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Algebraic entropy for N-actions

Abelian case

Let A be an abelian group and φ : A→ A an endomorphism;
Pf (A) = {F ⊆ A | F 6= ∅ finite} ⊇ F(A) = {F ≤ A | F finite}.

For F ∈ Pf (A), n > 0, let Tn(φ,F ) = F + φ(F ) + . . .+ φn−1(F ).

The algebraic entropy of φ with respect to F is

Halg (φ,F ) = lim
n→∞

log |Tn(φ,F )|
n

.

[Adler-Konheim-McAndrew, M.Weiss] The algebraic entropy of φ is

ent(φ) = sup{Halg (φ,F ) | F ∈ F(A)}.

[Peters, Dikranjan] The algebraic entropy of φ is

halg (φ) = sup{Halg (φ,F ) | F ∈ Pf (A)}.

Clearly, ent(φ) = ent(φ �t(A)) = halg (φ �t(A)) ≤ halg (φ).
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Algebraic entropy for N-actions

Abelian case

[Dikranjan-Goldsmith-Salce-Zanardo for ent, D-GB for halg ]

Theorem (Addition Theorem = Yuzvinski’s addition formula)

If B is a φ-invariant subgroup of A, then

halg (φ) = h(φ �B) + h(φA/B),

where φA/B : A/B → A/B is induced by φ.

[Weiss for ent, Peters, D-GB for halg ]

Theorem (Bridge Theorem)

Denote Â the Pontryagin dual of A and φ̂ : Â→ Â the dual of φ.
Then

halg (φ) = htop(φ̂).

Here htop denotes the topological entropy for continuous selfmaps
of compact spaces [Adler-Konheim-McAndrew].
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Algebraic entropy for N-actions

Non-abelian case

Non-abelian case

Let G be a group and φ : G → G an endomorphism.
Let Pf (G ) = {F ⊆ G | F 6= ∅ finite}.

For F ∈ Pf (G ), n > 0, let Tn(φ,F ) = F · φ(F ) · . . . · φn−1(F ).

The algebraic entropy of φ with respect to F is

Halg (φ,F ) = lim
n→∞

log |Tn(φ,F )|
n

.

[Dikranjan-GB] The algebraic entropy of φ is

halg (φ) = sup{Halg (φ,F ) | F ∈ Pf (G )}.
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Algebraic entropy for N-actions

Non-abelian case

G = 〈X 〉 finitely generated group (X ∈ Pf (G )).

For g ∈ G \ {1}, `X (g) is the length of the shortest word
representing g in X ∪ X−1, and `X (1) = 0.

For n ≥ 0, let BX (n) = {g ∈ G | `X (g) ≤ n}.

The growth function of G wrt X is γX : N→ N, n 7→ |BX (n)|.
The growth rate of G wrt X is λX = limn→∞

log γX (n)
n .

For φ = idG and 1 ∈ X ,

Tn(idG ,X ) = BX (n) and Halg (idG ,X ) = λX .

[Milnor Problem, Grigorchuk group, Gromov Theorem]
There exists a group of intermediate growth.
G has polynomial growth if and only if G is virtually nilpotent.
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Algebraic entropy for N-actions

Non-abelian case

Let G be a group, φ : G → G an endomorphism and X ∈ Pf (G ).
The growth rate of φ wrt X is γφ,X : N+ → N+, n 7→ |Tn(φ,X )|.
If G = 〈X 〉 with 1 ∈ X ∈ Pf (G ), then γX = γidG ,X .

φ has polynomial growth if γφ,X is polynomial ∀X ∈ Pf (G );

φ has exponential growth if ∃ F ∈ Pf (G ), γφ,X is exp.;

φ has intermediate growth otherwise.

φ has exponential growth if and only if halg (φ) > 0.

The Addition Theorem does not hold for halg : let G = Z(Z) oβ Z;

G has exponential growth and so halg (idG ) =∞;

Z(Z) and Z are abelian and hence halg (idZ(Z)) = 0 = halg (idZ).

Theorem ([GB-Spiga, Dikranjan-GB for abelian groups,
Milnor-Wolf in the classical setting])

No endomorphism of a locally virtually soluble group has
intermediate growth.
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Ornstein-Weiss Lemma for semigroups

Let S be a cancellative semigroup.
S is right-amenable if and only if S admits a right-Følner net,
i.e., a net (Fi )i∈I in Pf (S) such that limi∈I

|Fi s\Fi |
|Fi | = 0 ∀s ∈ S .

(analogously, left-amenable).

A map f : Pf (S)→ R is:

1 subadditive if f (F1 ∪ F2) ≤ f (F1) + f (F2) ∀F1,F2 ∈ Pf (S);

2 left-subinvariant if f (sF ) ≤ f (F ) ∀s ∈ S ∀F ∈ Pf (S);

3 right-subinvariant if f (Fs) ≤ f (F ) ∀s ∈ S ∀F ∈ Pf (S);

4 unif. bounded on singletons if ∃M ≥ 0, f ({s}) ≤ M ∀s ∈ S .

Let L(S) = {f : Pf (S)→ R | (1), (2), (4) hold for f } and
R(S) = {f : Pf (S)→ R | (1), (3), (4) hold for f }.
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Ornstein-Weiss Lemma for semigroups

[Ceccherini Silberstein-Coornaert-Krieger, generalizing
Ornstein-Weiss Theorem]

Let S be a cancellative right-amenable (resp., left-amenable)
semigroup. For every f ∈ L(S) (resp., f ∈ R(S)) there exists
λ ∈ R≥0 such that

HS (f ) := lim
i∈I

f (Fi )

|Fi |
= λ

for every right-Følner (resp., left-Følner) net (Fi )i∈I of S .
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Amenable semigroups actions

Topological entropy

Let S be a cancellative left-amenable semigroup, X a compact
space and cov(X ) the family of all open covers of X .
For U ∈ cov(X ), let N(U) = min{|V| | V ⊆ U}.
Consider a left action S

γ
y X by continuous maps.

For U ∈ cov(X ) and F ∈ Pf (S), let

Uγ,F =
∨
s∈F

γ(s)−1(U) ∈ cov(X ).

fU : Pfin(S)→ R, F 7→ logN(Uγ,F ).

Then fU ∈ R(S).

[Ceccherini-Silberstein-Coornaert-Krieger, gen. Moulin Ollagnier]
The topological entropy of γ with respect to U is

Htop(γ,U) = HS (fU ).

The topological entropy of γ is

htop(γ) = sup{Htop(γ,U) | U ∈ cov(X )}.
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Amenable semigroups actions

Algebraic entropy

Let S be a cancellative right-amenable semigroup.
Let A be an abelian group and
consider a left action S

αy A by endomorphisms.

For X ∈ Pf (A) and F ∈ Pf (S), let

TF (α,X ) =
∑
s∈F

α(s)(X ) ∈ Pf (A).

fX : Pfin(S)→ R, F 7→ log |TF (α,X )|.
Then fX ∈ L(S).
The algebraic entropy of α with respect to X is

Halg (α,X ) = HS (fX ).

[Fornasiero-GB-Dikranjan, Virili for groups]
The algebraic entropy of α is

halg (α) = sup{Halg (α,X ) | X ∈ Pf (A)}.

Moreover, ent(α) = sup{Halg (α,X ) | X ∈ F(A)}.
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Algebraic entropy for amenable semigroups actions

Addition Theorem

Let S be a cancellative right-amenable semigroup.
Let A be an abelian group and
consider a left action S

αy A by endomorphisms.

Theorem (Addition Theorem)

If A is torsion and B is an α-invariant subgroup of A, then

halg (α) = halg (αB) + halg (αA/B),

where S
αBy B and S

αB/A
y B/A are induced by α.
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Algebraic entropy for amenable semigroups actions

Bridge Theorem

Let S be a cancellative left-amenable semigroup.
Let K be a compact abelian group and

consider a left action S
γ
y K by continuous endomorphisms.

γ induces a right action K̂
γ̂
x S , defined by

γ̂(s) = γ̂(s) : K̂ → K̂ for every s ∈ S ;

γ̂ is the dual action of γ.

Denote by γ̂op the left action Sop γ̂
y K̂ associated to γ̂ of the

cancellative right-amenable semigroup Sop.

Theorem (Bridge Theorem)

If K is totally disconnected (i.e., A is torsion), then

htop(γ) = halg (γ̂op).

[Virili for amenable group actions on locally compact abelian
groups]
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Algebraic entropy for amenable semigroups actions

Bridge Theorem

Let S be a cancellative left-amenable semigroup.
Let K be a compact abelian group and

consider a left action S
γ
y K by continuous endomorphisms.

Corollary (Addition Theorem)

If K is totally disconnected and L is a γ-invariant subgroup of K,
then

htop(γ) = htop(γL) + htop(γK/L),

where S
γLy L and S

γK/L
y K/L are induced by γ.

Known in the case of compact groups for:

Zd -actions on compact groups [Lind-Schmidt-Ward];

actions of countable amenable groups on compact metrizable
groups [Li].
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Algebraic entropy for amenable semigroups actions

Restriction actions and quotient actions

Restriction and quotient actions

Let G be an amenable group, A an abelian group, G
αy A.

For H ≤ G consider H
α�Hy A.

If [G : H] = k ∈ N, then halg (α �H) = k · halg (α).

If H is normal, then halg (α) ≤ halg (α �H).

For N ≤ G normal with N ⊆ kerα, consider G/N
ᾱG/N
y A.

halg (α) =

{
0 if N is infinite,
halg (αG/N )

|N| if N is finite.

Corollary

If halg (α) > 0, then kerα is finite and halg (α) =
halg (αG/ kerα)

| kerα| .

So: reduction to faithful actions.
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Generalized shifts

Definition

Generalized shifts

Let S be a semigroup, Y a non-empty set and A an abelian group.

For a right action Y
γ
x S , the generalized backward S-shift is

S
βA,γy A(Y ) defined by

βA,γ(s)(f ) = f ◦ γ(s) ∀s ∈ S ,∀f ∈ A(Y ).

For a left action S
η
y Y , such that each γ(s) has finite fibers,

the generalized forward S-shift is S
σA,ηy A(Y ) defined by

σA,η(s)(f )(y) =
∑

η(s)(z)=y

f (z) ∀s ∈ S , ∀f ∈ A(Y ),∀y ∈ Y .

If S = Y = N, and N
ρ
y N is given by ρ(1) : n 7→ n + 1, then

βA,ρ(1) : A(N) → A(N), (x0, x1, x2, . . .) 7→ (x1, x2, x3 . . .) and
σA,ρ(1) : A(N) → A(N), (x0, x1, x2, . . .) 7→ (0, x0, x1, . . .).
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Generalized shifts

Algebraic entropy of the generalized Bernoulli shifts

Let S be a cancellative right-amenable monoid
and A an abelian group.

Consider S
ρ
x S defined by ρ(s)(x) = xs ∀s ∈ S , ∀x ∈ S ,

and S
βA,λy A(S);

ent(βA,ρ) =

{
log |t(A)| if S is a group,

0 if S is not a group.

Consider S
λy S defined by λ(s)(x) = sx ∀s ∈ S , ∀x ∈ S ,

and S
σA,λy A(S);

halg (σA,λ) =

{
log |A| if S is infinite,
log |A|
|S | if S is finite.
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Generalized shifts

Set-theoretic entropy

Set-theoretic entropy

Let S be a cancellative right-amenable monoid.

Let Y be a non-empty set and consider a left action S
η
y Y .

For X ∈ Pf (Y ) and F ∈ Pf (S), let

F · X = α(F )(X ) = {α(g)(x) | g ∈ F , x ∈ Y }.

lX : Pf (S)→ R, F 7→ |F · X |.
Then lX ∈ L(S).

The set-theoretic entropy of η with respect to X is

Hset(η,X ) = HS (lX ).

The set-theoretic entropy of η is

hset(η) = sup{Hset(η,X ) | X ∈ Pf (Y )}.

[For N-actions this entropy was defined by Dikranjan-Shirazi, with
applications towards the computation of the topological entropy of
selfmaps KY → KY , where K is compact.]
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Generalized shifts

Set-theoretic entropy

Let G be an amenable group, Y a non-empty set and G
η
y Y .

For y ∈ Y , let Staby = {g ∈ G | η(g)(y) = y} and Oy = G · {y}.
The transitive action G

η
y Oy is isomorphic (with H = Staby ) to

the canonical action G
%G/H
y G/H on the set G/H given by

%G/H(g)(fH) = (gf )H ∀f , g ∈ G .

Theorem

If H is a subgroup of G, then hset(%G/H) = 1
|H| .

So, if {Oyi | i ∈ I} are the orbits of η, then hset(η) =
∑

i∈I
1

|Stabyi
| .

Let s(G ) = sup{|F | | F ≤ G finite}. If G is locally nilpotent then
t(G ) is a normal subgroup of G , and so s(G ) = |t(G )|.

Corollary

If s(G ) is finite, then
either hset(η) =∞, or hset(η) = m

|s(G)| for some m ∈ N.
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Generalized shifts

Algebraic entropy of the generalized forward shifts

Let S be an infinite cancellative right-amenable monoid,
Y a non-empty set and A an abelian group.

Consider S
η
y Y , such that each γ(s) has finite fibers,

and S
σA,ηy A(Y ) defined by

σA,η(s)(f )(y) =
∑

η(s)(z)=y

f (z)

∀s ∈ S ,∀f ∈ A(Y ), ∀y ∈ Y .

Theorem

halg (σA,η) = hset(η) · log |A|.

Since S
λy S with λ(s)(x) = sx ∀s ∈ S , ∀x ∈ S , has hset(λ) = 1,

as a corollary we obtain the previous result: halg (σA,λ) = log |A|.
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Generalized shifts

Entropy and Lehmer Problem

Entropy and Lehmer Problem

For a primitive polynomial f (x) = sxn + a1x
n−1 . . .+ an ∈ Z[x ]

with (complex) roots λ1, . . . , λn,
the Mahler measure of f is

m(f ) = log s +
∑
|λi |>1

log |λi |.

Let

L = {m(f (x)) | f (x) ∈ Z[x ]} and λ = inf(L \ {0}).

Problem ([Lehmer 1933])

Is λ > 0?
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Generalized shifts

Entropy and Lehmer Problem

Algebraic Yuzvinski Formula: If φ : Qn → Qn is an endomorphism,
then

halg (φ) = logm(f (x)),

where f (x) is the integer characteristic polynomial of φ.
[Lind-Schmidt-Ward for Zd -actions and htop;
Deninger, Li-Thom, Li in more general cases.]

Let Ealg = {halg (f ) | f ∈ End(G ),G abelian group}.

Theorem ([Dikranjan-GB])

inf(Ealg \ {0}) = λ;

λ = 0 if and only if Ealg = R≥0 ∪ {∞};
λ > 0 if and only if Ealg is countable.

Counterpart of [Lind-Schmidt-Ward, Theorem 4.6] for Zd -actions
on compact groups.
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Generalized shifts

Entropy and Lehmer Problem

Let S be a cancellative right-amenable semigroup. Define:

Eset(S) = {hset(η) | η action of S on a set};
Ealg (S) = {halg (α) | α action of S on an abelian group}.

(Clearly, Ealg = Ealg (N).)
By [Lawton, Lind-Schmidt-Ward] and the Bridge Theorem [Virili],
inf(Ealg (N) \ {0}) = inf(Ealg (Z) \ {0}) = inf(Ealg (Zd ) \ {0}) = λ.

Problem

Describe Eset(S) and Ealg (S).

Theorem

Let G be an amenable group. Then

Eset(G ) =

{
R≥0 ∪ {∞} if s(G ) is infinite,

1
|s(G)|N ∪ {∞} if s(G ) is finite.

In particular, Eset(G ) = N ∪ {∞} if G is torsion-free.
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Generalized shifts

Entropy and Lehmer Problem

Let G be an amenable group. Then

(log k)Eset(G ) ⊆ Ealg (G ) for every k > 1.

In fact, if r ∈ Eset(G ), that is, r = hset(η) for some G
η
y X , then,

for every finite abelian group A of size k > 1, halg (σA,η) = r log k.

Theorem

If s(G ) is infinite, then Ealg (G ) = R≥0 ∪ {∞}.

Therefore, Ealg (G )=R≥0 ∪ {∞} for every locally nilpotent group
with infinite t(G ).
Yet Ealg (G ) is unclear for arbitrary torson-free (abelian) groups.

Problem

How do the sets Ealg (Q), Ealg (Q2), Ealg (ZN) look like?
Are they countable?
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Thank you for your attention!
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