The completeness theorem for modal logic based on strictly ordered A-spaces

Veta Murzina

Institute of Mathematics of Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
veta_v@mail.ru
Ershov’s topological spaces

Let $\langle X, \tau \rangle$ be a topological T_0-space (τ is a topology on X).

The order \leq on X is defined, related to the topology τ, as follows [1]:

$$\forall x, y \in X \ (x \leq y \iff \forall U \in \tau \ (x \in U \implies y \in U)).$$

One more relation is introduced, namely the approximation relation \prec on elements of X as follows:

$$\forall x, y \in X \ (x \prec y \iff \exists U \in \tau \ (y \in U \forall z \in U (x \leq z))).$$

An equivalent definition may be given as follows

$$x \prec y \iff y \in \text{Int}\{z \mid x \leq z\}.$$

A topological T_0-space X is called an α-space if the following condition holds:

$$\forall U \in \tau \forall x \in U \exists y \in U (y \prec x).$$

Let $\langle X, \tau \rangle$ be an α-space. A set $X_0 \subseteq X$ is called a base subset of X if the following condition holds:

$$\forall U \in \tau \forall x \in U \exists x_0 \in U \cap X_0 (x_0 \prec x).$$

An α-space X is called an A-space, if there exists a base subset $X_0 \subseteq X$ such that $\langle X_0, \leq \rangle$ — partial upper semilattice.

(Let $X_0 \subseteq X$, then $\langle X_0, \leq \rangle$ is called a partial upper semilattice if for any $x, y \in X_0$, a consistency of x and y implies the existence of the least upper bound $x \cup y \in X_0$.)

An α-space X is called f-space if the set of finitary elements $F(X) = \{x \mid x \in X, x \prec x\} = \emptyset$ is a base subset of X and $\langle F(X), \leq \rangle$ is a partial upper semilattice.

An f-space with a least element is called an f_0-space.
Before axiomatizations of modal and temporal logics associated with strictly ordered f-spaces were obtained [2], [3].

A calculus L_f (in modal language with modality \Diamond and a constant β) and calculy $L^*_f, L^*_f_0$ (in temporal language with modalities \Diamond, \Diamond^*, and a constant β) were introduced.

Completeness theorem

(a) The calculus L_f is complete with respect to the class of all strictly ordered f-frames and with respect to the class of all strictly ordered f_0-frames.

(b) The calculus L^*_f is complete with respect to the class of all strictly ordered f-frames.

(c) The calculus $L^*_f_0$ is complete with respect to the class of all strictly ordered f_0-frames.

We prove the following theorem:

Theorem The quadruple $⟨X, X_0, \leq, \prec⟩$, where \leq, \prec are binary relations on X and $X_0 \subseteq X$, is defined by a linearly ordered A-space if and only if the following conditions are possessed:

I

1) $X_0 \subseteq X$;
2) \leq is a linear order on X;
3) $x \prec y \implies x \leq y$;
4) $x \prec y \leq z \implies x \prec z$;
5) $x \leq y \prec z \implies x \prec z$.

II

1) $x_0 \in X_0, x_0 \prec x \implies \exists x'_0 \in X_0 (x_0 \prec x'_0 \prec x)$;
2) $x \prec y \implies \exists x_0 \in X_0 (x \leq x_0 \text{ and } x_0 \prec y)$;
3) $x \prec y \implies \exists x_0 \in X_0 (x \prec x_0 \text{ and } x_0 \prec y)$, where $x < y \iff x \leq y$ and $x \neq y$;
4) If x is a least element of X, then $x \in X_0$ and $x \prec x$.
Semantics

Frames \(\langle X, X_0, <, \prec \rangle \) are considered being similar to Kripke’s frames. If the quadruple \(\langle X, X_0, \leq, \prec \rangle \) is a linearly ordered \(A \)-space with the base subset \(X_0 \) then the frame \(\langle X, X_0, <, \prec \rangle \), where for any \(x, y \in X \) \(x < y \iff x \leq y \) and \(x \neq y \), is called a strictly ordered \(A \)-frame.

The modalities \(\Box_<, \Box_\prec \) associated with the relations \(< \) and \(\prec \) respectively are introduced. The set \(X_0 \) is represented as a constant \(\beta \):

\[
x \models \beta \iff x \in X_0,
\]

\[
x \models \Box_R A \iff \forall y (xRy \implies y \models A), \text{ where } R \in \{\leq, \prec\}.
\]
The calculus $L\alpha$

We define a calculus $L\alpha$ by adding the following axioms to the minimal modal calculus K:

(I)
1. $\Box(A_1 \rightarrow A_2) \lor \Box(A_2 \& \Box A_1 \rightarrow A_1)$;
2. $\Box A \rightarrow \Box \Box A$;
3. $\Box A \& A \rightarrow \Box A$;
4. $\Box A \rightarrow \Box \Box A$;
5. $\Box A \rightarrow \Box \Box A$.

(II)
1. $\Diamond A \& \beta \rightarrow \Diamond (\beta \& (\beta \& A))$;
2. $\Diamond A \rightarrow (\Diamond (\beta \& \Diamond A) \lor \beta)$;
3. $\Diamond A \rightarrow (\Diamond (\beta \& \Diamond A))$.

Completeness theorem The calculus $L\alpha$ is complete with respect to the class of all strictly ordered A-frames.

Finite axiomatizable The calculus $L\alpha$ has the finite model property.

Since the calculus $L\alpha$ has the finite model property then it is decidable.
References

3. V. F. Murzina, Temporal logics which are complete with respect to strictly linearly ordered f-models, Vestnik NSU, vol.3, 1, 2003, 61–82 (in russian)