Robustness of Geometric Computation

Claudio Mirolo

Dip. di Scienze Matematiche, Informatiche e Fisiche
Università di Udine, via delle Scienze 206 – Udine

claudio.mirolo@uniud.it

Computational Geometry

www.dimi.uniud.it/claudio
Outline

1. Geometric computation
 - issues
 - numeric vs. symbolic
 - geometric algorithms

2. An experiment
 - constructions
 - approaches
 - in summary

3. References
Outline

1 Geometric computation
 - issues
 - numeric vs. symbolic
 - geometric algorithms

2 An experiment
 - constructions
 - approaches
 - in summary

3 References
Processing of...

- Numerical information (e.g. coordinates, equations...)
- Symbolic information (e.g. incidence, adjacency...)

Geometric Computing = Numerical + Combinatorial Computing
Geometric computation

Processing of...

- Numerical information (e.g. coordinates, equations...)
- Symbolic information (e.g. incidence, adjacency...)

Geometric Computing = Numerical + Combinatorial Computing
Issues

- Numerical precision/accuracy
- Interaction between numeric and symbolic data
- Degenerate configurations
Issues

- Numerical precision/accuracy
- Interaction between numeric and symbolic data
- Degenerate configurations
Issues

- Numerical precision/accuracy
- Interaction between numeric and symbolic data
- Degenerate configurations
Interaction between numeric and symbolic data

Example:

- P is a simple polygon, represented by its counterclockwise sequence of vertices $p_1, p_2, p_3, \ldots, p_{n-1}, p_n$

- Q is a simple polygon, with the same vertices as P + one more vertex q $p_1, p_2, p_3, \ldots, p_{n-1}, p_n, q$

- p_n, q, p_1 collinear, with q strictly in between p_n and p_1

- Are P and Q the same polygon? …
Interaction between numeric and symbolic data

Example:

- P is a simple polygon, represented by its counterclockwise sequence of vertices $p_1, p_2, p_3, \ldots, p_{n-1}, p_n$

- Q is a simple polygon, with the same vertices as P + one more vertex q \[p_1, p_2, p_3, \ldots, p_{n-1}, p_n, q \]

- p_n, q, p_1 collinear, with q strictly in between p_n and p_1

- Are P and Q the same polygon? …
Interaction between numeric and symbolic data

Example:

- P is a simple polygon, represented by its counterclockwise sequence of vertices $p_1, p_2, p_3, \ldots, p_{n-1}, p_n$

- Q is a simple polygon, with the same vertices as P + one more vertex q $p_1, p_2, p_3, \ldots, p_{n-1}, p_n, q$

- p_n, q, p_1 collinear, with q strictly in between p_n and p_1

- Are P and Q the same polygon? …
Interaction between numeric and symbolic data

Example:

- P is a simple polygon, represented by its counterclockwise sequence of vertices $p_1, p_2, p_3, \ldots, p_{n-1}, p_n$

- Q is a simple polygon, with the same vertices as P + one more vertex q $p_1, p_2, p_3, \ldots, p_{n-1}, p_n, q$

- p_n, q, p_1 *collinear*, with q strictly in between p_n and p_1

- Are P and Q the same polygon? …
Do P and Q describe the same set of points in the plane?

Which *operational* way to answer this question?

Possible answer:
No, since P and Q have a different number of sides.

Cheap to achieve,
but assumes an “economical” polygon representation!
Interaction between numeric and symbolic data

- Do \(P \) and \(Q \) describe the same set of points in the plane?

- Which *operational* way to answer this question?

 Possible answer:
 No, since \(P \) and \(Q \) have a different number of sides

 Cheap to achieve,
 but assumes an “economical” polygon representation!
Interaction between numeric and symbolic data

- Do \(P \) and \(Q \) describe the same set of points in the plane?
- Which \textit{operational} way to answer this question?
- Possible answer: No, since \(P \) and \(Q \) have a different number of sides
- Cheap to achieve, but assumes an “economical” polygon representation!
Interaction between numeric and symbolic data

- Do P and Q describe the same set of points in the plane?
- Which *operational* way to answer this question?
- Possible answer:
 No, since P and Q have a different number of sides
- Cheap to achieve,
 but assumes an “economical” polygon representation!
Interaction between numeric and symbolic data

- Does Q represent a convex polygon?

- Which *operational* way to answer this question?

- Possible answer:
 No, since moving to the next side of Q does not always imply “turning left”

- Again cheap to achieve, but... Operationally, at least, it can make a difference!
Does Q represent a convex polygon?

Which *operational* way to answer this question?

Possible answer:
No, since moving to the next side of Q does not always imply “turning left”

Again cheap to achieve, but... Operationally, at least, it can make a difference!
Does Q represent a convex polygon?

Which operational way to answer this question?

Possible answer:
No, since moving to the next side of Q does not always imply “turning left”

Again cheap to achieve, but... Operationally, at least, it can make a difference!
Does Q represent a convex polygon?

Which *operational* way to answer this question?

Possible answer:
No, since moving to the next side of Q does not always imply “turning left”

Again cheap to achieve, but . . .
Operationally, at least, it can make a difference!
The *symbolic* outcome of a computation may crucially depend on the specific sequence of steps.

Different sequences of steps may result in contradictory answers/decisions.

Ill-conditioned problems are highly sensitive to minor perturbations.

Is the outcome of a geometric algorithm acceptable for all legitimate input data?
Numeric vs. symbolic data

- The *symbolic* outcome of a computation may crucially depend on the specific sequence of steps.
- Different sequences of steps may result in contradictory answers/decisions.
- Ill-conditioned problems are highly sensitive to minor perturbations.
- Is the outcome of a geometric algorithm acceptable for all legitimate input data?
Numeric vs. symbolic data

- The *symbolic* outcome of a computation may crucially depend on the specific sequence of steps.

- Different sequences of steps may result in contradictory answers/decisions.

- Ill-conditioned problems are highly sensitive to minor perturbations.

- Is the outcome of a geometric algorithm acceptable for *all* legitimate input data?
The *symbolic* outcome of a computation may crucially depend on the specific sequence of steps.

Different sequences of steps may result in contradictory answers/decisions.

Ill-conditioned problems are highly sensitive to minor perturbations.

Is the outcome of a geometric algorithm acceptable for *all* legitimate input data?
... Polygon representation example:

- And if the representation of vertex q is inaccurate? (e.g. because it was computed with limited precision)

- How reliable is to test the convexity of Q?

- What about subsequent decisions based on the result of this test?
Is the output acceptable?

... Polygon representation example:

- And if the representation of vertex \(q \) is inaccurate? (e.g. because it was computed with limited precision)

- How reliable is to test the convexity of \(Q \)?

- What about subsequent decisions based on the result of this test?
Is the output acceptable?

... Polygon representation example:

- And if the representation of vertex q is inaccurate? (e.g. because it was computed with limited precision)
- How reliable is to test the convexity of Q?
- What about subsequent decisions based on the result of this test?
Geometric algorithms

- *Theory*: Standard proofs of correctness assume exact computation with real numbers

- *Practice*: Inexact floating-point arithmetic in the implementation
Geometric algorithms

- **Theory**: Standard proofs of correctness assume exact computation with real numbers

- **Practice**: Inexact floating-point arithmetic in the implementation
Outline

1. Geometric computation
 - issues
 - numeric vs. symbolic
 - geometric algorithms

2. An experiment
 - constructions
 - approaches
 - in summary

3. References
Hoffmann (1989): Iterating inner/outer constructions
Hoffmann (1989): How accurate is the intersection?
Approaches to geometric computing

- **Fixed precision (usually floating point) computation:**
 - `float`
 - `double`
 - “heuristic ε”

- **Exact computation:**
 - algebraic numbers
 - exact integer & rational arithmetic (e.g. via `multiple precision integers \rightarrow GMP`)
 - adaptive evaluation
 - …
Approaches to geometric computing

- **Fixed precision (usually floating point) computation:**
 - float
 - double
 - “heuristic ε”

- **Exact computation:**
 - algebraic numbers
 - exact integer & rational arithmetic
 - (e.g. via *multiple precision integers* \rightarrow GMP)
 - adaptive evaluation
 - ...
 - ...
Approaches to geometric computing

- **Fixed precision (usually floating point) computation:**
 - float
 - double
 - “heuristic ε”

- **Exact computation:**
 - algebraic numbers
 - exact integer & rational arithmetic
 (e.g. via *multiple precision integers* \rightarrow GMP)
 - adaptive evaluation
 - ...
Approaches to geometric computing

- **Fixed precision (usually floating point) computation:**
 - float
 - double
 - “heuristic ε”

- **Exact computation:**
 - algebraic numbers
 - exact integer & rational arithmetic
 (e.g. via *multiple precision integers* \rightarrow GMP)
 - adaptive evaluation
 - … …
Tradeoffs!

- Computational costs (time, space) ... and tractability

- “Combinatorial” soundness and constructions accuracy
Tradeoffs!

- Computational costs (time, space) . . . and tractability

 “Combinatorial” soundness and constructions accuracy
Tradeoffs!

- Computational costs (time, space) . . . and tractability
- “Combinatorial” soundness and constructions accuracy
Dealing with geometric structures

- Spatial positions, orientations, ...: Numerical data (measures)
- Relationships between items/components, e.g. topology, ordering, ...
- Algorithmic logic: decisions based on relationships (combinatorial)
- Construction of new geometric objects — including new numerical data
Dealing with geometric structures

- Spatial positions, orientations, ...: Numerical data (measures)
- Relationships between items/components, e.g. topology, ordering, ...
- Algorithmic logic: decisions based on relationships (combinatorial)
- Construction of new geometric objects — including new numerical data
Dealing with geometric structures

- Spatial positions, orientations, ...:
 Numerical data (measures)

- Relationships between items/components,
 e.g. topology, ordering, ...

- Algorithmic logic: decisions based on relationships
 (combinatorial)

- Construction of new geometric objects
 — including *new* numerical data
Dealing with geometric structures

- Spatial positions, orientations, ...: Numerical data (measures)

- Relationships between items/components, e.g. topology, ordering, ...

- Algorithmic logic: decisions based on relationships (combinatorial)

- Construction of new geometric objects — including *new* numerical data
General observations

- It is often possible to evaluate correctly relationships between objects represented accurately.

- It is not always possible/feasible to construct new sufficiently accurate objects.

- Even though the input data are assumed to be correct (or accurate enough), crucial problems may arise if algorithmic decisions depend on relations that involve new geometric objects.
General observations

- It is often possible to evaluate \textit{correctly} relationships between objects represented \textit{accurately}.

- It is not always possible/feasible to construct new \textit{sufficiently accurate} objects.

- Even though the input data are assumed to be correct (or accurate enough), crucial problems may arise if algorithmic \textit{decisions} depend on relations that involve new geometric objects.
General observations

- It is often possible to evaluate *correctly* relationships between objects represented *accurately*

- It is not always possible/feasible to construct new *sufficiently accurate* objects

- Even though the input data are assumed to be correct (or accurate enough) crucial problems may arise if algorithmic *decisions* depend on relations that involve new geometric objects
Outline

1. Geometric computation
 - issues
 - numeric vs. symbolic
 - geometric algorithms

2. An experiment
 - constructions
 - approaches
 - in summary

3. References
References

- C.M. Hoffmann (1989)
The Problems of accuracy and robustness in geometric computation
 Computer, 22(3)

- C.-K. Yap (1997)
 Towards exact geometric computation
 Computational Geometry, 7(1)

- S. Schirra (2000)
 Robustness and precision issues in geometric computation
 Handbook of Computational Geometry, Ch. 14