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Temporal Logics

Jesiee e ltes are the de-facto standard languages for specifying properties of
systems in formal verification and artificial intelligence.

* born in the '50s as a tool for philosophical argumentation about time
Reference:
Arthur N. Prior (1957). Time and Modality. London: Oxford University Press

¢ the idea of its use in formal verification can be traced back to the '70s
Reference:

Amir Pnueli (1977). “The temporal logic of programs”. In: 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). 1IEEE, pp. 46-57.
DOI: 10.1109/SFCS.1977.32

2/38

L. Geatti, A. Montanari Linear Temporal Logic


https://doi.org/10.1109/SFCS.1977.32

Modal Logic

Modal Logic extends classic propositional (Boolean) logic with the concepts of
necessity and possibility.
* World = set of propositions that are supposed to be true in that world
* Worlds are connected with edges
¢ directed graph with labels on the nodes: Kripke structure

* in Modal Logic, the truth of a formula depends on the world in which is
interpreted (many-worlds interpretation) and on the worlds accessible from it.

* Necessity (0): is asking something to be true in all accessible states
¢ Possibility (0): is asking something to be true in at least one accessible state
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Modal Logic

* Necessity (0): is asking something to be true in all accessible states

¢ Possibility (0): is asking something to be true in at least one accessible state

@ @ ° AP = {p,q}

e “Lp” is true
* “0q” is true
* “Og” is false

@ @ ° “Op v 0Oq” is true
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Linear Temporal Logic

LTL

Linear Temporal Logic for short) is a (special case of) Modal Logic.
p 8 P &

¢ World = State = set of proposition letters that are supposed to hold (i.e., to be
true) in that state
¢ Kripke Structure = (infinite) linear order of states = state sequence = word in a
language
® accessibility relation = temporal ordering

* Necessity () = Always in the future (G)
¢ Possibility (¢) = Sometimes in the future (F)

e {rg} {1 {rng} {1}
AP = {r.g} o o o 0o 0o o -
0 1 2 3 4 5
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Linear Temporal Logic

LTL

¢ introduced by Pnueli in the "70s
¢ interpreted over state sequences
* it extends classical propositional logic

* temporal modalities are used to talk about how propositions
change over time

Reference:

Amir Pnueli (1977). “The temporal logic of programs”. In: 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977). IEEE, pp. 46-57.
DOI: 10.1109/SFCS.1977.32
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Representing time

There are many choices to be made for the representation of time.

Linear Branching
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Representing time

There are many choices to be made for the representation of time.

Infinite Finite
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Representing time

There are many choices to be made for the representation of time.

Qualitative Real-time
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Representing time

There are many choices to be made for the representation of time.

Discrete Dense

O O O ¢ o Q@ 0020 @ 0000 @
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Representing time

There are many choices to be made for the representation of time.

Points Intervals
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Other parameters

Pure Future

v

Past-Future

v

A
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Other parameters

Propositional

o O O o ©o
{ry wa B e

First-Order
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Our choice

We focus here on:

linear-time
discrete-time
qualitative-time
infinite-time
future only
propositional
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Linear Temporal Logic

LTL Syntax

Let AP == {p,q,r,...} be a set of atomic propositions. The syntax of is defined
as follows:

p=p|l-d|opN¢ Boolean Modalities with p € AP
| Xo | oU o Future Temporal Modalities
® X¢ is the Next operator: at the next time point (tomorrow), the formula ¢ holds
* ¢1 U ¢, is the Until operator : there exists a time point in the future where ¢, is
true, and ¢1 holds from now until (but not necessarily including) that point.
Shortcuts:
* Eventually, F¢: there exists a time point in the future where ¢ holds. It is defined
asFop=TUo.
¢ Globally, G¢: for all time points in the future ¢ holds. It is defined as
Gop = o(F=p)
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Example:

Consider AP = {p,q} and the following formula:

GF(p)
Which state sequences are models of the formula?

° {p}-{a} {p} (g}~
* ({p,ah)”

° (g} -{a} - {p}-{a})~
° ({fpH - {aq}h)”

Sz Linear Temporal Logic
2 Examples
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Example:

Consider AP = {p,q} and the following formula:

GF(p)
Which state sequences are models of the formula?
° {ptAat-{p} - (ah)” no
° (p.q})” yes
© (g} -Aa}-{p} -{a})” yes
* ({ph)"- {ah)” no

Sz Linear Temporal Logic
2 Examples
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Example:

Consider AP = {p,q} and the following formula:

FG(q)
Which state sequences are models of the formula?

° {p}-{a} {p} (g}~
* ({p,ah)”

° (g} -{a} - {p}-{a})~
° ({fpH - {aq}h)”

Sz Linear Temporal Logic
2 Examples
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Example:

Consider AP = {p,q} and the following formula:

FG(q)
Which state sequences are models of the formula?
e {p}-{at-{p} {g})” yes
* (p,a}) yes
* ({g} -Aqt - Ap} -{q})” no
© (- {ah)” yes

Linear Temporal Logic
s Examples
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Sz Linear Temporal Logic
s Examples

Example:

Let AP = {r,g}. Each request (r) is eventually followed by a grant (g).

G(r — F(g))

Which state sequences are models of the formula?
° (9)¢

o {ry-Ary-Ar}- (@)

o {ry-Ary - Ar}-{g}- (9)°

*c{ry-o-2-{8})”
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Sz Linear Temporal Logic
s Examples

Example:

Let AP = {r,g}. Each request (r) is eventually followed by a grant (g).

G(r = F(g))
Which state sequences are models of the formula?
. (@) yes
o {r}-{r}-{r}- (@) no
o {r}-{r}-{r}-{g}-(9)* yes
*({r}-o-2-{g})” yes
13/38 L. Geatti, A. Montanari
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Linear Temporal Logic

LTL Semantics

* Given a set of atomic propositions AP, any LTL formula defined over AP is
interpreted over infinite words o € (247)*.

* Leto = (0p,01,...). Foreachi >0, 0; C AP is called a contains the
atomic propositions that are supposed to hold in that state.

¢ In this context, sequences in (2%)“ are also called Wdtraces

{ry @ {ngt {r} trgr {1}
AP = {r,g} oo 0 0 0 ¢
0 1 2 3 4 5
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Linear Temporal Logic

LTL Semantics

We say that o satisfies at position 7 the LTL formula ¢, written iff:

e oifEp iff peo;

{p,q}
..OO'.OO.W'

1

p holds at position i
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Linear Temporal Logic

LTL Semantics

We say that o satisfies at position 7 the LTL formula ¢, written iff:
° o,if=¢ iff oilEo

—¢
o0 0 0 0 0 0 o -

1

¢ does not hold at position i
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Linear Temporal Logic

LTL Semantics

We say that o satisfies at position 7 the LTL formula ¢, written iff:
° Uai )Z ¢1/\¢2 iff Uai )=¢1 andgvi ):¢2

1N\ P2
o O 0 O 6 0 o o

1

¢1 and ¢, hold at position i
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Linear Temporal Logic

LTL Semantics

We say that o satisfies at position 7 the LTL formula ¢, written iff:
o gi=Xp iff o,i+1E¢

i

¢ holds at the next position of i
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Linear Temporal Logic

LTL Semantics

We say that o satisfies at position 7 the LTL formula ¢, written iff:
® 0',1')=¢1U¢2 iff Eljzi.a,j|:¢2andVi§k<j.a,k}:¢1

o))
P 91 ¢
o O O O O o o o

1

¢1 holds until ¢, holds
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Linear Temporal Logic

LTL Shortcuts

Shortcuts:

* (eventually) Fo =T U ¢

¢
o0 0 0 0 0 0 o -

1

¢ will eventually hold
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Linear Temporal Logic

LTL Shortcuts

Shortcuts:

* (globally) G = -F—¢

¢ ¢ ¢ ¢ ¢
o0 0 0 0 0 0 o -
i

¢ holds always
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Linear Temporal Logic

LTL Languages

We say that o satisfies ¢ (written ) iff 0,0 |= ¢. In this case, we say that o
is a model of ¢.

For any LTL formula ¢, we define t/ic language of ¢ as:

L(¢)={oc € 2*) |0k ¢}

We say that ¢ is satisfiable iff £(¢) # @.
We say that o is valid iff £(¢) = (247)~.

17/38 L. Geatti, A. Montanari Linear Temporal Logic



Sz Linear Temporal Logic
2 Examples

Example:

Consider AP = {p,q} and the following formula:

F(p A Xq)
Which state sequences are models of the formula?
° (9)¢
* ({qh)”
* (@) -{p}-2-{g9}-(9)*
© (@) -{p}-{a}-(2)
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Sz Linear Temporal Logic
2 Examples

Example:

Consider AP = {p,q} and the following formula:

F(p A Xq)
Which state sequences are models of the formula?
° () no
* ({qh)” no
* (@) -{p}-2-{g9}-(9)* no
* (@) -{p}-{q}- (@) yes
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Sz Linear Temporal Logic
s Examples

Example:

Consider AP = {p,q} and the following formulas:

Fip) AF(q)  FlpAFg)  FlpAg)
Which state sequences are models of the formula?
° (9)¢
(@) -{p}-2-{q}-(2)*
* (@) -{qt-2-{p}-(9)*
(@) - {p.q} - (9)*
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Sz Linear Temporal Logic
s Examples

Example:

Consider AP = {p,q} and the following formulas:

F(p) A\F(q9)  F(pAFgq)  Flpng)

Which state sequences are models of the formula?

° (9)” no no no

° (@) {p}-2-{q} (2)* yes  yes o

° (@) -{q}-2-{p} (@)~ yes no  no

° @) -{p.q}- (@) yes yes yes
19/38 L. Geatti, A. Montanari
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Linear Temporal Logic

Examples

Example:

Consider AP = {p,q}. What is the language of the following formula?

p U (Gg)

Write an equivalent w-regular expression.
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) Linear Temporal Logic
s Examples

Example:

Consider AP = {p,q}. What is the language of the following formula?

p U (Gg)

Write an equivalent w-regular expression.

L(pU(Gq) ={pru{p.ab)" - {q}U{p.q})”
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Linear Temporal Logic

Examples

Example:

Consider AP = {p,q}.
Is the formula FXp equivalent to XFp?
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Linear Temporal Logic

Examples

Example:

Consider AP = {p,q}.
Is the formula FXp equivalent to XFp?
Yes.
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Linear Temporal Logic
Examples

Example:

Consider AP = {p,q}.
Is the formula FXp equivalent to XFp?
Yes.

Exercise:

Consider AP = {p,q}.
Write the formula (Gp) U g without using the Until operator, that is, using only F,
G, and Boolean modalities.
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Linear Temporal Logic

Examples

¢ A property that can be expressed in LTL: p holds in all and only even
positions/states {0,2,4,6, ...}
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Linear Temporal Logic

Examples

¢ A property that can be expressed in LTL: p holds in all and only even
positions/states {0,2,4,6, ...}

d=pAX=pAG(p < XXp)
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Linear Temporal Logic

Examples

¢ A property that can be expressed in LTL: p holds in all and only even
positions/states {0,2,4,6, ...}

d=pAX=pAG(p < XXp)

* A property that cannot be expressed in LTL: p holds at least in all even
positions/states. An incorrect attempt:
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Linear Temporal Logic

Examples

¢ A property that can be expressed in LTL: p holds in all and only even
positions/states {0,2,4,6, ...}

d=pAX=pAG(p < XXp)

* A property that cannot be expressed in LTL: p holds at least in all even
positions/states. An incorrect attempt:

¢ =pAG(p— XXp)
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Linear Temporal Logic

Fairness constraints

Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely
many times.
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Linear Temporal Logic
Fairness constraints

Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely

many times.
—(GF(en) A FG(—tk)) = GF(en) — GF(tk)

This is very different from GF(en — tk) and from G(en — F(tk)).
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Linear Temporal Logic
Fairness constraints

Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely
many times.

—(GF(en) A FG(—tk)) = GF(en) — GF(tk)
This is very different from GF(en — tk) and from G(en — F(tk)).
Justice:

Consider AP = {en, tk}.
It is never the case that a transition is always enabled but never taken.

23/38 L. Geatti, A. Montanari Linear Temporal Logic



Linear Temporal Logic
Fairness constraints

Compassion:

Consider AP = {en, tk}.
It is not possible that a transition is enabled infinitely many times but taken only finitely

many times.
—(GF(en) A FG(—tk)) = GF(en) — GF(tk)

This is very different from GF(en — tk) and from G(en — F(tk)).

Justice:

Consider AP = {en, tk}.
It is never the case that a transition is always enabled but never taken.

~F(G(en) A G(~tk))

This is equivalent to G(G(en) — F(tk)).
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Linear Temporal Logic
Strict version of the until
It is possible to define a strict version of the until as follows:
coiEn U ¢ iff i >i.ojEdpandVi<k<j.okkE= ¢

How can be encode formulas of type X¢ with only the strict version of the until?

Therefore, if we adopt the strict version, then it is possible to define LTL with the
only temporal operator being the until.
¢ ... but encoding the standard until with the strict until requires more space:

d1U o = ¢ V (91 A g1 U° )
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Linear Temporal Logic
Strict version of the until
It is possible to define a strict version of the until as follows:
coiEn U ¢ iff i >i.ojEdpandVi<k<j.okkE= ¢

How can be encode formulas of type X¢ with only the strict version of the until?

Xop=1LU ¢

Therefore, if we adopt the strict version, then it is possible to define LTL with the
only temporal operator being the until.
¢ ... but encoding the standard until with the strict until requires more space:

d1U o = ¢ V (91 A g1 U° )
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Linear Temporal Logic
Negation Normal Form
Definition (Negation Normal Form)

We define the nnf(-) : LTL — LTL (Negation Normal Form) function as follows:
° nnf(p) =p
° nnf(¢1 A ¢2) = nnf(¢1) A nnf(¢)
° nnf(¢1 V ¢2) = nnf(¢1) V nnf(¢)
* nnf(X¢) = X(an€(4))
* nnf(¢; U ¢) = (nnf
* nnf(¢1 R ¢) = (nnf

For any ¢ € LTL, the formula nnf(¢) has negation only applied to atomic propositions.
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Linear Temporal Logic
s Negation Normal Form
Definition (Negation Normal Form)

We define the nnf(-) : LTL — LTL (Negation Normal Form) function as follows:

° nnf(—mqb) = nnf(¢)

°* nnf(—(¢1 A ¢2)) = nnf(—¢1) V nnf(—=¢,)

° nnf(=(¢1V ¢2)) = nnf(—=¢1) A nnf(—=¢,)

° nnf(-X¢) = X(nnf(—=¢))

. f(ﬂ( ¢1 U ¢2)) = (nnf(—¢1)) R (nnf(—¢2))
° nnf(~(¢1 Ré2)) = (nnf(—=¢1)) U (nnf(—¢2))

g \T1 the formul e o1 ol aoliod . .
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Linear Temporal Logic

Theorem (Kamp’s Theorem over w-words)

* For each LTL formula ¢, there exists an S1S[FO| formula 1) such that L(¢) = L(1).
* For each S1S[FO] formula 1), there exists an LTL formula ¢ such that L(v)) = L(¢).

Reference:

Johan Anthony Wilem Kamp (1968). Tense logic and the theory of linear order.
University of California, Los Angeles

26/38 L. Geatti, A. Montanari Linear Temporal Logic



Characterizations of w-Star-free Languages

A

S1S[FO]
/
LTL cf-DRA
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Linear Temporal Logic with Past

LTL4-P Syntax

The syntax of |SFE==% is defined as follows:

d=p|lploN¢ Boolean Modalities with p € AP
| Xp | pU o Future Temporal Modalities
| Yo | ¢So Past Temporal Modalities

* Y¢ is the Yesterday operator: the previous time point exists and it satisfies the
formula ¢.

® ¢1S ¢y is the Since operator: there exists a time point in the past where ¢, is true,
and ¢1 holds since (and excluding) that point up to now.

Shortcuts:
® Once, O¢: there exists a time point in the past where ¢ holds. Op = T S ¢.
* Historically, Ho: for all time points in the past ¢ holds. Hp = =(0—g).
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Linear Temporal Logic

LTL Semantics

We say that o satisfies at position 7 the LTL formula ¢, written iff:
e oY iff i>0ando,i—1k ¢

¢
o0 0 0 0 0 0 o -
i

position i has a predecessor and ¢ holds at the previous position of i

Note: 0.0 = Y¢ is always false.
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Linear Temporal Logic

LTL Semantics

We say that o satisfies at position 7 the LTL formula ¢, written iff:
® 0',1')=¢15¢2 iff E|]§zU,]|=¢2andV]<k§za,k}:¢1

)
o 1 P
o O O O O o6 o o

1

¢1 holds since ¢, held
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Linear Temporal Logic

LTL Shortcuts

Shortcuts:

® (once) Op =TS ¢

¢
o0 0 0 06 0 0 0 -
i

¢ once held
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Linear Temporal Logic

LTL Shortcuts

Shortcuts:

¢ (historically) Hp = -0—¢

¢ ¢ o ¢
o0 0 0 06 0 0 0 -
i

¢ holds always in the past
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Linear Temporal Logic

LTL Shortcuts

Shortcuts:

* (weak yesterday) \7¢ =-Y-¢

Yo
o 0 06 & 0 0 o o
0

¢ holds at the previous position of i, if any

Note: 0,i = YL is true iff i = 0.
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Linear Temporal Logic with Past

Expressiveness

Theorem
LTL+P is expressively equivalent to LTL.

Reference:

Dov M. Gabbay et al. (1980). “On the Temporal Analysis of Fairness”. In:
Conference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, USA, January 1980. Ed. by
Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne. ACM Press,
pp- 163-173. URL: https://doi.org/10.1145/567446.567462
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Linear Temporal Logic with Past
Succinctness

Theorem
LTL+P can be exponentially more succinct than LTL.

Reference:

Nicolas Markey (2003). “Temporal logic with past is exponentially more
succinct”. In: Bull. EATCS 79, pp. 122-128
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Extended Linear Temporal Logic

We have seen that LTL captures star-free w-regular languages.

In order to capture all w-regular languages, one can consider Extended Linear
Temporal Logic (=115, for short).

ETL = LTL + operators corresponding to right-linear grammars

Reference:

Pierre Wolper (1983). “Temporal logic can be more expressive”. In: Information
and control 56.1-2, pp. 72-99. DOI: 10.1016/S0019-9958(83)80051-5
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Characterizations of w-Regular Languages

w-RE
S1S
\ /
ETL — NBA
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w-REG

S1S
NBA
ETL
( w-SF
S1S[FO]
cf-DRA
LTL
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