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Algebraic entropy for amenable semigroup actions

LAlgebraic entropy for N-actions

L Abelian case

Let A be an abelian group and ¢ : A — A an endomorphism;
Pe(A)={F CA|F #0 finite} O F(A) = {F < A|F finite}.

For F € P¢(A), n> 0, let To(¢, F) = F + ¢(F) + ...+ ¢" 1(F).

The algebraic entropy of ¢ with respect to F is

Halg(¢: F) = lim M

n—oo n

[Adler-Konheim-McAndrew, M.Weiss| The algebraic entropy of ¢ is

ent(¢) = sup{H.iz(9, F) | F € F(A)}.

[Peters, Dikranjan] The algebraic entropy of ¢ is

halg(qs) = Sup{Halg((bv F) ’ F e Pf(A)}

ClearIYr ent(¢>) = ent(qﬁ rt(A)) = halg((b rt(A)) < halg(¢)'
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LAlgebraic entropy for N-actions
L Abelian case

[Dikranjan-Goldsmith-Salce-Zanardo for ent, D-GB for h,]

Theorem (Addition Theorem = Yuzvinski's addition formula)

If B is a ¢-invariant subgroup of A, then

haig(#) = h(# 8) + h(da/B),

where ¢p/g : A/B — A/B is induced by ¢.

[Weiss for ent, Peters, D-GB for h,g]

Theorem (Bridge Theorem)

Denote A the Pontryagin dual of A and $: A — A the dual of o.
Then

halg(‘b) = htop(a)-

Here h:op denotes the topological entropy for continuous selfmaps
of compact spaces [Adler-Konheim-McAndrew].
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LAlgebraic entropy for N-actions

L Non-abelian case

Non-abelian case

Let G be a group and ¢ : G — G an endomorphism.
Let Pr(G) = {F C G | F # 0 finite}.

For F € Ps(G), n >0, let T,(¢,F)=F-¢(F)- ... - " L(F).
The algebraic entropy of ¢ with respect to F is

Hag (¢, F) = nI m M.

U n
[Dikranjan-GB] The algebraic entropy of ¢ is

halg(¢) = sup{Halg(¢a F) ’ F e Pf(G)}
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LAlgebraic entropy for N-actions

L Non-abelian case

G = (X) finitely generated group (X € Pr(G)).

For g € G\ {1}, {x(g) is the length of the shortest word
representing g in X U X~, and £x(1) = 0.

For n >0, let Bx(n) ={g € G| {x(g) < n}.

The growth function of G wrt X is yx : N — N, n— |Bx(n)|.

The growth rate of G wrt X is Ax = lim,_,o M-

For ¢ = idg and 1 € X,
Ta(idg, X) = Bx(n) and Haj(idg, X) = Ax.

[Milnor Problem, Grigorchuk group, Gromov Theorem]
There exists a group of intermediate growth.
G has polynomial growth if and only if G is virtually nilpotent.
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LAlgebraic entropy for N-actions

L Non-abelian case

Let G be a group, ¢ : G — G an endomorphism and X € P¢(G).
The growth rate of ¢ wrt X is v4 x : Ny — N4, n— [T,(¢, X)|.

If G = (X) with 1 € X € P¢(G), then

@ ¢ has polynomial growth if 74 x is polynomial VX € P¢(G);
@ ¢ has exponential growth if 3 F € P¢(G), v4.x is exp.;
@ ¢ has intermediate growth otherwise.

¢ has exponential growth if and only if h,g(¢) > 0.

The Addition Theorem does not hold for h,: let G = Z(%) x4 Z;

@ G has exponential growth and so h,(idg) = oo;
o Z(%) and Z are abelian and hence h,(idyz) = 0 = h,y(idz).

Theorem ([GB-Spiga, Dikranjan-GB for abelian groups,

Milnor-Wolf in the classical setting])

No endomorphism of a locally virtually soluble group has
intermediate growth.
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L Ornstein-Weiss Lemma for semigroups

Let S be a cancellative semigroup.
S is right-amenable if and only if S admits a right-Fglner net,

i.e., a net (Fi)ics in P¢(S) such that lim;g, % =0VseS.

(analogously, left-amenable).
A map f:Pe(S) = Ris:
@ subadditive if f(F1U F) < f(F1) + f(F2) VF1, Fa € Pe(S);
@ left-subinvariant if f(sF) < f(F) Vs € S VF € P¢(S);
@ right-subinvariant if f(Fs) < f(F) Vs € S VF € P¢(S);
© unif. bounded on singletons if IM >0, f({s}) < M Vs e S.

Let £(S) = {f : Pr(S) — R | (1),(2),(4) hold for f} and
R(S) = {f : Ps(S) — R | (1),(3),(4) hold for f}.



Algebraic entropy for amenable semigroup actions
L Ornstein-Weiss Lemma for semigroups

[Ceccherini Silberstein-Coornaert-Krieger, generalizing
Ornstein-Weiss Theorem]

Let S be a cancellative right-amenable (resp., left-amenable)
semigroup. For every f € L(S) (resp., f € R(S)) there exists
A € R>g such that

Hs(f) = lim FIF) _

i€l ’F,’

for every right-Fglner (resp., left-Fglner) net (F;)ics of S.
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L Amenable semigroups actions

|—Topological entropy

Let S be a cancellative left-amenable semigroup, X a compact
space and cov(X) the family of all open covers of X.
For U € cov(X), let N(UU) = min{|V| |V CU}.

Consider a left action S A X by continuous maps.
For U € cov(X) and F € P¢(S), let

Uy F = \/ v(s)"HU) € cov(X).

seF
fir: Phin(S) = R, F > log N(U, F).
Then f; € R(S).

[Ceccherini-Silberstein-Coornaert-Krieger, gen. Moulin Ollagnier]
The topological entropy of ~v with respect to U is

Heop(v,U) = Hs(fu).
The topological entropy of 7y is

htop(Y) = sup{Heop(y,U) | U € cov(X)}.
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L Amenable semigroups actions

|—Algebraic entropy

Let S be a cancellative right-amenable semigroup.
Let A be an abelian group and
consider a left action S A A by endomorphisms.

For X € Pr(A) and F € P¢(S), let
Te(o, X) = a(s)(X) € Pr(A).

seF
fx : Pin(S) = R, F —log|Te(a, X)|.

Then fx € L(S).
The algebraic entropy of o with respect to X is

Ha/g(av X) = HS(fX)'

[Fornasiero-GB-Dikranjan, Virili for groups]
The algebraic entropy of « is

ha/g(a) = Sup{Ha/g(Oz,X) | X e Pf(A)}.
Moreover, ent(a) = sup{Haz (o, X) | X € F(A)}.
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LAlgebraic entropy for amenable semigroups actions
L Addition Theorem

Let S be a cancellative right-amenable semigroup.
Let A be an abelian group and
consider a left action S A A by endomorphisms.

Theorem (Addition Theorem)

If A is torsion and B is an a-invariant subgroup of A, then
ha’g(a) = ha/g(aB) + halg(aA/B)a

where S ¢ B and § "/ B/A are induced by o.
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LAlgebraic entropy for amenable semigroups actions
|—Bridge Theorem

Let S be a cancellative left-amenable semigroup.
Let K be a compact abelian group and
consider a left action S A K by continuous endomorphisms.

~ induces a right action K A 'S, defined by
3(5):'@ 'K — K foreveryses;

7~ is the dual action of ~.

Denote by 7°P the left action S°P A K associated to 5 of the
cancellative right-amenable semigroup S°P.

Theorem (Bridge Theorem)

If K is totally disconnected (i.e., A is torsion), then

htop(’)/) = halg(:y\op)'

[Virili for amenable group actions on locally compact abelian
groups|
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LAlgebraic entropy for amenable semigroups actions

L Bridge Theorem

Let S be a cancellative left-amenable semigroup.
Let K be a compact abelian group and

consider a left action S A K by continuous endomorphisms.

Corollary (Addition Theorem)

If K is totally disconnected and L is a ~y-invariant subgroup of K,
then

htop(’Y) = htop(’YL) + htop(’YK/L)a

where S 2 L and § 74 K /L are induced by ~.

Known in the case of compact groups for:

o Z9-actions on compact groups [Lind-Schmidt-Ward];

@ actions of countable amenable groups on compact metrizable
groups [Li].
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LAlgebraic entropy for amenable semigroups actions

|—Restriction actions and quotient actions

Restriction and quotient actions
Let G be an amenable group, A an abelian group, G A A.
For H < G consider H Oﬂ\f A.

o If [G: H] =k €N, then hyg(a [H) = k - hajg(v).

o If His normal, then hyg(a) < hag(a [h).

For N < G normal with N C ker «, consider G/N rG\/VN A.
e (@) 0 if N is infinite,
@ Nygl\&v) = a . e .
s W if N is finite.

halg (aG/ ker a)
| ker o

If haig(a) > 0, then ker « is finite and h,g(a) =

So: reduction to faithful actions.
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L Generalized shifts

L Definition

Generalized shifts

Let S be a semigroup, Y a non-empty set and A an abelian group.

e For a right action Y AS, the generalized backward S-shift is

SAT AY) defined by

Ban(s)(f) = fon(s)

Vs € S,Vf e AY),

o For a left action S A Y, such that each 7(s) has finite fibers,
the generalized forward S-shiftis S /%' A(Y) defined by

oan(s)Ay)= Y. f(2)|vseSvfe AV vyey.
n(s)(z)=y

If S=Y =N, and N A N is given by p(1) : n— n+1, then
BA,p(]-) : A(N) — A(N), (Xo,Xl,Xg, .. ) — (X1,X2,X3 .. ) and
UA,p(l) : A(N) — A(N), (Xo,Xl,Xg, .. ) — (O,Xo,Xl, .. )
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L Generalized shifts

|—Algebraic entropy of the generalized Bernoulli shifts

Let S be a cancellative right-amenable monoid
and A an abelian group.

Consider S A S defined by p(s)(x) =xs Vs e S, Vx € S,

and Sﬂré’xA A(S).

log [t(A)| if S is a group,

t =
en (BA,p) {0 if S is not a group.

Consider S A S defined by A\(s)(x) =sx Vs e S, ¥x €S,
and S JAA AS).

log |A| if S is infinite,

haig(oan) = {IOIgS|IA| if S is finite.
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L Generalized shifts

L Set-theoretic entropy

Set-theoretic entropy
Let S be a cancellative right-amenable monoid.
Let Y be a non-empty set and consider a left action S AY.
For X € P¢(Y) and F € P¢(S), let
F-X = a(F)(X) = {a(g)(x) | g € F.x € Y}.
Ix : Pr(S) = R, F—|F-X|.
Then Ix € L(S).
The set-theoretic entropy of n with respect to X is
Hset(naX) = HS(IX)
The set-theoretic entropy of n is
hset(n) = sup{Hset(n, X) | X € Pr(Y)}.

[For N-actions this entropy was defined by Dikranjan-Shirazi, with
applications towards the computation of the topological entropy of
selfmaps KY — KY, where K is compact.]
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L Generalized shifts

|—Set—theoretic entropy
Let G be an amenable group, Y a non-empty set and G AY.
For y € Y, let Stab, = {g € G | n(g)(y) =y} and O, = G - {y}.
The transitive action G A O, is isomorphic (with H = Stab,) to

the canonical action G “X G/H on the set G/H given by
06/H(g)(fH) = (gf)H Vf,g € G.

If H is a subgroup of G, then hset(06/H) = I_/{ll

So, if {Oy, | i € I} are the orbits of , then hset(n) = > i, m.

Let s(G) = sup{|F| | F < G finite}. If G is locally nilpotent then
t(G) is a normal subgroup of G, and so s(G) = [t(G)].

If 5(G) is finite, then
either hset(n) = 00, or hset(n) = |5(”(’;)| for some m € N.
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L Generalized shifts

|—Algebraic entropy of the generalized forward shifts

Let S be an infinite cancellative right-amenable monoid,
Y a non-empty set and A an abelian group.

Consider S A Y, such that each (s) has finite fibers,
and S A" AY) defined by

oan(s) )= Y f(2)

n(s)(z)=y

Vs e S,Vfe AV vy ey.

halg(UA,n) = hset(n) - log |A|.

Since S A S with AS)(x) =sx Vs €S, Vx €5, has hset(A) =1,
as a corollary we obtain the previous result: h,jz(ca ) = log|A|.
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L Generalized shifts

I—Entropy and Lehmer Problem

Entropy and Lehmer Problem

For a primitive polynomial f(x) = sx" 4+ a;x""1... + a, € Z[x]
with (complex) roots A1, ..., An,
the Mahler measure of f is

m(f) =logs+ Z log [\l
[Ai[>1

Let
£={m(f(x)) | f(x) € Z[x]} and A = inf(£\ {0}).

Problem ([Lehmer 1933])
IsA>07
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L Generalized shifts

|—Entropy and Lehmer Problem

Algebraic Yuzvinski Formula: If ¢ : Q" — Q" is an endomorphism,
then

halg(¢) = log m(f(x)),

where f(x) is the integer characteristic polynomial of ¢.
[Lind-Schmidt-Ward for Z%-actions and hyop;
Deninger, Li-Thom, Li in more general cases.]

Let £, = {haig(f) | f € End(G), G abelian group}.

Theorem ([Dikranjan-GB])

o inf(Eyg \ {0}) = A,
e A =0 ifand only if ;5 = R>o U {00},
e A >0 ifand only if £, is countable.

Counterpart of [Lind-Schmidt-Ward, Theorem 4.6] for Z9-actions
on compact groups.
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L Generalized shifts

|—Entropy and Lehmer Problem

Let S be a cancellative right-amenable semigroup. Define:
0 Eset(S) = {hset(n) | n action of S on a set};
® &ag(S) = {hag(a) | v action of S on an abelian group}.

(Clearly, g = E415(N).)
By [Lawton, Lind-Schmidt-Ward] and the Bridge Theorem [Virili],

inf(Eag(N) \ {0}) = inf(Eag(Z) \ {0}) = inf(Ex1g(2) \ {0}) = A.

Problem
Describe Eset(S) and E,4(S).

Let G be an amenable group. Then
R>o U {0} if s(G) is infinite,

gset(G) — I . . e
FEL {0} ifs(G) is finite.

In particular, Est(G) = NU {oco} if G is torsion-free.
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L Generalized shifts

|—Entropy and Lehmer Problem

Let G be an amenable group. Then
(log k)Eset(G) C Eag(G) for every k > 1.

In fact, if r € Eet(G), that is, r = hset(n) for some G A X, then,
for every finite abelian group A of size k > 1, hyg(0a ) = rlogk.

If s(G) is infinite, then £,5(G) = R U {o0}.

Therefore, £,5(G)=R>q U {oo} for every locally nilpotent group
with infinite t(G).
Yet £,5(G) is unclear for arbitrary torson-free (abelian) groups.

Problem

How do the sets E15(Q), Ea15(Q?), Ea/g(ZN) look like?
Are they countable?
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Thank you for your attention!
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