
1540 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002

Generalized Neural Trees for Pattern Classification
Gian Luca Foresti and Christian Micheloni

Abstract—In this paper, a new neural tree (NT) model, the
generalized NT (GNT), is presented. The main novelty of the GNT
consists in the definition of a new training rule that performs an
overall optimization of the tree. Each time the tree is increased
by a new level, the whole tree is reevaluated. The training rule
uses a weight correction strategy that takes into account the
entire tree structure, and it applies a normalization procedure
to the activation values of each node such that these values can
be interpreted as a probability. The weight connection updating
is calculated by minimizing a cost function, which represents
a measure of the overall probability of correct classification.
Significant results on both synthetic and real data have been
obtained by comparing the classification performances among
multilayer perceptrons (MLPs), NTs, and GNTs. In particular,
the GNT model displays good classification performances for
training sets having complex distributions. Moreover, its particular
structure provides an easily probabilistic interpretation of the
pattern classification task and allows growing small neural trees
with good generalization properties.

Index Terms—Neural networks (NNs), neural trees (NTs), pat-
tern classification, performance evaluation, search methods.

I. INTRODUCTION

NEURAL TREES (NTs) were introduced for pattern clas-
sification in an attempt to combine the advantages of

decision trees (DTs) [1] and neural networks (NNs) [2], so
that they could have a fast training phase, as in DTs, and
a strong performance in classification. In 1988, Utgoff pro-
posed a hybrid NN (calledperceptron tree) with a tree-based
structure that was similar to DTs, but having perceptrons as
leaves [3]. In 1990, Sirat and Nadal [4] published (almost at
the same time as Marchand and Golea [5]) a paper concerning
binary NTs, in which perceptrons are used at each node of
the tree. Some years after, Sankar and Mammone [6]–[8] pro-
posed an NT network for multiclass problems that consists
of single-layer NNs connected to a tree structure and uses a
learning procedure based on the norm of the classification
error (measured as the distance between generated outputs and
targets). For -class problems, they useneurons and a local
encoding scheme that classifies an input pattern according to
a winner-take-all rule. Each node divides the training data
into convex regions: thus, there are at mostchildren for
each node. Rahim [9] and Farrellet al. [10] used variations
of this model for different recognition problems.

The standard NT model consists of multiple NNs connected
into a tree architecture, where each NN is used to recursively
partition the feature space into regions and uses (for its training)
only those patterns (local training set) that fall into this region.

Manuscript received October 28, 1999; revised November 27, 2000 and May
16, 2002.

The authors are with the Department of Mathematics and Computer Science
(DIMI), University of Udine, 33100 Udine, Italy.

Digital Object Identifier 10.1109/TNN.2002.804290

The basic idea of this approach is that learning the training set
by dividing it into local sets (according to the subregions into
which the feature space is divided) is easier than learning it
whole. DTs also adopt such a technique, but often they use hy-
perplanes that are perpendicular to the axes of the feature space.
NTs have no restrictions regarding the orientation of hyper-
planes, so they are more adapted to capturing the pattern dis-
tribution. Sethi [11] proposed a procedure for transforming a
DT into a multilayer feedforward NN, calledentropy network.
This methodology, which uses a rule for incremental learning,
specifies the number of neurons needed in each layer and allows
each layer to be trained separately. Actually, some DT learning
algorithms (e.g., CART [12]) allow the use of nonperpendic-
ular hyperplanes, but they are computationally expensive due to
the large number of hyperplanes that must be evaluated. Several
methods exist which determine (in parts) the architecture of the
NN as well: pruning [7], [8], cascade correlation [13], dynamic
learning vector quantization [15], and support vector machines
[16], etc.

In recent years, some NN models with a tree topology
have been developed for particular applications, or to cope
with difficulties such as large pattern sets or complex pattern
distributions in high-dimensional feature spaces. Liet al. [16]
proposed a structured parameter adaptive (SPA) NT which is a
multilevel competitive NN with a tree topology. In this network,
Hebbian learning algorithm is used for the adaptation of the
network parameters, and some specific operations are used
for adapting the tree structure: the creation of new nodes, the
splitting of nodes into more nodes, and the deletion of nodes from
the network. Hebbian learning is employed both during training
and execution to achieve parameter adaptation, while other
methods employ combinatorial or heuristic search algorithms
during training and no changes during execution. Behnke and
Karayiannis [17] proposed a competitive NT (CNeT) for pattern
classification that combines the advantages of competitive NNs
and DTs. The CNeT contains -ary nodes, grows during the
learning phase by using inheritance to initialize new nodes, and
employs competitive learning. Forward pruning can control
the growth of the tree. Songet al. [18] proposed a structural
adaptive intelligent tree (SAINT). The input feature space is
hierarchically partitioned by using a tree-structured network that
preserves a lattice topology at each subnetwork. Experimental
results reveal that SAINT is very effective for the classification
of a large set of real-world handwritten characters with high
variations, as well as multilingual, multifont, and multisize
large-set characters. The SAINT model is closely related to the
SPA model in that it hierarchically partitions the-dimensional
feature space into successive subregions. However, SAINT
differs from SPA in that each of the subnetworks has a different
topology. They achieve a better classification performance than
MLPs in problems characterized by large sets of classes but

1045-9227/02$17.00 © 2002 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 1541

worse classification with a medium or small number of classes.
Songet al. showed that SAINT has a worse classification rate
than MLPs when the number of classes is less than 50.

In this paper, a new NT model, called generalized NT
(GNT), is presented. The main novelty of this model is that
it does not train each node using the pattern contained in its
subregion (i.e., the local training set), but instead trains the
whole tree using a weight correction-rule that considers the
whole neural structure. This rule was calculated by minimizing
a cost function which represents a measure of the overall
classification value and allows for the use of a probabilistic
interpretation of the neural structure. It means that a father
node can update its weight connections on the basis of the
classification performed by its children by providing a better cost
value; this improvement often corresponds to a reduction in the
tree dimension. A supervised algorithm calledTrio Learning,
which trains binary NTs by taking care of sets of nodes
instead of single ones, has been proposed by D’Alche’-Bucet
al. [19]. This learning algorithm trains a node by taking into
account the classification performed by its two children nodes.
The authors demonstrate that this learning scheme leads to a
significant reduction in the tree complexity and increases the
generalization power. The GNT model extends the trio learning
algorithm to levels. In addition, it adds some important and
innovative characteristics: 1) the GNT model can work with
multiclass problems; 2) the GNT learning rule performs an
overall optimization of the network that produces smaller trees
(which may pose a better generalization capability); 3) the
application of a normalization procedure to the activation values
of each node of the GNT allows a probabilistic interpretation to
be associated to the classification path, which provides better
classification performances with respect to classical NT models;
and 4) the classification phase can exploit the probabilistic
interpretation, and provide, as boundary regions, hypersurfaces
that fit the pattern distributions better then hyperplanes.

This paper is organized as follows: The standard NTs archi-
tecture and the related learning algorithm are briefly outlined
in Section II. In Section III, the GNT model is presented.
Specifically, the weight correction-rule and the stability criteria
are described. Experimental results on both artificial geometric
pattern distribution (e.g., double spiral, etc.) and real data are
presented in Section IV. Some rate-classification comparisons
between GNT and classic neural models are also given.

II. NT M ODEL

NTs are NNs with a tree topology in which each node is
a simple perceptron [5]–[9], [14]. They adopt a supervised
training algorithm where two functional phases can be distin-
guished: the training phase and the classification phase.

A. Training Phase

The learning algorithm calculates the tree structure as well as
the connection’s weight for each node. For an-class problem,

neurons are used in each node. A binary vector is used as local
encoding scheme, where the classis labeled with 1 in theth bit
and all the other bits are 0. Learning is executed by minimizing
a cost function such as the mean square error (SME) or other

error functions [4]–[6]; for instance, Sankar and Mammone [6]
adopted a norm, where they demonstrate it permits the re-
duction in the number of outliers. At the end of the learning
phase, each node is responsible for dividing the feature space
into convex regions.

The NTs learning algorithm may be summarized as follows.

1) The patterns of the training set (TS) are presented to a
node (at the beginning they are presented to the root which
is unique) that is trained until a stop condition is verified.
The training consists in dividing the training set (problem
space) into more subsets (subregions) [Fig. 1(a)].

2) For those subsets (regions) that are homogeneous (they
contain all patterns of the same class), the process is com-
pleted. Each of these subsets (regions) is labeled with the
class of the patterns that are contained in it and the related
node is called aleaf node[Fig. 1(b)].

3) If one of the obtained subsets (regions) is not homoge-
neous, a new node is added to the NT in order to learn the
patterns contained in such a subset (region). Go to Step 1
[Fig. 1(b)].

4) Learning stops when all subsets (regions) become homo-
geneous [Fig. 1(c)].

B. Classification Phase

For the classification task, unknown patterns are presented to
the root node. The class is obtained by moving down the tree.
Starting from the root, the activation value of the current node
provides the next node to be considered until reaching a leaf
node that assigns the class of the input pattern. Each node ap-
plies the “winner-takes-all” rule so that

class

where is the activation function, is the vector of
weights of the connections from inputs to theth output, and

is the input vector. This rule determines
the classes associated with the leaf nodes as well as the paths on
the internal nodes. Fig. 2 shows an example of the classification
of a three-class problem in a four-dimensional feature space.

III. GNT M ODEL

As in the classical NT model [5], the GNTs structure consists
of a set of units organized into a tree. Each node of the GNT
is composed of two parts: the single-layer neural network, and
the normalizer, which has to make an output sum equal to one
(Fig. 3). Let be the output vector. The nor-
malized vector is defined as where

(1)

The normalized vector allows a probabilistic interpretation to
be given of the classification made by the GNT on the input
pattern . For example, let us suppose we classify a pattern,
as being a binary tree composed of a father and two children
nodes, where and on the root node;

on the left child, and and on the
right child. Let be the correct class of, then

1542 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002

(a)

(b)

(c)

Fig. 1. Geometric interpretation of the NT learning algorithm. (a) Partition of the feature space due to the root node. (b) Partition of the feature space due to
internal nodes. (c) Final tree configuration.

is thea posterioriprobability
needed to obtain the class given the pattern . Obviously,

. The
a posterioriprobability could be considered as a kind
of goodness measurement of the classification performed by the
tree. In general, we can define this measurement for a generic
subtree rooted on node

(2)

where is the set of leaves which corresponds to the correct
class of (i.e.,) and is the probability associated with
the path from nodeto the generic leaf belonging to . There-
fore, we can write .

A. Weight Updating Rule

In NTs, learning is local in the sense that each node is trained
only with patterns which stay in its convex region. At the end
of the learning (when all patterns are correctly classified by
the node or when a condition of minimal error is reached) the
node weights are definitively fixed. In contrast, when the GNTs
learning rule is applied to a generic internal node, the entire
training set is considered. In fact, as a consequence of the up-
dating rule which will be presented further, a generic internal
node is affected by all patterns. As a result, a father node can
update its weight connections on the basis of the classification
performed by its children and, consequently, to provide a better

probabilistic classification. Experimental tests (see Section IV)
have demonstrated that this improvement generally corresponds
to a reduction in tree dimension.

As with MLPs, the weight-updating rule is obtained by min-
imizing an error function through the gradient descent method.
On feedforward networks, the error function is usually repre-
sented by the square of the difference between the obtained and
the desired outputs. In the GNT learning, the same approach is
followed, and the following error function has been selected:

(3)

where represents the output obtained when the
pattern is presented to the network, whereas the desired output
is set to one (the maximum of the probability).

Let us consider the generic nodeplaced on a generic position
in the tree. Let be its children nodes. Let

be the probabilities related to the subtrees rooted
on . If is the product of the probability
values of all branches from the root to the node,

and is the sigmoidal activation
function where net , then, the updating weight
rule can be obtained as follows:

Path (4)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 1543

Fig. 2. Classification example of a three-class problem. The tree classifies the input pattern by following the path from the root to a leaf node according to the
winner-takes-all rule.

where

when

when

The proof for (4) is provided in Appendix A. Leaf nodes are up-
dated with classical methods applied to single-layer networks
(e.g., minimizing the LMS error by a gradient descend). This
implies that unlike internal nodes, leaf nodes consider only the
patterns of their convex region. In order to update the weights
of the node , the GNT algorithm must know the probability
values of its children, . In particular, to up-
date the weights of an internal node, the following informa-
tion is needed (4): 1) thea posterioriprobability (obtained by
the classification) of patternpresented to the tree; 2) the value
of Path ; and 3) the values of the children nodesof .
The GNT training algorithm proceeds through a recursive pro-
cedure that implements, as in MLPs, a feedforward phase and
a backpropagation phase. The first allows the calculation of the
classification values on the leaves, while the second calculates
the values needed for the updating of the nodes.

In the following paragraphs, the learning algorithm and the
stability criterion will be described.

B. Learning Algorithm

The learning algorithm consists of training, level by level, the
tree structure beginning with the leaves and proceeding toward
the root. For example, if we consider working with a tree that
has a depth of , first all of the leaves (at depth) have to be
trained, and when the reaches a stability value, one epoch
of training is executed at level . At this point, a convex
region corresponding to a leaf node could be modified and some
patterns could be moved from this region to another, or vice
versa: if this happens, then it is necessary to restart the training
from level . When the stability is once again achieved, another
learning epoch will be executed at level , and so on. When
the same stability condition is reached at level , level

is considered. When this happens at the root, we may
say that the current tree structure is not able to learn the whole
TS and a new level of nodes is added to the tree.

This learning technique has been applied due to the fact that
after observing several experimental tests, we noted that up-
dating the whole structure (all layers at once) causes instability
in the learning process and results in unsatisfactory improve-
ments of classification. The learning rule of a generic node
uses the classification results of thechildren nodes, therefore
it is not worth updating the weights ofif its children have just

1544 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002

Fig. 3. General scheme of a genericl node and its position into the GNT.

started their learning. The classification boundaries must pro-
ceed gradually toward a better position; only when a subtree
reaches a stable condition (with a level by level updating), we
can try to improve the structure by working on the parent node.
In other words, there is not much sense in updating a node if its
children have not obtained a “good classification” condition.

C. Stability Criteria

As with in NTs, GNTs also require some stop-training cri-
teria. Two stability criteria have been used. The first consists
in verifying the correct classification of the entire training set,
which is tested at each training epoch; essentially, it corresponds
to the stop learning criteria. The second criteria establishes how
to modify the tree structure and consists in testing the mean-
classification probability

(5)

where is the cardinality of the training set.
The second stability condition is satisfied when does

not increase up totoler (a real value ranging between zero and
one) afterwait (an integer value) consecutive training epochs.
When this occurs on the root node, we say that the current
tree structure is not able to learn the whole TS, thus a new
level of nodes (which will be the new leaves) is added to the
tree. Of course, such an operation allows the attainment of
smaller convex subregions that better fit the TS distribution.
The selection of thewait andtoler parameters is very important
for speeding up the learning process; in fact, the choice of

tight values (toler near to zero and high values ofwait) could
require long training times. For example, if the training set
has got a particular distribution which is impossible to learn
with a -level tree (it needs at least levels), it will be too
expensive to employ such values.Wait and toler parameters
determine the stability condition, thus they are closely correlated
with the “backtracking frequency”: tight values imply rare
“backtracking” steps toward the upper nodes and, hence, a
longer search time of the hyperplane positions in the feature
space. On the contrary, the choice of wide values (toler near to
one and low values ofwait) produces a fast training, but also
a lesser optimization, and in general, a structure having more
nodes. We can regulate these parameters depending on time
availability, from the quickest training, which corresponds to
the NTs performance, to the longest, which corresponds to
a good optimization.

D. Classification Algorithm

The GNTs classification algorithm is similar to that used by
NTs: the class of the unknown pattern is obtained by going up
the tree, starting from the root and reaching a leaf node ac-
cording to a “winner-takes-all” rule. By using this approach, the
classes are associated to convex regions which have boundaries
represented by parts of hyperplanes (see Section IV, paragraph
A describing experiments on synthetic TS). Exploiting the prob-
abilistic interpretation, a GNT can classify a pattern also by its
a posterioriprobability , where in this case is
the class which obtains the highest value. This simple strategy
produces boundaries that in general can be hyper surfaces. The
best results on real experiments have been obtained with this
technique.

IV. EXPERIMENTAL RESULTS

In this section, some experimental results on both synthetic
and real data are presented. Classification comparisons among
the GNT, classical NTs [6] and MLPs are also proposed.

A. Synthetic Training Set

Tests on artificial pattern distributions provide an easier way
to compare performance classifications over a two-dimensional
(2-D) feature space; the behavior of different learning algo-
rithms may be observed graphically.

The first test is characterized by a training set of 64 patterns
distributed on a 2-D feature space, as in Fig. 4(a). Fig. 4(b)
shows the results of the NT learning algorithm visualized
through the classification of the square area which contains the
TS (the NT structure is composed of 20 nodes). The same TS is
applied to learn the GNT: it produces the classification shown
in Fig. 4(c).

It may be observed that: 1) the decision regions obtained
by the GNT show a better representation of the geometric dis-
tribution of the training set and 2) the complexity of the tree
structure is reduced, i.e., only four nodes are needed versus the
20 nodes required by the NT. Finally, the same TS is used to
train an MLP; the classification results are shown in Fig. 4(d).
The structure of the MLP is composed of five input nodes, a
hidden layer, and two output nodes. The number of neurons

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 1545

(a)

(b)

(c)

(d)

Fig. 4. (a) Set of 64 patterns distributed on a 2-D feature space. (b)
Classification obtained with an NT (depth= 6) composed of 20 nodes (three
are split nodes). (c) Classification obtained by a GNT (depth= 3) composed
of six nodes. (d) Classification obtained by an MLP, composed of two input
nodes, two output nodes, and four neurons in the hidden layer.

in the hidden layer was obtained by trials: seven neurons have
achieved the best result.

B. Problem of the Double Spiral

In the next experiment, the double spiral problem is taken
into consideration (Fig. 5). This problem is deemed a difficult
task because of the complexity of learning the boundary regions
of the TS. The selected TS consists of two spirals (i.e., a two
class problem); each one composed of 150 patterns [Fig. 5(a)].
Fig. 5(b) represents the classification obtained by the classical
NT. The tree generated has 102 nodes distributed on nine
levels. Many irregularities in the shape of the classified regions
can be observed. In Fig. 5(c), the GNT classification is shown.
The tree structure is composed of 48 nodes distributed on
eight levels. This result was obtained after a sequence of a few
trials, taking into account a tradeoff between training times and
performances. It is important to note that the training of the
MLP was very time-consuming and unsuccessful: after about
20 attempts at training, beginning with the simplest network
and growing it, a satisfactory classification was not achieved.

C. Real Training Set—Phoneme Database

A real database (the Phoneme database) containing several
thousand multidimensional real patterns has been considered.
This database was developed in the European ROARS (RObust
Analytical speech Recognition System) ESPRIT project [20].
The aim of this project was the development of a real-time
analytical system for French speech recognition that was able to
distinguish between nasal and oral vowels. The TS is composed
of 5404 patterns distributed over two classes: 3818 of class 0
type and 1586 of class 1 type. A pattern is described as having
five features, i.e., a five-dimensional space. For the evaluation
of the classification performance of the Phoneme database, the
methodology introduced in the ELENA project [21] has been
used; indeed, we exploited ELENAs results for a more ex-
haustive comparison between various classifiers. These are the

-nearest neighbor (-NN) classifier [22], selected for its pow-
erful probability density estimation properties, the Gaussian
quadratic classifier (GQC) [22], the most classical statistical
parametric simple classification method, the learning vector
quantizer (LVQ) [22], a powerful nonlinear iterative learning
algorithm proposed by Kohonen, the reduced Coulomb energy
(RCE) algorithm [22], an incremental region of influence
algorithm, the inertia rated vector quantizer (IRVQ) and the
piecewise linear separation (PLS) classifiers [21], developed
within the framework of the Elena project. The test used for
comparison is the holdout set, averaged over five different
partitions of the original database in two independent learning
sets and test sets, each containing half of the total amount of the
available patterns. The averaged mean error computed on the
confusion matrixes is calculated based on its 95% confidence
interval. Results are shown in Fig. 6. The GNT classifier
obtains a percentage of 15.19,1.35 for an error rate.

Since the Phoneme database has a high degree of overlap-
ping (in fact the error calculated with-NN is quite high), the
learning process requires a high computational time. In order
to reduce such time, a forward pruning technique has been em-
ployed. It simply consists of saving, in a “pocket,” the best struc-
ture that provides the higher value ofparameter. combines
the information with the number of patterns correctly

1546 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002

(a)

(b)

(c)

Fig. 5. (a) Double spiral training set. (b) Classification obtained with an NT
(depth= 9) with 102 nodes (two split nodes). (c) Classification obtained by a
GNT (depth= 9) with 48 nodes.

Fig. 6. Averaged error rate with a 95% confidence interval obtained on the
Phoneme TS by the following classifiers:k-NN, GQC, LVQ, IRVQ, RCE, MLP,
and GNT. Thek-NN obtains the best performance, but its classification process
requires a very long time. The GNT model obtains the second best performance,
but with real-time classification.

classified: ; where has been
fixed at 0.5 in all tests. Let us assume that during the learning of
the tree, composed of layers, the best was . If, by

the end of the learning of the layer-tree, has never
been greater than , then the learning process stops and
the best structure (stored in the pocket) is considered. This is a
quite simple heuristic method and not an optimal pruning tech-
nique. However, it is easy to implement, it allows a reduction
in the learning time, and it needs no further parameter introduc-
tion. Training takes, on average, about 1 h 50 min utilizing a
Pentium III 400-MHz processor.

V. CONCLUSION

Like other constructive algorithms, a GNT grows the
tree structure in accordance with the classification problem
presented (i.e., TS). Growing the smallest NT that correctly
classifies the training data set is an NP-hard problem; such
problems are usually confronted with heuristics methods that do
not guarantee the optimal solution but provide a good solution
within an acceptable time. The GNT allows the updating of the
weight connections of all the nodes while taking care of the
classification results of the lower nodes. It has demonstrated
to be very effective in learning training sets with complex
decision boundaries, as we saw with the double spiral problem
and, unlike SAINT and SPA algorithms, it also shows good
classification performance with respect to the MLP.

Although the GNT works by maximizing the mean proba-
bility of classification, it is interesting to observe that this op-
eration corresponds to the growing of small trees having good
generalization properties. The parameter regulation is a straight-
forward way to control the tree optimization degree versus the
learning time. Learning processes requiring a very long time
generally allow us to obtain smaller trees with a high general-
ization power, whereas a shorter training time produces bigger
structures. The probabilistic interpretation that allows the classi-
fication of patterns by thea posterioriprobability provides very
good results in the real Phoneme database.

APPENDIX

In this example, the node labelis omitted because we always
refer to node.

Proof

Let be the error function
associated to the pattern. Partial derivatives with respect to
weights are

(a1)

where

(a2)

(a3)

Regarding Fig. 3, we can observe that by changing one weight,
produces the variation of the output and hence, the

variation of all outputs due to the normalizer. Let us

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 1547

calculate the variation of the probability with
respect to the variation of the normalized output , i.e.,

. The value of can be
calculated as follows:

(a4)

where is the set of leaves, which corresponds to the correct
class , and is the probability associated to the path from
the root to the generic leaf node, belonging to . Only the
paths that pass through will be considered in the vari-
ation. They have the first part of the path in common ,
while the second part (that is, under node) belongs to the sub-
tree having as root. Having previously defined as the
probability associated to theth child of , we can write

(a5)

Let us consider the variation of the th normalized
output with respect to the variation in the weight ,

. Referring to
, we can easily obtain the derivatives

with respect to theth output:

when and

when (a6)

It is important to observe that a positive variation of theoutput
produces a positive variation on and a negative variation on

when (vice versa for negative variations). This aspect
has a great importance on learning as it maintains the correct
probabilistic structure.

The variation of the th output with respect to is
, so that on the whole structure

we obtain

(a7)

It can be written as follows by keeping the terms that are inde-
pendent from out of the sum:

(a8)

Finally, the term can be expressed recursively from its chil-
dren values

when is an internal node

when is a leaf node.

REFERENCES

[1] S. Rasoul and D. Landgrebe, “A survey of decision tree classifier
methodology,”IEEE Trans. Syst., Man, Cybern., vol. 21, June 1991.

[2] C. Lau and B. Widrow, “Special issue on neural networks,”Proc. IEEE,
vol. 78, Sept. 1990.

[3] P. E. Utgoff, “Perceptron tree: A case study in hybrid concept represen-
tation,” in Proc. 7th Nat. Conf. Artificial Intell., Saint Paul, MN, 1988,
pp. 601–606.

[4] J. A. Sirat and J.-P. Nadal, “Neural trees: A new tool for classification,”
Network, vol. 1, pp. 423–448, 1990.

[5] M. Golea and M. Marchand, “A growth algorithm for neural network
and decision trees,”Europhys. Lett., vol. 12, no. 3, pp. 205–210, 1990.

[6] A. Sankar and R. J. Mammone,Neural Tree Networks, Neural Network:
Theory and Application, R. Mammonee and Y. Zeevi, Eds. New York:
Academic, 1991.

[7] , “Optimal pruning of neural tree networks for improved general-
ization,” in Proc. Int. Joint Conf. Neural Networks, Seattle, WA, July
8–12, 1991, pp. 809–814.

[8] , “Growing and pruning neural tree networks,”IEEE Trans.
Comput., vol. 42, pp. 291–299, Mar. 1993.

[9] M. G. Rahim, “A neural tree network for phoneme classification with
experiments on the TIMIT database,” inProc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, San Francisco, CA, Mar. 23–26, 1992, pp.
345–348.

[10] K. R. Farrell, R. J. Mammone, and K. T. Assaleh, “Speaker recognition
using neural networks and conventional classifiers,”IEEE Trans. Speech
Audio Processing, vol. 2, pp. 194–205, Jan. 1994.

[11] I. K. Sethi, “Entropy nets: From decision trees to neural networks,”Proc.
IEEE, vol. 78, pp. 1605–1613, Oct. 1990.

[12] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,Classification
and Regression Trees. Pacific Grove, CA: Wadsworth and Brooks.

[13] M. Lehtokangas, “Cascade-correlation learning for classification,”IEEE
Trans. Neural Networks, vol. 11, pp. 795–798, Mar. 2000.

[14] X. O. Tang, “Multiple competitive learning network fusion for object
classification,”IEEE Trans. Syst., Man, Cybern. B, vol. 28, pp. 532–543,
Aug. 1998.

[15] M. Pontil and A. Verri, “Support vector machines for 3D object recogni-
tion,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp. 637–646,
June 1998.

[16] T. Li, Y. Y. Tang, and L. Y. Fang, “A structure parameter adaptive (SPA)
neural tree for the recognition of large character set,”Pattern Recogni-
tion, vol. 28, no. 3, pp. 315–329, 1995.

[17] S. Behnke and B. Karayiannis, “Competitive neural trees for pattern
classification,”IEEE Trans. Neural Networks, vol. 9, pp. 1352–1369,
Nov. 1998.

[18] H. H. Song and S. W. Lee, “A self-organizing neural tree for large-set
classification,”IEEE Trans. Neural Networks, vol. 9, pp. 369–380, May
1998.

[19] F. D’Alché-Buc, D. Zwierski, and J. P. Nadal, “Trio learning : A new
strategy for building hybrid neural trees,”Int. J. Neural Syst., vol. 5, no.
4, pp. 259–274, 1994.

[20] P. Alinat, “Thompson Tech. Rep. ASM 93/S/EGS/NC/079 of ROARS
ESPRIT II Project 5516,” Tech. Rep, 1993.

[21] F. Blayo, Y. Cheneval, A. Guerin-Dugue, R. Chentouf, C. Aviles-Cruz,
J. Madrenas, M. Moreno, and J. Voz, “Deliverable r3-b4-p Task
b4: Benchmarks, Tech. Rep. ESPRIT Basic Research Project 6891,
Enhanced Learning for Evolutive Neural Architecture,” Tech. Rep,
1995.

[22] B. D. Ripley,Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

