
Model Checking, Hybrid Automata, and
Systems Biology

Carla Piazza1

1Department of Mathematics and Computer Science,
University of Udine,

Udine, Italy

Part of our Group

Alberto Policriti Bud Mishra

DIMI Udine, IGA Udine
NYU New York, DMI Trieste, DISA Udine

Alberto Casagrande Giannina Vizzotto

Outline

Model Checking and Temporal Logics

Hybrid Automata

Hybrid Automata in Systems Biology

Semi-Algebraic Hybrid Automata

Discrete vs Continuous

Conclusions

Please, be patient with my English

Model Checking in Computer Science

We have an hardware/software (reactive concurrent) system
We want to check whether the system satisfies some
specifications or not

H/S System S ⇒ Kripke StructureM

Specification F ⇒ Temporal Logic Formula ψ

Now the problem is:
M |= ψ

i.e., does the modelM satisfies the formula ψ?

Model Checking in Computer Science

We have an hardware/software (reactive concurrent) system
We want to check whether the system satisfies some
specifications or not

H/S System S ⇒ Kripke StructureM

Specification F ⇒ Temporal Logic Formula ψ

Now the problem is:
M |= ψ

i.e., does the modelM satisfies the formula ψ?

Model Checking in Computer Science

We have an hardware/software (reactive concurrent) system
We want to check whether the system satisfies some
specifications or not

H/S System S ⇒ Kripke StructureM

Specification F ⇒ Temporal Logic Formula ψ

Now the problem is:
M |= ψ

i.e., does the modelM satisfies the formula ψ?

Model Checking

The problemM |= ψ looks very easy

We need to solve it efficiently

Let us look into the detail:
M is a graph with labels on nodes and edges
ψ is a formula talking about properties of paths

Can we solve it in polynomial time? And in linear time?

What about space complexity?

Model Checking

The problemM |= ψ looks very easy

We need to solve it efficiently

Let us look into the detail:
M is a graph with labels on nodes and edges
ψ is a formula talking about properties of paths

Can we solve it in polynomial time? And in linear time?

What about space complexity?

Model Checking

The problemM |= ψ looks very easy

We need to solve it efficiently

Let us look into the detail:
M is a graph with labels on nodes and edges
ψ is a formula talking about properties of paths

Can we solve it in polynomial time? And in linear time?

What about space complexity?

Model Checking

The problemM |= ψ looks very easy

We need to solve it efficiently

Let us look into the detail:
M is a graph with labels on nodes and edges
ψ is a formula talking about properties of paths

Can we solve it in polynomial time? And in linear time?

What about space complexity?

Example: Railroad Crossing

red

red

green

close

close

open

We do not want green light for the train when the gate is
open (safety)

AG¬(green ∧ open)

We do not want the train waiting forever (liveness)

red → EF (green)

Temporal Logics

Definition (CTL)
Let P be a set of atomic propositions

each p ∈ P is a formula
if ψ1 and ψ2 are formulæ, then also ψ1 ∧ ψ2, ¬ψ1, AXψ1,
EXψ1, AFψ1, EFψ1, AGψ1, EGψ1, A(ψ1Uψ2), E(ψ1Uψ2)
are formulæ

path and state quantifiers are alternated
the model checking problem can be solved in linear time,
O(|ψ| ∗ |M|) (thanks to a fix-point computation and Tarjan
algorithm for strongly connected components)
it is not so easy for other logics, e.g., LTL and CTL* are
P-space complete

Temporal Logics

Definition (CTL)
Let P be a set of atomic propositions

each p ∈ P is a formula
if ψ1 and ψ2 are formulæ, then also ψ1 ∧ ψ2, ¬ψ1, AXψ1,
EXψ1, AFψ1, EFψ1, AGψ1, EGψ1, A(ψ1Uψ2), E(ψ1Uψ2)
are formulæ

path and state quantifiers are alternated

the model checking problem can be solved in linear time,
O(|ψ| ∗ |M|) (thanks to a fix-point computation and Tarjan
algorithm for strongly connected components)
it is not so easy for other logics, e.g., LTL and CTL* are
P-space complete

Temporal Logics

Definition (CTL)
Let P be a set of atomic propositions

each p ∈ P is a formula
if ψ1 and ψ2 are formulæ, then also ψ1 ∧ ψ2, ¬ψ1, AXψ1,
EXψ1, AFψ1, EFψ1, AGψ1, EGψ1, A(ψ1Uψ2), E(ψ1Uψ2)
are formulæ

path and state quantifiers are alternated
the model checking problem can be solved in linear time,
O(|ψ| ∗ |M|) (thanks to a fix-point computation and Tarjan
algorithm for strongly connected components)

it is not so easy for other logics, e.g., LTL and CTL* are
P-space complete

Temporal Logics

Definition (CTL)
Let P be a set of atomic propositions

each p ∈ P is a formula
if ψ1 and ψ2 are formulæ, then also ψ1 ∧ ψ2, ¬ψ1, AXψ1,
EXψ1, AFψ1, EFψ1, AGψ1, EGψ1, A(ψ1Uψ2), E(ψ1Uψ2)
are formulæ

path and state quantifiers are alternated
the model checking problem can be solved in linear time,
O(|ψ| ∗ |M|) (thanks to a fix-point computation and Tarjan
algorithm for strongly connected components)
it is not so easy for other logics, e.g., LTL and CTL* are
P-space complete

State Explosion Problem

We have to handleM

The number of states (nodes) ofM grows exponentially w.r.t.
the number of interacting components

Many solutions have been proposed:
Symbolic Model Checking
Abstract Model Checking
On-the-fly Model Checking

allowing to successfully apply Model Checking to real cases

State Explosion Problem

We have to handleM

The number of states (nodes) ofM grows exponentially w.r.t.
the number of interacting components

Many solutions have been proposed:
Symbolic Model Checking
Abstract Model Checking
On-the-fly Model Checking

allowing to successfully apply Model Checking to real cases

State Explosion Problem

We have to handleM

The number of states (nodes) ofM grows exponentially w.r.t.
the number of interacting components

Many solutions have been proposed:
Symbolic Model Checking
Abstract Model Checking
On-the-fly Model Checking

allowing to successfully apply Model Checking to real cases

Some References

Manna and Pnueli. Temporal Logics. 1981
Clarke, Emerson, and Sistla. Quielle and Sifakis.
Transition Systems. 1983
Efficient Algorithms are studied for many logics.
State Explosion Problem is an obstacle in the applications.
Mc Millan, Clarke, et al.. Symbolic Model Checking. 1993
Dams, Gerth, and Grumberg. Abstract Model Checking.
1996
Henzinger. Model Checking on Hybrid Systems. 1997

Model Checking and Systems Biology

We can use Kripke Structures for representing Pathways, or
Experimental Traces. . .

. . . and Temporal Logics for asking biological questions:
is state s reachable?
is the system always oscillating? (see Repressilator)

See, e.g., Fages, Mishra

State Explosion Problem becomes dramatic
How can we model continuous variables?
Do they really exist?

Hybrid Systems

Many real systems have a double nature. They:
evolve in a continuous way
are ruled by a discrete system

We call such systems hybrid systems and we can formalize
them using hybrid automata

Hybrid Automata - Intuitively

A hybrid automaton H is
a finite state automaton with continuous variables Z

Dyn(v)[Z,Z ′, T]

Inv(v)[Z]

Dyn(v′)[Z,Z ′, T]

Inv(v′)[Z]

Reset(e)[Z,Z ′];Act(e)[Z]

Reset(e′)[Z,Z ′];Act(e′)[Z]

v v′

A state is a pair 〈v , r〉 where r is an evaluation for Z

Hybrid Automata - Semantics

v v′

r

sf(t′)

Definition (Continuous Transition)

〈v , r〉 t−→C 〈v , s〉 ⇐⇒

there exists a continuous f : R+ 7→
Rk such that r = f (0), s = f (t),
and for each t ′ ∈ [0, t] the formulæ
Inv(v)[f (t ′)] and Dyn(v)[r , f (t ′), t ′]
hold

Hybrid Automata - Semantics

v v′

r s

Definition (Discrete Transition)

〈v , r〉 〈v ,λ,v
′〉−−−−→D 〈v ′, s〉 ⇐⇒

〈v , λ, v ′〉 ∈ E and
Inv(v)[r], Act(〈v , λ, v ′〉)[r],
Reset(〈v , λ, v ′〉)[r , s], and
Inv(v ′)[s] hold

Hybrid Automata – Escherichia

Escherichia coli is a bacterium detecting the food concentration
through a set of receptors

It responds in one of two ways:
“RUNS” – moves in a straight line by moving its flagella
counterclockwise (CCW)
“TUMBLES” – randomly changes its heading by moving its
flagella clockwise (CW)

In our example, we ignore any stochastic effect by modeling it
deterministically

Hybrid Automata – Escherichia

Example (E. Coli Model)

y = Yp

Y0
> θ ∧ ω′ = +1 ∧ Y ′P = YP ∧ Y ′0 = Y0 ∧

B′P = BP ∧ B′0 = B0 ∧ Z ′ = Z ∧ P ′ = P

y = Yp

Y0
< θ ∧ ω′ = −1 ∧ Y ′P = YP ∧ Y ′0 = Y0 ∧

B′P = BP ∧ B′0 = B0 ∧ Z ′ = Z ∧ P ′ = P

ω = −1

ẎP = kyP (Y0 − YP)− k−yZYP

ḂP = kbP (B0 −BP)− k−bBP

P = LT2p + LT3p + LT4p+
T2p + T3p + T4p

ω = +1

ẎP = kyP (Y0 − YP)− k−yZYP

ḂP = kbP (B0 −BP)− k−bBP

P = LT2p + LT3p + LT4p+
T2p + T3p + T4p

RUN [CCW] TUMBLE [CW]

ω is the angular velocity that takes discrete values + 1 for CW
and − 1 for CCW

Hybrid Automata Issues

Decidability. There are many undecidability results even on
basic classes of hybrid automata. Why? What can we do?
Complexity. Hybrid Automata involve notions coming from
different areas Control Theory, Analysis, Computational
Algebra, Logic, Are we exploiting all their powerful
instruments?
Compositionality. We would like to combine many hybrid
automata representing different systems running in
parallel. How can we do it?
Precision. Hybrid automata have a semantics with infinite
precision. Is this realistic in (biological) applications?

Which is Your Point of View?

The world is dense

(R,+, ∗, <,0,1) first-order theory is decidable

The world is discrete

Diophantine equations are undecidable

What about their interplay?

Which is Your Point of View?

The world is dense

(R,+, ∗, <,0,1) first-order theory is decidable

The world is discrete

Diophantine equations are undecidable

What about their interplay?

Delta-Notch

Delta and Notch are proteins involved in cell differentiation
(see, e.g., Collier et al., Ghosh et al.)

Notch production is triggered by high Delta levels in
neighboring cells

Delta production is triggered by low Notch concentrations in
the same cell

High Delta levels lead to differentiation

Delta-Notch: Single Cell Automaton

q1 q2

q3 q4

X ′D = fD(XD, T)

X ′N = fN (XN , T)

X ′D = gD(XD, T)

X ′N = fN (XN , T)

X ′D = fD(XD, T)

X ′N = gN (XN , T)

X ′D = gD(XD, T)

X ′N = gN (XN , T)

fD and fN increase Delta and Notch, gD and gN decrease Delta
and Notch, respectively

Delta-Notch: Two Cells Automaton

It is the Cartesian product of two “single cell” automata

The Zeno state can occur only in the case of
two cells with identical initial concentrations

Verification

Question
Can we automatically verify hybrid automata?

Let us start from the basic case of Reachability
Assume that Continuous/Discrete transitions are computable

Naive Reachability(H, Initial set)

Old ← ∅
New ← Initial set
while New 6= Old do

Old ← New
New ← Discrete Reach(H,Continuous Reach(H,Old))

return Old

Verification

Question
Can we automatically verify hybrid automata?

Let us start from the basic case of Reachability
Assume that Continuous/Discrete transitions are computable

Naive Reachability(H, Initial set)

Old ← ∅
New ← Initial set
while New 6= Old do

Old ← New
New ← Discrete Reach(H,Continuous Reach(H,Old))

return Old

Bounded Sets and Undecidability

Even if the invariants are bounded, reachability is undecidable

Proof sketch
Encode two-counter machine by exploiting density:

each counter value, n, is represented in a continuous
variable by the value 2−n

each control function is mimed by a particular location

Where is the Problem?

Keeping in mind our examples:

Question “Meaning”
What is the meaning of these undecidability results?

Question “Decidability”
Can we avoid undecidability by adding some natural hypothesis
to the semantics?

Undecidability in Real Systems

Undecidability in our models comes from . . .
infinite domains: unbounded invariants
dense domains: the “trick” n as 2−n

But which real system does involve . . .
unbounded quantities?
infinite precision?

Unboundedness and density abstract discrete large quantities

Undecidability in Real Systems

Undecidability in our models comes from . . .
infinite domains: unbounded invariants
dense domains: the “trick” n as 2−n

But which real system does involve . . .
unbounded quantities?
infinite precision?

Unboundedness and density abstract discrete large quantities

Dense vs Discrete - Intuition

What if we do not really want to completely abandon dense
domains?

We need to introduce a finite level of precision in bounded
dense domains, we can distinguish two sets only if they differ of
“at least ε”

Intuitively, we can see that something new has been reached
only if a reasonable large set of new points has been
discovered, i.e., we are myope

Finite Precision Semantics

Definition (ε-Semantics)
Let ε > 0. For each formula ψ:
(ε) either {|ψ|}ε = ∅ or {|ψ|}ε contains an ε-ball
(∩) {|ψ1 ∧ ψ2|}ε ⊆ {|ψ1|}ε ∩ {|ψ2|}ε
(∪) {|ψ1 ∨ ψ2|}ε = {|ψ1|}ε ∪ {|ψ2|}ε
(¬) {|ψ|}ε ∩ {|¬ψ|}ε = ∅

It is a general framework: there exist many different ε-semantics

A Decidability Result

Theorem (Reachability Problem)
Using ε-semantics and assuming both bounded invariants and
decidability for specification language, we have decidability of
reachability problem for hybrid automata

See A. Casagrande, C. Piazza, and A. Policriti. Discreteness, Hybrid
Automata, and Biology. WODES’08

How can we ensure the decidability for specification language?

A Decidability Result

Theorem (Reachability Problem)
Using ε-semantics and assuming both bounded invariants and
decidability for specification language, we have decidability of
reachability problem for hybrid automata

See A. Casagrande, C. Piazza, and A. Policriti. Discreteness, Hybrid
Automata, and Biology. WODES’08

How can we ensure the decidability for specification language?

Semi-Algebraic Hybrid Automata

Definition (Semi-Algebraic Theory)

First-order polynomial formulæ over the reals (R,0,1, ∗,+, >)

Example

∃T ≥ 0(Z ′ = T 2 − T + Z ∧ 1 ≤ Z ≤ 2)

Definition
An hybrid automaton H is semi-algebraic if Dyn, Inv , Reset ,
and Act are semi-algebraic

Semi-Algebraic Automata and Decidability

Semi-algebraic formulæ allow us to
reduce reachability to satisfiability

of first-order formulæ over (R,0,1, ∗,+, >)

First-order formulæ over (R,0,1, ∗,+, >) are decidable [Tarski]

May be reachability is decidable over Semi-algebraic automata
even with the standard infinite precision semantics?

No!

Semi-Algebraic Automata and Decidability

Semi-algebraic formulæ allow us to
reduce reachability to satisfiability

of first-order formulæ over (R,0,1, ∗,+, >)

First-order formulæ over (R,0,1, ∗,+, >) are decidable [Tarski]

May be reachability is decidable over Semi-algebraic automata
even with the standard infinite precision semantics?

No!

Semi-Algebraic Automata and Decidability

Semi-algebraic formulæ allow us to
reduce reachability to satisfiability

of first-order formulæ over (R,0,1, ∗,+, >)

First-order formulæ over (R,0,1, ∗,+, >) are decidable [Tarski]

May be reachability is decidable over Semi-algebraic automata
even with the standard infinite precision semantics?

No!

Semi-Algebraic Automata and Decidability

Semi-algebraic formulæ allow us to
reduce reachability to satisfiability

of first-order formulæ over (R,0,1, ∗,+, >)

First-order formulæ over (R,0,1, ∗,+, >) are decidable [Tarski]

May be reachability is decidable over Semi-algebraic automata
even with the standard infinite precision semantics?

No!

Semi-Algebraic Automata and (Un)Decidability

Reachability is reduced to:

Reachable[Z ,Z ′] ≡
∨

ph∈Ph

∃T ≥ 0(Reachph[Z ,Z ′,T])

where Ph is the set of all paths and Reachph[Z ,Z ′,T] means
that Z reaches Z ′ in time T through ph

Ph is infinite!

We need constraints on the resets and Selection theorems

See A. Casagrande, B. Mishra, C. Piazza, and A. Policriti. Inclusion
Dynamics Hybrid Automata. Information and Computation, 2008

Semi-Algebraic Automata and (Un)Decidability

Reachability is reduced to:

Reachable[Z ,Z ′] ≡
∨

ph∈Ph

∃T ≥ 0(Reachph[Z ,Z ′,T])

where Ph is the set of all paths and Reachph[Z ,Z ′,T] means
that Z reaches Z ′ in time T through ph

Ph is infinite!

We need constraints on the resets and Selection theorems

See A. Casagrande, B. Mishra, C. Piazza, and A. Policriti. Inclusion
Dynamics Hybrid Automata. Information and Computation, 2008

Semi-Algebraic Automata and (Un)Decidability

Reachability is reduced to:

Reachable[Z ,Z ′] ≡
∨

ph∈Ph

∃T ≥ 0(Reachph[Z ,Z ′,T])

where Ph is the set of all paths and Reachph[Z ,Z ′,T] means
that Z reaches Z ′ in time T through ph

Ph is infinite!

We need constraints on the resets and Selection theorems

See A. Casagrande, B. Mishra, C. Piazza, and A. Policriti. Inclusion
Dynamics Hybrid Automata. Information and Computation, 2008

Composition of Hybrid Automata

We can define the Parallel Composition (cartesian product) of
hybrid automata

Is reachability still decidable?

Yes!. . . Sometimes . . . To prove it we had to prove the
decidability of linear systems of “Diophantine” equations with
semi-algebraic coefficients:

loops in the discrete structure of the automata give rise to
integer variables
the continuous dynamics produce the semi-algebraic
coefficients

A. Casagrande, P. Corvaja, C. Piazza, and B. Mishra. Decidable
Compositions of O-minimal Automata. ATVA’08

Conclusions

I briefly presented:
Model Checking
Temporal Logics
Hybrid Automata

Many interesting mathematical problems comes from the
interplay between discrete and continuous components in
hybrid automata
I sketched two biological examples
How do we construct hybrid automata from biological data?

Some Names

Thomas A. Henzinger
Rajeev Alur
Claire Tomlin
Ashish Tiwari
François Fages

