degeneracies
correctness
computational costs

Graham’s scan

@ Lower hull first
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Incremental algorithm degeneracies
correctness
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Graham’s scan

@ Lower hull first

@ Adding points one by one, sorted left-to-right
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Incremental algorithm degeneracies
correctness
computational costs

Graham’s scan

@ Lower hull first
@ Adding points one by one, sorted left-to-right

@ Lower hull is updated after each addition
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Incremental algorithm degeneracies
correctness
computational costs

Scan step

@ From lower_hull( { p1, P2, P3, ..., Pi—1})---
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correctness
computational costs

Scan step
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Incremental algorithm degeneracies
correctness
computational costs

Scan step

@ From lower_hull( { p1, P2, P3, ..., Pi—1})---

o ... to lower_hull({ p1, P2, P3; ---, Pi-1, Pi })

@ Basic idea: Animation
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Incremental algorithm degeneracies
correctness
computational costs

Lower hull

@ After the i-th step, p; and p; belong to the lower hull
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Incremental algorithm degeneracies
correctness
computational costs

Lower hull

@ After the i-th step, p; and p; belong to the lower hull

@ p; and p, belong to both the lower and upper hull
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Incremental algorithm degeneracies
correctness
computational costs

Lower hull

@ After the i-th step, p; and p; belong to the lower hull
@ p; and p, belong to both the lower and upper hull

@ Lower hull construction: Code

C. Mirolo Convex Hull



Incremental algorithm degeneracies
correctness
computational costs

Upper hull

@ Upper hull: similar processing, by symmetry
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Upper hull

@ Upper hull: similar processing, by symmetry

@ E.g., adding points in backward order
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Upper hull

@ Upper hull: similar processing, by symmetry
@ E.g., adding points in backward order

@ Upper hull construction: Code
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Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Vertically aligned points

@ Lexicographic order
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Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Vertically aligned points

@ Lexicographic order

@ Geometric interpretation of lexicographic order
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Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Vertically aligned points

@ Lexicographic order
@ Geometric interpretation of lexicographic order

@ “Symbolic perturbation”
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Incremental algorithm degeneracies
correctness
computational costs

Geometric interpretation
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Incremental algorithm degeneracies
correctness
computational costs

Geometric interpretation
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Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Collinear hull vertices

@ Strict left turn
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Incremental algorithm degeneracies
correctness
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Degeneracies: Collinear hull vertices

@ Strict left turn

@ Which is the result?
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Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Collinear hull vertices

@ Strict left turn
@ Which is the result?

@ Animation (vertical/horizontal point alignments)
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Incremental algorithm degeneracies
correctness
computational costs

Degeneracies: Collinear hull vertices

@ Strict left turn
@ Which is the result?
@ Animation (vertical/horizontal point alignments)

@ Code details. ..
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Incremental algorithm degeneracies
correctness
computational costs

Robustness?

@ What about inaccurate floating-point calculations?
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Incremental algorithm degeneracies
correctness
computational costs

Robustness?

@ What about inaccurate floating-point calculations?

@ Structural integrity is preserved!
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Incremental algorithm degeneracies
correctness
computational costs

Robustness?

@ What about inaccurate floating-point calculations?
@ Structural integrity is preserved!

@ ... As opposed to the “brute force” algorithm
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Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:
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Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:

o After i-th step: Pi = {p1a P2, P3, ..., Pi-1, pl}
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Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:

o After i-th step: Pi = {p1a P2, P3, ..., Pi-1, pl}

@ No point of P; lies below (to the right of) lower_hull( P; )
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Incremental algorithm degeneracies
correctness
computational costs

lteration invariants

Lower hull construction invariant:

o After i-th step: Pi = {p1a P2, P3, ..., Pi-1, pl}

@ No point of P; lies below (to the right of) lower_hull( P; )

@ Jower_hull( P; ) is convex (left turn at each vertex)
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Incremental algorithm degeneracie:
correctness
computation

Proof: Induction step

no pc
sl

lower_hull( Pi_ ; ) convex

no point of P_ here
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Incremental algorithm degeneracies
correctness
computational costs

Proof: Induction step

no point in vertical
slab between
P. and p

lower_hull( Pi_ ; ) convex

no point of P._ here
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Incremental algorithm degeneracies
correctness
computational costs

Computational costs

@ Sorting points in lexicographic order: O( nlogn')
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Computational costs

@ Sorting points in lexicographic order: O( nlogn')

@ Adding points incrementally: O( n) for iterations
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Incremental algorithm degeneracies
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Computational costs

@ Sorting points in lexicographic order: O( nlogn')
@ Adding points incrementally: O( n) for iterations

@ Updating lower/upper hull: O( n) while iterations...
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Incremental algorithm degeneracies
correctness
computational costs

Computational costs

@ Sorting points in lexicographic order: O( nlogn')
@ Adding points incrementally: O( n) for iterations
@ Updating lower/upper hull: O( n) while iterations...

@ ... over all for iterations
(at each further iteration a hull vertex is removed!)
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Incremental algorithm degeneracies
correctness
computational costs

Optimality of nlogn

@ May any better algorithm be conceived?
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Incremental algorithm degeneracies
correctness
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Optimality of nlogn

@ May any better algorithm be conceived?

@ Sorting xq,Xo, ... Xp can be reduced to convex hull. . .
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Incremental algorithm degeneracies
correctness
computational costs

Optimality of nlogn

@ May any better algorithm be conceived?
@ Sorting xq,Xo, ... Xp can be reduced to convex hull. . .

@ Consider pointset P = { (x1,x2), (x2,X3), ..., (Xn,x2) }
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Incremental algorithm degeneracies
correctness
computational costs

Optimality of nlogn

@ May any better algorithm be conceived?
@ Sorting xq,Xo, ... Xp can be reduced to convex hull. . .
@ Consider pointset P = { (x1,x2), (x2,X3), ..., (Xn,x2) }

@ Convex hull (sorted vertices): nlogn lower bound
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Incremental algorithm degeneracies
correctness
computational costs

Variations on the theme. ..

@ Graham’s scan for “angular” order of points
(around a convex hull vertex)
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Incremental algorithm degeneracies
correctness
computational costs

Variations on the theme. ..

@ Graham’s scan for “angular” order of points
(around a convex hull vertex)

@ Animation ...
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Incremental algorithm degeneracies
correctness
computational costs

Variations on the theme. ..

@ Graham’s scan for “angular” order of points
(around a convex hull vertex)

@ Animation ...

@ ... Try it yourself!
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Outline

e Divide-et-impera algorithm
@ recursive approach
@ corrrectness
@ computational costs

C. Mirolo Convex Hull



recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically

@ Balanced bipartition through a vertical line

C. Mirolo Convex Hull



recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically
@ Balanced bipartition through a vertical line

@ Convex hull of the left half (recursively)
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Preliminarily, points are sorted lexicographically
@ Balanced bipartition through a vertical line
@ Convex hull of the left half (recursively)

@ Convex hull of the right half (recursively)
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Boundary walks to draw the connecting edges
(common tangent lines above and below)
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Boundary walks to draw the connecting edges
(common tangent lines above and below)

@ Cut & sew appropriate (half)chains of points
and connecting edges
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Preparata & Hong’s recursive approach

@ Boundary walks to draw the connecting edges
(common tangent lines above and below)

@ Cut & sew appropriate (half)chains of points
and connecting edges

@ Animation / Code
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Correctness

@ Recursive constructions are assumed to be correct
(and base cases are)
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Correctness

@ Recursive constructions are assumed to be correct
(and base cases are)

@ Walk(s) to determine connecting edges must come
to an end and the resulting chain will be convex
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Correctness

convex here

@-walk stops)

in this area .

/
whatever the
linked point *
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O( nlogn)
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O( nlogn)

@ Walks + cut & sew: O( n)
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O( nlogn)
@ Walks + cut & sew: O( n)

@ Well known equation: T(n) = 2T(n/2) + O(n)
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recursive approach
Divide-et-impera algorithm corrrectness
computational costs

Computational costs

@ Sorting points in lexicographic order: O( nlogn)
@ Walks + cut & sew: O( n)
@ Well known equation: T(n) = 2T(n/2) + O(n)

@ Solution: T(n) = O(nlogn)
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Outline

e Randomized algorithm
@ conflict graph
@ corrrectness
@ computational costs
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Randomization and conflict graph

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts
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Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions
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Randomization and conflict graph

Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions: identified by O(1) objects

@ Conflicts
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Randomization and conflict graph

Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions: identified by O(1) objects

@ Conflicts: relationship between regions and objects
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Randomization and conflict graph

Conflict-graph framework:
@ Objects: problem input data — set S
@ Regions: identified by O(1) objects

@ Conflicts: relationship between regions and objects

Result: Set of regions defined by the objects in S
without conflicts with these objects
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Conflict-graph

Assumptions (static approach):

@ Links in both directions
between regions and objects in conflict
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Conflict-graph

Assumptions (static approach):

@ Links in both directions
between regions and objects in conflict

@ Direct link from object to conflict region
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Conflict-graph

Assumptions (static approach):

@ Links in both directions
between regions and objects in conflict

@ Direct link from object to conflict region

@ Direct link from region to entry point
(“iterator”) to list of conflicting objects
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Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects
@ Regions

@ Conflicts
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Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions

@ Conflicts
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Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X

@ Conflicts
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Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X

@ Conflicts: [x;, x;] and x are in conflict if x € ]x;, x;[
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Conflict-graph as a general framework

Simple example: Sorting numbers
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X
@ Conflicts: [x;, x;] and x are in conflict if x € ]x;, x;[

Result: pairs of numbers identifying intervals without conflicts
are consecutive in the sorted sequence of X’s elements
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Conflict-graph as a general framework

Simple example: A different point of view on quick-sort?
@ Objects: real numbers x; from finite set X
@ Regions: intervals [x;, x;| between (two) numbers from X
@ Conflicts: [x;, x;] and x are in conflict if x € ]x;, x;[

Result: pairs of numbers identifying intervals without conflicts
are consecutive in the sorted sequence of X’s elements
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Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts
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Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions

@ Conflicts
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Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts
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Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector
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Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector

Result: edge chain H such that no point p € P lies outside H
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Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector

Result: edge chain H such that no point p € P lies outside H
... Animation
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Conflict-graph approach to the convex hull

Conflict-graph framework:
@ Objects: points p; from finite set P
@ Regions: outer “sector” of (current) convex hull edge p;p;

@ Conflicts: when p € P falls in one such outer sector

Result: edge chain H such that no point p € P lies outside H
... Animation ... incremental approach, indeed
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Randomized incremental convex hull algorithm
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C. Mirolo Convex Hull



conflict graph
corrrectness
Randomized algorithm computational costs

Randomized incremental convex hull algorithm
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Randomized incremental convex hull algorithm
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Conflict-graph approach to the convex hull

Conflict-graph framework:
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Points p; from finite set P

Conflict-graph framework:

@ Objects
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Outer sector of hull edge p;p;

Conflict-graph framework:
@ Objects

@ Regions
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p € P falls in one such outer sector

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts
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p € P falls in one such outer sector

Conflict-graph framework:
@ Objects
@ Regions

@ Conflicts

Result: no pointp € P
lies outside H,

C. Mirolo Convex Hull



conflict graph
corrrectness
Randomized algorithm computational costs

Correctness

@ Straightforward
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Correctness

@ Straightforward

@ Walk(s) to get rid of non-convex vertices must come
to an end and the updated hull will be convex
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Computational costs

At each stage, to update the convex hull from Hy to Hy 1,
the algorithm accomplishes three main tasks:

@ It removes a few “old” edges from Hj
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Computational costs

At each stage, to update the convex hull from Hy to Hy 1,
the algorithm accomplishes three main tasks:

@ It removes a few “old” edges from Hj

@ |t adds two “new” edges to build Hy 1
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Computational costs

At each stage, to update the convex hull from Hy to Hy 1,
the algorithm accomplishes three main tasks:

@ It removes a few “old” edges from Hj
@ |t adds two “new” edges to build Hy 1
@ It re-arranges the links of the conflict graph between

the outer regions of the new edges and all the points
in the conflict lists of the removed edges
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Removing and creating edges

@ Only edges that have been created can be removed
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Removing and creating edges

@ Only edges that have been created can be removed

@ Two edges are created at each of the O(n) stages
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Removing and creating edges

@ Only edges that have been created can be removed
@ Two edges are created at each of the O(n) stages

@ Hence, the overall costs of both
removing and creating edges are bound by O(n)
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Updating the conflict graph

@ Expected cost
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Updating the conflict graph

@ Expected cost

@ Approach: backward analysis
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Updating the conflict graph

@ Expected cost
@ Approach: backward analysis

@ Points which do not fall outside Hi at some stage
will no longer be taken into account
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Updating the conflict graph

@ Expected cost
@ Approach: backward analysis

@ Points which do not fall outside Hi at some stage
will no longer be taken into account

@ Focus on a set P, C P of k points (k-th stage) ...
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Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k
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Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k

@ Let p be this last added point
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Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k

@ Let p be this last added point

@ Then, either pis interior to Hk (no related processing)
or p is a vertex of Hy with incident edges € and ¢”
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Backward analysis

@ Because of the randomization, each of the k points in Py
may be the last added with equal probability 1/k

@ Let p be this last added point

@ Then, either pis interior to Hk (no related processing)
or p is a vertex of Hy with incident edges € and ¢”

@ Graph links re-arranged at the k-th stage
(only) for points in the conflict lists of & and €” . ..
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Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”
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Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
2

1 ! ! 1
— < —
E o+ = E 2 0(1) Oo(n)
pEPk ecHj

since the conflict lists contain n — k < n points overall
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Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
2

1 ! ! 1
— < —
E P our+1r = E 2 O(I) O(n)
pE Py ecHj

since the conflict lists contain n — k < n points overall’

Tactually // + I may underestimate the costs at stage k,
but O(n) recovers anything lost, or...
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Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
Stor+ry = LY 200 < 2om)
k k -k
pe Py ecHyg

since the conflict lists contain n — k < n points overall’

Tactually // + I may underestimate the costs at stage k,
but O(n) recovers anything lost, or...
only re-assigned conflicts need to be accounted for,
since a point can be removed from the conflict lists
at most once
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Backward analysis

@ ... the cost of re-arranging links at stage k is O(/ + I"),
where /', I are the sizes of the conflict lists of &, &”

@ Then, the expected cost of the k-th stage is
Stor+ry = LY 200 < 2om)
k k -k
pe Py ecHyg

since the conflict lists contain n — k < n points overall’

Tactually // + I may underestimate the costs at stage k,
but O(n) recovers anything lost, or...
only re-assigned conflicts need to be accounted for,
since a point can be removed from the conflict lists
atmostonce — O(n) overall.
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Backward analysis

@ Expected cost of the k-th stage: O(n)/k
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Backward analysis

@ Expected cost of the k-th stage: O(n)/k

@ Notice that O(n)/k does not depend on the specific Py,
but the result would be the same for any Px C P of size k
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Backward analysis

@ Expected cost of the k-th stage: O(n)/k

@ Notice that O(n)/k does not depend on the specific Py,
but the result would be the same for any Px C P of size k

@ O(n)/k is the expected cost of the k-th stage. ..
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Backward analysis

@ O(n)/k is the expected cost of the k-th stage
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Backward analysis

@ O(n)/k is the expected cost of the k-th stage

@ Then, the expected overall cost of re-arranging links is

>0 - om g
k=4

k=4

i.,e. O(nlogn)
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Backward analysis

@ O(n)/k is the expected cost of the k-th stage

@ Then, the expected overall cost of re-arranging links is

>0 - om g
k=4

k=4

i.e. O(nlogn) [1,%,%, ce %, ... harmonic series ]
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Backward analysis

@ O(n)/k is the expected cost of the k-th stage

@ Then, the expected overall cost of re-arranging links is

>0 - om g
k=4

k=4

g
—_
—_

i.e. O(nlogn) [1,5,5, -5 %» ---  harmonic series ]

@ ...which dominates the running time of the algorithm
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Log trend of the harmonic series: Why?
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Log trend of the harmonic series: Why?
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7273747

C. Mirolo Convex Hull

{



conflict graph
corrrectness

Randomized algorithm computational costs

Log trend of the harmonic series: Why?
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Incremental algorithm: Worst-case point sequence
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Semi-dynamic algorithms

Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph
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Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph

@ Influence graph: tree-like, incrementally updated structure
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Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph
@ Influence graph: tree-like, incrementally updated structure

@ static algorithm —  semi-dynamic algorithm
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Semi-dynamic algorithms

Static vs. semi-dynamic algorithms

@ Conflict graph — influence graph
@ Influence graph: tree-like, incrementally updated structure
@ static algorithm —  semi-dynamic algorithm

@ Same computational trend, for random input data,
provided the cost of each graph update is O( logn)

C. Mirolo Convex Hull



Semi-dynamic algorithms

Devillers (1996)
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Semi-dynamic convex hull algorithm: Embedded tree
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Semi-dynamic convex hull algorithm: Embedded tree
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Semi-dynamic algorithms

Semi-dynamic convex hull algorithm: Embedded tree

created ray-nodes are
never removed from trees
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Semi-dynamic algorithms

Semi-dynamic convex hull algorithm: Embedded tree

created ray-nodes are
never removed from trees
even if the ray’s origin

is no longer a vertex

of the convex hull
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Semi-dynamic algorithm: Point location
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Semi-dynamic algorithm: Point location
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Semi-dynamic algorithm: Point location
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Semi-dynamic algorithm: Point location
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Miscellaneous results

Outline

e Related results
@ Convex hull in 3D
@ Miscellaneous results
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Convex hull in 3D

Related results
Miscellaneous results

Convex hull in 3D

@ No straightforward 3D generalization of Graham’s scan
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Convex hull in 3D

Related results
Miscellaneous results

Convex hull in 3D

@ No straightforward 3D generalization of Graham’s scan

@ Divide-et-impera approach:
Preparata & Hong (1977), O( nlogn)
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Convex hull in 3D
Miscellaneous results

Related results

Convex hull in 3D

@ No straightforward 3D generalization of Graham’s scan

@ Divide-et-impera approach:
Preparata & Hong (1977), O( nlogn)

@ Randomized incremental approach:
E.g. see survey in Devillers (1996), O( nlogn)
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Convex hull in 3D
Miscellaneous results

Related results

Preparata & Hong (1977)

Fig. 4. Merging two convex hulls. Construction of 7.
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph

° V+F=E+C+1
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph

© V+F=E+C+1

@ Proof. adding vertex or edge connecting two vertices
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Relation between # of vertices (V), edges (E), faces (F),
and connected components (C) of a planar graph

° V+F=E+C+1
@ Proof. adding vertex or edge connecting two vertices

@ Basecase (1vertex): V=1, F=1, E=0, C=1
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1
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Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..
@ Adding a disconnected vertex:
Vi=V+1, F=F E'=E, C'=C+1
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..

@ Adding a disconnected vertex:
Vi=V+1, FF=F, E'=E, C'=C+1

@ Adding an edge between disconnected components:
Vi=V,F=F EE=E+1,C=C-1
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for planar graphs

@ Invariant: V4+F=E+C+1

@ Inductive step. ..

@ Adding a disconnected vertex:
Vi=V+1, FF=F, E'=E, C'=C+1

@ Adding an edge between disconnected components:
Vi=V,F=F EE=E+1,C=C-1

@ Adding an edge within a connected component:
V=V, F=F+4+1, EE=E+1,C =C
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2

@ No disconnected vertices: V < 2E
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2

@ No disconnected vertices: V < 2E
@ No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

@ Invariant (C = 1): V4+F=E+2

@ No disconnected vertices: V < 2E
@ No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face
@ Hence: E=V+F-2<V+2E/3
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

Invariant (C = 1): V4+F=E+2

No disconnected vertices: V <2E

No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face
Hence: E=V+F-2<V+2E/3
= E<3V and F <2V
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Convex hull in 3D

Related results
Miscellaneous results

Remark: Euler’s formula for polyhedra

Invariant (C = 1): V4+F=E+2

No disconnected vertices: V <2E

No two edges between the same pair of vertices:
F <2E/3
i.e., 2E halfedges and > 3 halfedges per face
Hence: E=V+F-2<V+2E/3
= E<3V and F <2V
To sum up:
V=O(E), E=0(V), F=0(V)=0(E)
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Convex hull'in 3D

Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)
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Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)
e simple to code
e running time: O( nh)

e h=hull vertices: may it be convenient?
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Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)
e simple to code
e running time: O( nh)

e h=hull vertices: may it be convenient?

@ Optimal output sensitive algorithms
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Convex hull'in 3D

Related results .
Miscellaneous results

More about convex hull algorithms

@ Jarvis’ march (2D) / gift wrapping (3D)
e simple to code
e running time: O( nh)

e h=hull vertices: may it be convenient?

@ Optimal output sensitive algorithms
e E.g., Chan (1996)
e running time: O( nlogh)

@ more complex structure
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Epilogue. ..

“Convex hull is the favorite paradigm
of computational geometers.

Although the description of the problem is
fairly simple, its solution takes into account
all aspects of computational geometry.”

Olivier Devillers (1996)
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