
Lecture 3 : Fourier Transform

Applications of Fourier Transform

Numerous Applications including:

Essential tool for Engineers, Physicists,
Mathematicians and Computer Scientists

Fundamental tool for Digital Signal
Processing and Image Processing

Many types of Frequency Analysis:

Filtering
NoiseRemoval
Signal/ImageAnalysis
Simple implementation of Convolution
Audio and Image Effects Processing.
Signal/Image Restoration—e.g. Deblurring
Signal/Image Compression—MPEG (Audio
and Video), JPEG user related techniques.

Many more

Introducing Frequency Space

1D Audio Example
Lets consider a 1D (e.g. Audio) example to see what the different domains mean:

Consider a complicated sound such as a chord played on a piano or a guitar.

We can describe this sound in two related ways:
Temporal Domain: Sample the amplitude of the sound many times a second, which
 gives an approximation to the sound as a function of time.

FrequencyDomain: Analyse the sound in terms of the pitches of the notes, or
 frequencies, which make the sound up, recording the amplitude
 of each frequency.

Fundamental Frequencies

 D : 554.40Hz

 F : 698.48Hz

 A : 830.64Hz

 C : 1046.56Hz

plus harmonics/partial frequencies....

Back to Basics

An 8Hz Sine Wave

A signal that consists of a sinusoidal wave
at 8Hz.

8 Hz means that wave is completing
8 cycles in 1 second

The frequency of that wave is 8Hz.

From the frequency domain we can see
that the composition of our signal is

One peak occurring with a frequency
of 8Hz—there is only one sine
wave here.

With a magnitude/fraction of
1.0 i.e. it is the whole signal.

2D Image Example

What do Frequencies in an Image Mean?

Now images are no more complex really:

Brightness along a line can be recorded as a set of
values measured at equally spaced distances apart,

or equivalently, at a set of spatial frequency values.

Each of these frequency values is a frequency
component.

An image is a 2D array of pixel measurements.

We form a 2D grid of spatial frequencies.

A given frequency component now specifies what
contribution is made by data which is changing with
specified x and y direction spatial frequencies.

Frequency components of an image

What do Frequencies in an Image Mean?

Large values at high frequency components then the data
is changing rapidly on a short distance scale.

e.g. a page of text
However, Noise contributes (very) High Frequencies
also

Large low frequency components then the large scale
features of the picture are more important.
e.g. a single fairly simple object which occupies most of
the image.

Visualising Frequency Domain Transforms

Sinusoidal Decomposition

Any digital signal (function) can be decomposed into purely
sinusoidal components

Sine waves of different size/shape — varying amplitude,
frequency and phase.

When added back together they reconstitute the original signal.

The Fourier transform is the tool that performs such an operation.

Summing Sine Waves.
Example: to give a Square(ish)Wave

Digital signals are composite signals made up of many
sinusoidal frequencies

A 200 Hz digital signal (square(ish)wave) may be a composed of
200, 600, 1000, etc. sinusoidal signals which sum to give:

Summary so far

So What Does All This Mean?

Transforming a signal into the frequency domain allows us

To see what sine waves make up our underlying
signal

E.g.
One part sinusoidal wave at 50Hz and
Second part sinusoidal wave at 200Hz.
Etc.

More complex signals will give more complex
decompositions but the idea is exactly the same.

How is this Useful then?

Basic Idea of Filtering in Frequency Space

Filtering now involves attenuating or removing certain
frequencies — easily performed:

Low-pass-filter —
Ignore high frequency noise components—make zero
or a very low value.

Onlystorelowerfrequencycomponents

High-pass filter—opposite of above

Band-pass filter — only allow frequencies in a certain
range.

Visualising the Frequency Domain

Think Graphic Equaliser

An easy way to visualise what is happening is to think of
a graphic equaliser on a stereo system (or some software
audio players, e.g. iTunes).

So are we ready for the FourierTransform?
We have all theTools....

This lecture, so far, (hopefully) set the context for frequency
decomposition. Also, remember

Odd/EvenFunctionsOdd/EvenFunctions: sin(−x)=−sin(x), cos(−x)=cos(x)

ComplexNumbersComplexNumbers: Phasor FormPhasor Form reiφ = r(cosφ+isinφ)
Calculus IntegrationIntegration: ekxdx = ekx/k

Digital Signal Processing:

Basic Wave formTheory. Sine Wave y=A.sin(2π.n.Fw/Fs)

where: A=amplitude, Fw=wave frequency, Fs=sample
frequency, n is the sample index.
Relationship between Amplitude, Frequency and Phase:

Cosine is a Sine wave 90 out of phase
◦

Impulse Responses

DSP+Image Proc.: Filters and other processing, Convolution

Fourier Theory

Introducing the Fourier Transform

The tool which converts a spatial or temporal (space) description
Of audio/image data ,for example, into one in terms of its frequency
components is called the Fourier transform

The new version is usually referred to as the Fourier space
description of the data.

We then essentially process the data:

E.g. for filtering basically this means attenuating or setting
certain frequencies to zero

We then need to convert data back (or invert) to real audio/imagery
to use in our applications.

The corresponding inverse transformation which turns a Fourier space
description back into a real space one is called the inverse Fourier
transform.

1D Fourier Transform

1D Case (e.g. Audio Signal)

Considering a continuous function f(x) of a single variable x
representing distance (or time).
The Fourier transform of that function is denoted F(u), where u
represents spatial (or temporal) frequency is defined by:

F(z) = ∫
−∞

∞

f(x)e−2πixz dx.

Note: In general F(z) will be a complex quantity even though the
original data is purely real.

The meaning of this is that not only is the magnitude of each
frequency present important, but that its phase relationship is
too.

Recall Phasors from Complex Number Theory.

e−2πixz above is a Phasor.

52

Inverse Fourier Transform

Inverse 1D Fourier Transform

The inverse Fourier transform for regenerating f(x) from
F(z) is given by

f(x) = ∫ F(z) e2πixzdz,
∞

−∞

which is rather similar to the (forward) Fourier transform
except that the exponential term has the opposite
sign.

It is not negative

Fourier Transform Example

Fourier Transform of a Top Hat Function

Let’s see how we compute a Fourier Transform: consider
a particular function f(x) defined as

f(x) = {
1 if |x|≤ 1
0 otherwise,

11

The Sinc Function (1)

We derive the Sinc function

So its Fourier transform is:

In this case, F(z) is purely real, which is a consequence of the original
data being symmetric in x and –x.

f(x) is an even function.

A graph of F(z) is shown overleaf.

This function is often referred to as the Sinc function.

F (z) =∫
−∞

∞

f (x)e−2 π ixz
⋅dx

= ∫
−1

1

1×e−2π ixz
⋅dx

=
−1
2 π iz

(eπ iz
−e−π iz

)

sinθ =
e iθ−e−i θ

2i
, So :

F (z) =
sin (2π z)

π z

The Sinc Function Graph

The Sinc Function

The Fourier transform of a top hat function, the Sinc
function:

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

2

u

sin(2 π u)/(π u)

The 2D Fourier Transform

2D Case (e.g. Image data)

If f(x,y) is a function, for example intensities in an image,
its Fourier transform is given by

F(u,v) = ∫ ∫
∞

−∞

∞

−∞
f(x,y) e −2πi(xu+yv)dxdy,

and the inverse transform, as might be expected, is

f(x,y) = ∫ ∫
∞

−∞

∞

−∞
F(u,v) e dudv.

 2πi(xu+yv)

The Discrete Fourier Transform

But all our audio and image data are digitised

Thus, we need a discrete formulation of the Fourier
transform:

Assumes regularly spaced data values, and

Returns the value of the Fourier transform for a set of
values in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a
Summation, to give the discrete Fourier transform or DFT
for short.

1D Discrete Fourier transform

1D Case:

In 1D it is convenient now to assume that x goes up in steps
of 1, and that there are N samples, at values of x from 0
to N−1.

So the DFT takes the form

N

N−1

x=0

 F(z) = − ∑ f(x)e−2πixz/N,

while the inverse DFT is

f(x) = ∑F(z)e2πixuz/N

NOTE: Minor changes from the continuous case area factor of 1/N in the
exponential terms, and also the factor 1/N in front of the forward transform
which does not appear in the inverse transform.

1

N−1

z=0

2D Discrete Fourier transform

2D Case

The 2D DFT works is similar.
So for an N×M grid in x and y we have

1
NM

N−1

x=0

M−1

y=0

F(u,v) = ∑ ∑ f(x,y)e−2πi(xu/N+yv/M),

and
N−1

u=0

M−1

v=0

f(x,y) =∑ ∑ F(u,v) e2πi(xu/N+yv/M) .

Balancing the 2D DFT

Most Images are Square

Often N=M, and it is then it is more convenient to redefine
F(u,v) by multiplying it by a factor of N, so that the forward
and inverse transforms are more symmetric:

F(u,v)= ∑ ∑
1
N

N−1

x=0

N−1

y=0

f(x,y)e−2πi(xu+yv)/ N,

and

f(x,y)= ∑ ∑
1
N

N−1

u=0

N−1

v=0

F(u,v)e2πi(xu+yv)/ N.

Fourier Transforms in MATLAB
fft() and fft2()

MATLAB provides functions for 1D and 2D Discrete Fourier
Transforms (DFT):

fft(X) is the 1D discrete Fourier transform (DFT) of vector X.
For matrices, the FFT operation is applied to each
column—NOT a 2D DFT transform.

fft2(X) returns the 2D Fourier transform of matrix X.If X is a
vector, the result will have the same orientation.

fftn(X) returns the N-D discrete Fourier transform of the N-D
Array X.

InverseDFT ifft(), ifft2(), ifftn() perform the inverse DFT.

Visualising the Fourier Transform

Visualising the Fourier Transform

Having computed a DFT it might be
useful to visualise its result:

It’s useful to visualise the
Fourier Transform

Standard tools

0 2 4 6 8 10 12 14 16

−1

0

1

n →

a)

Cosine signal x(n)

0 2 4 6 8 10 12 14 16

0

0.5

1

k →

b
)

Magnitude spectrum |X(k)|

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

0.5

1

f in Hz →

c)

Magnitude spectrum |X(f)|

The Magnitude Spectrum of
Fourier Transform

Recall that the Fourier Transform of our real audio/image data is
always complex

Phasors: This is how we encode the phase of the underlying
signal’s Fourier Components.

How can we visualise a complex data array?
Back to Complex Numbers:
Magnitude spectrum Compute the absolute value of the complex
 data:

|F(k)| = FR
2(k) + FI

2(k) for k=0,1,..., N−1

Where FR(k)is the real part and FI(k) is the imaginary part of the N
sampled Fourier Transform, F(k).

The Phase Spectrum of Fourier Transform

The Phase Spectrum

Phase Spectrum

The Fourier Transform also represent phase, the
phase spectrum is given by:

Φ = arctan for k=0,1,...,N−1FI (k)
FR(k)

Relating a Sample Point to a
Frequency Point

When plotting graphs of Fourier Spectra and doing other DFT
processing we may wish to plot the x-axis in Hz (Frequency)
rather than sample point number k=0, 1,...,N−1

There is a simple relation between the two:

The sample points go in steps k=0,1,...,N−1

For a given sample point k the frequency relating to this
is given by:

fk =k
fs
N

where fs is the sampling frequency and N the number
of samples.

Thus we have equidistant frequency steps of fs/N
ranging from 0 Hz to (N-1)fs/N Hz

TimeFrequency Representation:
Spectrogram

Spectrogram

It is often useful to look at the frequency distribution over
a short-time:

Split signal into N segments

Do a windowed Fourier Transform — Short-Time
FourierTransform (STFT)

Window needed to reduce leakage effect of doing
a shorter sample SFFT.
Apply a Blackman, Hamming or Hanning Window

MATLAB function does the job: Spectrogram — see
help spectrogram

See also OCTAVE’s specgram

OCTAVE specgram Example

spectrogrameg.m

y = wavread(’echoes.wav’)
[N M]=size(y);
figure(1)
x = fft(y, N);
Fs=22050;
specgram(x,1024,Fs,1024,20);

Produces the following:

Another specgram Example

spectrogrameg2.m

[y, fs] = wavread('starWars.wav');
left = y(:,1);
[N1 M1]=size(left);
xl = fft(left, N1);
right = y(:,2);
[Nr Mr] = size(right);
xr = fft(right, Nr);
figure(1)
subplot(2,1,1), plot((1:length(left))/fs, left);
subplot(2,1,2), plot((1:length(right))/fs, right);

figure(2)
specgram(xl,1024,fs,1024,20);
title('Left Channel Spectrogram');
figure(3)
specgram(xr,1024,fs,1024,20);
title('Right Channel Spectrogram');

A new specgram Example

spectrogrameg3.m

[y, fs] = wavread('fuga.wav');
left = y(:,1);
[N1 M1]=size(left);
xl = fft(left, N1);
right = y(:,2);
[Nr Mr] = size(right);
xr = fft(right, Nr);
figure(1)
subplot(2,1,1), plot((1:length(left))/fs, left);
subplot(2,1,2), plot((1:length(right))/fs, right);

figure(2)
specgram(xl,1024,fs,1024,20);
title('Left Channel Spectrogram');
figure(3)
specgram(xr,1024,fs,1024,20);
title('Right Channel Spectrogram');

Filtering in the Frequency Domain

Low Pass Filter

Example: Audio Hiss, ’Salt and Pepper’ noise
in images,

Noise:

The idea with noise Filtering is to reduce
Various spurious effects of a local nature
In the image, caused perhaps by

noise in the acquisition system,
Arising as a result of transmission
of the data, for example from a
space probe utilising a low-power
transmitter.

Image with Noise Added

High Cut off Frequency Low Pass Filtered Image−

Frequency Space Filtering Methods

Low Pass Filtering — Remove Noise

Noise = High Frequencies:

In audio data many spurious peaks in over a short time scale.

In an image means there are many rapid transitions (over a
short distance) in intensity from high to low and back again or
viceversa, as faulty pixels are encountered.

Not all high frequency data noise though!

Therefore noise will contribute heavily to the high frequency
components of the signal when it is analysed in Fourier space.

Thus if we reduce the high frequency components — Low-Pass
Filter should (if tuned properly) reduce the amount of noise
in the data.

(Lowpass) Filtering in the Fourier Space

Low Pass Filtering with the Fourier Transform

We filter in Fourier space by computing

G(u,v)=H(u,v)F(u,v)

where:

F(u,v) is the Fourier transform of the original image,

H(u,v) is a filter function, designed to reduce high
frequencies, and

G(u,v) is the Fourier transform of the improved
image.

Inverse Fourier transform G(u,v) to get g(x,y) our
Improved image

Ideal LowPass Filter

We need to design or compute H(u,v)

If we know h(x,y) or have a discrete sample of h(x,y)
can compute its FourierTransform

Can simply design simple filters in Frequency Space

The simplest sort of filter to use is an ideal low-pass filter,
which in one dimension appears as:

uu0

2.0
H(u)

Ideal LowPass Filter

How the Low-Pass Filter works with Frequencies

uu0

2.0
H(u)

This is a h(x,y) function which is 1 for u between 0 and u0,
the cut-off frequency, and zero elsewhere.

So all frequency space information above u0 is
discarded, and all information below u0 is kept.
A very simple computational process.

Ideal 2D LowPassFilter
Ideal 2D Low-Pass Filter

The two dimensional version of this is the Low-Pass Filter:

H(u,v) =
1 if √u2 +v2 ≤ w0

0 otherwise,

where w0 is now the cut-off frequency for both dimensions.

Thus, all frequencies inside a radius w0 are kept,
and all others discarded.

w0

Not so ideal LowPass Filter?

In practice, the ideal Low-Pass Filter is no so ideal

The problem with this filter is that as well as noise there
may be useful high frequency contents:

In audio: plenty of other high frequency contents: high
pitches, rustles, scrapes, wind, mechanical noises,
cymbal crashes etc.

In images: edges (places of rapid transition from light
to dark) also significantly contribute to the high
frequency components.

Choosing the most appropriate cut-off frequency is not
so easy

Similar problem to choosing a threshold in image
thresholding.

Not so ideal LowPassFilter?

What if you set the wrong value for
the cut-off frequency?

If you choose the wrong cut-off
frequency an ideal low-pass filter
will tend to blur the data:

High audio frequencies become
muffled

Edges in images become blurred.

The lower the cut-off frequency is
Made, the more pronounced this
effect becomes in useful data content

Ideal LowPass Filter Example

(a) Input Image

(c) Ideal Low-Pass Filter

(b) Image Spectra

(d) Filtered Image

Ideal LowPass Filter Example

lowpass.m:

%Create a white box on a
%black background image
M=256;N=256;
image=zeros(M,N)
box=ones(64,64);
%box at centre
image(97:160,97:160)=box;

%ShowImage

Figure(1);
imshow(image);

%compute fft and display its spectra

F=fft2(double(image));
Figure(2);
imshow(abs(fftshift(F)));

%Compute Ideal Low Pass Filter
u0=20;%set cutoff frequency

u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U.^2+V.^2);
H=double(D<=u0);

%display
Figure(3);
imshow(fftshift(H));

%Apply filter and do inverse FFT
G=H.*F;
g=real(ifft2(double(G)));

%Show Result
Figure(4);
imshow(g);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

