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Introduction




Basic results and techniques for MSO

In this part

We present basic results and techniques related
to the decidability of MSO-theories of

infinite transition systems.

@ Automaton-based approaches
o decidability of the MSO-theory of a finite (discrete) line

e Biichi’'s Theorem
(decidability of the MSO-theory of the semi-infinite line)

e Rabin’s Theorem
(decidability of the MSO-theory of the infinite binary tree)

@ Transformational approaches
e interpretations, inverse mappings, markings
o unfoldings
o Caucal hierarchy
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®000

The automaton-based approach — The finite line

Consider a finite line £, = ({1, e n},(s)
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The automaton-based approach — The finite line

Consider a finite line £, = ({1, e n},(s)

"o "0 "0 "0 "0 "0 "0 "0 "0
We expand L, by unary predicates P, ..., P, C {1,...,n}
and we obtain a colored line £, 5 = ({1,...,n},0, P1, ..., Pm)
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The automaton-based approach — The finite line

Consider a finite line £, = ({1, e n},(s)

5 5 5 5 5 5 5 5 5
[ 4 L4 L @ L4 L @ L4 L @

We expand L, by unary predicates P, ..., P, C
and we obtain a colored line £, 5 = ({1,...,n},4,

We encode L, 5 by a finite word w, p over B = {0,1}"
such that

‘Wn,l5| =n
1 ifie P;

w, pli] = (b1, ..., bm) where b; = {0 fidP
J

Example
The colored line £,y 5 = ({1, ..., 10}, 8, Peven, Pprime)

is encoded by wiop = (§)(1)(2)(5)(2)(8)(2)(5)(8)(5)-
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The automaton-based approach — The finite line

W.l.o.g. we can think of each FO-variable x in an MSO-formula
1 as an MSO-variable X which stands for the singleton {x}.

= we can get rid of FO-variables
(by taking 0(Xi, Xj), with X;, X; singletons,
and X; C X; as atomic formulas)
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The automaton-based approach — The finite line

W.l.o.g. we can think of each FO-variable x in an MSO-formula
1 as an MSO-variable X which stands for the singleton {x}.

= we can get rid of FO-variables
(by taking 0(Xi, Xj), with X;, X; singletons,
and X; C X; as atomic formulas)

We evaluate an MSO-formula v with free variables Xi, ..., X
over the finite line expanded by any tuple of unary predicates
Pl, veey PmZ

?
ﬁn?,‘: = @[Pl/xla 'Dm/Xm]

The above problem can be reduced to the (decidable)
acceptance problem for finite state automata.
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The automaton-based approach — The finite line

Theorem (Acceptance problem)

For any MSO-formula v with free variables X1, ..., Xm,
one can compute a finite state automaton A, over B™
such that, for every n-length colored line L,

Lop EYIPL/Xt, s P/ Xm]  iff W, p € L(Ay)

Intuitively: the words accepted by the automaton 4, are
all and only the encodings of the linear models of the formula ).
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The automaton-based approach — The finite line

Theorem (Acceptance problem)

For any MSO-formula v with free variables X1, ..., Xm,
one can compute a finite state automaton A, over B™
such that, for every n-length colored line L,

Lop EYIPL/Xt, s P/ Xm]  iff W, p € L(Ay)

Intuitively: the words accepted by the automaton 4, are
all and only the encodings of the linear models of the formula ).

Note: if ) contains no free variables (m = 0),
then Ay, is an input-free automaton.

Corollary

The MSO-theory of a finite line L, = ({1, ey N}, 5)
is reducible to the (decidable) acceptance problem
for finite state automata.
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The automaton-based approach — The finite line

Proof of the theorem
By induction on the structure of the formula :

(5)

o if ¢ = (X1, X2), then Ay = @ O ©
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Proof of the theorem
By induction on the structure of the formula :

(5) (5)

) Ifl/} = 5(X1,X2), then Aw =

MOAET

o if 1) = X1 C Xp, then Ay = —e{) ())()(})
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The automaton-based approach — The finite line

Proof of the theorem
By induction on the structure of the formula :

(5) (5)

) Ifl/} = 5(X1,X2), then Aw =

MU0
o if 1) = X1 C Xp, then Ay = —e{) ())()(})
o if =1 A @3, then Ay := A, NA,,
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The automaton-based approach — The finite line

Proof of the theorem
By induction on the structure of the formula :

(5) (5)

) Ifl/} = 5(X1,X2), then Aw =

MU0
o if 1) = X1 C Xp, then Ay = —e{) ())()(})
o if =1 A @3, then Ay := A, NA,,
o if =1 V @y, then Ay := A, UA,,
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The automaton-based approach — The finite line

Proof of the theorem
By induction on the structure of the formula :

(5) (5)

) Ifl/} = 5(X1,X2), then Aw =

T W

if Y = X1 C X, then Ay = —€) ()(N(})

if =1 A @2, then Ay := A, NA,,

if =1 V @, then Ay 1= Ay, U A,

if » = -, then Ay, is the complement automaton of A,
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The automaton-based approach — The finite line

Proof of the theorem
By induction on the structure of the formula :

(5) (5)

) Ifl/} = 5(X1,X2), then Aw =

T W

if Y = X1 C X, then Ay = —€) ()(N(})

if =1 A @2, then Ay := A, NA,,

if =1 V @, then Ay 1= Ay, U A,

if » = -, then Ay, is the complement automaton of A,
if ¥ =3 X;. p(X1, ..., Xi, ..., Xm), then A, is obtained from
A, by removing the i-th component of each input symbol

@)

%)




Basic results and techniques for MSO
®00

The automaton-based approach — The semi-infinite line

We exploited closure properties of finite state automata
w.r.t. union, intersection, complementation, and projection

to reduce the problem of deciding the MSO-theory of a finite line
to a (decidable) acceptance problem over finite state automata.
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The automaton-based approach — The semi-infinite line

We exploited closure properties of finite state automata
w.r.t. union, intersection, complementation, and projection

to reduce the problem of deciding the MSO-theory of a finite line
to a (decidable) acceptance problem over finite state automata.

What about the semi-infinite line £, = (N,4) ?

Basic ingredients

@ We need to use infinite words, rather than finite ones,
to encode expansions of L,, by unary predicates

@ We need to introduce a suitable class of automata
working on infinite words: Biichi automata!
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The automaton-based approach — The semi-infinite line

Definition (Biichi automaton)

It is a non-deterministic finite state automaton that accepts an
infinite word w iff there is a run p on w such that Znf(p) N F # ()
(‘p contains at least one final state that occurs infinitely often’).

Example
1 0
% 0
0

is a Biichi automaton recognizing the language {0,1}" - {0}*
(note: non-determinism is needed)
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The automaton-based approach — The semi-infinite line

Definition (Biichi automaton)

It is a non-deterministic finite state automaton that accepts an
infinite word w iff there is a run p on w such that Znf(p) N F # ()
(‘p contains at least one final state that occurs infinitely often’).

Example
1 0
% 0
0

is a Biichi automaton recognizing the language {0,1}" - {0}*
(note: non-determinism is needed)

Lemma (Biichi '62)

Biichi automata are effectively closed under union,
intersection, complementation, and projection.
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The automaton-based approach — The semi-infinite line

Theorem (Biichi '62)

For any MSO-formula v with free variables X1, ..., Xm,
one can compute a Biichi automaton Ay, over B™ such that,
for every tuple of unary predicates P, ..., P C N

Lo, pEUIPLXt, s P/ Xe]  iff W, p € L(Ay)
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The automaton-based approach — The semi-infinite line

Theorem (Biichi '62)

For any MSO-formula v with free variables X1, ..., Xm,
one can compute a Biichi automaton Ay, over B™ such that,
for every tuple of unary predicates P, ..., P C N

Lo, pEUIPLXt, s P/ Xe]  iff W, p € L(Ay)

Note: if ¢ contains no free variables (m = 0)
then Ay is input free and it recognizes
either the empty language or a singleton.

Corollary

The MSO-theory of the semi-infinite line L = (N, 5) is reducible
to the (decidable) emptiness problem for Biichi automata.
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The automaton-based approach — The infinite tree

What about MSO-theories of branching structures,
in particular, of the infinite binary tree 7, = (]B*, 90, 51) ?

In analogy to the previous cases, we shall describe an
automaton-based method to decide the MSO-theory of 7>.
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The automaton-based approach — The infinite tree

Now, expansions of the infinite binary tree 7, with unary
predicates P, ..., P,, C B* are encoded by B"-colored trees.

Example

The expanded tree (B*,do, d1, P), where P = {/eft successors},
is encoded by the colored tree 75 p

do 51
do 51 do 01
80 4 x O1 80 4 01 60R61 80 + \ 01 6()’!‘51 60961 80 4 x O1 80 4 01
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The automaton-based approach — The infinite tree

We need a suitable class of automata running on
colored trees, rather than words: Rabin tree automatal!

Definition (Rabin tree automaton)

A Rabin tree automaton is a tuple

A= (Q, C, A, qo, {(G1, F1), ..., (G, Fk)}), where:
@ Q is a finite set of states
e C is a finite set of vertex colors (e.g., B™)
o ACQRQxCxQx Q@ is a transition relation
@ go € Q is the initial state

e forall 1 < i<k, (G, F;) is an accepting pair,
with G;, F; C Q.
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The automaton-based approach — The infinite tree

How does a Rabin tree automaton A accept a colored tree?

Definition (Successful run)

A successful run of A on an infinite binary C-colored tree 7
is an infinite binary Q-colored tree R such that:

® R(c) = qo
‘the state at the root is the initial state of A’
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The automaton-based approach — The infinite tree

How does a Rabin tree automaton A accept a colored tree?

Definition (Successful run)

A successful run of A on an infinite binary C-colored tree 7
is an infinite binary Q-colored tree R such that:

o R(E) = qo
‘the state at the root is the initial state of A’

o for every vertex v, (R(v),7(v),R(v-0),R(v-1)) € A
‘if A lies at v with color c = T (v) and state g = R(v), A
can associate the states ¢ = R(v-0),q" = R(v - 1) with
the two successors of v iff (q,c,q’,q") is a valid transition’
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The automaton-based approach — The infinite tree

How does a Rabin tree automaton A accept a colored tree?

Definition (Successful run)

A successful run of A on an infinite binary C-colored tree 7
is an infinite binary Q-colored tree R such that:

o R(E) = qo
‘the state at the root is the initial state of A’

o for every vertex v, (R(v),7(v),R(v-0),R(v-1)) € A
‘if A lies at v with color c = T (v) and state g = R(v), A
can associate the states ¢ = R(v-0),q" = R(v - 1) with
the two successors of v iff (q,c,q’,q") is a valid transition’

o for every infinite path 7, there is 1 < j < k such that
Inf(R|m) N G; # 0 and Znf(R|x) N F; =0
‘at least one state of G; occurs infinitely often in R along w'
and ‘all states of F; occur only finitely often in R along m'
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The automaton-based approach — The infinite tree

Example

Consider the {red, blue}-colored tree

and the Rabin tree automaton having
@ two states, r and b, that keep track of which color was seen last

@ transitions (r,red,r,r), (b, red,r,r),
(r, blue, b, b), (b, blue, b, b)
@ a single accepting pair (Gy, F1), with Gy = {b}, F, = {r}
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The automaton-based approach — The infinite tree

Example

Consider the {red, blue}-colored tree
-

and the Rabin tree automaton having
@ two states, r and b, that keep track of which color was seen last

@ transitions (r,red,r,r), (b, red,r,r),
(r, blue, b, b), (b, blue, b, b)
@ a single accepting pair (Gy, F1), with Gy = {b}, F, = {r}
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Example

Consider the {red, blue}-colored tree
-

and the Rabin tree automaton having
@ two states, r and b, that keep track of which color was seen last

@ transitions (r,red,r,r), (b, red,r,r),
(r, blue, b, b), (b, blue, b, b)
@ a single accepting pair (Gy, F1), with Gy = {b}, F, = {r}
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The automaton-based approach — The infinite tree

Example

Consider the {red, blue}-colored tree

and the Rabin tree automaton having
@ two states, r and b, that keep track of which color was seen last

@ transitions (r,red,r,r), (b, red,r,r),
(r, blue, b, b), (b, blue, b, b)
@ a single accepting pair (Gy, F1), with Gy = {b}, F, = {r}
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The automaton-based approach — The infinite tree

Example

Consider the {red, blue}-colored tree

and the Rabin tree automaton having
@ two states, r and b, that keep track of which color was seen last

@ transitions (r,red,r,r), (b, red,r,r),
(r, blue, b, b), (b, blue, b, b)
@ a single accepting pair (Gy, F1), with Gy = {b}, F, = {r}
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The automaton-based approach — The infinite tree

Example

Consider the {red, blue}-colored tree

and the Rabin tree automaton having
@ two states, r and b, that keep track of which color was seen last
@ transitions (r,red,r,r), (b, red,r,r),
(r, blue, b, b), (b, blue, b, b)
@ a single accepting pair (Gy, F1), with Gy = {b}, F, = {r}
= A accepts those trees whose paths encompass
only finitely many red-colored vertices
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The automaton-based approach — The infinite tree

Lemma (Rabin '69)

Rabin tree automata are effectively closed under union,
intersection, complementation, and projection.




Basic results and techniques for MSO
000000

The automaton-based approach — The infinite tree

Lemma (Rabin '69)

Rabin tree automata are effectively closed under union,
intersection, complementation, and projection.

Theorem (Rabin '69)

For any MSO-formula v with free variables X1, ..., Xm,
one can compute a Rabin tree automaton Ay, over B™
such that, for every tuple of unary predicates P, ..., Py, C B*

(B*, 60,01, P) E Y[P1/X1, ... Pm/Xm] iff Top € L(Ay)

Corollary

The MSO-theory of the infinite binary tree (IB*, do, 61)
is reducible to the (decidable) emptiness problem
for Rabin tree automata.
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The automaton-based approach — The infinite tree

Summing up, we have the following decidability results:

MSO-theory Model Automata
S1S finite line finite state automata
S1S semi-infinite line Biichi automata

S2S infinite tree Rabin tree automata
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The automaton-based approach — The infinite tree

Summing up, we have the following decidability results:

MSO-theory Model Automata
S1S finite line finite state automata
S1S semi-infinite line Biichi automata
S2S infinite tree Rabin tree automata
What next?

to find infinite transition systems in between the infinite tree
and the infinite grid that enjoy a decidable MSO-theory.
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The transformational approach — MSO-compatibility

Basic ingredients of the transformational approach:

@ We start from a structure 7 that enjoys a decidable
MSO-theory (e.g., the infinite binary tree)

@ We apply to 7 a suitable transformation that preserves
the decidability of MSO-theories (e.g., interpretation),
thus obtaining a new (decidable) structure 7’

© We iterate the above construction to generate
more and more structures
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The transformational approach — MSO-compatibility

Basic ingredients of the transformational approach:

@ We start from a structure 7 that enjoys a decidable
MSO-theory (e.g., the infinite binary tree)

@ We apply to 7 a suitable transformation that preserves
the decidability of MSO-theories (e.g., interpretation),
thus obtaining a new (decidable) structure 7’

© We iterate the above construction to generate
more and more structures

A noticeable class of transformations that preserve decidability of
MSO-theories is the class of MSO-compatible transformations.
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The transformational approach — MSO-compatibility

Definition (MSO-compatible transformation)

A transformation t for transition systems is said to be
MSO-compatible if for any transition system 7 and any
MSO-sentence 1) over t(7), one can compute an
MSO-sentence E over 7 (which depends on % only)
such that

-
HT)Ey iff TE

Intuitively, MSO-compatibility allows one to map a property
about t(7) into a corresponding property about 7°

= If 7 has a decidable MSO-theory,
then t(7°) has a decidable MSO-theory as well.
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The transformational approach — MSO-compatibility

Definition (MSO-compatible transformation)

A transformation t for transition systems is said to be
MSO-compatible if for any transition system 7 and any
MSO-sentence 1) over t(7), one can compute an
MSO-sentence E over 7 (which depends on % only)
such that

-
HT)Ey iff TE

Intuitively, MSO-compatibility allows one to map a property
about t(7) into a corresponding property about 7°

= If 7 has a decidable MSO-theory,
then t(7°) has a decidable MSO-theory as well.

The first transformation we consider is the MSO-interpretation.
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The transformational approach — MSO-interpretation

Example (MSO-interpretation)
Consider the infinite binary tree 75.

We describe the infinite ternary tree 73 (= t(72)) inside 7>:
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The transformational approach — MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree 75.
®

We describe the infinite ternary tree 73 (= t(72)) inside 7>:

@ we select some vertices of 7, (black-colored ones)
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The transformational approach — MSO-interpretation

Example (MSO-interpretation)

Consider the infinite binary tree 75.
®

We describe the infinite ternary tree 73 (= t(72)) inside 7>:
@ we select some vertices of 7, (black-colored ones)
1f7dom(X) = ((50 U ((51 o (50) U (51 o (51))*(5,X)
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The transformational approach — MSO-interpretation

Example (MSO-interpretation)
Consider the infinite binary tree 75.

We describe the infinite ternary tree 73 (= t(72)) inside 7>:
@ we select some vertices of 7, (black-colored ones)
Yaom(x) := (80 U (61 0 dg) U (61 061)) " (e, x)
@ we then define the successor relations dj, 47, 05 of T3
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The transformational approach — MSO-interpretation

Example (MSO-interpretation)
Consider the infinite binary tree 75.

We describe the infinite ternary tree 73 (= t(72)) inside 7>:
@ we select some vertices of 7, (black-colored ones)
Yaom(x) := (80 U (61 0 dg) U (61 061)) " (e, x)
@ we then define the successor relations dj, 47, 05 of T3




Basic results and techniques for MSO
®00

The transformational approach — MSO-interpretation

Example (MSO-interpretation)
Consider the infinite binary tree 75.

We describe the infinite ternary tree 73 (= t(72)) inside 7>:
@ we select some vertices of 7, (black-colored ones)
Yaom(x) := (80 U (61 0 dg) U (61 061)) " (e, x)
@ we then define the successor relations dj, 47, 05 of T3
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The transformational approach — MSO-interpretation

Example (MSO-interpretation)
Consider the infinite binary tree 75.

We describe the infinite ternary tree 73 (= t(72)) inside 7>:
@ we select some vertices of 7, (black-colored ones)
Yaom(x) := (80 U (61 0 dg) U (61 061)) " (e, x)
@ we then define the successor relations dj, 47, 05 of T3

by () == 0(xy) by (xoy) == (6106)(x,y)
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The transformational approach — MSO-interpretation

Example (MSO-interpretation)
Consider the infinite binary tree 75.

Any MSO-formula ¢ over 73 can be mapped
«—
into a corresponding formula ¢ over 75.

For instance, the formula ¢ =V x. 3 y. d>(x, y) becomes
E '
B =V x. (baom(x) = 3y. Waomly) A V55(x,¥)))
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The transformational approach — MSO-interpretation

Definition (MSO-interpretation)
An MSOQO-interpretation is a tuple of MSO-formulas

Ydom(x) Y (x,y) o Up(xy)  Ya(x) .. ta,(x)
——
domain formula edge formulas color formulas

It defines a B-labeled D-colored structure 7"
inside an A-labeled C-colored structure 7 as follows:
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The transformational approach — MSO-interpretation

Definition (MSO-interpretation)
An MSOQO-interpretation is a tuple of MSO-formulas

Vdom(x) Y (x,y) o Up(xy)  Ya(x) . ta,(x)
=7
domain formula edge formulas color formulas

It defines a B-labeled D-colored structure 7"
inside an A-labeled C-colored structure 7 as follows:
@ if Yyom(x) holds in 7 by interpreting x as v,
then v is a vertex of 7"
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The transformational approach — MSO-interpretation

Definition (MSO-interpretation)
An MSOQO-interpretation is a tuple of MSO-formulas

Yaom(X)  Yu(x,y) o U (xy) Ya(x) .. Pa,(x)
——
domain formula edge formulas color formulas

It defines a B-labeled D-colored structure 7"
inside an A-labeled C-colored structure 7 as follows:
@ if Ydom(x) holds in 7 by interpreting x as v,
then v is a vertex of 7'
@ if 1p(x,y) holds in 7 by interpreting x as u, resp. y as v
then (u, v) is an b;-labeled transition of 7"
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The transformational approach — MSO-interpretation

Definition (MSO-interpretation)
An MSOQO-interpretation is a tuple of MSO-formulas

@Z)dom(x) wbl(Xay) %Z)bk(xa}’) l“‘f}dl(X) I)dm(X)
——
domain formula edge formulas color formulas

It defines a B-labeled D-colored structure 7’
inside an A-labeled C-colored structure 7 as follows:
@ if Yyom(x) holds in 7 by interpreting x as v,
then v is a vertex of 7’
e if 1p(x,y) holds in 7 by interpreting x as u, resp. y as v
then (u, v) is an b;-labeled transition of 7"
@ if tg4.(x) holds in 7 by interpreting x as v,
then v is a dj-colored vertex of 7’




Basic results and techniques for MSO
ooe

The transformational approach — MSO-interpretation

Theorem
MSO-interpretations are MSO-compatible. ’
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The transformational approach — MSO-interpretation

Theorem
MSO-interpretations are MSO-compatible.

Proof (sketch)

Rewrite a given MSO-sentence 1) over 7' into
«—
a corresponding MSO-sentence v over 7:

o if ¥ =4}, (x,y), then E = (%, y)
o if 1 = Py (x), then 1 = g (x)
e if ¥y = 3 x. p(x), then E =3 x. (Ydom(x) A P(x))
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The transformational approach — MSO-interpretation

Theorem
MSO-interpretations are MSO-compatible.

Proof (sketch)

Rewrite a given MSO-sentence 1) over 7' into
«—
a corresponding MSO-sentence v over 7:

o if ¥ =4}, (x,y), then E = (%, y)
o if 1 = Py (x), then 1 = g (x)
e if ¥y = 3 x. p(x), then Z =3 x. (Ydom(x) A P(x))

Corollary

The infinite ternary tree I3 has a decidable MSO-theory.
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The transformational approach — Inverse rational mappings
Most MSO-formulas with two free variables can be
conveniently written as regular (path) expressions:
@ let A and C be disjoint sets of edge labels and vertex colors
@ for each label a € A, we introduce an inverse label 2
denoting a-labeled edges traversed in backward direction

@ we describe paths traversing edges in both directions
by words over the alphabet AUAU C

Example

The set of paths on an A-labeled C-colored transition system that
@ start from a vertex with color ¢
@ traverse a sequence of edges labeled with a
@ reach a vertex colored with ¢’

@ and finally traverse a edge labeled with &’

in backward direction

is described by the regular expression ¢ - a* - ¢’ - @
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The transformational approach — Inverse rational mappings

Fact

Regular path expressions are shorthands
of (a subset of) MSO-formulas with two free variables.

For instance:
@ the expression a
abbreviates ¢)(x,y) := da(x, y)
o the expression a- a’
abbreviates ¢)(x,y) := 3 z. 02(x,2) A 0x(z,y)
@ the expression a + 2@
abbreviates ¢(x,y) == 0a(x,y) V dx(y,x)
@ the expression a*
abbreviates 9(x,y) := 03(x,y)
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The transformational approach — Inverse rational mappings

Fact

Regular path expressions are shorthands
of (a subset of) MSO-formulas with two free variables.

For instance:
@ the expression a
abbreviates ¢)(x,y) := da(x, y)
o the expression a- a’
abbreviates ¢)(x,y) := 3 z. 02(x,2) A 0x(z,y)
@ the expression a + 2@
abbreviates ¢(x,y) == 0a(x,y) V dx(y,x)
@ the expression a*
abbreviates 9(x,y) := 03(x,y)

Note: the converse is not true in the general case (e.g.,
W(x,y) =Bz (do(z,x) V 01(z,y)) N Bz (doly.2) V 81y, 2))).

However, regular path expressions suffice for most cases.
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The transformational approach — Inverse rational mappings

For the usual MSO-interpretations, we can replace every
edge formula v¥p(x, y) with a regular path expression,
namely, a regular language over AUAU C.

Definition (Inverse rational mapping)

A rational mapping is a function h: B — @((A U Z\_U C)*)
such that Vb € B, h(b) is a regular language over AUAU C.
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The transformational approach — Inverse rational mappings

For the usual MSO-interpretations, we can replace every
edge formula v¥p(x, y) with a regular path expression,
namely, a regular language over AUAU C.

Definition (Inverse rational mapping)

A rational mapping is a function h: B — @((A U Z\_U C)*)
such that Vb € B, h(b) is a regular language over AUAU C.

The ‘inverse’ h=! of h (inverse rational mapping)
can be applied to an A-labeled transition system 7 to
produce the B-labeled transition system h=1(7) such that:
o h™1(7) has the same vertices of 7
o (u,v) is a b-labeled edge of h~1(T) iff T contains
a w-marked path from v to v, for some w € h(b).
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The transformational approach — Inverse rational mappings
Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)

dq da da da da
@ @ @ @ @ --->
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)

da da da da da
@ @ @ @ @ --->

Colored bi-infinite line £_,, , = (Z,5b, Ppos; Preg Po)

b b b b b b b b b
--->@ @ @ @ @ @ L @ --->

We define £L_,, inside L,,.
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)

da da da da da
@ @ @ @ @ --->

Colored bi-infinite line £_,, , = (Z,5b, Ppos; Preg Po)

Op Op b Op Op b Op b Op
---->@ @ @ @ @ O O Q- - - ->

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)

Colored semi-infinite line £,, = (N, 8., Peven, Podd, Po)

Colored bi-infinite line £_,, , = (Z,5b, Ppos; Preg Po)

Op Op b Op Op b Op b Op
---->@ @ @ @ @ O O Q- - - ->

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue-a- a
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)

da da da da da
@ @ @ @ @ --->

Colored bi-infinite line £_,, , = (Z,5b, Ppos; Preg Po)

Op b b Op Op b Op Op Op
---->@ O O @ @ @ @ @ --->

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue-a- a

@ between red-colored vertices
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)

Colored semi-infinite line £,, = (N, 8., Peven, Podd, Po)

Op b b Op Op b Op Op Op
---->@ O O @ @ @ @ @ --->

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue-a- a

@ between red-colored vertices: red - a- a
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)

da da da da da
@ @ @ @ @ --->

Colored bi-infinite line £_,, , = (Z,5b, Ppos; Preg Po)

b b b b op b b b b
-l >—>@ e o—r-o ® *—>o- >

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue-a- a
@ between red-colored vertices: red - a- a

o from the green-colored vertex to the blue-colored vertex
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)
ba b4 Sa 6o _ ba
& S
Colored bi-infinite line £_, ., = (Z, dp, Ppos, Peg, Po)

b b b b op b b b b
-l >—>@ e o—r-o ® *—>o- >

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue-a- a
@ between red-colored vertices: red - a- a

o from the green-colored vertex to the blue-colored vertex: 0-a-a
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)

da da da da da
@ @ @ @ @ --->

Colored bi-infinite line £_,, , = (Z,5b, Ppos; Preg Po)

b b b b b b b b b
-l >—>@ o—ro0—>o ® *—>o- >

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue-a- a
@ between red-colored vertices: red -a- a
o from the green-colored vertex to the blue-colored vertex: 0-a-a

@ from the red-colored vertex to the green-colored one
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)
ba b4 Sa 6o _ ba
e O o o o>
Colored bi-infinite line £_, ., = (Z, dp, Ppos, Peg, Po)

b b b b b b b b b
-l >—>@ o—ro0—>o ® *—>o- >

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue-a- a
@ between red-colored vertices: red -a- a
o from the green-colored vertex to the blue-colored vertex: 0-a-a

@ from the red-colored vertex to the green-colored one: 3a-0
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The transformational approach — Inverse rational mappings

Example (Inverse rational mapping)
Colored semi-infinite line L., = (N, 8, Peven, Podd, Po)

da da da da da
@ @ @ @ @ --->

Colored bi-infinite line £_,, , = (Z,5b, Ppos; Preg Po)

b b b b b b b b b
--->@ @ @ @ @ @ L @ --->

We define £L_,, inside L,,.
In £_, ., we have b-labeled edges of 4 types:

@ between blue-colored vertices: blue - a- a
@ between red-colored vertices: red - a- a
o from the green-colored vertex to the blue-colored vertex: 0-a-a
@ from the red-colored vertex to the green-colored one: 3a-0
= h(b)=blue-a-a + red-3a-a +0-a-a+ 3-0
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The transformational approach — Rational markings

Similarly, color formulas can be replaced with rational markings:

Definition (Rational marking)

A rational marking is a function k : D — @((A UAU C)*)
such that Vd € D, k(d) is a regular language over AUAU C.

It induces a recoloring of the rooted transition system 7 as follows:
@ for each d € D, the color d is assigned

to all vertices v of 7 such that there is
a w-marked path from the root to v, for some w € k(d).
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The transformational approach — Rational markings

Similarly, color formulas can be replaced with rational markings:

Definition (Rational marking)

A rational marking is a function k : D — @((A UAU C)*)
such that Vd € D, k(d) is a regular language over AUAU C.

It induces a recoloring of the rooted transition system 7 as follows:

@ for each d € D, the color d is assigned
to all vertices v of 7 such that there is

a w-marked path from the root to v, for some w € k(d).

Example (Rational marking)

The {pos, neg, 0}-coloring of the bi-infinite line is
encoded in the rooted semi-infinite line £, = (N,éa, PO)
via the rational marking k such that

k(pos)=0-a-a-(a-a)" k(neg)=0-a-(a-a)" k(0)=0
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The transformational approach — Rational markings

Finally, domain formulas can be
replaced with rational restrictions:

Definition (Rational restriction)

A rational restriction is specified by
a regular language L over AUAU C.

It induces a restriction 7|, of the
rooted transition system 7 as follows:
e for each vertex v of 7, v belongs to 7| iff there is
a w-marked path from the root to v, for some w € L.
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The transformational approach — Unfoldings

Another useful transformation is the unfolding:

Definition (Unfolding)

The unfolding of a rooted transition system 7°
is the tree Unf(7) such that:

o the vertices of Unf(7) are all and only
the finite paths in 7 originating from the root

o the edges of Unf(7) are given by the path-extension relation,
namely, if 7 is path in 7 from the root and
7’ is the extension of m with an a-labeled edge,
then (7, 7') is an a-labeled edge in Unf (7))

@ the color of a vertex in Unf(7T) is the color of
the target vertex of the corresponding path in 7°
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The transformational approach — Unfoldings

Example (unfoldings)

»
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The transformational approach — Unfoldings

Example (unfoldings)

Q ® L4 L @ @ --->
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The transformational approach — Unfoldings

Example (unfoldings)
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The transformational approach — Unfoldings

Example (unfoldings)

0 1
0[" \‘1 0’"\‘1 O’l’\‘l OIl’ \‘1
r r y N r




Basic results and techniques for MSO
oeo

The transformational approach — Unfoldings

Example (unfoldings)

Q ® L4 L @ @ --->
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The transformational approach — Unfoldings

Example (unfoldings)

Q ® L4 L @ @ --->
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The transformational approach — Unfoldings

Theorem (Semenov-Muchnik '84 — proved by Walukiewicz '96)
The unfolding operation is MSO-compatible. \

= Since finite transition systems enjoy decidable MSO-theories,
Muchnik's Theorem subsumes Biichi's and Rabin's theorems
(in fact, the proof is strongly based on Rabin’s Theorem...)
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The transformational approach — Caucal hierarchy

We know that MSO-interpretation and unfolding preserve
the decidability of MSO-theories of transition systems.

We can start from finite (hence decidable) graphs
and iterate MSO-interpretation and unfolding:

Graph, = {finite rooted graphs}
Treen11 := {trees obtained by unfolding graphs in Graph,}
Graph,, := {rooted graphs obtained via

interpretation from trees in Tree,}

(e.g., Tree; = {regular trees})

= a hierarchy of graphs with decidable MSO-theories arises
(this is commonly known as Caucal’s hierarchy)
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The transformational approach — Caucal hierarchy

Example

We start from the finite graph
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The transformational approach — Caucal hierarchy

Example

We unfold it, obtaining the infinite binary tree ...
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The transformational approach — Caucal hierarchy

Example

. we apply the rational marking
k(A) = 0%, k(B) =0*1
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The transformational approach — Caucal hierarchy

Example

... the inverse rational mapping
h(a) =0, h(b) =101, h(c) =1, h(d) =

[l
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The transformational approach — Caucal hierarchy

Example

. and finally the rational restriction L = 0* + 0*1, obtaining
the following transition system (do you remember it?)

2




Context-free and prefix-recognizable graphs
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