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In this part

We present solutions to the plain reachability problem for

pushdown transition graphs

transition graphs of Petri nets

Both solutions are based on backward reachability analysis.
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Analysis of pushdown systems

Definition

Given an input-free pushdown system P = (Q, Γ,∆)
and a set X ⊆ Q × Γ∗ of configurations, we define

δ−1(X ) :=
{
(q,w) ∈ Q × Γ∗ : ∃ (q′,w ′) ∈ X . (q,w) −−→

P
(q′,w ′)

}

Problem statement

Given an input-free pushdown system P = (Q, Γ,∆) and a
set F of target configurations, compute the set (δ−1)∗(F )
of all configurations (q,w) ∈ Q × Γ∗ from which F is reachable.

In fact, we already know that the (full) model checking problem
for pushdown transition systems is decidable. Here we give
an efficient procedure to solve the reachability (sub-)problem.
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Analysis of pushdown systems

The set (δ−1)∗(F ) is the limit of the sequence

X0 := F

Xn+1 := Xn ∪ δ−1(Xn)

Obviously, if Xn+1 = Xn for some n ≥ 0, then (δ−1)∗(F ) = Xn.

Effectiveness

Two problems arise:

the sets Xn may be infinite
⇒ symbolic representations are needed

X0,X1,X2, ... may be a strictly increasing sequence
⇒ how to guarantee convergence in finitely many steps?
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Analysis of pushdown systems

Example

Consider the pushdown system having

a single state q

a single stack symbol z

a single transition (q, z , q, ε).
q

pop(z)

If we take F = {(q, ε)}, then

X0 = {(q, ε)}
X1 = {(q, ε), (q, z)}
X2 = {(q, ε), (q, z), (q, zz)}
...
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Analysis of pushdown systems

We identify P-configurations with finite words in Q · Γ∗.

Moreover, to finitely represent sets of configurations of P,
we restrict to regular sets of configurations
( ⇒ we represent them by finite state automata).

To effectively solve the plain reachability problem, we compute
(δ−1)∗(F ) as the limit of another sequence Y0,Y1, ... such that:

(termination) ∃ n ≥ 0. Yn+1 = Yn

(completeness) ∀ n ≥ 0. Xn ⊆ Yn

(soundness) ∀ n ≥ 0. Yn ⊆
⋃

i≥0 Xi

⇒ We shall define the sets Yn as the languages
recognized by suitable finite state automata An ...
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Analysis of pushdown systems

Saturation algorithm (Bouajjani et al. ’97)

Sketch of the algorithm:

1 start with an automaton A0 with input alphabet Q ∪ Γ
recognizing the regular language Y0 := X0 (= F )

2 build an automaton An+1 recognizing Yn+1

by simply adding new transitions to An

3 halt when An+1 = An

(note: this eventually happens since
only finitely many transitions can be added)
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Analysis of pushdown systems

Assumptions on the initial automaton A0

W.l.o.g. we can assume that:

the pushdown system P has m states q1, ..., qm

the automaton A0 has a single initial non-final state s0,
m distinct states s1, ..., sm, and possibly other states

there is no transition of A0 reaching the initial state s0

for i = 1, ...,m, the unique qi -labeled transition is (s0, qi , si )

other transitions are labeled by symbols in Γ

s0

s1

si

sm

...

...

...
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Analysis of pushdown systems

Assumptions on the initial automaton A0
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...
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...

...
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Γ

Γ

Γ



Rational and automatic graphs Reachability over pushdown systems and Petri nets Conclusions

Analysis of pushdown systems

Definition (Construction of An+1 from An)

The automaton An+1 for Yn+1 is obtained from An

by adding, for each rule (qi , z , qj ,w
′) ∈ ∆,

a new transition (si , z , s
′) whenever sj

w ′

−−→
An

s ′.

Explanation

Assume that

An reads w ′ ∈ Γ∗ from state sj to state s ′

An reads w ∈ Γ∗ from state s ′ to a final state s ′′

sj s′qj

qi

z

w′ w
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Analysis of pushdown systems

Definition (Construction of An+1 from An)

The automaton An+1 for Yn+1 is obtained from An

by adding, for each rule (qi , z , qj ,w
′) ∈ ∆,

a new transition (si , z , s
′) whenever sj

w ′

−−→
An

s ′.

Explanation

⇒ the P-configuration (qj ,w
′w) belongs to Yn.

Now, if (qi , z , qj ,w
′) ∈ ∆, then (qi , zw) ∈ Yn+1.

⇒ we can accept the P-configuration (qi , zw)
by adding a z-labeled transition from si to s ′.

s0

sj

si

s′ s′′qj

qi

z

w′ w
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Analysis of pushdown systems

Example

Consider the pushdown system P = (Q, Γ,∆), where

Q = {q1, q2}
Γ = {z1, ..., z6}
∆ = {(q1, z6, q1, ε), (q1, z5, q2, z4z3),

(q2, z4, q2, z1z2)}

and the target set F = {(q2, z1z2z3)}.

q1 q2

pop(z6)
pop(z4)

push(z1z2)

pop(z5)
push(z4z3)

We represent Y0 = {(q2, z1z2z3)} with the automaton A0:

s0

s1

s2 s3 s4 s5

q1

q2 z1 z2 z3

z4

z5

z6
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s0

s1

s2 s3 s4 s5

q1

q2 z1 z2 z3

z4

z5

z6
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Analysis of pushdown systems

Example

Consider the pushdown system P = (Q, Γ,∆), where

Q = {q1, q2}
Γ = {z1, ..., z6}
∆ = {(q1, z6, q1, ε), (q1, z5, q2, z4z3),

(q2, z4, q2, z1z2)}

and the target set F = {(q2, z1z2z3)}.

q1 q2

pop(z6)
pop(z4)

push(z1z2)

pop(z5)
push(z4z3)

No more transitions can be added.
Thus (δ−1)∗(F ) = {(q2, z1z2z3), (q2, z4z3), (q1, z

∗
6 z5)}.

s0

s1

s2 s3 s4 s5

q1

q2 z1 z2 z3

z4

z5

z6
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Analysis of pushdown systems

Note:

the conditions for adding new transitions can
be effectively tested in polynomial time

at most a polynomial number of transitions
are added to the initial automaton A0

This gives an efficient (polynomial-time) algorithm that solves the
(existential) plain reachability problem for pushdown graphs

(EFψ ‘there exist a path along which ψ eventually holds’)
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Generalizations

Variants of the plain reachability problem can be considered.

For instance, universal reachability problem:
AFψ ‘every infinite path eventually satisfies ψ’

Alternating reachability problem

The alternating reachability problem is a generalization
of reachability problems, where existential EF and universal
AF quantifications can be paired.

It can be viewed as a game played over a graph
by two players A and B:

A wants to reach a safe region F

B wants to indefinitely delay this achievement.
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Generalizations

Instances of the alternating reachability problem over
pushdown transition graphs are naturally encoded by

alternating pushdown systems

which are able to spawn different computations at the same time
(existential non-determinism and universal non-determinism).

Generalization of the saturation algorithm

A generalization of the saturation algorithm for the alternating
reachability problem over pushdown systems can be given.

Such a generalization uses alternating finite state automata,
rather than classical (non-deterministic) finite state automata,
to represent increasing sets Y0,Y1,Y2, ... of configurations.
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Generalizations

Other generalizations of the saturation
algorithm have been studied for

higher-order pushdown systems [Bouajjani and Meyer ’04]
(i.e., pushdown systems working on level n stacks)

ground tree rewriting systems [Löding ’06]
(i.e., rewriting systems working on finite colored trees)

bifix rewriting systems [Altenbernd and Thomas]
(they are similar to pushdown automata, but rewriting
may occur at the top or at the bottom of the
stack in a non-deterministic way)
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Petri nets

We consider now Petri nets.

Definition (Petri net)

A Petri net is a tuple P = (P,T , I ,O), where

P is a finite set of places

T is a finite set of transitions

I : P × T → N is the input arc function
specifying how many arcs go from p ∈ P to t ∈ T

O : T × P → N is the output arc function
specifying how many arcs go from t ∈ T to p ∈ P

Intuitively: the above definition is nothing but a specification of a

non-simple directed bipartite graph.
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Petri nets

How do they work?

Basic ingredients:

a configuration is a function m : P → N
(it assigns a certain number of tokens to each place)

a transition t is enabled in a configuration m
if m(p) ≥ I (p, t) for every place p
(namely, if each place p contains at least I (p, t) tokens)

when a transition t fires, the next configuration m′ is
such that m′(p) = m(p)− I (p, t) + O(t, p) for all p ∈ P
(namely, I (p, t) tokens are consumed from p and, at
the same time, O(t, p) tokens are produced in p)
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Petri nets

Example

The following Petri net models two parallel
processes competing for a shared resource:

process1

resource

process2

critical sec.1

critical sec.2

Example of computation:
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Petri nets

Example

The initial configuration m0 is
encoded by the tuple [3, 1, 2, 0, 0]

process1

resource

process2

critical sec.1

critical sec.2

Example of computation:
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Petri nets

Example

When a transition fires, the tokens in the input places are
consumed and new ones are produced inside output places.

process1

resource

process2

critical sec.1

critical sec.2

Example of computation:

[3, 1, 2, 0, 0]
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Petri nets

Example

When a transition fires, the tokens in the input places are
consumed and new ones are produced inside output places.

process1

resource

process2

critical sec.1

critical sec.2

Example of computation:

[3, 1, 2, 0, 0] −−→
P

[2, 0, 2, 1, 0]
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Petri nets

Example

When a transition fires, the tokens in the input places are
consumed and new ones are produced inside output places.

process1
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process2

critical sec.1

critical sec.2

Example of computation:

[3, 1, 2, 0, 0] −−→
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P
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Petri nets

Example

When a transition fires, the tokens in the input places are
consumed and new ones are produced inside output places.

process1

resource

process2

critical sec.1

critical sec.2

Example of computation:

[3, 1, 2, 0, 0] −−→
P

[2, 0, 2, 1, 0] −−→
P

[2, 1, 2, 0, 0] −−→
P

[2, 0, 1, 0, 1]
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Petri nets

Example

When a transition fires, the tokens in the input places are
consumed and new ones are produced inside output places.

process1

resource

process2

critical sec.1

critical sec.2

Example of computation:

[3, 1, 2, 0, 0] −−→
P

[2, 0, 2, 1, 0] −−→
P

[2, 1, 2, 0, 0] −−→
P

[2, 0, 1, 0, 1] −−→
P

[2, 1, 1, 0, 0]
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Analysis of Petri nets

Definition (Petri net transition graph)

The transition graph of a Petri net P = (P,T , I ,O)
is the transition system T = (NP , δ), where

NP is the set of all possible configurations m : P → N
δ is the transition relation such that (m,m′) ∈ δ
iff ∃ t ∈ T . ∀ p ∈ P. m′(p) = m(p)− I (p, t) + O(t, p).

Problem statement

Given a Petri net P = (P,T , I ,O) and a set F of
target configurations, we want to compute the set (δ−1)∗(F )
of all configurations m : P → N from which F is reachable.
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Analysis of Petri nets

Like in the case of pushdown transition graphs, we cannot finitely
represent all possible sets of configurations of a Petri net P
(note: there are uncountably many of them).

⇒ In order to find effective solutions to the
reachability problem, we must restrict to a
proper subclass of sets of P-configurations.

Before introducing (finitely representable) sets of configurations,
we give a notion of partial order over the configurations of P.
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Analysis of Petri nets

Definition (Partial order on Petri net configurations)

Given a Petri net P = (P,T , I ,O), we define
the partial order ≤ on P-configurations such that

m ≤ m′ iff, for all places p, m(p) ≤ m′(p)

Example

[2, 1, 2, 0, 0] ≤ [3, 1, 5, 0, 0] and [1, 0, 2, 1, 0] 6≤ [5, 2, 2, 0, 0]

Basic property

The partial order ≤ is actually a well partial order:

there are no infinite sequences of
strictly decreasing elements m1 > m2 > m3 > ...

there are no infinite sequences of
pairwise incomparable elements ∀ i 6= j . mi 6≤ mj
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Analysis of Petri nets

Definition (Partial order on Petri net configurations)

Given a Petri net P = (P,T , I ,O), we define
the partial order ≤ on P-configurations such that

m ≤ m′ iff, for all places p, m(p) ≤ m′(p)

Example

[2, 1, 2, 0, 0] ≤ [3, 1, 5, 0, 0] and [1, 0, 2, 1, 0] 6≤ [5, 2, 2, 0, 0]

Basic property

The partial order ≤ is actually a well partial order:

there are no infinite sequences of
strictly decreasing elements m1 > m2 > m3 > ...

there are no infinite sequences of
pairwise incomparable elements ∀ i 6= j . mi 6≤ mj
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Analysis of Petri nets

Definition (Upward closed set)

Hereafter, we restrict to upward closed sets of configurations,
namely, sets X ⊆ NP such that, for all m,m′ : P → N,

m ∈ X ∧ m ≤ m′ → m′ ∈ X

Definition (Minor set)

The minor set min(X ) of an upward closed set X is

min(X ) := {m ∈ X : @ m′ ∈ X . m′ ≤ m}

(intuitively, min(X ) consists of all the minimal elements of X )

Note: the minor set min(X ) uniquely determines X , since
X = min(X )↑, where Y ↑ := {m ∈ NP : ∃ m′ ∈ Y . m′ ≤ m}
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Analysis of Petri nets

Definition (Upward closed set)

Hereafter, we restrict to upward closed sets of configurations,
namely, sets X ⊆ NP such that, for all m,m′ : P → N,

m ∈ X ∧ m ≤ m′ → m′ ∈ X

Definition (Minor set)

The minor set min(X ) of an upward closed set X is

min(X ) := {m ∈ X : @ m′ ∈ X . m′ ≤ m}

(intuitively, min(X ) consists of all the minimal elements of X )

Note: the minor set min(X ) uniquely determines X , since
X = min(X )↑, where Y ↑ := {m ∈ NP : ∃ m′ ∈ Y . m′ ≤ m}
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Analysis of Petri nets

Why upward closed sets and minor sets?

Noticeable properties:

1 minor sets are finite objects
⇒ they are representations of upward closed sets

2 Petri nets are monotone systems w.r.t. ≤
3 upward closed sets are closed under δ−1

4 there are no infinite sequences of strictly increasing
upward closed sets X0 ⊂ X1 ⊂ X2 ⊂ ....
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Analysis of Petri nets

Property 1

Minor sets are finite ( ⇒ representations of upward closed sets).

Proof

Consider an upward closed set X and its minor set min(X ).

X

min(X)
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Analysis of Petri nets

Property 1

Minor sets are finite ( ⇒ representations of upward closed sets).

Proof

Consider an upward closed set X and its minor set min(X ).

X

min(X)
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Analysis of Petri nets

Property 1

Minor sets are finite ( ⇒ representations of upward closed sets).

Proof

min(X ) consists of pairwise incomparable elements m1,m2, ...

m1
m2

m3
m4

...

X

min(X)



Rational and automatic graphs Reachability over pushdown systems and Petri nets Conclusions

Analysis of Petri nets

Property 1

Minor sets are finite ( ⇒ representations of upward closed sets).

Proof

Since ≤ is a well partial order, min(X ) is finite.

m1
m2

m3
m4

...

X

min(X)
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Analysis of Petri nets

Property 2

Petri nets are monotone systems w.r.t. ≤, namely{
m1 −−→

P
m2

m1 ≤ m′
1

⇒ ∃ m′
2 : P → N.

{
m′

1 −−→P m′
2

m2 ≤ m′
2

Example
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Analysis of Petri nets

Property 2

Petri nets are monotone systems w.r.t. ≤, namely{
m1 −−→

P
m2

m1 ≤ m′
1

⇒ ∃ m′
2 : P → N.

{
m′

1 −−→P m′
2

m2 ≤ m′
2

Example

[3, 1, 2, 0, 0]
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Analysis of Petri nets

Property 2

Petri nets are monotone systems w.r.t. ≤, namely{
m1 −−→

P
m2

m1 ≤ m′
1

⇒ ∃ m′
2 : P → N.

{
m′

1 −−→P m′
2

m2 ≤ m′
2

Example

[3, 1, 2, 0, 0] −−→ [2, 0, 2, 1, 0]
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Analysis of Petri nets

Property 2

Petri nets are monotone systems w.r.t. ≤, namely{
m1 −−→

P
m2

m1 ≤ m′
1

⇒ ∃ m′
2 : P → N.

{
m′

1 −−→P m′
2

m2 ≤ m′
2

Example

[3, 1, 2, 0, 0] −−→ [2, 0, 2, 1, 0]

≤
[3, 1, 3, 1, 0]
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Analysis of Petri nets

Property 2

Petri nets are monotone systems w.r.t. ≤, namely{
m1 −−→

P
m2

m1 ≤ m′
1

⇒ ∃ m′
2 : P → N.

{
m′

1 −−→P m′
2

m2 ≤ m′
2

Example

[3, 1, 2, 0, 0] −−→ [2, 0, 2, 1, 0]

≤ ≤
[3, 1, 2, 0, 0] −−→ [2, 0, 3, 2, 0]
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Analysis of Petri nets

Property 3

Upward closed sets are closed under δ−1.

Proof

Consider an upward closed set X and
a configuration m2 ∈ X with its pre-image m1.

m1 m2
P

X upward closed sethence δ−1(X) upward closed set
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Analysis of Petri nets

Property 3

Upward closed sets are closed under δ−1.

Proof

Consider an upward closed set X and
a configuration m2 ∈ X with its pre-image m1.

m1 m2
P

X upward closed sethence δ−1(X) upward closed set
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Analysis of Petri nets

Property 3

Upward closed sets are closed under δ−1.

Proof

Let m′
1 be another configuration above m1.

m′
1

≤

m1 m2
P

X upward closed sethence δ−1(X) upward closed set
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Analysis of Petri nets

Property 3

Upward closed sets are closed under δ−1.

Proof

From monotonicity of Petri nets, there is a configuration
m′

2 above m2 which is the image of m′
1 under δ.

m′
1

≤

m1

m′
2

≤

m2
P

P

X upward closed sethence δ−1(X) upward closed set
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Analysis of Petri nets

Property 3

Upward closed sets are closed under δ−1.

Proof

This implies that δ−1(X ) is an upward closed set.

m′
1

≤

m1

m′
2

≤

m2
P

P

X upward closed sethence δ−1(X) upward closed set
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Analysis of Petri nets

Property 4

There are no infinite sequences of strictly increasing
upward closed sets X0 ⊂ X1 ⊂ X2 ⊂ ....

Proof sketch

Consider two sets Xi and Xi+1, with Xi ⊂ Xi+1.

Xi

Xi+1
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Analysis of Petri nets

Property 4

There are no infinite sequences of strictly increasing
upward closed sets X0 ⊂ X1 ⊂ X2 ⊂ ....

Proof sketch

Consider two sets Xi and Xi+1, with Xi ⊂ Xi+1.

Xi

Xi+1
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Analysis of Petri nets

Property 4

There are no infinite sequences of strictly increasing
upward closed sets X0 ⊂ X1 ⊂ X2 ⊂ ....

Proof sketch

Take a configuration m such that m ∈ Xi+1 \ Xi .

m

≤

m′

×
∈ Xi

Xi+1
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Analysis of Petri nets

Property 4

There are no infinite sequences of strictly increasing
upward closed sets X0 ⊂ X1 ⊂ X2 ⊂ ....

Proof sketch

Take a configuration m such that m ∈ Xi+1 \ Xi .
⇒ either m is below some element of Xi

m

Xi

Xi+1
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Analysis of Petri nets

Property 4

There are no infinite sequences of strictly increasing
upward closed sets X0 ⊂ X1 ⊂ X2 ⊂ ....

Proof sketch

Take a configuration m such that m ∈ Xi+1 \ Xi .
⇒ either m is below some element of Xi

or m is incomparable with any element of Xi

m

Xi

Xi+1
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Analysis of Petri nets

Property 4

There are no infinite sequences of strictly increasing
upward closed sets X0 ⊂ X1 ⊂ X2 ⊂ ....

Proof sketch

Since ≤ is a well partial order, neither infinite
decreasing chains nor infinite antichains are allowed,
⇒ none of the above two cases may occur infinitely often.

m

Xi

Xi+1
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Analysis of Petri nets

Theorem (Parosh et al. ’00)

Given the transition graph T = (NP , δ) of a Petri net and
an upward closed set F of configurations, the minor set of
(δ−1)∗(F ) can be effectively calculated as follows:

1 start with Y0 := min(F )

2 compute Yi+1 := min
(
Yi ↑ ∪ δ−1(Yi ↑)

)
3 if Yi+1 = Yi , then (δ−1)∗(F ) = Yi ↑.

Corollary

The plain reachability problem over transition graphs of
Petri nets restricted to upward closed sets is decidable.
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Theorem (Parosh et al. ’00)

Given the transition graph T = (NP , δ) of a Petri net and
an upward closed set F of configurations, the minor set of
(δ−1)∗(F ) can be effectively calculated as follows:

1 start with Y0 := min(F )

2 compute Yi+1 := min
(
Yi ↑ ∪ δ−1(Yi ↑)

)
3 if Yi+1 = Yi , then (δ−1)∗(F ) = Yi ↑.

Corollary

The plain reachability problem over transition graphs of
Petri nets restricted to upward closed sets is decidable.



Rational and automatic graphs Reachability over pushdown systems and Petri nets Conclusions

Analysis of Petri nets

Example

We want to check the following mutual exclusion property:
‘if the red place is initialized with one token and
the violet and the cyan places with zero tokens,
then it will never happen that both the violet and
the cyan places have tokens at the same time’.
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)

We use backward reachability analysis
to check whether (δ−1)∗(F ) ∩ I 6= ∅

Y0 = {[0, 0, 0, 1, 1]}



Rational and automatic graphs Reachability over pushdown systems and Petri nets Conclusions

Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)

We use backward reachability analysis
to check whether (δ−1)∗(F ) ∩ I 6= ∅

Y1 =

8<
:

[0, 0, 0, 1, 1]
9=
;

↓
Y0 = {[0, 0, 0, 1, 1]}
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)

We use backward reachability analysis
to check whether (δ−1)∗(F ) ∩ I 6= ∅

Y1 =

8<
:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]

9=
;

↓
Y0 = {[0, 0, 0, 1, 1]}
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)

We use backward reachability analysis
to check whether (δ−1)∗(F ) ∩ I 6= ∅ Y2 =

8>><
>>:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]

9>>=
>>;

↓

Y1 =

8<
:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]

9=
;

↓
Y0 = {[0, 0, 0, 1, 1]}
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)

We use backward reachability analysis
to check whether (δ−1)∗(F ) ∩ I 6= ∅ Y2 =

8>><
>>:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]

9>>=
>>;

↓

Y1 =

8<
:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]

9=
;

↓
Y0 = {[0, 0, 0, 1, 1]}
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)

We use backward reachability analysis
to check whether (δ−1)∗(F ) ∩ I 6= ∅ Y2 =

8>><
>>:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]
[1, 2, 1, 0, 0]

9>>=
>>;

↓

Y1 =

8<
:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]

9=
;

↓
Y0 = {[0, 0, 0, 1, 1]}
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Analysis of Petri nets

Example

Set of initial configurations:

I =
{
[x , 1, y , 0, 0] : x , y ≥ 0

}
Set of bad configurations:

F =
{
[x , y , z , u, v ] : x , y , z ≥ 0 ∧ u, v ≥ 1

}
(note: F is infinite but upward closed)

We use backward reachability analysis
to check whether (δ−1)∗(F ) ∩ I 6= ∅

Y3 =

8>><
>>:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]
[1, 2, 1, 0, 0]

9>>=
>>;

↓

Y2 =

8>><
>>:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]
[1, 2, 1, 0, 0]

9>>=
>>;

↓

Y1 =

8<
:

[0, 0, 0, 1, 1]
[0, 1, 1, 1, 0]
[1, 1, 0, 0, 1]

9=
;

↓
Y0 = {[0, 0, 0, 1, 1]}



Rational and automatic graphs Reachability over pushdown systems and Petri nets Conclusions

Generalizations

What did we use?

a well partial order ≤ on the configurations

monotonicity of transition systems w.r.t. ≤
computability of min

(
δ−1(Y ↑)

)
for any minor set Y .

The first requirement can be relaxed:
a well quasi-order is sufficient !

Definition (Quasi-order)

A quasi-order is a reflexive and transitive relation �
(it may happen that x 6= y ∧ x � y ∧ y � x).

Moreover, � is a well quasi-order if for every infinite
sequence x0, x1, x2, ..., there are i < j such that xi � xj .
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Generalizations

What did we use?

a well partial order ≤ on the configurations

monotonicity of transition systems w.r.t. ≤
computability of min

(
δ−1(Y ↑)

)
for any minor set Y .

The first requirement can be relaxed:
a well quasi-order is sufficient !

Definition (Quasi-order)

A quasi-order is a reflexive and transitive relation �
(it may happen that x 6= y ∧ x � y ∧ y � x).

Moreover, � is a well quasi-order if for every infinite
sequence x0, x1, x2, ..., there are i < j such that xi � xj .
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Generalizations

Definition (Well-structured transition system)

A transition system T = (S , δ) is well-structured if

there is a well quasi-order � on S

δ is monotone w.r.t. �
min

(
δ−1(Y ↑)

)
is computable for any minor set Y .

Theorem (Parosh et al. ’00)

Backward reachability analysis of well-structured systems
(starting from upward closed sets) is effective.
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Definition (Well-structured transition system)

A transition system T = (S , δ) is well-structured if

there is a well quasi-order � on S

δ is monotone w.r.t. �
min

(
δ−1(Y ↑)

)
is computable for any minor set Y .

Theorem (Parosh et al. ’00)

Backward reachability analysis of well-structured systems
(starting from upward closed sets) is effective.
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Generalizations

Examples of well-structured systems

timed Petri nets:

every token has an age and every arc has constraints on ages

lossy channel systems:

they model finite state processes communicating via

unreliable (they can lose messages) FIFO channels

basic parallel processes:

these are rewriting systems where words are viewed as multi-sets

and rewritings may involve symbols at non-contiguous positions

real time automata:

they are equipped with counters over real values, inequalities

(e.g., x < c, x ≤ c, x > c, x ≥ c) associated with states and

transitions, and reset operations (x := 0) on transitions

integral relational automata:

they are equipped with counters over integers, inequalities

(e.g., x < y , x < c, x > c) associated with states and transitions,

and update operations (e.g., x := y , x := c, x := ?).
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