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We exploit (co)inductive specifications and proofs to approach the evaluation of low-level programs
for the Unlimited Register Machine (URM)within theCoq system, a proof assistant based on the
Calculus of (Co)Inductive Constructionstype theory. Our formalization allows us to certify the
implementation of partial functions, thus it can be regarded as a first step towards the development of
a workbench for the formal analysis and verification of both converging and diverging computations.

1 Introduction

In this paper we report and discuss a formalization of theUnlimited Register Machine(URM) and its
semantics within theCalculus of (Co)Inductive Constructions(CC(Co)Ind).

The URM is a mathematical idealisation of a computer, one of the formal approaches to characterize
the intuitive ideas of computability and decidability [12]. Programs for the URM are low-level, essen-
tially assembly-like, and their execution gives rise to both converging and diverging computations. This
is a typical situation where it is required to define and reason aboutcircular, potentially infiniteobjects
and concepts,i.e. systems with infinitely many states. Since structural induction trivially fails on these
systems, one may resort to stronger approaches, such as, among other ones,coinduction.

Coinductive principles can be stated and exploited in different settings. From aset-theoretical
standpoint coinduction arises when objects are viewed asmaximal fixed-pointsof monotone operators,
whereas thecategoricalapproach is developed through(final) coalgebras. To develop the present work,
we settle within thelogical system ofIntuitionistic Type Theory.

Actually, in intuitionistic type theory infinite objects are managed throughcoinductive types: these,
roughly speaking, are collections of elements whose construction requires an infinite numbers of steps.
In particular, a handy technique for dealing with coinductive definitions and proofs within CC(Co)Ind

was introduced by Coquand [8] and refined by Giménez [17]. Although providing a limited form of
coinduction, such an approach is particularly appealing, becauseproofscarried out by coinduction are
accommodated as any other infinite, coinductively defined object. Remarkably, such a technique is
mechanised in the systemCoq [26]: this, one among the rare interactive environments that implement
coinductive definition and proof principles, is an appreciated proof assistant, due to the fact that the
automatization and the interaction with the user are well-balanced.

In this paper we formalize the URM and its semantics from the point of view of theprogram cer-
tification. In our opinion, such an encoding within a coinductive formal system, such as CC(Co)Ind, has
several benefits. First it is interestingper se, as experiments about the encoding of computability models
are still lacking. Then it may be valuable in education, by giving the opportunity to undergraduate stu-
dents (computability is actually a basic computer science course) to experiment with non-standard (i.e.
coinductive) tools within a concrete, relatively simple application. Further it might be useful in the area
of program transformations, because the formal treatment of low-level languages is mandatory to certify
components of programming languages, such as type-checkers, interpreters, and compilers. Last but not
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the least, the present, novel theoretical case study witnesses the broad applicability of coinduction as a
verification technique on infinite-state systems and the significance of its mechanisation.

Besides the points mentioned above, we claim that the originality of this paper relies also on the
presentation of the encoding, which is illustrated and discussed without showingCoq code, but via the
more abstract level of CC(Co)Ind (in any case, theCoq code is available to the interested reader at the web
page of the author [7]), thus providing the reader with an extra pedagogic value.

In the next section we illustrate coinduction within CC(Co)Ind; then in the following four sections we
develop the formalization of the URM, dealing with programs, computations and functions; finally we
discuss directions for further investigations in the lightof what we achieve and of related work.

2 Coinduction in CC(Co)Ind

The formal treatment of infinite objects and concepts is supported by CC(Co)Ind via the mechanism of
coinductive types. These, by providing the user with a limited form of recursion, allow the formalization
and the management of infinite data and infinite proofs.

First of all, one may define concrete,infinite objects (i.e. data) as elements ofcoinductive types,
which are fully described by a set ofconstructors1. From a pure logical point of view, the constructors
can be seen asintroduction rules; these are interpreted coinductively,i.e. they are applied infinitely many
times, hence the type being defined is inhabited by infinite objects:

s∈ S

0:s∈ S
(0S)∞

s∈ S

1:s∈ S
(1S)∞

In this case we have formalized infinite sequences,i.e. streams, of bits, a coinductive type we nameS.
Optionally, coinductive types may contain finite objects too, that is,potentiallyinfinite objects; in such a
case alsoconstantconstructors, besides the recursive ones, have to be declared:

0∈ L
(0L)

1∈ L
(1L)

l ∈ L

0:l ∈ L
(0L)∞

l ∈ L

1:l ∈ L
(1L)∞

So doing, we have definedL, the type of sequences of both finite and infinite length,i.e. lazy lists, of bits.
Once a new coinductive type is defined, the system provides automatically thedestructors, i.e. an

extension of the native pattern-matching capability, toconsumethe elements of the type itself. Therefore,
coinductive types can also be viewed as thelargestcollection of objects closedw.r.t. the destructors.

Consistently with this intuition, the destructorscannotbe used for defining functions by recursion
on coinductive types, because their elements cannot be consumed down to a constant case. The natural
way to allow self-reference is to consider the dual perspective of building individual, constant elements
in coinductive types. Such a goal can be fullfilled throughlazy corecursivefunctions:

zeros , 0:zeros
odd(s) , matchswith a:b:s′ ⇒ a:odd(s′)
even(s) , matchswith a:b:s′ ⇒ b:even(s′)
merge(s, t) , matchswith a:s′ ⇒ matcht with b:t ′ ⇒ a:b:merge(s′, t ′)

Corecursive functions produce infinite objects and may haveany type as domain (note that in the last
three definitions we have applied thematchdestruction operation on a parameter of the domain). Infinite

1The constructors must respect astrict positivity constraintcondition to guarantee the reduction termination of the calculus.
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objects are not unfolded, unless their components are explicitly needed, “on demand”, by a destruction
operation. Therefore, to prevent the evaluation of corecursive functions from infinitely looping, their
definition must satisfy aguardedness condition: every corecursive call has to be guarded by at least one
constructor, and by nothing but constructors2. This way of regulating the implementation of corecursion
captures the intuition that infinite objects are built via the iteration of an initial step.

Given a concrete coinductive type (such asSandL above), no proof principle can be automatically
generated by the system: in fact, proving properties about infinite objects requires the potential of build-
ing proofswhich are infinite as well! What is needed is the design ofad-hoccoinductivepredicates, i.e.
coinductivepropositions, which are actually inhabited by suchinfinite proofs3. The traditional example
is point-wise equality (also known asbisimilarity), that we define on streams and name≃⊆ S×S:

b∈{0,1} s≃ t

b:s≃ b:t
(≃)∞

Two streams are bisimilar if we canobservethat they have equal heads and recursively,i.e. coinductively,
their tails are bisimilar. Once this new predicate is defined, the system provides the correspondingproof
principle, to carry out proofs about bisimilarity: such a tool, namedguarded inductionprinciple [8, 17],
is particularly appealing in a context where proofs are managed as any other infinite object.

In fact, a proof by guarded induction is just an infinite object built by lazy corecursion (hence it
must respect the same guardedness constraint that lazy corecursive functions have to). Remarkably, the
mechanization of the guarded induction principle providesa handy technique for the construction of
infinite proofs, which can be carried out interactively through thecofix tactic4. This tactic allows to
build infinite proofs asinfinitely regressiveproofs, by assuming the thesis as an extra hypothesis and
using it carefully later, provided its application is guarded by constructors. This “internal” approach is
very direct, compared to the traditional techniques based on bisimulations, because the proofs do not
need to be exhibited beforehand, but can be built incrementally via tactics.

To illustrate the support provided by thecofix tactic, we pick out the following coinductive property:

∀s∈S. merge(odd(s), even(s)) ≃ s

We prove this proposition by mimicking the top-down proof practice of CC(Co)Ind. First, the coinductive
hypothesis is assumed among the hypotheses and the streams is destructed two times intoa:b:t; then
the corecursive functionsodd, evenandmerge, in turn, may perform a computation step; finally the con-
structor(≃)∞ is applied twice. In the end, we have reduced the goal to provemerge(odd(t), even(t))≃ t,
a proposition which is an instance of the coinductive hypothesis. Therefore one is eventually allowed to
exploit the coinductive hypothesis itself, whose application is now guarded by the constructor(≃)∞. The
application of the coinductive hypothesis completes the proof, and intuitively has the effect of repeating
ad infinitum the explicit, initial proof segment, thus realizing the “and so on forever” motto.

To avoid ambiguity with genuine induction, we say that the proof has been performed bystructural

2Syntactically, the constructors guard the recursive call “on the left”.
3This distinction between concrete objects and proofs points out that sets inhabited by concrete objects havecomputational

content, whereas predicates inhabited by proofs carrylogical information.
4A tactic is a command to solve a goal or decompose it into simpler goals.
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coinductionon the derivation. The whole proof may be displayed in natural deduction style5 as follows:

[merge(odd(t), even(t)) ≃ t](1)

a:b:merge(odd(t), even(t)) ≃ a:b:t
(≃)∞

merge(a:odd(t), b:even(t)) ≃ a:b:t
(computation: merge)

merge(odd(a:b:t), even(a:b:t))≃ a:b:t
(computation: odd, even)

merge(odd(s), even(s)) ≃ s
(destruction)

∀s∈S. merge(odd(s), even(s)) ≃ s
(introduction)

∀s∈S. merge(odd(s), even(s)) ≃ s
(1)

To conclude, we observe that, as the reader may imagine, there exist severalsemanticallyproductive6,
but syntacticallynon-guarded functions (and proofs) that cannot be acceptedby CC(Co)Ind, because the
automated check is not sophisticated enough. Particular effort is put in fact by the community into the
goal of extending the expressive power of guarded corecursion [19, 16, 5]. At the moment, we can say
that CC(Co)Ind has made a lot of progress, but there are still problematic issues on the carpet.

3 The Unlimited Register Machine

The Unlimited Register Machine (URM) is a mathematical idealisation of a computer, one among the
frameworks proposed to set up a formal characterisation of the intuitive ideas of effective computability
and decidability. It is equivalent to the alternative approaches,e.g. Turing machines, and particulary
valued for its simplicity. We work here with the URM formulation introduced by Cutland [12], a slight
variation of a machine first conceived by Shepherdson and Sturgis [23].

Registers and instructions. The URM has aninfinitenumber ofregisters R1,R2, . . . containing natural
numbersr1, r2, . . . which may be altered byinstructions. These are of four kinds and have the following
intended meaning (r → R represents the loading of the natural valuer in the registerR):

Z(i) , Zero : 0→ Ri

S(i) , Successor : r i +1→ Ri

T(i, j) , Transfer : r i → Rj

J(i, j,k) , Jump : ifr i=r j then proceed from thekth instruction
else proceed from the next instruction

Programs and computations. A programfor the URM is a finite, non-empty sequence of instructions.
When provided with a programP and a(ninitial) configuration(i.e. afinite, non-empty sequence of

natural numbersr1, r2, . . . , rm in the registersR1,R2, . . . ,Rm)7, the URM performs acomputation: this
means starting from the first instruction inP and obeying the instructions sequencially (unless a Jump is
encountered), thus altering at any step the content of the registers as prescribed by the instructions.

5As usual, local hypotheses are indexed with the rules they are discharged by.
6Productivity is the power of a function call to produce data,which is undecidable.
7Despite the number of the registers being infinite, any programP is finite, so there exists a maximal register indexm=ρ(P),

depending onP, such thatRm is affected by the instructions inP. Hencer1, r2, . . . , rm is equivalent tor1, r2, . . . , rm,0,0, . . .
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The computationstops, or converges, if and only if there is no next instruction; when this is the case,
the numberr stored inR1 in thefinal configuration is regarded as the output of the computation, and this
is writtenP(r1, r2, . . . , rm)↓ r. On the other hand, due to the looping back via the Jump instruction, there
are computations thatnever stop, or diverge, which is writtenP(r1, r2, . . . , rm)↑.

Formalization in CC (Co)Ind . The encoding of the basic URM structures in CC(Co)Ind is straightforward,
because both configurations and programs are simply finite, non-empty sequences of components, which
we formalize by means of inductive datatypes (theIN represents the natural numbers):

Loc : i, j ∈ IN+=IN−{0} register index
Val : r ∈ IN register content
Cgn : σ ::= (ι 7→rι)

ι∈[1..m] list-configuration

PC : k,h ∈ IN program counter
Inst : I ∈ {Z(i), S(i), T(i, j), J(i, j,k)} instruction
Pgm : U,V ::= 〈ι 7→Iι〉

ι∈[1..n] program

An alternative encoding of configurations can be given viainfinite sequences,i.e. coinductive datatypes:

Cgn∞ : σ∞ ::= (ι 7→rι)
ι∈[1..∞] stream-configuration

Adequacy (I). We start to address now the faithfulness of our encoding of the URM, by comparing
Cutland’s formulation and our formalization in CC(Co)Ind. First, we observe that the syntax of our in-
structions (and therefore of programs) coincide with Cutland’s one. Then, two technical points have to
be considered: about the convergence of computations, and about the encoding of configurations.

The “natural” way for the programU=I1, I2, . . . , In to stop is that the program counter is set eventually
to n+1; though, a Jump instruction could set it to an index greaterthann+1. Cutland actually confines
his attention to the programs that invariably stop because the next instruction should beIn+1. We adopt
a similar convention here, with the difference that we use the index 0 in place ofn+1: these kinds of
programs, the sole we will be considering from now on, are said to bein standard form.

Definition 3.1 (Standard form)
A program U=〈ι 7→Iι〉

ι∈[1..n] is in standard formif, for every J(i, j,k)∈U, k≤n holds.

As far as the formalization of configurations is concerned, it is apparent that our stream-configurations
(i.e. the datatypeCgn∞) correspond to infinite sequences of registers in the original URM.

By workingon paper, on the one hand, Cutland is naturally allowed to define configurations as finite,
starting segments of such infinite sequences of registers: in fact, by inspecting a given programP, one
can pick outρ(P), the maximal register index affected by the instructions inP. In this way the working
space available to the computation underP may be restricted to the configurationr1, r2, . . . , rρ(P).

On the other hand, workingformally within CC(Co)Ind requires extra care. First we observe that our
list-configurations (i.e. the datatypeCgn) correspond to the above Cutland configurationsr1, r2, . . . , rρ(P).
Nevertheless, list-configurations bring a drawback: if onewants to reason formally on them, it is required
to consider only programs that respect the working space they make available8. That is, programs and
list-configurations can be soundly coupled just if the programs contain “good” pointers (i.e. indexes) to
the configurations themselves, a constraint that can be viewed as a kind ofcompatibilityconcept.

8In a sense, this means to provide in advance with the maximal register indexρ(U), given a programU .
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Definition 3.2 (Compatibility) A program U and a list-configurationσ=(ι 7→rι)
i∈[1..m] are compatible

(σ |=U) if U is in standard form and, for every Z(i), S(i), T(i, j), J(i, j,k)∈U, i, j∈[1..m] holds.

4 Abstract computation

In this section we bootstrap the semantics of the URM, by extending in a modular way the formalization
introduced so far; note that, from now on, we will use the terminology “configuration” to refer to the
encoding in CC(Co)Ind itself (i.e. either the finite-list datatypeCgnor the infinite-stream datatypeCgn∞).

It is apparent that the concept ofconvergenceof computations can be relativisedw.r.t.configurations:
there are actually programs that always stop and programs that never stop (whatever configuration is
coupled to them) and programs that either converge or diverge depending on the initial configuration.
Clearly, the divergence is caused by the presence ofinfinite loopsin the progress of computation: to
deal formally with the execution of programs we have then to manage an infinite-state system, a scenario
which may benefit from the use of thecoinductionas a specification and proof principle.

In this section we focus just on a restricted, basic notion ofcomputation: in fact, from the point of
view of the termination, the only essential instruction is theJumpinstruction, which has the capability to
separateconverging computations from diverging ones. Hence we consider here programs that contain
only Jump instructions,i.e. abstractprograms; this preliminary investigation allows us to focus on the
object system from a cleaner perspective, to be exploited inthe following.

Noticeably, it is not possible to cope with the semantics of URM programs by using a unique,po-
tentially coinductive computation concept (see Section 2): a faithful encoding has actually to reflect the
separation between converging and diverging computations, through two different judgments. There-
fore, using in this casefinite (i.e. list) configurations, the semantics of abstract URM programs can be
described by theinductive cpj+ and thecoinductive cpj∞ predicates, whose arity isPgm×Cgn×PC.

Definition 4.1 (Abstract evaluation) Let A=〈ι 7→Iι〉
ι∈[1..n] andσ=(ι 7→rι)

ι∈[1..m] be an abstract program
and a configuration such thatσ |= A, and let h∈ [1..n] and Ih=J(i, j,k). Then, cpj+ is defined by the
first four rules, interpreted inductively, and cpj∞ by the last two rules, interpreted coinductively:

h=n ri 6=r j

cpj+(A,σ ,h)
( f ·l)+

k=0 r i=r j

cpj+(A,σ ,h)
(t·l)+

cpj+(A,σ ,h+1) h<n ri 6=r j

cpj+(A,σ ,h)
( f ·r)+

cpj+(A,σ ,k) k6=0 r i=r j

cpj+(A,σ ,h)
(t·r)+

cpj∞(A,σ ,h+1) h<n ri 6=r j

cpj∞(A,σ ,h)
( f ·r)∞

cpj∞(A,σ ,k) k6=0 r i=r j

cpj∞(A,σ ,h)
(t·r)∞

At the moment, our goal is to capture just the progress of thecontrol flow, with the computation
that may proceed from a generic instruction of a program. Specifically, the intended meaning of the
judgmentscpj+(A,σ ,h) andcpj∞(A,σ ,h) is that the computation under the abstract programA with the
configurationσ and by starting from thehth instruction ofA, convergesanddiverges, respectively.

More in detail, the coinductive predicate asserts that the computation loops: that is, by starting from
the instructionIh, there exists an instructionIq which can be reached fromIh and such that, afterwards,
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the control flow comes again atIq after a non-zero, finite number of steps. Hence, the divergence is
grasped via the predicatecp∞ by the coinduction proof principle motto (“and so on forever”).

We remark that, since URM programs are not structured, we have to embed in the encoding some
other “structuration” criterium; in fact, the design of thepredicates has been directly inspired by thenum-
ber of evaluation stepsimplicit amount. Thus we have defined two atomic rules forcpj+ (the evaluation
stops in one step), when either the current one is the last instruction and the Jump condition is false, or
the current Jump condition is true and the instruction tellsto jump out of the program. The extra rules are
recursive, and address how an evaluation step is carried outwithin a converging computation (predicate
cpj+) and a diverging one (predicatecpj∞), again inspecting by cases the Jump condition.

Another important choice to be pointed out is that we have modeled the evaluation from a particular
perspective,i.e. for using the judgments, according toCoq’s top-down proof practice, toexecutespecific
programs. This “algorithmic” approach is motivated by the fact that we are interested in experimenting
the certification of concrete programs; this is a preliminary step that pinpoints further investigations, such
as the development of the metatheory of the URM or the advanced issues addressed by Leroy and Grall
[22]. We are conscious that these more ambitious tasks couldrequire the introduction of new versions of
the evaluation concept, to be related to the ones we have formalized up to date.

We notice, finally, that a fragment of the encoding of the evaluation judgments, which is common to
all the rules, has not been displayed in the rules themselves, but has been collected within the hypothe-
ses of the Definition 4.1: such a part of the formalization hasto cope with the compatibility between
programs and finite configurations, an overhead that we have discussed in the previous section.

In the end, using our machinery we can manage termination anddivergence of computations under
abstract URM programs parametericallyw.r.t. non-mutable configurations, as follows.

Definition 4.2 (Converging and diverging abstract evaluation) Let A andσ be an abstract program and
a configuration such thatσ |= A. The computation under A withσ convergesanddivergeswhen:

stopj (A,σ) , cpj+(A,σ ,1)
loopj (A,σ) , cpj∞(A,σ ,1)

As an example, let us consider the abstract programB,〈17→J(1,2,2), 27→J(1,2,2)〉. We can prove
that the computation underB with the configurationσ,(17→0, 27→1) converges, while it diverges with
τ,(17→0, 27→0); both the proofs are immediate, the second one is by coinduction9:

r1=06=1=r2

r1=06=1=r2

cpj+(B,σ ,2)
( f ·l)+

cpj+(B,σ ,1)
( f ·r)+

26=0 r1=0=r2

26=0 r1=0=r2 [cpj∞(B,τ ,2)](1)

cpj∞(B,τ ,2)
(t·r)∞(1)

cpj∞(B,τ ,1)
(t·r)∞

A more sensible approach would allow to managevariableconfigurations, such asµ,(17→m, 27→n).
In that case, the Definition 4.2 should be more involved, by including a premise toconstrainthe content
of the configuration at hand. So doing, one could prove more general assertions, such ase.g. (m6=n)⇒
cpj+(B,µ ,1) and(m=n)⇒ cpj∞(B,µ ,1). Though, we prefer to postpone such versions of convergence
and divergence to the next section, where we will address thefull URM instruction suite.

9As discussed in Section 2, the proofs are displayed in natural deduction style and have to be read from the bottom.
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5 Full computation

We extend now our formalism to deal with the full URM, by adopting infinite (i.e. stream) configurations,
because these allow to dispose of the compatibility betweenprograms and configurations themselves (as
argued in Sections 3 and 4). Note that the results we get are independent from the particular encoding of
configurations (in fact, at the end of this section we will relate formally finite and infinite configurations
to each other, by addressing the adequacy of the whole formalization).

Actually, the computation under URM programs is captured bythe more involved inductive predicate
cp+, with arity Pgm×Cgn∞ ×PC×Cgn∞, and the coinductive predicatecp∞, with arity Pgm×Cgn∞ ×
PC, which describeboth the control flowand its effect on configurations.

Definition 5.1 (Evaluation) Let U=〈ι 7→Iι〉
ι∈[1..n] andσ∞=(ι 7→rι)

ι∈[1..∞] be a program and a configura-
tion, and let h∈ [1..n]. We assume that Ih=J(i, j,k) in the Jump rules (those labelled( j−)), Ih=Z(i) in
the Zero rules, Ih=S(i) in the Successor rules, and Ih=T(i, j) in the Transfer rules.

Then, cp+ is defined by the following rules, interpreted inductively:

h=n ri 6=r j

cp+(U,σ∞,h,σ∞)
( j f ·l)+

cp+(U,σ∞,h+1,τ∞) h<n ri 6=r j

cp+(U,σ∞,h,τ∞)
( j f ·r)+

k=0 r i=r j

cp+(U,σ∞,h,σ∞)
( jt ·l)+

cp+(U,σ∞,k,τ∞) k6=0 r i=r j

cp+(U,σ∞,h,τ∞)
( jt ·r)+

h=n τ∞=zr(σ∞, i)

cp+(U,σ∞,h,τ∞)
(z·l)+

cp+(U,σ ′
∞,h+1,τ∞) h<n σ ′

∞=zr(σ∞, i)

cp+(U,σ∞,h,τ∞)
(z·r)+

h=n τ∞=sc(σ∞, i)

cp+(U,σ∞,h,τ∞)
(s·l)+

cp+(U,σ ′
∞,h+1,τ∞) h<n σ ′

∞=sc(σ∞, i)

cp+(U,σ∞,h,τ∞)
(s·r)+

h=n τ∞=mv(σ∞, i, j)

cp+(U,σ∞,h,τ∞)
(t·l)+

cp+(U,σ ′
∞,h+1,τ∞) h<n σ ′

∞=mv(σ∞, i, j)

cp+(U,σ∞,h,τ∞)
(t·r)+

And cp∞ is defined by the following rules (a superset of those for cpj∞), interpreted coinductively:

cp∞(U,σ∞,h+1) h<n ri 6=r j

cp∞(U,σ∞,h)
( j f ·r)∞

cp∞(U,σ∞,k) k6=0 r i=r j

cp∞(U,σ∞,h)
( jt ·r)∞

cp∞(U,τ∞,h+1) h<n τ∞=zr(σ∞, i)

cp∞(U,σ∞,h)
(z·r)∞

cp∞(U,τ∞,h+1) h<n τ∞=sc(σ∞, i)

cp∞(U,σ∞,h)
(s·r)∞

cp∞(U,τ∞,h+1) h<n τ∞=mv(σ∞, i, j)

cp∞(U,σ∞,h)
(t·r)∞

The corecursive10 functions zr,sc,mv : Cgn∞ × IN+(×IN+) → Cgn∞ alter the configurations, as pre-

10Corecursion is defined in Section 2. Note that these functions would berecursiveworking with finite configurations.
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scribed by the instructions Zero, Successor and Transfer; the definition of zr is e.g. as follows11:

zr(σ∞, i) , matchσ∞ with r : τ∞ ⇒ match i−1 with 0⇒ 0 : τ∞ | n+1⇒ r : zr(τ∞, i−1)

The intended meaning of the judgmentcp+(U,σ∞,h,τ∞) is that the computation under the program
U with the configurationσ∞ and by starting from thehth istruction ofU , stops, transformingσ∞ into τ∞.

On the other hand, the intended meaning ofcp∞(U,σ∞,h) is the same ascpj∞, even if the config-
urations may be updated, in the case: the computation under the programU with the configurationσ∞
and by starting from thehth istruction,loops. That is, there exists an instructionIq which can be reached
from Ih and such that, afterwards, the control flow comes again atIq after a non-zero, finite number of
steps. Nevertheless, the use ofcp∞ is subtler than that ofcpj∞: the coinductive hypothesis (“and so on
forever”) may be actually applied, to grasp the divergence,providedthe configuration at hand satisfies
an invariant (whose nature will be clarified below). Coherently with suchan intuition, afinal configura-
tion (corresponding to the fourth parameter of the inductive predicatecp+) cannotexist forcp∞, simply
because the configurations may be updated “ad infinitum” in the course of a diverging computation!

Termination and divergence are now fully significant, and managed parameterically as follows.

Definition 5.2 (Converging and diverging evaluation) Let U andσ∞ be a program and a configuration,
and letT (σ∞,U), I (σ∞,U) be decidable constraints about the content of the registersin σ∞, depending
on U. Then, the computation under U withσ∞ convergesanddivergeswhen, respectively:

stop(U,σ∞) , ∃τ∞, ∃T (σ∞,U). T (σ∞,U)⇒ cp+(U,σ∞,1,τ∞)

loop(U,σ∞) , ∃I (σ∞,U). I (σ∞,U)⇒ cp∞(U,σ∞,1)

As foreseen by the above comments aboutcp+ andcp∞, the management of convergence and diver-
gence are fairly different between each other, when the configurations can be updated by computations.

Converging computations underU with initial σ∞ are actually accommodated in the intuitive way:
the halting is described by the program counter, which is eventually set to 0; moreover, the incremental
modification ofσ∞ is reported in the finalτ∞. The premiseT (σ∞,U) plays the role of atermination
condition, which, if needed, provides with the extra potential of carrying out proofs by induction. In fact,
computations may converge essentially in two ways: with or without the presence offinite cycles. In
the latter case, the constraint just “guides” the control flow to the end of the program; in the presence of
cycles, it is exploited to pick out a parameter on which to reason by induction. Therefore, in ourlogical
setting, program-driven termination constraints make feasible formal proofs about the convergence and
the output of individual programsw.r.t. parameter configurations. In other words, such conditions allow
to make formal the informal proofs by evidence that one may figure out by inspecting the programs.

Conversely, the modification of the starting configurationσ∞ within diverging computations under
U does not produce a final configuration, becauseσ∞ is updated ad infinitum. Though, the modification
of σ∞ can be observedin the course of the computation, and such configuration may be checked against
an invariancecondition, that constrains its content. Therefore, the invariance conditionI (σ∞,U) itself,
whose shape depends again onU , becomes the “guard” to ensure the non-termination12.

Concerning the termination and invariance constraints, werestrict to universally quantified formulas
on natural numbers, built via the logical operators and the arithmetic operations and predicates.

11We use here the notationr : σ∞ to represent the configuration(07→r, ι 7→rι )ι∈[2..∞].
12We remark that the whole scenario is coherentw.r.t. the concept ofcomputable function, that we will address in Section 6:

there is an output, which is extracted from the finalτ∞, if and only if a computation stops.
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For the sake of illustrating the technical details, let us consider theparametric(i.e. variable-content)
configurationµ∞,(17→m, 27→n, 37→p, . . .) and the programV,〈17→S(1), 27→J(2,3,1)〉. We can then
show that the computation underV with µ∞ diverges, by choosing the invariantn=p (while it converges
with the termination constraintn6=p). To prove∀m,n, p. (n=p)⇒ cp∞(V,µ∞,1) by structural coinduc-
tion on the derivation withinCoq’s top-down proof environment, we assume in the proof context the
coinductive hypothesis, the variables and the invariant; then we execute the two instructions ofU so that
the control flow loops back to the first instruction; finally weapply the coinductive hypothesis13, which
demands to prove that the new configuration satisfies the invariant constraint as well:

[n=p]
...

n=p

[cp∞(U,(17→m+1, 27→n, 37→p, . . .),1)](1)

cp∞(U,(17→m+1, 27→n, 37→p, . . .),2)
( jt ·r)∞

cp∞(U,(17→m, 27→n, 37→p, . . .),1)
(s·r)∞

∀m,n, p∈IN. (n=p)⇒ cp∞(U,(17→m, 27→n, 37→p, . . .),1)
(introduction)

∀m,n, p∈IN. (n=p)⇒ cp∞(U,(17→m, 27→n, 37→p, . . .),1)
(1)

Adequacy (II). We complete now the discussion about the faithfulness of ourencodingw.r.t. Cutland’s
URM [12], undertaken in Section 3: the issues we have to address formally are the relationship between
finite and infinite configurations, and the semantics given inthe current and the previous section.

As far as the configurations are concerned, we first define theinclusionandrestrictionconcepts.

Definition 5.3 (Configuration inclusion/restriction) Let U be a program,σ=(ι 7→sι)
ι∈[1..m] a finite con-

figuration andτ∞=(ι 7→tι)ι∈[1..∞] an infinite one. Then,inclusionand restrictionare defined as follows:

σ ⊂ τ∞ , (∀ι∈[1..m]. tι=sι)∧ (∀ι>m. tι=0)
τ∞|U , (ι 7→tι)ι∈[1..ρ(U)]

Concerning the semantics, let us assume (without displaying the rules) to have introduced a second
definition fot both the predicatescp+ andcp∞, to cope withfinite configurations and for which we use
an overloaded notation. The new rules differ from Definition5.1 only for the fact that the involved finite
configurations require the extra compatibility constraintwith programs, analogously to Definition 4.1.

Now we can state theequivalencebetween finite and infinite configurations encodingsCgnandCgn∞.

Theorem 5.4 (Configurations equivalence) Let U=〈ι 7→Iι〉
ι∈[1..n] be a program,σ andτ finite configu-

rations,σ∞ andτ∞ infinite configurations, and let h∈[1..n]. Then the following properties hold:

1. cp+(U,σ ,h,τ)∧σ |=U ∧σ⊂σ∞ ∧ τ⊂τ∞ ⇒ cp+(U,σ∞,h,τ∞)

2. cp∞(U,σ ,h)∧σ |=U ∧σ⊂σ∞ ⇒ cp∞(U,σ∞,h)

3. cp+(U,σ∞,h,τ∞)⇒ cp+(U,σ∞|U ,h,τ∞|U )

4. cp∞(U,σ∞,h)⇒ cp∞(U,σ∞|U ,h)

13The application of the coinductive hypothesis isguardedby the two constructors(s·r)∞ and( jt ·r)∞ (see also Section 2).
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PROOF. (1, 3) By induction on the evaluation hypothesis. (2, 4) By coinduction on the derivation.

Even if the above Theorem establishes that working either with finite, list-like configurations or with
infinite, stream-like ones, is equivalent, we have preferred up to date to handleinfinite configurations.
Our choice is motivated by two reasons: stream configurations do not require the overhead of managing
side-conditions to model the compatibility with programs,and it has not been yet necessary to perform
proofs by induction on the structure of configurations themselves.

In the end, the reader can see that our machinery provides theuser with alogic for the URM, i.e.
a formal system whose potential may be exploited to prove properties about the semantics of URM
programs andthe encodingitself, a direction we will comment on further in the final section.

To consider the adequacy issue, we conjecture that our formalization internalizes faithfully the very
initial theory developed by Cutland on paper,i.e. the part concerning the synthesis and the execution
of individual programs. By addressing the task formally, the soundnessof our encoding is apparent (as
our programs coincide with Cutland’s ones, and we have coupled to programs a formal logical system);
moreover, we state a limited form ofcompleteness, in the following sense.

Conjecture 5.5 (Adequacy) Let P be an URM program and U=〈i 7→Ii〉ι∈[1..n] its faithful encoding. Then:

1. If P(a1,a2, . . . ,am)↓b, then there existτ=〈17→b, ι 7→τι〉
ι∈[2..m] andT ((ι 7→aι)

ι∈[1..m],U) such that
T ((ι 7→aι)

ι∈[1..m],U)⇒ cp+(U,(ι 7→aι)
ι∈[1..m],1,τ)

2. If P(a1,a2, . . . ,am)↑, then there existsI ((ι 7→aι)
ι∈[1..m],U) such thatI ((ι 7→aι)

ι∈[1..m],U) ⇒
cp∞(U,(ι 7→aι)

ι∈[1..m],1)

PROOF. (1) By inspection on the hypothetical evaluation (to devisethe termination constraint, which
depends on the initial configuration(ιi 7→ai)

ι∈[1..m]), then by induction (see also Section 6). (2) By in-
spection on the hypothetical evaluation (to devise the invariant), then by structural coinduction.

To conclude, we remark that, after the introduction of the very basic computability theory, Cutland
develops “higher-order” methods, to devise new computablefunctionswithouthaving to write programs.
It is immediate that addressing this kind of adequacy, at themoment, is out of the scope of our approach.

6 An example: partial minus

The next step of our work is to address slightly more involvedconcepts: in this section we exploit the
formalization developed so far, by tuning it to deal with thefunctionscomputed by the URM.

The formal notion of(partial) computable functionarises naturally in Cutland’s presentation [12]
after the preliminary definitions reported in Section 3. Namely, a programP computes a function
f : INm ⇀ IN when, for everya1,a2, . . . ,am,b∈INm+1, the computationP(a1,a2, . . . ,am) stops andb is
stored in the registerR1 in the final configuration (this is writtenP(a1,a2, . . . ,am)↓b) if and only if:

(a1,a2, . . . ,am)∈dom( f ) and f (a1,a2, . . . ,am)=b

A relevant application supported by our machinery is to address thecertificationof URM programs:
that is, proving that a program meets the specification it is designed for. The example we will be working
out in this section is thepartial subtraction functionsub: IN×IN ⇀ IN:

sub(m,n) ,

{

m−n if m≥n
↑ if m<n
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An algorithm to make the URM compute this function is the following: if mandn are loaded, respec-
tively, in R1 andR2, then try to letn reachmby performingSuccessoroperations onR2; correspondingly
incrementR3, whose content is initially set to 0, to record the number of steps performed onR2. This
algorithm devises aloop in the computation, which comes to an end if and only ifm≥n. In any case, at
any completion of the loop, the snapshot of the registers content is the following:

R1 R2 R3 R4 . . .

m n+k k 0 . . .

The algortithm can be implemented, for example, by the following URM program:

U , 〈 17→J(1,2,5), 27→S(2), 37→S(3), 47→J(1,1,1), 57→T(3,1) 〉

The program, as required, is designed to increment in parallel r2 and r3 and to stop just, and only
if, when r2=r1. It is then immediate to see that the computations underU may converge or diverge
depending on the initial configuration: therefore, the implementation of the partial subtraction function
has to be certified in two steps, by using the predicatescp∞ andcp+ defined in the previous section.

On the one hand, we prove viacp∞ that the computation underU diverges with the configurations
(17→m, 27→n, . . .), such thatm<n (which is the “invariant”). To complete the analysis, we establish via
cp+ that the computation underU converges tom−n with the configurations(17→m, 27→n, 37→0, . . .),
such thatm≥n (this, in turn, plays the role of the “termination” constraint).

Theorem 6.1 (Partial minus) Letσ=(17→σ1, 27→σ2, 37→σ3, . . .) be a parameter configuration. Then,
the implementation of the partial minus function is certified by the following properties:

1. (Divergence)σ1<σ2 ⇒ cp∞(U,σ ,1)

2. (Convergence)σ1≥σ2 ⇒ cp+(U,σ ,1,(17→σ1−σ2+σ3, 27→σ1, 37→σ1−σ2+σ3, . . .))

PROOF. (1.) By structural coinduction on the derivation. Assume the coinductive hypothesis, then
evaluate the first four instructions so that the control flow loops back to the first instruction, finally apply
the coinductive hypothesis and prove that the updated configuration satisfies the invariant constraint14:

[σ1<σ2]
...

σ1<σ2+1

[cp∞(U,(17→σ1, 27→σ2+1, 37→σ3+1, . . .),1)](1)

cp∞(U,(17→σ1, 27→σ2+1, 37→σ3+1, . . .),4)
( jt ·r)∞

cp∞(U,(17→σ1, 27→σ2+1, 37→σ3, . . .),3)
(s·r)∞

cp∞(U,(17→σ1, 27→σ2, 37→σ3, . . .),2)
(s·r)∞

cp∞(U,(17→σ1, 27→σ2, 37→σ3, . . .),1)
( j f ·r)∞

∀σ=(17→σ1, 27→σ2, 37→σ3, . . .). σ1<σ2 ⇒ cp∞(U,σ ,1)
(introduction)

∀σ=(17→σ1, 27→σ2, 37→σ3, . . .). σ1<σ2 ⇒ cp∞(U,σ ,1)
(1)

14See Section 2 about the conventions for displaying CC(Co)Ind top-down proofs in natural deduction style.
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(2.) By induction on p=σ1−σ2. If p=0, the evaluation of the program U reduces to obeying just the
first instruction (the Jump condition is true) and the last one, hence the thesis is immediate. If p=q+1, the
evaluation of the first four instructions causes the controlflow to loop back to the first instruction, with
the configuration(17→σ1, 27→σ2+1, 37→σ3+1, . . .); the thesis follows from the inductive hypothesis.

Finally, choosingσ3=0 implies the convergence of the computation under U withσ to σ1−σ2.

Inductive versus coinductive evaluations. Regardingpartial functions, it is apparent that the two
predicatescp+ andcp∞ act as complementary, being the first one responsible for thetreatment of the
elements in the domain of the function involved and the second one for all the extra computations.

About this separation between inductive andpurelycoinductive evaluations, we wish to remark that
it has not been possible to deal with the semantics of URM programs by using a unique,potentially
coinductive judgment. Actually, by restrictinge.g. on abstract programs, if such a predicate was defined
through the rules( f ·l)+, (t·l)+, ( f ·r)∞ and(t·r)∞ of Definition 4.1, would be too weak. Far from being
an obstacle for our goals, this fact has caused just to doublea part of the encoding, to define bothcp+ and
cp∞; in any case, such a solution provides with an extra proof principle, i.e. the possibility of carrying
out proofs by structural induction on the derivation of converging computations.

Nevertheless, these considerations about the relationship between inductive, potential and pure coin-
ductive evaluation point out the need of further research efforts, along the lines pursued by the much
more advanced work by Leroy and Grall [22] (see the next section for the discussion of related work).

7 Further and related work

In this document we have given an account of an experiment in CC(Co)Ind, about modeling and reasoning
on the execution of converging and diverging low-level, assembly-like programs, carried out by the
Unlimited Register Machine (URM) [12]. The particular perspective which has inspired our research is
the formalization of a workbench to certify the implementation of the functions computed by the URM;
as a proof of concept, we have addressed the partial minus function on natural numbers. The encoding
technique needed to accomplish our goal is quite plain, apart from the use of the coinduction: in fact,
we have taken most advantage of the (co)inductive specification and proof principles provided by the
CC(Co)Ind intuitionistic type theory and mechanized in theCoq proof assistant [17, 26].

In this final section we sketch some hints to exploit the potential of our formalization, along two
main directions: computability and traces of execution.

Computability. In our work we have mastered the very basic computability theory of the URM: essen-
tially, we are able to prove thatspecificURM programs implement the functions they are designed for.
So we have coupled alogic, whose mechanization is supported byCoq, to the bare URM. Nevertheless,
exploiting the machinery requires a non-trivial analysis and practice by the user, who has to pick out
ad-hoc properties (terminationandinvariant conditions) to achieve the certification of URM code.

At this point, to pursue at a deeper extent the formalizationof the computability theory, one has to
change a bit perspective, gaining a more abstract level. This opens actually two new directions, which
form the core of the computability: lifting from programs tofunctions (which they implement) and
describing “higher-order” methods, to combine such functions for obtaining new, more sophisticated
computable functions. Therefore, one should add at least a new meta-level, where partial functions are
first-class citizens. A possible approach towards this goalis to investigate more abstract properties of
URM programs, such asequivalence. This effort, in turn, would open further research lines, and tends
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again, as invariance does, to the objective of capturing notonly the outcome of the execution of programs,
but also the observable effects.

As far as we know, there is no related work about formalizing the historical models used to develop
the computability theory (and the URM, in particular). We see this as a serious gap from the point of
view of certified mathematics, a framework where the research is nowadays intense; hence the present
document is also an effort to contribute closing this gap.

Traces of execution. Leroy and Grall [22] adopt coinduction within CC(Co)Ind to capture both finite and
infinite evaluations of acall-by-valueλ -calculus. The motivation of that work is the attempt to describe
big-step semantics by coinduction, because big-step semantics is more convenient than small-step to
prove the correctness of program transformations, such ascompilation. Nevertheless, big-step semantics
is traditionally defined by induction, thus allowing to describe only terminating evaluation.

Grall and Leroy prove that (only) a big-step semantics that separates terminating evaluation (de-
scribed by an inductive predicate) from diverging evaluation (described by a purely coinductive predi-
cate) corresponds exactly to finite and non-finite small-step reductions. Afterwards, the authors extend
both the semantics to produce not only the outcome of an evaluation (convergence and output, or diver-
gence) but also anexecution trace, in the form of a potentially infinite sequence of terms representing the
intermediate reducts of the source program. This extensionis fundamental to establish semantic preser-
vation properties for program transformation (such as compilation) and is very important to investigate
observational equivalence for imperative languages.

Therefore, it would be stimulating to experiment with traces of execution for the URM (for example
in the form of potential infinite sequences of configurations) to addresse.g. equivalence of programs.

Other work related to divergence or low-level languages. There are several contributions in the
literature exploiting the potential of coinductive definitions and proofs within CC(Co)Ind to master the
fundamental concept of non-terminating computation. Someof these approaches concern transition
systems [10, 3], linear temporal logic [9, 3] and process algebras [18, 20].

Finally, from a complementary point of view, we observe thatin recent years the metatheory of
low-level machines has been studied by several authors in more realistic settings [11, 25, 6].
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