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Convex hull

Given a set P of n points in the plane (space)

“Smaller” convex region containing all points in P

Region = convex polygon (polyhedron)
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Convex hull: Motivations

“Classical” problem in the field

Easy to state. . .

. . . and easy to solve, even efficiently

Amenable to application of different
general algorithmic approaches to CG problems
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From definition to operational definition

Convex hull =
⋂ {C : P ⊂ C}, C convex region

Convex hull =
⋂ {H : P ⊂ H}, H halfplane

Convex hull =
⋂ {Hpq : p,q ∈ P ∧ P ⊂ Hpq}

Directed segment pq: halfplane interior on its left

Minimal (and finite!) set of halfplanes
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From operational definition to “brute force” algorithm

pq bounds the convex hull ⇔ P \ {p,q} on the left of pq

CGAL::left_turn( p1, p2, q ) → code

When applied to a (small) set of random points
it seems to work properly

But what about the algorithm’s robustness?

Indeed, a more accurate analysis is usually required
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Degeneracies

In a first stage it can be useful to ignore
possible degenaracies

Assuming some “general configuration”
(e.g. no three colinear points)

How to deal with colinear points
on the boundary of the convex hull?

! CGAL::right_turn( p1, p2, q ) (?) → code

Structural integrity for small perturbations
(e.g. floating-point inaccuracies). . .
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Convex hull representation

What is, exactly, the intended output representation?

Topological/relational information

Polygon sides in counterclockwise order

Related structural integrity issues. . .

However: the output adds only relational information
to the input! (selection + coupling of input points)
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Analysis of computational costs

Identification of convex hull sides (brute force):

Incidence between sides (brute force):

Overall:
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Looking for improvements. . .

Can this approach be improved?

Walking along the convex hull boundary

Starting vertex. . .

Jarvis’ March (1973)
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Jarvis’ March

h-sided convex hull:

Worst case:

However, it may be efficient if h ≪ n

→ code
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Is a better solution conceivable?

How much room to improve performances?

Convex hull sides must be ordered. . .

Let us consider the following point set:

P = {(xi , x2
i ) : 1 ≤ i ≤ n ∧ xi ∈ R}

P ’s convex hull sorts {xi : 1 ≤ i ≤ n} ⊂ R !

Lower bound to computational costs:
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Is a better solution conceivable?

How much room to improve performances?

Convex hull sides must be ordered. . .

Let us consider the following point set:

P = {(xi , x2
i ) : 1 ≤ i ≤ n ∧ xi ∈ R}

P ’s convex hull sorts {xi : 1 ≤ i ≤ n} ⊂ R !

Lower bound to computational costs: Ω( n log n )
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Convex hull: Instrinsic complexity

Jarvis’ March is then interesting for h = O( log n )

But what about the (expected) number of sides?

Clearly, it depends on point distribution

See, e.g. (students’ projects):
Har-Peled (1997, 2011)
Golin & Sedgewick (1988)
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Har-Peled (1997, 2011)

Uniform point distribution in a disc: O( 3
√

n )

Uniform distribution in a square/triangle: O( log n )

Uniform distribution in a k -sided polygon: O( k log n )

Jarvis’ March Ok for uniform distributions
in rectangles/triangles?

Or we could do something better
under similar assumptions?
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Har-Peled (2011)
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Figure 1: Illustrating the proof that bounds the number of tiles exposed by T inside Sj

denote the m2 disks centered at the origin, such that (i) D1 = D, and (ii) Area(Di−1) −
Area(Di) = π/m2, for i = 2, . . . , m2. Let ri denote the radius of Di, for i = 1, . . . , m2.

Let Si,j = (Di \ Di+1) ∩ Sj , and Sm2,j = Dm2 ∩ Sj , for i = 1, . . . , m2 − 1, j = 1, . . . , m.
The set Si,j is called the i-th tile of the sector Sj, and its area is π/n, for i = 1, . . . , m2,
j = 1, . . . , m.

Let N be a random sample of n points chosen uniformly and independently from D.
Let Xj denote the first index i such that N ∩ Si,j ≠ ∅, for j = 1, . . . , m. For a fixed
j ∈ {1, . . . , m}, the probability that Xj = k is upper-bounded by the probability that
the tiles S1,j, . . . , S(k−1),j do not contain any point of N ; namely, by

(
1 − k−1

n

)n
. Thus,

P [Xj = k] ≤
(
1 − k−1

n

)n ≤ e−(k−1), since 1 − x ≤ e−x, for x ≥ 0. Thus,

E
[
Xj

]
=

m2∑

k=1

kP [Xj = k] ≤
m2∑

k=1

ke−(k−1) = O(1),

for j = 1, . . . , m.
Let Ko denote the convex hull of N ∪ {o}, where o is the origin. The tile Si,j is exposed

by a set K, if Si,j \ K ≠ ∅. We claim that at most Xj−1 + Xj+1 + O(1) tiles are exposed by
Ko in the sector Sj , for j = 1, . . . , m (where we put X0 = Xm, Xm+1 = X1).

Indeed, let w = w(N, j) = max(Xj−1, Xj+1), and let p, q be the two points in Sj−1,w, Sj+1,w,
respectively, such that the number of sets exposed by the triangle T = △opq, in the sector
Si, is maximal. Both p and q lie on ∂Dw+1 and on the external radii bounding Sj−1 and
Sj+1, as shown in Figure 1. Clearly, any tile which is exposed in Sj by Ko is also exposed
by T . Let s denote the segment connecting the middle of the base of T to its closest point
on ∂Dw. The number of tiles in Sj exposed by T is bounded by max (Xj−1, Xj+1), plus the
number of tiles intersecting the segment s. The length of s is

|oq| − |oq| cos

(
3

2
· 2π

m

)
≤ 1 − cos

(
3

2
· 2π

m

)
≤ 1

2

(
3π

m

)2

=
4.5π2

m2
,

since cos(x) ≥ 1 − x2/2, for x ≥ 0.
On the other hand, ri+1 − ri ≥ ri − ri−1 ≥ 1/(2m2), for i = 2, . . . , m2. Thus, the segment

s intersects at most ⌈||s||/(1/(2m2))⌉ = ⌈9π2⌉ = 89 tiles, and we have that the number of

4

2 On the Complexity of the Convex Hull of a Random

Point Set

In this section, we show that the expected number of vertices of the convex hull of n points,
chosen uniformly and independently from a disk, is O(n1/3). Applying the same technique to
a convex polygon with k sides, we prove that the expected number of vertices of the convex
hull is O(k log n).2 The following lemma, shows that the larger the expected area outside
the random convex hull, the larger is the expected number of vertices of the convex hull.

Lemma 2.1 Let C be a bounded convex set in the plane, such that the expected area of the
convex hull of n points, chosen uniformly and independently from C, is at least (1 − f(n)) Area(C),
where 1 ≥ f(n) ≥ 0, for n ≥ 0. Then the expected number of vertices of the convex hull is
≤ nf(n/2).

Proof: Let N be a random sample of n points, chosen uniformly and independently from
C. Let N1 (resp. N2) denote the set of the first (resp. last) n/2 points of N . Let V1 (resp.
V2) denote the number of vertices of H = CH(N1 ∪N2) that belong to N1 (resp. N2), where
CH(N1 ∪ N2) = ConvexHull(N1 ∪ N2).

Clearly, the expected number of vertices of C is E[V1] + E[V2]. On the other hand,

E
[
V1

∣∣∣N2

]
≤ n

2

(
Area(C) − Area(CH(N2))

Area(C)

)
,

since V1 is bounded by the expected number of points of N1 falling outside CH(N2).
We have

E[V1] = EN2

[
E[V1|N2]

]
≤ E

[
n

2

(
Area(C) − Area(CH(N2))

Area(C)

)]

≤ n

2
f(n/2),

since E[X ] = EY [E[X|Y ]] for any two random variables X, Y . Thus, the expected number
of vertices of H is E[V1] + E[V2] ≤ nf(n/2).

Remark 2.2 Lemma 2.1 is known as Efron’s Theorem. See [Efr65].

Theorem 2.3 The expected number of vertices of the convex hull of n points, chosen uni-
formly and independently from the unit disk, is O(n1/3).

Proof: We claim that the expected area of the convex hull of n points, chosen uniformly
and independently from the unit disk, is at least π − O

(
n−2/3

)
.

Indeed, let D denote the unit disk, and assume without loss of generality, that n = m3,
where m is a positive integer. Partition D into m sectors, S1, . . . , Sm, by placing m equally
spaced points on the boundary of D and connecting them to the origin. Let D1, . . . , Dm2

2As already noted, these results are well known ([RS63, Ray70, PS85]), but we believe that the elementary
proofs given here are simpler and more intuitive.
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Let N be a random sample of n points chosen uniformly and independently from D.
Let Xj denote the first index i such that N ∩ Si,j ≠ ∅, for j = 1, . . . , m. For a fixed
j ∈ {1, . . . , m}, the probability that Xj = k is upper-bounded by the probability that
the tiles S1,j, . . . , S(k−1),j do not contain any point of N ; namely, by

(
1 − k−1

n

)n
. Thus,

P [Xj = k] ≤
(
1 − k−1

n

)n ≤ e−(k−1), since 1 − x ≤ e−x, for x ≥ 0. Thus,

E
[
Xj

]
=

m2∑

k=1

kP [Xj = k] ≤
m2∑

k=1

ke−(k−1) = O(1),

for j = 1, . . . , m.
Let Ko denote the convex hull of N ∪ {o}, where o is the origin. The tile Si,j is exposed

by a set K, if Si,j \ K ≠ ∅. We claim that at most Xj−1 + Xj+1 + O(1) tiles are exposed by
Ko in the sector Sj , for j = 1, . . . , m (where we put X0 = Xm, Xm+1 = X1).

Indeed, let w = w(N, j) = max(Xj−1, Xj+1), and let p, q be the two points in Sj−1,w, Sj+1,w,
respectively, such that the number of sets exposed by the triangle T = △opq, in the sector
Si, is maximal. Both p and q lie on ∂Dw+1 and on the external radii bounding Sj−1 and
Sj+1, as shown in Figure 1. Clearly, any tile which is exposed in Sj by Ko is also exposed
by T . Let s denote the segment connecting the middle of the base of T to its closest point
on ∂Dw. The number of tiles in Sj exposed by T is bounded by max (Xj−1, Xj+1), plus the
number of tiles intersecting the segment s. The length of s is

|oq| − |oq| cos

(
3

2
· 2π

m

)
≤ 1 − cos

(
3

2
· 2π

m

)
≤ 1

2

(
3π

m

)2

=
4.5π2

m2
,

since cos(x) ≥ 1 − x2/2, for x ≥ 0.
On the other hand, ri+1 − ri ≥ ri − ri−1 ≥ 1/(2m2), for i = 2, . . . , m2. Thus, the segment

s intersects at most ⌈||s||/(1/(2m2))⌉ = ⌈9π2⌉ = 89 tiles, and we have that the number of

4
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Incremental algorithm
Divide-et-impera algorithm

Randomized algorithm
preamble

Golin & Sedgewick (1988)

Uniform distribution of n points in a square

Inner construction (quadrilateral) to remove
most points from further consideration in O( n )

Expected number of remaining candidates: O(
√

n )

h = O(
√

n ) ⇒ Jarvis’ March in O(
√

n · √n ) = O( n )

We certainly can’t do better than this!
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Questions still to be addressed. . .

Can the optimal O( n log n ) trend be achieved in general?

In the worst case?

In the expected case,
but regardless of assumptions on the point distribution?
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Graham’s scan

Lower hull first

Adding points one by one, sorted left-to-right

Lower hull is updated after each addition
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Scan step

From lower_hull( { p1, p2, p3, . . . , pi−1 } ) . . .

. . . to lower_hull( { p1, p2, p3, . . . , pi−1, pi } )

Basic idea: Animation
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Lower hull

After the i-th step, p1 and pi belong to the lower hull

p1 and pn belong to both the lower and upper hull

Lower hull construction: Code
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Upper hull: similar processing, by symmetry

E.g., adding points in backward order

Upper hull construction: Code
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Lexicographic order

Geometric interpretation of lexicographic order

“Symbolic perturbation”
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Strict left turn

Which is the result?

Animation (vertical/horizontal point alignments)

Code details. . .
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Robustness?

What about inaccurate floating-point calculations?

Structural integrity is preserved!

. . . As opposed to the “brute force” algorithm
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Iteration invariants

Lower hull construction invariant:

After i-th step: Pi = { p1, p2, p3, . . . , pi−1, pi }

No point of Pi lies below (to the right of) lower_hull( Pi )

lower_hull( Pi ) is convex (left turn at each vertex)
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Proof: Induction step

p
i–1

p
i

no point of P    here
i–1

p    and p

lower_hull( P    ) convex

i–1 i

no point in vertical
slab between

i–1

p
i–1

p
i

no point of P    here
i–1

p    and p

lower_hull( P    ) convex

i–1 i

no point in vertical
slab between

i–1
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Computational costs

Sorting points in lexicographic order: O( n log n )

Adding points incrementally: O( n ) for iterations

Updating lower/upper hull: O( n ) while iterations. . .

. . . over all for iterations
(at each further iteration a hull vertex is removed!)
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Optimality of n log n

May any better algorithm be conceived?

Sorting x1, x2, . . . xn can be reduced to convex hull. . .

Consider point set P = { (x1, x2
1 ), (x2, x2

2 ), . . . , (xn, x2
n ) }

Convex hull (sorted vertices): n log n lower bound
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Variations on the theme. . .

Graham’s scan for “angular” order of points
(around a convex hull vertex)

Animation . . .

. . . Try it yourself!
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Preparata & Hong’s recursive approach

Preliminarily, points are sorted lexicographically

Balanced bipartition through a vertical line

Convex hull of the left half (recursively)

Convex hull of the right half (recursively)
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Preparata & Hong’s recursive approach

Boundary walks to draw the connecting edges
(common tangent lines above and below)

Cut & sew appropriate (half)chains of points
and connecting edges

Animation / Code
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Correctness

Recursive constructions are assumed to be correct
(and base cases are)

Walk(s) to determine connecting edges must come
to an end and the resulting chain will be convex
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convex here

whatever the
linked point
in this area

(up-walk stops)
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Computational costs

Sorting points in lexicographic order: O( n log n )

Walks + cut & sew: O( n )

Well known equation: T ( n ) = 2 T ( n/2 ) + O( n )

Solution: T ( n ) = O( n log n )
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Randomization and conflict graph

Conflict-graph framework:

Objects: problem input data — set S

Regions: identified by O(1) objects

Conflicts: relationship between regions and objects

Result: Set of regions defined by the objects in S
without conflicts with these objects
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Conflict-graph as a general framework

Simple example: Sorting numbers

Objects: real numbers xi from finite set X

Regions: intervals [xi , xj ] between (two) numbers from X

Conflicts: [xi , xj ] and x are in conflict if x ∈ ]xi , xj [

Result: pairs of numbers identifying intervals without conflicts
are consecutive in the sorted sequence of X ’s elements
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Simple example: A different point of view on quick-sort?
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Regions: intervals [xi , xj ] between (two) numbers from X

Conflicts: [xi , xj ] and x are in conflict if x ∈ ]xi , xj [

Result: pairs of numbers identifying intervals without conflicts
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Conflict-graph approach to the convex hull

Conflict-graph framework:

Objects: points pi from finite set P

Regions: outer “sector” of (current) convex hull edge pipj

Conflicts: when p ∈ P falls in one such outer sector

Result: edge chain H such that no point p ∈ P lies outside H
. . . Animation . . . incremental approach, indeed
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Result: no point p ∈ P
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Correctness

Straightforward

Walk(s) to get rid of non-convex vertices must come
to an end and the updated hull will be convex
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Computational costs

At each stage, to update the convex hull from Hk to Hk+1,
the algorithm accomplishes three main tasks:

It removes a few “old” edges from Hk

It adds two “new” edges to build Hk+1

It re-arranges the links of the conflict graph between
the outer regions of the new edges and all the points
in the conflict lists of the removed edges
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Removing and creating edges

Only edges that have been created can be removed

Two edges are created at each of the O(n) stages

Hence, the overall costs of both
removing and creating edges are bound by O(n)
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Updating the conflict graph

Expected cost

Approach: backward analysis

Points which do not fall outside Hk at some stage
will no longer be taken into account

Focus on a set Pk ⊂ P of k points (k -th stage) . . .

C. Mirolo Convex Hull



Incremental algorithm
Divide-et-impera algorithm

Randomized algorithm

conflict graph
corrrectness
computational costs

Updating the conflict graph

Expected cost

Approach: backward analysis

Points which do not fall outside Hk at some stage
will no longer be taken into account

Focus on a set Pk ⊂ P of k points (k -th stage) . . .

C. Mirolo Convex Hull



Incremental algorithm
Divide-et-impera algorithm

Randomized algorithm

conflict graph
corrrectness
computational costs

Updating the conflict graph

Expected cost

Approach: backward analysis

Points which do not fall outside Hk at some stage
will no longer be taken into account

Focus on a set Pk ⊂ P of k points (k -th stage) . . .

C. Mirolo Convex Hull



Incremental algorithm
Divide-et-impera algorithm

Randomized algorithm

conflict graph
corrrectness
computational costs

Updating the conflict graph

Expected cost

Approach: backward analysis

Points which do not fall outside Hk at some stage
will no longer be taken into account

Focus on a set Pk ⊂ P of k points (k -th stage) . . .

C. Mirolo Convex Hull



Incremental algorithm
Divide-et-impera algorithm

Randomized algorithm

conflict graph
corrrectness
computational costs

Backward analysis

Because of the randomization, each of the k points in Pk
may be the last added with equal probability 1/k

Let p be this last added point

Then, either p is interior to Hk (no related processing)
or p is a vertex of Hk with incident edges e′ and e′′

Graph links re-arranged at the k -th stage
(only) for points in the conflict lists of e′ and e′′ . . .
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Backward analysis

. . . the cost of re-arranging links at stage k is O(l ′ + l ′′),
where l ′, l ′′ are the sizes of the conflict lists of e′, e′′

Then, the expected cost of the k -th stage is

∑

p∈Pk

1
k

O(l ′ + l ′′) =
1
k

∑

e∈Hk

2 O(l) ≤ 2
k

O(n)

since the conflict lists contain n − k ≤ n points overall1

1actually l ′ + l ′′ may underestimate the costs at stage k ,
but O(n) recovers anything lost, or. . .
only re-assigned conflicts need to be accounted for,
since a point can be removed from the conflict lists
at most once → O(n) overall.
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Backward analysis

Expected cost of the k -th stage: O(n)/k

Notice that O(n)/k does not depend on the specific Pk ,
but the result would be the same for any Pk ⊂ P of size k

O(n)/k is the expected cost of the k -th stage. . .
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Backward analysis

O(n)/k is the expected cost of the k -th stage

Then, the expected overall cost of re-arranging links is

n∑

k=4

O(n)
k

= O(n)
n∑

k=4

1
k

i.e. O( n log n ) [ 1, 1
2 ,

1
3 , . . . ,

1
k , . . . harmonic series ]

. . . which dominates the running time of the algorithm
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Log trend of the harmonic series: Why?
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Incremental algorithm: Worst-case point sequence
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Static vs. semi-dynamic algorithms

Conflict graph → influence graph

Influence graph: tree-like, incrementally updated structure

static algorithm → semi-dynamic algorithm

Same computational trend, for random input data,
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insertion of x4

Figure 3: The influence graph

2.2 The historical approach

In fact, the conflict graph can be replaced by another structure which, instead
of storing the conflicts of non yet inserted objects, locates the regions in conflict
with the new object. This approach yields semi-dynamic algorithms, objects
are not known in advance but only when they are inserted. The basic idea
of the influence graph [BDS+92] consists in remembering the history of the
construction. When the insertion of a new object makes the conflicting regions
disappear, they are not deleted but just marked inactive. The regions created
are linked to existing regions in the influence graph in order to locate further
conflicts. This idea of using the history appeared in computational geometry
with the Delaunay tree [BT86, BT93] and was used in various other works for
example [Tei93, Sei91, GKS92].

We now detail the case of sorting. The influence graph is in this case a binary
tree whose nodes are intervals, the two sons of a node correspond to the splitting
of that interval into two sub-intervals. When a new number xk+1 is inserted, it
is located in the binary tree, the leaf containing it becomes an internal node, its
interval [xi, xj ] is split into two with respect to the new inserted number (see
Figure 3). Thus for sorting, the influence graph is nothing else than an usual
binary search tree (without balancing scheme). In fact, the comparisons done in
the two algorithms are exactly the same. If xi and xj , i < j must be compared,
they are compared during the insertion of xi in the conflict graph and during
the insertion of xj in the influence graph. This likeness between the conflict and
influence graphs is general, the conflict tests computed are the same, they are
only delaied to achieve semi-dynamic algorithms.

2.3 Complexity

The algorithms above, as they are presented, are not randomized. They are
incremental algorithms, updating a result (the set of regions without conflict)
each time a new object is inserted. If a classical complexity analysis (in the
worst case) is done, results are very bad, because the insertion of a new object
may change a lot of things in the current result.

Now, we will randomize the algorithm, that is introduce some randomness,

5
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Convex hull in 3D

No straightforward 3D generalization of Graham’s scan

Divide-et-impera approach:
Preparata & Hong (1977), O( n log n )

Randomized incremental approach:
E.g. see survey in Devillers (1996), O( n log n )
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and edges of either A or B form a planar graph: if we 
exclude degeneracies, they form a triangulation. Thus 
we know that the numbers of edges of A and B are at 
most (3p -- 6) and (3q -- 6), respectively, by Euler's 
theorem (see e.g. [6, p. 189]). 

The convex hull CH(A, B) of A and B may be 
obtained by the following operations (see Figure 4 
for an intuitive illustration): 
(1) Construction of a "cylindrical" triangulation 3, 

which is tangent to A and B along two circuits EA 
and EB, respectively. 

(2) Removal both from A and from B of the respective 
portions which have been "obscured" by 3. 

Here, the terms "cylindrical" and "obscured" have 
not been formally defined; rather, they have been used 
in their intuitive connotations, as suggested by Figure 4. 

Alternatively to the generalization of the two- 
dimensional procedure, the construction of 3 can be 
viewed as an application of the "gift wrapping" prin- 
ciple of Chand and Kapur [2] to the merging of two 
convex polyhedra. The gift wrapping principle works 
as follows. Let C be a polyhedron with n vertices. 
Assuming a face f of C is given, select an edge of f.  
This edge and every vertex of C determine a plane; a 
new face of C belongs to the plane forming with f the 
largest convex angle. Thus the application of the gift 
wrapping principle to the construction of the convex 

Fig. 4. Merging two convex hulls. Construction of 3. 

Xl 
/ "  

i 

~' X 2 

x 3 

Fig. 5. Fragment of 3 described by the string alblb2a2a3a4b~. 

_ _  EB 

J 

I --- EA 

91 

hull, as described, requires work O(n) for each new 
face of C to be determined, yielding a total work 
O(n2). We will show below that the properties of con- 
vex hulls can be exploited so that merging two convex 
polyhedra by gift wrapping can be done in time at 
most linear in n. 

The initial step in the construction of the triangula- 
tion 3 is the determination of an edge of 3. This is 
easily done by referring the projections A' and B' 
on the plane (xl ,  x~) (see Figure 4) of the two poly- 
hedra A and B, respectively. We can assume inductively 
that the convex hulls CH(A') and CH(B') are avail- 
able at this stage (obviously, CH(A') and CH(B') 
are nonintersecting): indeed, applying the merge 
algorithm for planar sets described in Section 3 to 
CH(A') and CH(B'), we obtain two segments tangent 
to both CH(A') and CH(B'). This operation, which 
runs in time at most O(pq-q), not only extends the 
inductive assumption but also yields a segment whose 
extreme points are the projections of extreme points of 
an edge of 3. Thus an edge of 3 has been determined 
and the construction can be started. 

We now describe the advancing mechanism of the 
procedure. If we temporarily exclude degeneracies, 
i.e. we assume that each face of 3 is a triangle, each 
step determines a new vertex, whereby a new face is 
added to 3. We shall discuss later the case in which the 
restriction on degeneracies is removed. In our illustra- 
tion (Figure 4), a2 and (a2, b2, al) are, respectively, the 
vertex and the face of 3 constructed in the previous 
step. The advancing mechanism makes reference to 
the most recently constructed face of 3. To initialize 
the procedure, the reference face is chosen as one of 
the half planes parallel to the x~ axis, containing the 
initially determined edge and delimited by it. Let (a: ,  
bs, al) be the reference face for the current step. We 
must now select a vertex 8, connected to as, such that 
the face (a2, b2, 8) forms the largest convex angle 
with (as, bs, al) among the faces (as, b2, v), for all 
v ~ al connected to a2 ; similarly we select b among 
the vertices connected to bs. For  reasons to become 
apparent later, we call these comparisons of type 1. 

Next, once the "winners" (as, bs, 8) and (as, b2, b) 
have been selected, we have a run-off comparison, called 
of type 2. If (a~, b2,8)  forms with (as, bs, al) a larger 
convex angle than (as, b~, b), then 8 is added to :3 
(b is added in the opposite case) and the step is com- 
plete. Practically, the triangulation 3 is entirely speci- 
fied by the circular sequence E,B of the vertices which 
are successively acquired by the advancing mechanism 
just illustrated. In fact, this sequence EAB is some inter- 
leaving of the two sequences of vertices of E ,  and EB ; 
the interleaving exactly specifies the edges of 3 not 
belonging to EA or EB (see Figure 5). 

In the case of a degeneracy, the advancing mecha- 
nism fails to construct a new face and simply extends 
the previously constructed one. Indeed, in this case a 
type 1 winner face (or, both winner faces) forms with 
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Remark: Euler’s formula for planar graphs

Relation between # of vertices (V ), edges (E), faces (F ),
and connected components (C) of a planar graph

V + F = E + C + 1

Proof: adding vertex or edge connecting two vertices

Base case (1 vertex): V = 1, F = 1, E = 0, C = 1
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Remark: Euler’s formula for planar graphs

Invariant: V + F = E + C + 1

Inductive step. . .

Adding a disconnected vertex:

V ′ = V + 1, F ′ = F , E ′ = E , C′ = C + 1

Adding an edge between disconnected components:

V ′ = V , F ′ = F , E ′ = E + 1, C′ = C − 1

Adding an edge within a connected component:

V ′ = V , F ′ = F + 1, E ′ = E + 1, C′ = C

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

Remark: Euler’s formula for planar graphs

Invariant: V + F = E + C + 1

Inductive step. . .

Adding a disconnected vertex:

V ′ = V + 1, F ′ = F , E ′ = E , C′ = C + 1

Adding an edge between disconnected components:

V ′ = V , F ′ = F , E ′ = E + 1, C′ = C − 1

Adding an edge within a connected component:

V ′ = V , F ′ = F + 1, E ′ = E + 1, C′ = C

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

Remark: Euler’s formula for planar graphs

Invariant: V + F = E + C + 1

Inductive step. . .

Adding a disconnected vertex:

V ′ = V + 1, F ′ = F , E ′ = E , C′ = C + 1

Adding an edge between disconnected components:

V ′ = V , F ′ = F , E ′ = E + 1, C′ = C − 1

Adding an edge within a connected component:

V ′ = V , F ′ = F + 1, E ′ = E + 1, C′ = C

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

Remark: Euler’s formula for planar graphs

Invariant: V + F = E + C + 1

Inductive step. . .

Adding a disconnected vertex:

V ′ = V + 1, F ′ = F , E ′ = E , C′ = C + 1

Adding an edge between disconnected components:

V ′ = V , F ′ = F , E ′ = E + 1, C′ = C − 1

Adding an edge within a connected component:

V ′ = V , F ′ = F + 1, E ′ = E + 1, C′ = C

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

Remark: Euler’s formula for planar graphs

Invariant: V + F = E + C + 1

Inductive step. . .

Adding a disconnected vertex:

V ′ = V + 1, F ′ = F , E ′ = E , C′ = C + 1

Adding an edge between disconnected components:

V ′ = V , F ′ = F , E ′ = E + 1, C′ = C − 1

Adding an edge within a connected component:

V ′ = V , F ′ = F + 1, E ′ = E + 1, C′ = C

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

Remark: Euler’s formula for polyhedra

Invariant (C = 1): V + F = E + 2

No disconnected vertices: V ≤ 2E

No two edges between the same pair of vertices:

F ≤ 2E/3

i.e., 2E halfedges and ≥ 3 halfedges per face

Hence: E = V + F − 2 < V + 2E/3

⇒ E < 3V and F < 2V

To sum up:

V = O( E ); E = O( V ); F = O( V ) = O( E )
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More about convex hull algorithms

Jarvis’ march (2D) / gift wrapping (3D)
simple to code

running time: O( nh )

h = hull vertices: may it be convenient?

Optimal output sensitive algorithms
E.g., Chan (1996)

running time: O( n log h )

more complex structure

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

More about convex hull algorithms

Jarvis’ march (2D) / gift wrapping (3D)
simple to code

running time: O( nh )

h = hull vertices: may it be convenient?

Optimal output sensitive algorithms
E.g., Chan (1996)

running time: O( n log h )

more complex structure

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

More about convex hull algorithms

Jarvis’ march (2D) / gift wrapping (3D)
simple to code

running time: O( nh )

h = hull vertices: may it be convenient?

Optimal output sensitive algorithms
E.g., Chan (1996)

running time: O( n log h )

more complex structure

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Convex hull in 3D
Miscellaneous results

More about convex hull algorithms

Jarvis’ march (2D) / gift wrapping (3D)
simple to code

running time: O( nh )

h = hull vertices: may it be convenient?

Optimal output sensitive algorithms
E.g., Chan (1996)

running time: O( n log h )

more complex structure

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Outline

4 Semi-dynamic algorithms

5 Related results
Convex hull in 3D
Miscellaneous results

6 References

C. Mirolo Convex Hull



Semi-dynamic algorithms
Related results

References

Epilogue. . .

“Convex hull is the favorite paradigm
of computational geometers.

Although the description of the problem is
fairly simple, its solution takes into account
all aspects of computational geometry.”

Olivier Devillers (1996)
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