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Preface

Modern molecular biology increasingly relies upon comgatal methods for analyz-
ing and dealing with its vast amounts of biological data. Duthese demands of life
sciences, bioinformatics (aka. computational biologgglitis a challenging and fast
growing area of research. By promoting and more and moreliegatiological and
medical research, it is of utmost importance for our undéding of life. Major contri-
butions to this discipline can have thousands of positifects in medicine, agriculture,
or industry. To pick out only a few examples, bioinformatiaskles problems related
to:

e Recognition, analysis, and organization of DNA sequences

e Biological systems simulations (for metabolic or reguigtoetworks)

e Prediction of the spatial conformation of a biological palr, given its sequence
of monomers (in particular for proteins and RNA)

All these problems can be naturally formalized using caists over finite domains
or intervals of reals. Biology is a source of extremely iat#ing and challenging prob-
lems that can be encoded exploiting the application of reaed more general tech-
niques of constraint programming. In this framework, somabfems that have been
successfully tackled are:

e The fundamental bioinformatics problem of sequence aligmnsan be solved by
recent inference based constraint methods

e Biological systems simulations can be easily designedyusimcurrent constraint
programming, and

¢ the constrained-based prediction of protein conformatimmomoted the develop-
ment of new search strategies, new constraint solvers,emetgl symmetry break-

ing.

The workshop WCBO6 ties in with the successful CP workshopSanstraints and
Bioinformatics/Biocomputing held in CP’97 and CP’98 andsiin immediate follow
up to the workshop WCB’05 (ICLP’05).

The main aim of this workshop is to share recent results sxalea (new constraint
solvers, new prediction programs) and to present new cigilig problems that can
be addressed using constraint-based methods. Among tleespsybmitted, seven of
them have been judged deserved to be presented. Moreav@rothkshop experiences
the invited talk by Francois Fages (INRIA Rocquencourgriee) who describes how
temporal logics with constraints can be used to express itiledical properties of
cellular processes, to model-check them, and to searckdotion rules and parameters
satisfying them.

Alessandro Dal Palu
Agostino Dovier
Sebastian Will
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On Using Temporal Logic with Constraints to Express
Biological Properties of Cell Processes

Francois Fages

INRIA Rocguencourt, France
Francois.Fages@inria.fr

Abstract

One promise of systems biology is to model biochemical gses at a sufficiently
large scale so that the behavior of a complex system can loictged under various
conditions inin silico experiments. The language approach to systems biology aims
at designing formal languages for describing biochemicatmanisms, processes and
systems at different levels of abstraction, and for praxgdiutomated reasoning tools
to assist the biologists [1].

The pioneering use of the-calculus process algebra for modeling cell signalling
pathways in [2], has been the source of inspiration of nuoeworks in the line of pro-
cess calculi [3] and of their stochastic extensions [4]. Bieehemical abstract machine
BIOCHAM! [5] has been designed as a simplification of the processlcajguroach to
model biological processes, using a language of reacties that is both more natural
to the biologists, and well suited to consider differentalyics and use model-checking
techniques [6].

In BIOCHAM, the rule-based language is used for modelinghé&mical networks
at three abstraction levels:

1. the boolean semantics, where one associates to each (gvjein, gene, etc.) a
boolean variable representing its presence or absence system, and the reaction
rules are interpreted by a highly non-determinissgnchronous transition system
representing competition between reactions;

2. the concentration semantics, where one associatestt@bpct a real number rep-
resenting its concentration, and the reaction rules aegpngted with their kinetic
expressions by a set of non-linear ordinary differentialaipns (ODE);

3. the stochastic semantics. where one associates to e@€HM object an integer
representing the number of molecules in the system, anduthe are interpreted
as a continuous time Markov chain.

One striking feature of this multi-level approach is thattie three cases, temporal
logic can be used to formalize the biological propertieshefsystem, and verify them
by different model-checking techniques [7]. The thesishit tto a large extend, one
can make the following identifications:

1 BIOCHAM is a free software implemented in Prolog and disttésl under the GPL license. It
is downloadable on the webhttp://contraintes.inria.fr/BIOCHAM



biological model = transition system,
biological property = temporal logic formula,
biological validation = model-checking.

Atthe boolean level, th€omputation Tree Logi€TL [8] allows us to expresgual-
itative propertiesabout the production of some protein (reachability), theaipoints
for its production, the stability or oscillations for itsgeence, etc. These properties
are known from biological experiments in wild-life or mwdtorganisms. Some of the
most used CTL formulae are abbreviated in BIOCHAM as follows

— reachable(P) stands folEF(P);

— steady(P) stands folEG(P);

— stable(P) stands forAG(P);

— checkpoint (Q,P) stands forE(IQ U P);

— oscil(P) stands folAG((P = EF !P) A (IP = EF P)).

In this setting, such properties can be checked with sthteesart symbolic model
checkers such as NuSMV using binary decision diagrams [8¢. @erformances ob-
tained on a large model of the mammalian cell cycle contri@drafohn’s map [10],
involving 800 rules and 500 variables, have been shown tofltkeoorder of a few
tenths of seconds to compile the model, and check simple Gfradlae [11].

At the concentration level, we use a first-order fragment iofelr Time Logic
(LTL) with arithmetic constraintgontaining equality, inequality and arithmetic opera-
tors ranging over the real values of concentrations andeif tlerivatives. For instance
F([A]>10) expresses that the concentrationAogventually gets above the threshold
value 10.G([A]+[B]<[C]) expresses that the concentration®fs always greater
than the sum of the concentrationsfAdfind B. Oscillation properties, abbreviated as
oscil(M,X), are defined as a change of sign of the derivativielaft leasK times in
the time horizon:

F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...))).Theabbre-
viated formulaoscil (M,K,V) adds the constraint that the maximum concentration of
M must be above the threshdldin at leasK oscillations.

Under the hypothesis that the initial state is completefyngd, numerical integra-
tion methods (such as Runge-Kutta or Rosenbrock methods)der a discrete sim-
ulation trace. This trace constitutes a linear Kripke dtreesin which LTL formulae
with constraints can be interpreted and model-checkedSirice constraints refer not
only to concentrations, but also to their derivatives, wasider traces of the form
(< to, %o, dxp/dt >, < t1,X1,dx /dt >, ...) where at each time point, the trace asso-
ciates the concentration values of th's and the values of their derivatives; /dt.

Beyond making simulations, and checking properties of tioelets, the temporal
properties can also be turned into specifications and teahjpgic constraints for auto-
matically searching and learning modifications or refinetmenthe model when incor-
porating new biological knowledge. This is implemented IOBHAM by a combina-
tion of model-checking, search and machine learning teghes in the three abstraction
levels.

For instance, in a simple continuous model of the cell cyfterayson [12], the
search of parameter values for kinetic paramekeg@ndk,, so that the concentration



of the cyclinCdc2-Cyclin pl oscillates three times in the time horizon 150, can be
formalized as follows :

biocham: learn_parameters([k3, k4], [(0, 200), (O, 200)], 20,
0scil(Cdc2-Cyclin~{p1},3),150).

First values found that make oscil(Cdc2-Cyclin~{p1},3) true:

parameter(k3,).

parameter(k4,).

The system finds the parameter valigs- 10 andk, = 70 satisfying the specifica-
tion. However, the corresponding curve depicted in Fig.Hilsiis damped oscillations.
The addition of the constraint of reaching a concentratialues greater than.0 for
this complex produces the valuks= 10, ks = 120 and the curve depicted in Fig. 2.
The specification can be further refined by imposing a coimstod period equal to 35
time units,period(Cdc2-Cyclin~{p1},35). This produces the curve depicted in Fig. 3
which is close to the original model.

——+— Cde2—Cyclin~fpl3
7
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Fig. 1. Cyclin concentration curve for the parameter valkes 10 andky = 70 found in response
to the queryscil(Cdc2-Cyclin~{p1},3).

These first results implemented in BIOCHAM are quite encgimgand motivate
us to go further in the direction of the formal specificatidibmlogical systems and in
the improvement of the search algorithms. A coupled modé¢hefcell cycle and the
circadian cycle is under development along these lines @@1AM with applications
to cancer chronotherapies.

Acknowledgements. The BIOCHAM project is a joint work with Nathalie Chabrietiver,
Sylvain Soliman and Laurence Calzone, with contributiongt Sakina Ayata, Loic Fosse, Lucie
Gentils, Shrivaths Rajagopalan and Nathalie Sznajderdditian, support from the EU STREP
project April-1l and the EU Network of Excellence REWERSIE avarmly acknowledged.



——+— Cde2—Cyclin~fpl3
7

Fig. 2. Concentration curve for parameter valkgs= 10 andk, = 120 found in response to the
queryoscil(Cdc2-Cyclin~{p1},3,0.1).

—+— Cdc32-Cyclin™f{pl3
¥T

Fig. 3. Concentration curve foks; = 10 et k4 = 190 obtained in response to the query
period(Cdc2-Cyclin™{p1},35).
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Modeling Biological Systems in Stochastic Concurrent
Constraint Programming™

Luca Bortolussi and Alberto Policriti

Dept. of Mathematics and Informatics
University of Udine, Udine, Italy
bortolussi|policriti@dimi.uniud.it

Abstract. We present an application of stochastic Concurrent CanstPao-

gramming (sCCP) for modeling biological systems. We prewdibrary of sSCCP
processes that can be used to describe straightforwamliygital networks. In
the meanwhile, we show that SCCP proves to be a general agalsée frame-
work, allowing to describe a wide class of dynamical behars@and kinetic laws.

1 Introduction

Computational Systems Biology is a extremely fertile figdthere many different mod-
eling techniques are used [7] in order to capture the iritridgnamics of biological
systems. These techniques are very different both in gpidtin the mathematics they
use. Some of them are based on the well known instrumebtffgrential Equations
mostly ordinary, and therefore they represent phenomenargsuous and determin-
istic, cf. [8] for a survey. On the other side we firstbchastic and discretmodels,
that are usually simulated witBillespie’s algorithm[14], tailored for simulating (ex-
actly) chemical reactions. In the middle, we find hybrid aggmhes like th&€€hemical
Langevin Equatiorjl1], a stochastic differential equation that bridges ip#yt these
two opposite formalisms.

In the last few years a compositional modeling approachdasetochastic pro-
cess algebragSPA) emerged [22], based on the inspiring parallel betweelecules
and reactions on one side and processes and communicatitmesather side. Stochas-
tic process algebras, like stochagticalculus [20], have a simple and powerful syntax
and a stochastic semantics expressed in terms of Contifimedviarkov Chains [19],
that can be simulated with an algorithm equivalent to Gilie’s one. Since their intro-
duction, SPA have been used to model, within the same framkeWimlogical systems
described at different level of abstractions, like biocheireactions [21] and genetic
regulatory networks [1].

Stochastic modeling of biological systems works by assingja rate to each active
reaction (or, in general, interaction); rates are real nenmbepresenting the frequency
or propensity of interactions. All active reactions themergo a (stochastic) race con-
dition, and the fastest one is executed. Physical justificatf this approach can be

* This work has been partially supported by PRIN 2005 projéo6215491 and by FIRB 2003
project RBNEO3B8KK.



found in [13]. These rates encode all the quantitative mfation of the system, and
simulations produce discrete temporal traces with vagidelay between events.

In this work we show how stochastic Concurrent ConstraingRarmming [2] (SCCP),
another SPA recently developed, can be used for modelingdigal systems. sCCP is
based on Concurrent Constraint Programming [23] (CCP),oagss algebra where
agents interact by posting constraints on the variableh@®&ystem in the constraint
store, cf. Section 2.

In order to underline the rationale behind the usage of s@€Rake an high level
point of view, providing a general framework connectingnedmts of biological sys-
tems with elements of the process algebra. Subsequentlghew how this general
framework gets instantiated when focused on particulassels of biological system,
like networks of biochemical reactions and gene regulatetyorks.

In our opinion, the advantages of using sCCP are twofold:pttesence of both
quantitative information and computational capabilitteshe level of the constraint
systems and the presence of functional rates. This secatatdée in particular, allows
to encode in the system different forms of dynamical behagidn a very flexible way.
Quantitative information, on the other hand, allows a mamgact representation of
models, as part of the details can be described in relaticthe devel of the store.

The paper is organized as follows: in Section 2 we reviewflgrgCCP, in Sec-
tion 3 we describe a high level mapping between biologicstesys and sCCP, then we
instantiate the framework for biochemical reactions (8ecB.1) and gene regulatory
networks (Section 3.2). Finally, in Section 4, we draw finahclusions and suggest
further directions of investigation.

2 Stochastic Concurrent Constraint Programming

In this section we present a stochastic version [2] of CameurConstraint Program-
ming [23], which will be used in the following as a modelingn¢puage for biological
systems.

2.1 Concurrent Constraint Programming

Concurrent Constraint Programming (CCP [23]) is a procleghaa having two distinct
entities: agents and constraints. Constraints are irdergfirst-order logical formulae,
stating relationships among variables (&g= 10 orX +Y < 7). CCP-Agents compute
by adding constraintste11) into a “container” (theconstraint storg and checking if
certain relations are entailed by the current configuratifoihe constraint storeagk).
The communication mechanism among agents is thereforelasymous, as informa-
tion is exchanged through global variables. In additioadr andtell, the language
has all the basic constructs of process algebras: nonrdigistic choice, parallel com-
position, procedure call, plus the declaration of localalgles. This dichotomy between
agents and the constraint store can be seen as a form of sepaketween computing
capabilities (pertaining to the constraint store) and tiggd of interactions (pertaining
to the agents). From a general point of view, the main diffeesbetween CCP ard
calculus resides really in the computational power of thenkr. T-calculus, in fact, has



Program=D.A
D=¢|D.D|p(x):—A
ni=telly(c) | ask(c)

M=TmA|TtA.p(y) |[M+M
A=0]tello(c)A| A M| (A| A

Table 1. Syntax of of SCCP.

to describe everything in terms of communications only,ca flaat may result in cum-
bersome programs in all those situations in which “clagsaamputations are directly
or indirectly involved.

The constraint storeis defined as an algebraic lattice structure, using the yheor
of cylindric algebras [15]. Essentially, we first choose atforder language together
with an interpretation, which defines a semantical entaitnmelation (required to be
decidable). Then we fix a set of formulae, closed under firgtgunction, as the prim-
itive constraints that the agents can add to the store. Tdebgdic lattice is obtained
by considering subsets of these primitive constraintseddy entailment and ordered
by inclusion. The least upper bound operation in the laiSagenoted by and it ba-
sically represents the conjunction of constraints. In ptdanodel local variables and
parameter passing, the structure is enriched with cylfiiedtion and diagonalization
operators, typical of cylindric algebras [15]. These opmmaallow to define a sound
notion of substitution of variables within constraints.the following we denote the
entailment relation by and a generic constraint store by We refer to [6,24,23] for a
detailed explanation of the constraint store.

2.2 Syntax of sSCCP

The stochastic version of CCP (sCCP [2]) is obtained by agldistochastic duration
to the instructions interacting with the constraint store.e. ask andtell. More pre-
cisely, each instruction is associated with a continuondwan variabl€l, representing
the time needed to perform the corrisponding operationfiénstore (i.e. adding or
checking the entailment of a constraint). This random éeids exponentially dis-
tributed (cf. [19]), i.e. its probability function is

f(1) =N, (2.1)

whereA is a positive real number, called the rate of the exponerdiaom variable,
which can be intuitively seen as the expected frequency pieptitime.
In our framework, the rates associatecitx andtell are functions

Ac —RT,



depending on the current configuration of the constraiméesithis means that the speed
of communications can vary according to the particularestdtthe system, though in
every state of the store the random variables are perfeetiyet! (their rate is evaluated
to a real number). This fact gives to the language a remaakalibility in modeling
biological systems, see Section 3 for further material @ gbint.

The syntax of SCCP can be found in Table 1. An sCCP prograrnisteris a list of
procedures and in the starting configuration. Procedueadaiared by specifying their
name and their free variables, treated as formal paramétgesits, on the other hand,
are defined by the grammar in the last three lines of Table &réThre two different
actions with temporal duration, i.esk andtell, identified byt Their rateA is a
function as specified above. These actions can be combigeth&r into a guarded
choiceM (actually, a mixed choice, as we allow both ask and tell todralined with
summation). In the definition of such choice, we force pracectalls to be always
guarded. In fact, they are instantaneous operations, tharsiimg them by a timed action
allows to avoid instantaneous infinite recursive loops tkose possible ip: —A ||
p. In summary, an agemt can choose between different actiohd){ it can perform
an instantaneousell, it can declare a variable localyA) or it can be combined in
parallel with other agents.

The syntax presented here is slightly different from thgPfin fact, the class of
instantaneous actions is expanded: in [2] it contained tdydeclaration of local vari-
ables, while here it contains also procedure call and asersfite11. Nevertheless, the
congruence relation defined in [2], ascribing the usual prigs to the operators of the
language (e.g. associativity and commutativitytand||), remains the same. The con-
figurations of SCCP programs will vary in the quotient spa@sluato this congruence
relation, denoted by .

2.3 Operational Semantics of SCCP

The definition of the operational semantics is given spaujfywo different kinds of
transitions: one dealing with instantaneous actions ardother with stochastically
timed ones. This is also a novelty w.r.t. [2], though in theyious version an instanta-
neous transition was implicitly defined in order to deal wdbal variables. The basic
idea of this operational semantics is to apply the two ttaors in an interleaved way:
first we apply the transitive closure of the instantanecarsgition, then we do one step
of the timed stochastic transition. To identify a state af Hystem, we need to take
into account both the agents that are to be executed anditemtaoonfiguration of the
store. Therefore, a configuration will be a point in the spacec.

The recursive definition of the instantaneous transitienC (2 x ¢) x (2 x C) is
shown in Table 2. Ruld R1) models the addition of a constraint in the store through the
least upper bound operation of the lattice. Recursion spmeds to ruléIR2), which
consists in substituting the actual variables to the forpahmeters in the definition
of the procedure called. In ru[¢R3), local variables are replaced by fresh global vari-
ables, while in(IR4) the other rules are extended compositionally. Observenthato
not need to deal with summation operator at the level of mataous transition, as
all the choices are guarded by (stochastically) timed astid®he syntactic restrictions
imposed to instantaneous actions guarantee-thatcan be applied only for a finite



(IR1) (tello(c).A,d) — (A,dLicC)
(IR2)  (p(x),d) — (Alx/y],d) if p(y):—A
(IR3)  (3xA,d) — (Aly/x],d)  withyfresh

(Ag,d) — A/l,d/

(IRY) TR T Apd) — (A, [Ap.d)

Table 2. Instantaneous transition for stochastic CCP

(SRL) (tell)\(c).A, d> :>(l.)\(d)) <A7 du C>
(SR) (ask, (¢).A,d) = (1) (A.d) if di-c

(M1,d) = (pA) <A&,d/>
<M1+M2,d> :>(p/,)\/) <A€L7d,>
with p/ = WM and\ = A +ratgMy,d)

(SR3)

(A1, d) = (pa) (ALD)
(A || A2,d) = () (AL || Az, d')
and\ = A +ratg(Az,d)

(SR

. ; p)\
with p' = e

Table 3. Stochastic transition relation for stochastic CCP

number of steps. Moreover it can be proven that it is conflu@ien a configuration
R

(A,d) of the system, we denote K, d) the configuration obtained by applying the
transitions— as long as it is possible (i.e., by applying the transitiasate of—).

The confluence property ef— implies that(A, d) is well defined.

The stochastic transitios=C (? x ¢) x [0,1] x R x (? x ¢) is defined in Table 3.
This transition is labeled by two numbers: intuitively, tfiest one is the probability
of the transition, while the second one is its global rate, Section 2.4 for further
details. Rule(SRL) deals with timed tell action, and works similarly to rulER1).
Rule (SR2), instead, defines the behaviour of the ask instruction:attsse only if the
asked constraint is entailed by the current configuratiothefconstraint store. Rules
(SR3) and (SR4), finally, deal with the choice and the pdrat@struct. Note that,
after performing one step of the transities>, we apply the transitive closure ef-.
This guarantees that all actions enabled after-enestep are timed. In Table 3 we use

10



the function rate » x ¢ — R, assigning to each agent its global rate. It is defined as
follows:

Definition 1. The functiorrate :? x ¢ — R is defined by

. rate(0,d) =

. rate(telb\( ) ,d) =A(d);

. rate(ask, (c ) ,d)=A(d) ifdFc;

. rate(ask (c). ) Oifdt/c;

. rate(M1+M2, = rate(M1,d) + rate(M2, d).
. rate(Ay || Az,d) =rate(Aq,d) + rate(Ay, d);

OOUThh WNPE

Using relation—>-, we can build a labeled transition system, whose nodes are co
figurations of the system and whose labeled edges corre$paiedivable steps ci=.
As a matter of fact, this is a multi-graph, as we can deriveatioan one transition con-
necting two nodes (consider the case ofytell + tell,(c)). Starting from this labeled
graph, we can build a Continuous Time Markov Chain (cf. [19§l aext section) as
follows: substitute each labép, ) with the real numbepA and add up the numbers
labeling edges connecting the same nodes. More details tieoperational semantics
can be found in [2].

2.4 Continuous Time Markov Chains and Gillespie’s Algorithm

A Continuous Time Markov Chain (CTMC for short) is a continigetime stochastic
process X )i>o taking values in a discrete set of staSand satisfying the memoryless
propertyvn,ty,...,th,S1,...,Sn:

PG =% [ X 1 =51, st} =P{X =& [ X =S-1}) (2.2)

A CTMC can be represented as a directed graph whose nodesjgond to the states
of Sand whose edges are labeled by real numbers, which are &seofsgxponentially
distributed random variables (defined by the probabilitpgity (2.1)). In each state
there are usually several exiting edges, competing in a candition in such a way
that the fastest one is executed. The time employed by eanhition is drawn from
the random variable associated to it. When the system ckastgte, it forgets its past
activity and starts a new race condition (this is the menesyproperty). Therefore, the
traces of a CTMC are made by a sequence of states interlegwedibble time delays,
needed to move from one state to another.

The time evolution of a CTMC can be characterized equivhidnt computing,
in each state, the normalized rates of the exit transitiowistiaeir sum (called the exit
rate). The next state is chosen according to the probaliktyibution defined by the
normalized rates, while the time spent for the transiticdréavn from an exponentially
distributed random variable with parameter equal to theraxe.

This second characterization can be used in a Monte-Carlolafion algorithm.
Suppose to be in stat2 then draw two random numbers, one according to the proba-
bility given by the normalized rates, and the second acogrtti an exponential proba-
bility distribution with parameter equal to the exit ratdneéh choose the next state ac-
cording to the first random number, and increase the timerdupto the second. The

11



procedure sketched here is essentially the content of thes@ie’s algorithm [13,14],
originally derived in the context of stochastic simulatafrchemical reactions. Indeed,
the stochastic description of chemical reactions is exacContinuous Time Markov
Chain [12].

2.5 Stream Variables

In the use of SCCP as a modeling language for biological systenany variables will
represent quantities that vary over time, like the numbenaotecules of certain chem-
ical species. In addition, the functions returning the ls&stic rate of communications
will depend only on those variables. Unfortunately, theialsles we have at our dis-
posal in CCP are rigid, in the sense that, whenever they atantiated, they keep that
value forever. However, time-varying variables can belgasodeled as growing lists
with an unbounded taiX = [ay, ..., an|T]. When the quantity changes, we simply need
to add the new value, sdy at the end of the list by replacing the old tail variable with
a list containingb and a new tail variableT = [b|T’]. When we need to compute a
function depending on the current value of the variableve need to extract from the
list the value immediately preceding the unbounded taiis Thn be done by defining
the appropriate predicates in the first-order language whérh the constraint store is
built. As these variables have a special status in the pratsemhereafter, we will refer
to them asstream variablesIn addition, we will use a simplified notation that hides
all the details related to the list update. For instance gifwant to add 1 to the current
value of the stream variabd, we will simply write X = X + 1. The intended meaning
of this notation is clearly: “extract the last ground elefneim the list X, consider its
successon+1 and add it to the list (instantiating the old tail varialdesdist containing
the new ground element and a new tail variable)”.

2.6 Implementation

We have developed an interpreter for the language that casdzkfor running simula-
tions. The simulation engine is based on the Gillespie’©Atgm, therefore it performs
a Monte-Carlo simulation of the underlying CTMC. The meniesg property of the
CTMC guarantees that we do need to generate all its nodesftomea simulation, but
we need to store only the current state. By syntactic argabfshe current set of agents
in execution, we can construct all the exit transitions asdjgute their rates, evaluating
rate functions w.r.t. the current configuration of the st@etually, those functions de-
pend only on stream variables, thus their computation hasteps: extract the current
value of the variables and evaluate the function). Then vpdyahe Gillespie’s proce-
dure to determine the next state and the elapsed time, ngdhé system by modifying
the current set of agents and the constraint store accotalithg chosen transition.
The interpreter is written in SICStus Prolog [10]. It is camspd by a parser, ac-
cepting a program written in SCCP and converting it into @erimal list-based repre-
sentation. The main engine operates therefore by insgeatid manipulating the lists
representing the program. The constraint store is managjad the constraint solver
on finite domains of SICStus. Stream variables are not repted as lists, but rather as
global variables using the meta-predicaiesert andretract of Prolog. The choice
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Measurable Entities» Stream Variables

Processes

Logical Entities< (Control Variables

Interactions— Processes

Table 4. Schema of the mapping between elements of biological systierfit) and sCCP (right).

of working with finite domains is mainly related to the facatithe biological systems
analyzed can be described using only integer values

In every execution cycle we need to inspect all terms in ai@leheck if they enable
a transition. Therefore, the complexity of each step isdiria the size of the (repre-
sentation) of the program. This can be easily improved belisg that an enabled
transition that is not executed remains enabled also inuted.

The correctness of the virtual machine can be proven by sigpthiat it simulates
exactly the same CTMC defined by the sSCCP program. This camibe oy showing
that the exit rate and the probability distribution on exgtitransitions are computed
correctly, according to the operational semantics of SCCP.

3 Modeling Biological Systems

Taking an high level point of view, biological systems carsben as composed essen-
tially by two ingredients: (biological) entities and inéetions among those entities. For
instance, in biochemical reaction networks, the molecateshe entities and the chem-
ical reactions are the possible interactions, see [22] aatidh 3.1. In gene regulatory
networks, instead, the entities into play are genes andategy proteins, while the
interactions are production and degradation of proteind,rapression and enhance-
ment of gene’s expression, cf. [1] and Section 3.2. In agidjtentities fall into two
separate classes: measurable and logical. Measuralile®ate those presentin a cer-
tain quantity in the system, like proteins or other molesulengical entities, instead,
have a control function (like gene gates in [1]), hence theyreither produced nor
degraded. Note that logical entities are not real worldtiesti but rather they are part
of the models.

The translation scheme between the previously descrileedeglts and sCCP ob-
jects is summarized in Table 4. Measurable entities areceded exactly to stream
variables introduced at the end of Section 2. Logical exgjtinstead, are represented as
processes actively performing control activities. In &iddi, they can use variables of
the constraint store either as control variables or to exgaanformation. Finally, each

1 The real valued rates and the stochastic evolution arewiightthe definition of the semantics
and not with the syntax of the language, thus we do not neegptesent them in the store.
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interaction is associated to a process modifying the valwerain measurable stream
variables of the system.

Associating variables to measurable entities means thatemepresenting them as
part of the environment, while the active agents are aswatia the different actions
capabilities of the system. These actions have a certaatidarand a certain propensity
to happen: a fact represented here in the standard waysseciating to each action a
stochastic rate. Actually, the speed of most of these axti@pends on the quantity of
the basic entities they act on. This fact shows clearly thedirfer having functional
rates, which can be used to describe these dependenciestixpl

In the next subsections we instantiate this general scharoejer to deal with two
classes of biological systems: networks of biochemicaltieas and genetic regulatory
networks.

3.1 Modeling Biochemical Reactions

Network of biochemical reactions are usually modeled tgrochemical equations of
the formRy + ...+ Ry —k P1+ ...+ Py, Where then reactant®’s (possibly in multiple
copies) are transformed into theproductsP;’s. In the equation above, eitharor m

can be equal to zero; the case= 0 represents a degradation reaction, while the case
n = 0 represents an external feeding of the products, perfolwgeh experimenter.
Actually, the latter is not a proper chemical reaction bulhea a feature of the envi-
ronmental setting, though it is convenient to represenithinwthe same scheme. Each
reaction has an associated rateepresenting essentially its basic speed. The actual rate
of the reaction ik- [Ry] - - - [Rn], where[R;] denotes the number of moleculgspresent

in the system. There are cases when a more complex expréssibie rate of the re-
action is needed, see [25] for further details. For instaone may wish to describe an
enzymatic reaction using a Michaelis-Menten kinetic lajy [8ther than modeling ex-
plicitly the enzyme-substrate complex formation (as sanipteraction/communication
among molecules, cf. example below). A set of differkeiichemical arrowqcorre-
sponding to different biochemical laws) is shown in Tabléhis list is not exhaustive,
but rather a subset of the one presented in [25]. Adding éndirows is almost always
straightforward.

In Table 5, we also show how to translate biochemical reastinto sCCP pro-
cesses. The basic reactiBp+ ... + R, —k PL+...Pn is associated to a process that
first checks if all the reactants needed are present in theray@sking if all[R] are
greater than zero), then it modifies the variables assattateeactants and products,
and finally it calls itself recursively. Note that all the11l instructions have infinite
rate, hence they are instantaneous transitions. The ratmiong the speed of the re-
action is the one associated dek instruction. This rate is nothing but the function
rma(k, X1, ..., Xn) = k- Xz -+ X, representing mass action dynamics. Note thais a

shorthand for the forward and the backward reactions. TMHENO has a differ-
ent dynamics, namely Michaelis-Menten kinetiogiv (K,Vo,S) = g This reaction
approximates the conversion of a substrate into a prodwectalthe catalytic action of
enzymeE when the substrate is much more abundant than the enzymsi-&eady

state assumption, cf. [8]). The last arrow, instead, is@ased to Hill's kinetics. The
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reactior{k, [Ry,...,Rn,[P1,...,Pm]) : —
ask,,,(kRy,...R,) (AL1(R > 0)).
Ri+...+Ra—kPr+...+Pn (IR tello(R =R —1) |
I, tello (P} = Pj+1)).
reactior{k, [Rq,...,Rn],[P1,..-,Pm])

reaCtiomkﬁb [R17 IR Rﬂ]7 [PL ey Pm]) H

_k
Rito +Ri=i Pt 4Pm reactiork, [Py, ... Pml, [Ra, .., R])

mm.reactior{K,Vp, S P) ask,, ., (kvo,9 (5> 0).
S—Ry, P (tello(S=S—1) || tello(P=P+1)).
mmreactior{K,Vp, S, P)
hill _reactior{K,Vp, h, S P) ask,, (kvo.hs (S>0).
S—RvhP (tello(S=S—h) || tello(P = P+h)).

Hill _reactior{K,Vp, h,S,P)

where
rMA(k7X17~~~:Xn) :kxlxn, rMM(K7VO7S) = %1 rHi” (k7VO~,h~,S) = g\ll?'_ngh

Table 5. Translation into SCCP of different biochemical reactiopety, taken from the list of [25].
The reaction process models a mass-action-like reactidgakés in input the basic rate of the
reaction, the list of reactants, and the list of productesEhlist can be empty, corresponding to
degradation and external feeding. The process has a btpglierd that checks if all the reactants
are present in the system. The rate of the ask is exactly thablate of the reaction. If the process
overcomes the guard, it modifies the quantity of reactantspgaducts and then it calls itself
recursively. The reversible reaction is modeled as the @uatibn of binding and unbinding.
The third arrow corresponds to a reaction with Michaelisakéa kinetics. The corresponding
process works similarly to the reaction one, but the ratetfan is different. Here, in fact, the
rate function is the one expressing Michaelis-Menten kiseBSee Section 3.1 for further details.
The last arrow replaces Michaelis-Menten kinetics witi'sldne (see end of Section 3.1).

dynamics represented here is an improvement on the Michitenten law, where the
exponent encodes some information about the spatial behaviour afthetion.

Comparing the encoding of biochemical reaction into SCQ thie encoding into
other process algebras likecalculus [22], we note that the presence of functionabrate
gives much more flexibility in the modeling phase. In facts ttorm of rates allows to
describe dynamics that are different from Mass Action. Rigtaexamples are exactly
Michaelis-Menten’s and Hill's cases, represented by tisé tao arrows. This is not
possible wherever only constant rates are present, as fimtide of the operational
semantics constrain the dynamics to be Mass-Action likereMmmments about this
fact can be foundin [3].
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enzreactionky,k_1,ko,SE,ESP) :-
reactionks, [S E]v [Eq) ” reactionk_1, [ES, [E7 S) ” reactionky, [E37 [E7 PD

enlreactionk]_, k,l, k27 87 E7 ES P) H reacnonkproda []7 [S) ” reaCtionkdega [PL [])

Table 6. sSCCP program for an enzymatic reaction with mass actiontikmeThe first block
defines the predicate emeactionky, k_1,k, S E,ES P), while the second block is the definition
of the entire program. The predicate reaction has been ddfingble 5.

Example: Enzymatic Reaction As a first and simple example, we show the model of
an enzymatic reaction. We provide two different descripgicone using a mass action
kinetics, the other using a Michaelis-Menten one, see Table

In the first case, we have the following set of reactions:

S+E=¢ ES—i, P+E P—iyi —kpos S (3.1)

corresponding to a description of an enzymatic reaction téilees into account also
the enzyme-substrate complex formation. SpecificallyssabeS and enzymee can
bind and form the complek S This complex can either dissociate back iBt@andS,

or be converted into the produBtand again enzymE. Moreover, in this particular
system we added degradation®fnd external feeding dd, in order to have contin-
uous production oP. The sCCP model of this reaction can be found in Table 6. It
is simply composed by 5 reaction agents, one for each arraveo€quations (3.2).
The three reactions involving the enzyme are grouped tegathder the predicate
enz_reaction{k1,k-1,k2,S,E,ES,P}, that will be used in following subsections.

Simulations were performed with the simulator describe&éation 2.6, and the
trend of producP is plotted in Figure 1 (left). Parameters of the system whpsen in
order to have, at regime, almost all the enzyme moleculdsarcomplexed state, see
caption of Figure 1 (top) for details.

For this simple enzymatic reaction, the quasi-steady staseimption holds [8],
therefore replacing the substrate-enzyme complex foonatith a Michaelis-Menten
kinetics should leave the system behaviour unaltered. ifitistion is confirmed by
Figure 1 (bottom), showing the plot of the evolution overdiwf productP for the
following system of reactions:

SHE,VO P’ P *)kdeg; *)kprod S

whose sCCP can be derived easily from Table 5.

A slightly more complicated version of the above examplbeésdase in which some
level of cooperativity of the enzyme is to be modeled (Hitisse). The set of reactions
in this case is an extension of the above one and can be waigten

NxS+E= ES —ip NXPHE; Py koo S (3.2)

In this case the sCCP program is a straightforward extertditite previous one:
while the rest of the coding is entirely similar to the praxdaase.
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Enzymatic Reaction with Mass Action Dynamics
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Fig. 1. (top) Mass Action dynamics for an enzymatic reaction. The grapiws the time evo-
lution of the productP. Rates used in the simulation ake = 0.1, k_; = 0.001, ko = 0.5,
Kgeg = 0.01, Kprog = 5. Enzyme molecule& are never degraded (though they can be in the
complex status), and initial value is setBc= 10. Starting value fo8is 100, while forP is zero.
Notice that the rate of complexation Bfand Sinto ESand the dissociation rate &Sinto E
andP are much bigger than the dissociation rat&&into E andS. This implies that almost all
the molecules oE will be found in the complexed formbfttom) Michaelis-Menten dynamics
for an enzymatic reaction. The graph shows the time evalutfdhe producP. Rateskyegand
Kprog are the same as above, whilkst= 5.01 andVp = 5. These last values are derived from
mass action rates in the standard way, Ke= K—ﬁlkk—*l andVy = koEg, whereEy is the starting
quantity of enzymee, cf. [8] for a derivation of these expressions. Notice thattime spawn by
this second temporal series is longer than the first onejtddbp fact that simulations lasted the
same number of elementary steps (of the labeled transiggters of SCCP). This is because the
product formation in the Michaelis-Menten dynamics moded ione step reaction, while in the
other system it is a two step reaction (with a possible loaggabse of the dissociation of ES into
E and S).

Also in this case a comparison with the reaction obtaineti wie computed Hill
coefficient

E . .
SHK,VO,H P’ P ‘}kdeg’ *)kprod S
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n_enzreactionki,k_1,ky, SE,ESP) :-
reactionks, [nx S E],[ESy]) || reactionk_1,[ESy], [E,n x F) || reactionky, [ES], [E,n x P]).

enzreactionka,
enzreactionky,
enzreactionky,
enzreactionka,

,KKK,E1 KKKE1,KKKS) ||
JKKKS E2,KKKSE2,KKK) |

KK, KKKS KKKKKS KKP) ||
,KKP,KKP1,KKPKKP1,KK) ||
enzreactionks, ,KKP,KKKS KKPKKKS KKPP) ||
enzreactionks, Ky, k-, KKPP,KKP1, KKPPKKPL,KKP) ||
enzreactionka, kg, ki, K, KKPR,KKKPRKP) ||
enzreactionky, Ky, k-, KP,KP1,KPKPL,K) ||
enzreactionka, Ky, k-, KP, KKPPKPKKPRKPP) ||
enzreactionka, kg, ki, KPP KP1,KPPKPL KP)

)

)

)

)

EgF o o OF &
FTIFZTLZT L

Table 7.sCCP code for the MAP-Kinase signaling cascade. Thereaetion predicate has been
defined in Section 3.1. For this example, we set the comptexadtes ks), the dissociation rates
(kq) and the product formation reaction ratés)(equal for all the reactions involved. For the
actual values used in the simulation, refer to Figures 3 and 4

can be easily carried out. Notice that the Hill's exponentesponds exactly to the
degree of cooperativity of the enzyme.

Also a more refined approach to the case of Hill's kineticoissible, decomposing
the n-fold reaction in a series ofseparated by Mass Action equation simulations.

Example: MAP-Kinase CascadeA cell is not an isolated system, but it communicates
with the external environment using complex mechanismgpahticular, a cell is able
to react to external signals, i.e. to signaling proteinke(lnormones) present in the
proximity of the external membrane. Roughly speaking, thesnbrane is filled with
receptor proteins, that have a part exposed toward thenattenvironment capable of
binding with the signaling protein. This binding modifieg thtructure of the receptor
protein, that can now trigger a chain of reactions insidec#ik transmitting the signal
straight to the nucleus. In this signaling cascade a predamipart is performed by
a family of proteins, called Kinase, that have the capabdit phosphorylating other
proteins. Phosphorylation is a modification of the proteid by attaching a phosphorus
molecule to a particular amino acid of the protein. One gg#éng feature of these
cascades of reactions is that they are activated only if term®al stimulus is strong
enough. In addition, the activation of the protein at the ehthe chain of reactions
(usually an enzyme involved in other regulation activitiss/ery quick. This behaviour
of the final enzyme goes under the name of ultra-sensitidity. [

In Figure 2 a particular signaling cascade is shown, invig\WAP-Kinase proteins.
This cascade has been analyzed using differential eqatidi 7] and then modeled
and simulated in stochastic Pi-Calculus in [4]. We can seéttie external stimulus,
here generically represented by the enzynedriggers a chain of enzymatic reactions.
MAPKKK is converted into an active form, called MAPKKK?*, th& capable of phos-
phorylating the protein MAPKK in two different sites. Theptiosphorylated version
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(input)

' l 1o 1
KKK 5" KKK* KK T—KK-P =——" KK-PP. K T Kk-P ._-
(output)
E2 KK-P'ase K-P'ase

Fig. 2. Diagram of the MAP-Kinase cascade. The round-headed ambensatically represents
an enzymatic reaction, see Section 3.1 for further det@iiss diagram has been stolen from a
presentation of Luca Cardelli, held in Dobbiaco, Septenzio@s.

MAPKK-PP of MAPKK is the enzyme stimulating the phosphotida of another Ki-
nase, i.e. MAPK. Finally, the diphosphorylated version MKAPP of MAPK is the
output of the cascade.

The sCCP program describing MAP-Kinase cascade is showaliteT. The pro-
gram itself is very simple, and it uses the mass action d&tsamni of an enzymatic reac-
tion (cf. Table 5). It basically consists in a list of the réans involved, put in parallel.
The real problem in studying such a system is in the detettinimaf its 30 parameters,
corresponding to the basic rates of the reactions involveaddition, we need to fix a
set of initial values for the proteins that respects theiralgoncentrations in the cell.
Following [4], in Figure 3 we skip this problem and assign &ueaof 1.0 to all basic
rates, while putting 100 copies of MAPKKK, MAPKK and MAPK, ®pies of E2,
MAPKK-P’ase, and MAPK-P’ase and just 1 copy of the input EhisIsimple choice,
however, is enough to predict correctly all the expectegeries: the MAPK-PP time
evolution, in fact, follows a sharp trend, jumping from ze¢c0100 in a short time.
Remarkably, this property is not possessed by MAPKK-PPetimyme in the middle
of the cascade. Therefore, this switching behaviour etddbty MAPK-PP is intrin-
sically connected with the double chain of phosphorylajand cannot be obtained
by a simpler mechanism. Notice that the fact that the netwarnks as expected using
an arbitrary set of rates is a good argument in favor of itsistiess and resistance to
perturbations.

In Figure 4, instead, we choose a different set of paramedsrsuggested in [17]
(cf. its caption). We also let the input strength vary, inerth see if the activation effect
is sensitive to its concentration. As we can see, this is #ise:cfor a low value of the
input, no relevant quantity of MAPK-PP is present in the egst

3.2 Modeling Gene Regulatory Networks

In a cell, only a subset of genes are expressed at a certaén Tinerefore, an impor-
tant mechanism of the cell is the regulation of gene expsasdihis is obtained by
specific proteins, callefanscription factorsthat bind to the promoter region of genes
(the portion of DNA preceding the coding region) in order ttance or repress their
transcription activity. These transcription factors dremselves produced by genes,
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MAPK cascade with artifificial rates and concentrations.
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Fig. 3. Temporal trace for some proteins involved in the MAP-Kineascade. Traces were gen-
erated simulating the sCCP program of Table 7. In this sitiarathe rates,, kq, kr were all set
to one. We can notice the sharp increase in the concentrattittre output enzyme, MAPK-PP,
and its stability in the high expression level. The enzymeR¥X-PP, the activator of MAPK
phosphorylations, instead has a more unstable trend oéssion.

thus the overall machinery is a networks of genes produdiotgms that regulate other
genes. The resulting system is highly complex, containgvgal positive and negative
feedback loops, and usually very robust. This intrinsic plaxity is a strong argument
in favor of the use of a mathematical formalism to describé amalyze them. In the

literature, different modeling techniques are used, sgéof7a Survey. However, we

focus on a modeling formalism based on stochastialculus [1].

In [1], the authors propose to model gene networks using dl setaof “logical”
gates, calledyene gatesencoding the possible regulatory activities that can lre pe
formed on a gene. Specifically, there are three types of gates.gullary gates pos-
itive gatesand negative gatesNullary gates represent genes with transcriptional ac-
tivity, but with no regulation. Positive gates are genes sehwanscription rate can be
increased by a transcription factor. Finally, negativeegaepresent genes whose tran-
scription can be inhibited by the binding of a specific pnotdit the level of abstraction
of [1], the product of a gene gate is not a mMRNA molecule, breatly the coded pro-
tein. These product proteins are then involved in the reulactivity of the same or
of other genes and can also be degraded.

We propose now an encoding of gene gates within sCCP frankewothe spirit
of Table 4. Proteins are measurable entities, thus theyren@ded as stream variables;
gene gates, instead, are logical control entities and theyacoded as agents. The
degradation of proteins is modeled by the reaction agentabfel5. In Table 8 we
present the sSCCP agents associated to gene gates. A nudtargimply increases the
quantity of the protein it produces at a certain specified.rBositive gates, instead,
can produce their coded protein at the basic rate or theyr@n i@ an enhanced state
where production happens at an higher rate. Entrance iexicited state happens at a
rate proportional to the quantity of transcription factpresent in the system. Negative

20



gates behave similarly to positive ones, with the only défee that they can enter an
inhibited state instead of an enhanced one. After some theénhibited gate returns to
its normal status. A specific gene, generally, can be regailay more than transcription
factor. This can be obtained by composing in parallel thieiht gene gates.

—> b

null null_gatekp, X) : —
telly, (X = X+ 1).null_gatefkp, X)

a3 b

pos posgatekp, ke, ki, X,Y) tellg, (X = X + 1).posgatekp, ke,Kt, X, Y)

+ask i, y)(true).tell, (X = X +1).posgatgkp, ke, ki, X, Y)

i Singy
neg neggatekp, ki, kg, X,Y) tellg, (X = X +1).neggate(kp, ki, kg, X,Y)

+ask k v)(true).ask, (true).neg.gatekp, ki, kg, X, Y)

wherer(k,Y) =k-Y.

Table 8. Scheme of the translation of gene gates into SCCP progranesndll gate is modeled
as a process continuously producing new copies of the agsdcprotein, at a fixed ratg,.
The negative gate is modeled as a process that can eithargaradnew protein or enter in an
repressed state due to the binding of the repressor. Thdfngiran happen at a rate proportional
to the concentration of the repressor. After some time, ¢peassor unbinds and the gate return
in the normal state. The enhancing of activators in the pts, gastead, is modeled here in an
“hit and go” fashion. The enhancer can hit the gate and mgkeduce a protein at an higher rate
than usual. The hitting rate is proportional to the numbenofecules of the stimulating protein.

Example: Bistable Circuit The first example, taken from [1], is a gene network com-
posed by two negative gates repressing each other, seeFglihe sCCP model for
this simple network comprehends two negative gates: thepfieglucing proteirA and
repressed by proteiB, the second producing proteBand repressed by protei

In addition, there are the degradation reactions for pnet@iandB. This network is
bistable: only one of the two proteins is expressed. If thigainconcentrations oA
andB are zero, then the stochastic fluctuations happening atap@ting of the sim-
ulations decide which of the two fix points will be chosen. igufe 5 we show one
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possible outcome of the system, starting with zero molecoléd andB. In this case,
proteinA wins the competition. Notice that the high sensitivity asteystem makes it
unsuitable for biological system.

Example: Repressilator The repressilator [9] is a synthetic biochemical clock com-
posed of three genes expressing three different protesti®, Acl, Lacl, that have a
regulatory function in each other’s gene expression. Iti@dar, proteintetR inhibits
the expression of proteikcl, while proteinAcl represses the gene producing protein
Lacl and, finally, proteirLacl is a repressor for protetetR. The expected behavior is
an oscillation of the concentrations of the tree proteirth wiconstant frequency.

The model we present here is extracted from [1], and it is titomsd by three nega-

tive gene gates repressing each other in cycle (see Figufééyesult of a simulation
of the sCCP program is shown in Figure 6, where the oscilfdtehaviour is manifest.
In [1] it is shown that the oscillatory behaviour is stable.itvchanges in parameters.
Interestingly, some models of the repressilator usingediffitial equations do not show
this form of stability. More comments on the differencesaAmn continuous and dis-
crete models of repressilator can be found in [3].

3.3 Modeling the Circadian Clock

In this section we provide as a final example the model of aegystontaining regu-
latory mechanism both at the level of genes and at the levetai&ins. The system is
schematically shown in Figure 7. It is a simplified model af thachinery involved in
the circadian rhythm of living beings. In fact, this simpletwork is present in a wide
range of species, from bacteria to humans. The circadighmnig a typical mechanism
responding to environmental stimuli, in this case the phcichange between light and
dark during a day. Basically, it is a clock, expressing agiroperiodically with a stable
period. This periodic behaviour, to be of some use, mustddgesand resistant to both
external and internal noise. Here with internal noise werrés the stochastic fluctu-
ations observable in the concentrations of proteins. Theainaresented here is taken
from [26], a paper focused on the study of the resistance igenaf this system. In-
terestingly, they showed that the stochastic fluctuatioakenthe oscillatory behaviour
even more resistant. Our aim, instead, is that of showing &daystem like this can
be modeled in an extremely compact way, once we have at dispas libraries of
Sections 3.1 and 3.2.

The system is composed by two genes, one expressing antacfivatein A, the
other producing a repressor protein R. The generation obteijoris depicted here in
more detail than in Section 3.2, as the transcription ph&dgNA into mRNA and
the traduction phase of mRNA into the protein are both matiebelicitly. Protein
A is an enhancer for both genes, meaning that it regulatasvabg their expression.
Repressor R, instead, can capture protein A, forming thept®AR and making A
inactive. Proteins A and R are degraded at a specific ratetlisemaption of Figure 7
for more details about the numerical values), but R can beadiegl only if it is not in
the complexed form, while A can be degraded in any form. Noatfiat the regulation
activity of A is modeled by an explicit binding to the gene,iglhremains stimulated
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posgate@a, oy, Va, 0a, Ma, A) ||
posgate@ir, 0R, YR, Or, MR, A) ||
reaction@a, [Ma], [A]) ||
reactionbwa, Mal, []) ||
reactionpg, [Mg], [R]) ||
reactiondwmr, Mg}, []) ||
reactionyc, [A,R], [AR) ||
reaction®a, [AR, [R]) ||
reactionBa, [Al,[]) ||
reactionBr, [R],[])

Table 9.sCCP program for the circadian rhythm regulation systemigiife 7. The agents used
have been defined in the previous sections. The first foutioeaagents model the translation
of mRNA into the coded protein and its degradation. Then weeheomplex formation,
and the degradation d® and A. The posgate agent has been redefined as follows, in order
to take into account the binding/unbinding of the enhangmrsgateKp,Ke, Kp,Ky,P,E)

- posgateoff(Kp,Ke,Kp,Ky, PE);  posgateoff(Kp,Ke,Kp, Ky, RLE) - tellk (P =

P + 1).posgateoff(Kp, Ke, Kp, Ku, P,E) + ask .. g)(E > 0).posgateon(Kp, Ke, Ky, Ku, P, E);
posgateon(Kp,Ke,Kp, Ky, PLE) :- tellk,(P = P + 1).posgateon(Kp,Ke,Kp,Ky,P,E) +
ask, (true).posgateoff(Kp, Ke, Ky, Ky, P, E).

until A unbinds. This mechanism is slightly different frohetpositive gate described in
Section 3.2, but the code can be adapted in a straightfomvarther (we simply need
to define two states for the gene: bound and free, see cajjtiabte 9).

The code of the sCCP program modeling the system is showrbile ®a It makes
use of the basic agents defined previously, and it is very eoimgnd very easy and
quick to write. In Figure 8 (top) we show the evolution of miois A and R in a nu-
merical simulation performed with the interpreter of thedaage. As we can see, they
oscillate periodically and the length of the period is rekadty stable. Figure 8 (bot-
tom), instead, shows what happens if we replace the bindidrhodel of the gene
gate with the “hit and go” code of Section 3.2 (where the eskado not bind to the
gene, but rather puts it into a stimulated state that makegehe producenly the next
protein quicker). The result is dramatic, the periodic behaviolost and the system
behaves in a chaotic way.

4 Conclusion and future work

In this paper we presented an application of stochasticuroset constraint program-
ming for modeling of biological systems. We dealt with twoimelasses of biological
networks: biochemical reactions and gene regulation. Tha heme is the use of
constraints in order to store information about the biatagéentities into play; this lead
straightforwardly to the definition of a general purposedily of processes that can be
used in the modeling phase (see Sections 3.1 and 3.2). Howtleigeis only a part of
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the general picture, as there are more complex classesloflmal systems that need to
be modeled, like transport networks and membranes. Iniaddéll these systems are
strongly interconnected, and they must be modeled altegé&thorder to extract deep
information about living beings. We believe that the flekipiof constraints makes

sCCP a powerful general purpose language that can be simpdygmmed, extended
with libraries, and used to model all these different clagdesystems in a compact way.
For instance, different kinds of spatial information, liéeact position of molecules or
the compartment they are in, can be easily represented sisitadple constraints.

Biochemical reactions can be challenging to model, becargteins can form very
big complexes that are built incrementally. Therefore, wa ind in the cell a huge
number of sub-complexes. Usually, these networks are ithesicoy biologists with di-
agrams, like Kohn maps [18], that are very compact, becdgserepresent complexes
and sub-complexes implicitly. Modeling these networkslieity, instead, can be ex-
tremely difficult, due to the blow up of the number of diffet@molecules of the system.
A calculus having complexation as a primitive operatioe,kfcalculus, has been de-
veloped in [5]. It offers a compact way to represent formtilse diagrams. Constraints
can be used to encode this calculus elegantly, by repregargimplexes implicitly, i.e.
as lists of basic constituents.

Another interesting feature that SCCP offers are functicatas. As shown in Sec-
tion 3.1, they can be used to represent more complex kingtiardics, allowing a more
compact description of the networks. In this direction, wwecdto make deeper analysis
of the relation between these different kinetics in the egdf stochastic simulation, in
order to characterize the cases where these differeni¢snesin be used equivalently.
Notice that the use of complex rates can be seen as an opeoatibe Markov Chain,
replacing a subgraph with a smaller one, hiding part of itaglexity in the expression
of rates. This seems to be a sort of non-trivial lumpabiktiation [19], though further
studies are necessary.

In [3], the authors investigate the expressivity gainedhgyaddition of functional
rates to the language. They suggest that there is an incoéga®sver in terms of dy-
namical behaviours that can be reproduced, after encodisgCP a wide class of
differential equations. This problem, together with theeirse one of describing sCCP
programs by differential equations, is an interestingdiom of research, which may
lead to an integration of these different techniques, s@g]for further comments.

Finally, we plan to implement a more powerful and fast inteter for the language,
using also all available tricks to increase the speed ohststic simulations [12]. More-
over, we plan to tackle also the problem of distributing éffitly the stochastic simu-
lations of programs written in sCCP.

References

1. R.Blossey, L. Cardelli, and A. Phillips. A compositioapproach to the stochastic dynamics
of gene networksT. Comp. Sys. Biologpages 99-122, 2006.

2. L. Bortolussi. Stochastic concurrent constraint prograng. InProceedings of 4th Inter-
national Workshop on Quantitative Aspects of Programmiagduages, QAPL 200@006.

3. L. Bortolussi and A. Policriti. Relating stochastic pess algebras and differential equations
for biological modeling.Proceedings of PASTA 2008006.

24



(o]

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

L. Cardelli and A. Phillips. A correct abstract machine fioee stochastic pi-calculus. In
Proceeding of Bioconcur 2002004.

. V. Danos and C. Laneve. Formal molecular biolo@yeor. Comput. S¢i325(1):69-110,

2004.

. F.S. de Boer, A. Di Pierro, and C. Palamidessi. Nondetgsmi and infinite computations

in constraint programmingdrheoretical Computer Scienc&s1(1), 1995.

. H. De Jong. Modeling and simulation of genetic regulatygtems: A literature review.

Journal of Computational Biology(1):67—-103, 2002.

. L. Edelstein-KeshetMathematical Models in BiologySIAM, 2005.
. M.B. Elowitz and S. Leibler. A syntetic oscillatory netioof transcriptional regulators.

Nature 403:335-338, 2000.

Swedish Institute for Computer Science. Sicstus prbtoge page.

D. Gillespie. The chemical langevin equatiaiournal of Chemical Physic413(1):297—
306, 2000.

D. Gillespie and L. Petzoldystem Modelling in Cellular Biologghapter Numerical Sim-
ulation for Biochemical Kinetics. MIT Press, 2006.

D.T. Gillespie. A general method for numerically simirlg the stochastic time evolution of
coupled chemical reactiond. of Computational Physic22, 1976.

D.T. Gillespie. Exact stochastic simulation of couptd@mical reactions.J. of Physical
Chemistry 81(25), 1977.

L. Henkin, J.D. Monk, and A. TarskCylindric Algebras, Part.|North-Holland, Amsterdam,
1971.

J. Hillston. Fluid flow approximation of pepa models.HAroceedings of the Second Inter-
national Conference on the Quantitative Evaluation of &yst (QEST'05)2005.

C.F. Huang and J.T. Ferrell. Ultrasensitivity in theag#n-activated protein kinase cascade.
PNAS, Biochemistry151:10078-10083, 1996.

K. W. Kohn. Molecular interaction map of the mammaliah cgcle control and dna repair
systemsMolecular Biology of the Cell10:2703—-2734, August 1999.

J. R. NorrisMarkov Chains Cambridge University Press, 1997.

C. Priami. Stochasti-calculus.The Computer JournaB8(6):578-589, 1995.

C. Priami and P. Quaglia. Stochagticalculus.Briefings in Bioinformatics5(3):259-269,
2004.

C. Priami, A. Regeyv, E. Y. Shapiro, and W. Silverman. Aqailon of a stochastic name-
passing calculus to representation and simulation of mtdeprocessednf. Process. Lett.
80(1):25-31, 2001.

V. A. SaraswatConcurrent Constraint ProgrammingMIT press, 1993.

V. A. Saraswat, M. Rinard, and P. Panangaden. Semantioslétions of concurrent con-
straint programming. IfProceedings of PORL1991.

B. E. Shapiro, A. Levchenko, E. M. Meyerowitz, Wold B.ahd E. D. Mjolsness. Cellerator:
extending a computer algebra system to include biocheraitals for signal transduction
simulations.Bioinformatics 19(5):677-678, 2003.

J. M. G. Vilar, H. Yuan Kueh, N. Barkai, and S. Leibler. Maaisms of noise resistance in
genetic oscillatorsPNAS 99(9):5991, 2002.

25



MAPK cascade with low input
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Fig. 4. Comparison of the temporal evolution of the MAP-Kinase edsdfor different concentra-
tions of the enzyme MAPKKK. As argued in [17], this is equial to the variation of the input
signal E1. Rates are equal for all reactions, and have theniolg values:ka = 1, kg = 150,

k- = 150. This corresponds to a Michaelis-Menten rate of 300 liatha enzymatic reactions.
The initial quantity of MAPKK and MAPK is set to 1200, the ii@t quantity of phosphatase
MAPK-P’ase is set to 120, the initial quantity of other phloafase and the enzyme E2 is set to
5, and the initial quantity of E1 is 1tqp) The initial quantity of MAPKKK is 3. We can see
that there is no sensible production of MAPK-PRiddle) The initial quantity of MAPKKK is
30. Enzyme MAPK-PP is produced but its trend is not sharpxpeaed. kottom) The initial
quantity of MAPKKK is 300. The system behaves as expectedcaiesee that the increase in the
concentration of MAPK-PP is very sharp, while MAPKK-PP geovery slowly in comparison.
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mutual repression in sCCP
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Fig. 5. Bistable circuit. fight) Diagram of gene gates involvedeft) Time evolution of the cir-
cuit. The negative gates have the same rates, set as folb@asi production rate is 0.k{ in
Table 8), degradation rate of proteins is 0.0001, inhihitiate ;) is 1 and inhibition delay rate
(kq) is 0.0001. Both proteins have an initial value of zero. Tdrigph is one of the two possible
outcomes of this bistable network. In the other the roleefttvo proteins are inverted.
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Fig. 6. Repressilator.right) Diagram of gene gates involvedeft) Time evolution of the circuit.
The negative gates have the same rates, set as followsppadiaction rate is 0.1kf, in Table 8),
degradation rate of proteins is 0.0001, inhibition rd¢¢ i 1 and inhibition delay ratek§) is
0.0001. All proteins have an initial value of zero. The timelation of the repressilator is stable:
all simulation traces show this oscillatory behaviour. ldwer, the oscillations among different
traces usually are out of phase, and the frequency of thibadecy pattern varies within the same
trace. Remarkably, the average trend of the three protbmsssno oscillation at all, see [3] for
further details.
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Fig. 7. Biochemical network for the circadian rhythm regulatonsteyn. The figure is taken
from [26], like numerical values of rates. Rates are set bafs: ap = 50, 0(,’,\ =500,ar=0.01,
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Trend of Activator (A) and Repressor (R) in the circadian rhythm model
T T

300

Trend of Activator and Repressor
with genes modeled without permanent binding
T

Fig. 8. Time evolution for circadian rhythm model in SCCP. (top) Tigeire refers to the system

described in Figure 7, with parameters described in theiaapf the figure. We can see the
regularity of the period of the oscillations. (bottom) Thaygh shows the time evolution for the
model where the process governing the gene is thegpts described in Table 8. The periodic
behaviour, with this simple modification, is irremediabigt.
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Abstract. Chemera is a molecular modelling software package that includes the
algorithms BiGGER (Bimolecular complex Generation with Global Evaluation
and Ranking), for modelling protein interactions and protein complex structures
[1,2,3], and PSICO (Processing Structural Information with Constraint
programming and Optimisation), to integrate experimental and theoretical data
to solve protein structures [4, 5]. This paper focuses on the constraint
programming aspects of Chemera, namely constrained docking, which allows
the user to restrict the search for protein-protein complex models in a manner
consistent with the ambiguity of some experimental data, and the processing of
structural constraints to generate approximate models of protein structures from
heterogeneous data. This allows the user to take advantage of experimental data
obtained by a wide range of techniques, from spectroscopy to site-directed
mutagenesis, and to integrate these data with theoretical considerations such as
homology models, secondary structure prediction, or reaction mechanisms. For
modelling protein complexes, this is done by specifying sets of potential
contacts between the two proteins and how many of those contacts must be
enforced, without having to specify exactly which contacts to enforce, which
models the possibility of some of experimental results being due to effects other
than proximity to the docking partner. For modelling the structure of a single
protein, the information can be encoded as distances between atoms, as fixed
relative positions for groups of atoms, or of constraints on angles of rotation
around atomic bonds connecting rigid groups.

1. Introduction

Protein-protein interactions play a central role in biochemical reactions, and
understanding these interactions is an important step in several fields of biochemical
research. Modelling software provides useful tools to help researchers elucidate
protein interaction mechanisms, and two decades since the pioneering work of Katzir
and others [6] have seen significant developments in algorithms to generate models
and scoring functions to select the most likely candidates. Examples from the CAPRI
(Critical Assessment of Protein Interactions) experiment [7] illustrate the diversity of
protein interaction modelling (protein docking) packages currently available [8, 9, 10,
11].

A common trend in these approaches is to try to model interactions using only
knowledge derived from the structure and physicochemical properties of the proteins
involved. Some algorithms have been developed [1, 12] or adapted [13] to use data on
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the interaction mechanisms, but this approach is still the exception rather than the
norm. BiGGER is one of these exceptions, and the Chemera modelling package has
been developed from the start to help the researcher bring into the modelling process
as much data as available. Previous results show that BIGGER can be a powerful
modelling tool when used in this manner [2, 14, 15, 16, 17, 18].

Important as it is to have a good model of the structure formed by the interaction of
different proteins (a protein complex), it is even more important to know the structure
of each partner, a prerequisite for modelling the complex. In this field the common
approaches have been either theoretical, to try to predict the structure from the
physical properties of the amino acid sequence in the protein, or homologies with
other known structures, or experimental, specializing on the processing of data from
specific techniques like Nuclear Magnetic Resonance (NMR) spectroscopy. PSICO
aims at bringing the two approaches together by providing a flexible framework for
processing geometrical constraints and thus integrate information from all relevant
sources in the modelling of a protein structure. NMR data can be modelled as distance
constraints [5, 4] or as torsion-angle constraints [3], homology or secondary structure
prediction data can be modelled as rigid-group constraints [3], energy functions can
be included in the local-search optimization stage, and amino acid properties relevant
for protein folding, such as hydrophobicity, can be part of the enumeration heuristics
during constraint processing.

2. BIGGER: the docking algorithm.

At the core of our protein docking algorithm is the representation of the protein
shapes and the measure of surface contact. The former is a straightforward
representation using a regular cubic lattice of cells, similar to that commonly used in
the Fast Fourier Transform (FFT) methods derived from [6]. In BiGGER the cells do
not correspond to numerical values, but each cell can be either an empty cell, a
surface cell, or a core cell. The surface cells define the surface of the structure, and
the overlap of surface cells measures the surface of contact. Figure 1 illustrates these
concepts, showing on the first two panels a cutaway diagram of the grid representing
a protein structure, and on the third panel a cutaway diagram of two grids in contact,
showing the contact region corresponding to a set of overlapping surface cells.

This representation has several advantages over the FFT approach, requiring about
a thousand times less memory (approximately 15Mb in BiGGER vs 8Gb for FFT in
large proteins) and being up to ten times faster than FFT [19]. BiGGER also models
side-chain flexibility implicitly by adjusting the core grid representation [1] and
allows for hard or soft docking simulations depending on the nature of the interaction
to model. Furthermore, this representation and the search algorithm can take
advantage of information about the interaction to simultaneously improve the results
and speed up the calculations.
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Fig. 1. The image on the left shows a protein structure overlaid on a cutaway of the respective
grid, with spheres representing the atoms of the protein. The centre figure shows only the grid
generated for this protein, cut to show the surface in light blue and the core region in grey. The
rightmost image shows two grids (red and blue) in contact.

2.1 Restricting the search to surface overlapping regions.

A significant proportion of all possible configurations for the two grids results in no
surface overlap. Much can be gained by restricting the search to those configurations
where surface cells of one grid overlap surface cells of the other. This is achieved by
encoding the grids in a convenient way: instead of individual cells, grids are
composed of lists of intervals specifying the segments of similar cells along the X
coordinate. These lists are arranged in a two-dimensional array on the Y-Z plane.

This encoding not only reduces the memory requirements for storing the grids, but
also leads naturally to searching along the X axis by comparing segments instead of
by running through all the possible displacements along this coordinate. Given two
surface segments, one from each structure and aligned in the same Y and Z
coordinates, we can calculate the displacements where overlap will occur simply from
the X coordinates of the extremities of the segments.

Representing by a variable the displacement of one structure relative to the other
along the X direction, this approach of comparing segments efficiently enforces the
constraint requiring surface overlaps by reducing the domain of this variable to only
those values where the constraint is verified, as we explain in the next section.

2.2 Eliminating regions of core overlap

Another important constraint in this problem is that the core regions of the grids
cannot overlap, for that indicates the structures are occupying the same space instead
of being in contact. By identifying the configurations where such overlaps occur, it is
possible to eliminate from consideration those surface segments on each structure that
cannot overlap surface segments on the other structure without violating the core
overlap constraint. Some surface segments can thus be discarded from each search
along the X axis. Figure 2 illustrates this procedure.

One structure, labelled A, is shown in the centre of the image. The other structure,
labelled B, will be moved along the horizontal direction to scan all possible
configurations but, from the overlap of core segments, a set of positions along the
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horizontal direction can be eliminated. Structure B is shown in position 1 to the right
of A and in position 39 to the left of A, but, in this case, it cannot occupy positions in
the centre.

Discarded
Segments

Fig. 2. Grid B is translated along the horizontal direction relative to grid A. The vertical arrows
marked 1 indicate the position of B on the lower horizontal bar, which shows the allowed and
forbidden values for the position of B. The arrows marked 2 and 3 show the allowed
displacement of B. The group of horizontal arrows indicates segments to be discarded.

The domain of variable x, representing the displacement of one structure relative to
the other along the X direction, can be pruned from the values 5 to 30. This is a
contiguous interval in this example, but the domain of x can be an arbitrary set of
intervals in the general case. This domain reduction due to the core overlap constraint
propagates to the surface overlap, since some surface segments of A and B will not
overlap in valid configurations. Some of these are shown in Figure 3 by the group of
arrows to the left of structure A (Discarded Segments, Figure 3). For the last double
arrow, for example, the surface cells of structures A and B would only overlap for
x=7, a value pruned from the domain of x. In contrast, in the line below such overlap
occurs for x = 3, a value kept in the domain. The top three arrows point to surface
segments on structure A which can be ignored in this case. The top three surface
segments on structure B cannot be ignored because they may overlap with the surface
segments of A on the other side, once B is moved to the right of A, but the following
four arrows indicate that both the segments to the left of A and those to the right of B
can be ignored. Thus the core overlap constraint allows us to reduce the number of
surface segments to consider when counting surface overlaps.

This approach can be generalized for the translational search. Three variables, z, y,
and x, and their respective domains, D,, Dy, and Dy, represent the translation of B
with respect to A. The domains are initialised to include all translations that may
result in contacts by a bounds consistency check: if MaxA/MaxB and MinA/MinB are
the maximum/minimum coordinate values along the Z axis for the surface grid cells
of the two structures, D, is initialised to [(MinA-MaxB; MaxB-MinA)]. The same
procedure applies to Dy and Dy (lines 3 and 5), but only considering the parts of the
structure that can overlap (D, depends on the value of z, D, depends on the values of
z and y). We shall see in the next sections that these domains can be further pruned by
other constraints on the minimum overlap score (section 2.3) and distances between
points in the two structures (Section 2.4), so D,, Dy, and Dy are not necessarily single
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intervals but sets of intervals. This pruning (Sections 2.3 and 2.4) occurs at the
initialisation of the domains.

For each z and y translation value, Dy is initialized (line 5), and a list generated for
the matching sets of core grid segments for the two structures. Grid segment sets are
matching when they are aligned by the z, y translation of the B structure, so each
entry on this list corresponds to a location in the Z,Y plane and contains the core
segments of both structures that are aligned at that location by translating the B
structure by the z, y values. Figure 2 shows two such sets, marked L; and Ls, which
would be respectively the first and fifth entries of the list of matching core grid
segments. L; contains one core grid segment from A and one from B, Ls contains two
core grid segments from A and one from B.

The BiGGER algorithm then (line 7) imposes bounds consistency on these sets of
core grids segments, which requires O(k®) operations, where k is the number of
intervals defined by the core grid segments for each line and for each structure. This
reduces the possible translation values, Dy, and affects the generation the surface
segments lists to take into account Dy, including only those segments that could
overlap given this domain (again, by imposing bounds consistency on the intervals).
Finally, the overlap of surface cells is determined for each allowed translation value
in Dy. This requires testing the bounds of the matching surface segments in a way
similar to imposing bounds consistency, which is of O(k?) for each line, and then
counting the contacts along X, which is of O(N).

The algorithm performs O(N?) steps by looping through the D, and Dy (lines 2 and
4), and in each of these steps it loops through the Z,Y plane twice to find the matching
core and surface segments (lines 6 and 8) and compare the segment bounds. So each
step in the z, y loop is O(N?k?), where k is the number of segments per line. Except
for fractal structures, k is a small constant. For convex shapes, for example, k is
always two or less, and even for complex shapes like proteins k is seldom larger than
two. Thus the time complexity of the search algorithm when imposing bounds
constraints on the overlap of surface and core grid cells is O(N*), very close to the
O(N3Log(N)) of the FFT method. Furthermore, the comparisons done in the BIGGER
algorithm are much faster and this constant factor makes BiGGER more efficient for
values of N up to several hundred [5]. Finally, the space complexity of BiGGER is
O(N?), significantly better and with a lower constant factor than the FFT space
complexity of O(N°).

2.3 Restricting the lower bounds on surface contact

Branch and Bound is a common technique that Constraint Programming often uses
in optimisation problems, to restrict the domains of the variables to where it is still
possible to obtain a better value for the function to optimise. In this case, we wish to
optimise the overlap of surface cells, and restrict the search to those regions where
this overlap can be higher than that of the lowest ranking model to be kept.

This constraint is applied to the Z and Y coordinate search loops, by counting the
total surface cells for each grid as a function of the Z coordinate (that is, the sum over
each X, Y plane) and as a function of each Y, Z pair (that is, the sum of each line in
the X axis). The determination of the Z translation domain considers the list of total
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surface cells for each X,Y plane along the Z axis. For each Z translation value these
two lists will align in a different way, as the one structure is displaced in the Z
direction relative to the other. The minimum of each pair of aligned values gives the
maximum possible surface overlap for that X,Y plane at this Z translation, and the
sum of these minima gives the maximum possible surface overlap for this Z
translation. Since there are O(N) possible Z translations to test and, for each, O(N)
values to compare and add, this step requires O(N?) operations.

The same applies to restricting the Y translation domain, but taking into account
the current value of variable z. This is also an O(N?) operation identical to the pruning
of the Z domain, but must be repeated for each value of the z translation variable,
adding a total time complexity of O(N®) to the algorithm. Since the BiGGER
algorithm has a time complexity of O(N*), these operations do not result in a
significant efficiency loss.

By setting a minimum value for the surface contact count, or by setting a fixed
number of best models to retain, this constraint allows the algorithm to prune the
search space so as to consider only regions where it is possible to find matches good
enough to include in the set of models to retain. In general, this pruning results in a
modest efficiency gain of up to 30% in medium-sized grids, but with decreasing
returns as higher grid sizes lead to thinner surface regions and shift the balance
between the total surface counts and the size of the grid [5]. However, this can benefit
some applications like soft docking [1], where the surface and core grids are
manipulated to model flexibility in the structures to dock, or if the minimum
acceptable surface contact is high.

2.4 Constraining the Search Space

In some cases there is information about distances between points in the structures,
information that can be used to restrict the search region. If this information is a
conjunction of distance limits, then it is trivial to restrict the search to the volumes
allowed by all the distances. However, real applications may be more complex.

For modelling protein interactions, it is often the case that one can obtain data on
important residues or atoms from such techniques as site directed mutagenesis or
NMR titrations, or even from theoretical considerations, but it is rare to be absolutely
certain of these data. The most common situation is to have a set of likely distance
constraints of which not all necessarily hold. Typically, we would like to impose a
constraint of the form:

At least K atoms of set A must be within R of at least one atom of set B Q)

where set A is on one protein and set B on the other, and R a distance value. This
constraint results in combinatorial problem with a large number of disjunctions, since
the distances need only hold for at least one of any combination of K elements of A.

Since the real-space (geometrical) search of BIGGER can be seen as three nested
cycles spanning the Z, Y, and X coordinates, from the outer to the inner cycle, we can
decompose the enforcement of constraint (1) by projecting it in each of the three
directions:
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At least K atoms of set A must be within R,, of at least one atom of set B )

where R, replaces the Euclidean distance R and represents the modulus of coordinate
differences on one axis Z, Y or X. R, has the same value of R; the different notation is
to remind us that this is not a Euclidean distance value, but its projection on one
coordinate axis. This makes the constraint slightly less stringent, by considering the
distance to be a cube of side 2R instead of a sphere of diameter 2R, but this can be
easily corrected by testing each candidate configuration to see if it also respects
Euclidean distance.

The propagation algorithm is the same for each axis and consists of two steps. The
first step is to determine the neighbourhood of radius R of atoms in group B,
projected on the coordinate axis being considered. The next step is to generate a list of
segments representing the displacements for which at least K atoms of group A are
inside the segments defining the neighbourhood R of the atoms in group B.

B Group B Neighbourhood R,, of B
1
B, CITTTTTTTITTTITTITITTITIT]
TR, B .
© Atom Displacements
-10 -5 [ 0 5 10
— A LT T T P
CITTTTTTITI T T T T T I T IT] AZIIIIIIIIIIIIII.IIIIIIIIII
1 5 10 15 20 L]
A3IIIIIIIIIIIIIIIIIIIIIIII
A Final Displacement Domain
Az ° 0
>2 EEETTTT T T T T T T T 17171
GroupA A 22223333233323322222111

Fig. 3. Generating the displacement domain in one dimension. The left panel shows the
generation of the neighbourhood of radius R of group B. The panel on the right shows the
allowed displacements for each atom, and the final displacement domain for a K value of 2.

The calculation of the neighbourhood of B in some coordinate (either X, Y or Z) is
illustrated in Figure 3. The positions of atoms B;, B, and B; in this coordinate are
respectively 5, 9 and 17. Their neighbourhoods within a distance 3 are (2;8), (6;12)
and (14;20). Merging the two first intervals, the neighbourhood 3 of the atom set B is
thus (2;12) and (14;20).

To calculate the displacement values that place an atom of group A inside the
neighbourhood of group B we only have to shift the segments defining the
neighbourhood of B by the coordinate value of the atom. For example, atom A;, with
coordinate 9, lies inside the neighbourhood 3 of B if its displacement lies in the range
(-7;3) or (5;11). Similarly, atoms A, and As, with coordinate values 13 and 18,
respectively may be displaced by (-11;-1) or (1;7) and (-16;-6) or (-4;2).

Once we have the displacement segments for all atoms, we must generate the
segments describing the region at least K atoms are in the neighbourhood of B, which
is a simple counting procedure (hence, the constraint (2) need not be limited to
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specifying a lower bound for the distances to respect. The value of K can also be an
upper bound, or a specific value, or even any number of values).

In this case, there are at least two atoms of set A within neighbourhood 3 of atom set
B if the displacement lies in ranges (-11;3) and (5;7). In ranges (-7;-6) and (-4;-1) all 3
A atoms are in the neighbourhood 3 of B.

The propagation of constraints of the type (2) produces translation domains that are
used to initialise domains D,, Dy and D, in the translation search (see section 2.2).
Thus the propagation of constraint (2) prunes the domain of the allowed
displacements in all 3 axes, in a nested sequence. First the domain along the Z axis is
determined and pruned adequately; then, for each remaining value of the
displacement along Z, the domain of the displacements along Y is pruned; finally, for
each remaining (Z, Y) pair, the constraint is enforced on the displacement along X.

The time complexity of enforcing constraint (2) in one axis is O(a+b+N), where a
is the number of atoms in group A and b the number of atoms in group B, and N is the
grid size. Since this must be done for the translation dimensions the overall
complexity contribution is O(N®), which does not change the O(N*) complexity of the
geometric search algorithm, and pruning the search space speeds up the search
considerably [5].

3. PSICO: modelling protein structure.

There are several sources of information that can help model the structure of a
protein. First of all, the amino acid sequences of the protein chains determines most
chemical bonds, restricting interatomic distances in many atom pairs, angles formed
by atom triplets, of even larger groups of atoms that are effectively rigidily bound
together by the chemical bonds. NMR data provides distance constraints by showing
that two atoms must be close enough for the Nuclear Overhauser Effect to be felt,
limits the angles of rotation around some chemical bonds, or can even suggest limits
for relative special orientations of groups of atoms with Residual Dipolar Coupling
data. Furthermore, homology with known structures or modelling secondary structure
can provide detailed information of the structure of parts of the protein being
modelled. We can divide these into three types of constraints: distance constraints
between two atoms, group constraints that fix the relative positions of a group of
atoms in a rigid configuration, and torsion angle constraints that restrict the relative
orientation of two groups joined together by a chemical bond.

3.1 Distance Constraints and Enumeration

The chemical information that is known from the protein sequence provides bond
length and bond angle constraints. Bond length constraints are also distance
constraints, and the bond angles can be modelled by sets of distance constraints. In
fact, the structure and flexibility of an amino acid can be modelled by a conjunction
of pairwise distance constraints between all the atoms. To model this information we
consider two types of constraints: In constraints (eq. 3) and Out constraints (eq. 4).
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In constraint \/(Xl —%,)° + (Y, = ¥,)* +(z, - 2,)* <Kk @)

Out constraint \/(Xl —X%,)° + (Y, = ¥,)° +(z,-2,)* >k @

These two constraint types are used to model all the chemical structural
information, whether it is known beforehand or from the NMR spectroscopy
experiments.

In

Constraint 7 <:
Out

Constraimt
/e Euclidean
fl> / Distance

Fig. 4. This figure shows the difference between an Euclidean distance constraint and the
simplified constraints used in our model. Note that an In constraint region contains the
Euclidean distance region, whereas an Out constraint must be contained within the Euclidean
distance region.

In practice, these Euclidean distance constraints are expensive to propagate, so we
use an approximation (egs. 5 and 5).

In constraint  max(| X, =X, |,| y; = ¥, |z, =z, |) £k (®)
Out constraint | X, — X, > kv |y, — Y, P okv |z, -z, |> ok az}/[ (6)
3

The parameter a is needed to insure that the simplified Out constraint does not
exclude regions allowed by the Euclidean distance constraint. This simplification is
illustrated in Figure 2.

The variables we wish to determine are the positions of the geometric centres of
the atoms, that is, the (x, y, z) coordinates in a single variable with a three
dimensional domain, and this domain is represented as a set of cuboid regions. One
cuboid defines the Good region, which is the volume that contains the possible
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positions for the atom. A set of non-overlapping cuboids contained in the Good region
defines the NoGoods region, which contains the positions from which the atom must
be excluded (see Figure 5).

NoGoods
_ Region

| 6X

Good
Region

v

Fig. 5. The domain for the position of an atom is composed of two regions. The Good region is
a cuboid that defines the positions for the atom that comply with the set of In constraints. The
NoGoods region is a set of non-overlapping cuboids that define the volumes within the Good
region from which the atom is excluded by the Out constraints.

We distinguished between the two types of distance constraints (In and Out)

because of the way in which they are propagated (also see Figure 5).

The In constraints are propagated simply by intersection operations. The Good
region of atom A will be the intersection of the current Good region of A with the
neighbourhood of the Good region of atom B. This neighbourhood is defined as
the Good region of B augmented by the distance value of the In constraint
between A and B. After this operation the NoGoods region of A is intersected
with the Good region to guarantee that it is always contained in the latter. The
intersection of two cuboid blocks is very simple to calculate, requiring only Max
and Min operations on the extremity coordinates, so propagation of In constraints
is very efficient.

For an Out constraint the propagation involves adding the exclusion region
defined by the constraint to the NoGoods region of the affected atom. The most
complex operation in this process is insuring that the NoGoods region consists of
non-overlapping cuboids. This reduces propagation efficiency, but simplifies the
task of determining the cases of failure when the NoGoods region becomes
identical to the Good region.
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Fig. 6. This figure shows the propagation of both types of constraints. For In constraint
propagation, the domain of atom A is reduced by intersecting the Good region of A with the
neighbourhood of B. For Out constraint propagation a NoGood cuboid region is added. This
NoGood region is obtained by intersecting the Good region of A with the exclusion region of B.
Note that part of the new NoGood block in A (thick line rectangle) overlaps the original
NoGoods region, so only the non-overlapping part is added (darker grey shaded area).

Arc-consistency is guaranteed by propagating the constraints on each atom that
suffered a domain restriction until no domain changes. After complete propagation,
one atom is selected for enumeration, and the propagation step is repeated.

Enumeration intercalates the arc-consistency enforcement following a first fail
approach on a round robin system. First, the atom with the smallest domain that was
not selected in the current enumeration round is selected for enumeration. Exception
is made if the coordinate domain is smaller than 2.0A for all three coordinates, in
which case the atom is considered sufficiently determined and no domain reduction is
necessary. The domain of this atom is then split into two similarly sized domains by
‘cutting’ across the longest coordinate axis (x, y or z) of the domain. The domain of
the atom will be one of these two ‘halves’.

Enumeration heuristics now come into play. One simple heuristic that was shown
to be successful [3,4] was to chose for the new domain that half less occupied by the
domains of all other atoms, but additional considerations such as the chemical nature
of the amino acid or the prediction of local structures can play a role at this stage to
inform the choice of which regions of the domain to eliminate.

Since the domain for the enumerated atom is reduced, constraints are then
propagated (as discussed above), and then another atom is selected for enumeration
(the atom with the smallest domain not selected yet). This process of selection and
domain reduction is repeated until all atoms were selected once, after which a new
round of enumeration starts. In case of failure it is possible to backtrack and try
different domain reductions, but backtracking is limited both for practical reasons and
because it is often the case that the set of constraints is inconsistent due to
experimental noise, and in these cases the user needs some structure, even if only
partially correct, to help correct the inconsistencies by reassigning the constraints.
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3.2 Rigid Group Constraints

The last section outlined the basic framework for PSICO: the domain representations,
arc-consistency intercalated with a round-robin enumeration, and limited
backtracking. This provides an approximate solution to the problem that can then be
refined by local search optimisation. The propagation of rigid group constraints
extends this framework to include the information on the configuration of groups of
atoms. These can be a prosthetic group or a domain of known structure for which we
can know the relative positions of all atoms but which fits within the structure of the
protein in an unknown position and orientation. This section explains how these
constraints can be propagated in order to reduce the domains of the atoms involved.

Given a fixed orientation, it is trivial to reduce the domains of the atoms in a rigid
group. This requires simply that we determine the limits for the translations of the
group that do not place any atom outside its domain. Denoting by w. one of the
coordinates of the center of the group (X, y or z), by w; the same coordinate for atom j,
and by Wpax and wiin the upper and lower limits, respectively, for that coordinate of a
domain (of atom j or of the center c¢), such limits are related by the following
equations:

W . +(w, — w, ) (7a)

Wminc = Ma'x?:l (Wminj + (Wc _Wj )) (7b)

Note that the absolute values of w, and w; are irrelevant; only the coordinate
difference wc-wj; is important, and is independent of translation.

Equations 7 assume a fixed orientation of the group, but we cannot make that
assumption, since the group is free to rotate. Without loss of generality, we shall
consider the case of the limits in the x and y coordinates as a function of a rotation
around the z axis, centered on the centre point of the group. Hence, the term (w;-w)
in equation 1 may actually stand for the x-or y-components of the vector from atom j
to the centre of the group, or, in other words, the position of the centre relative to
atom j.

This vector is a function of the orientation of the group. Denoting by w the rotation
around the z axis, by A the amplitude of the projection of the vector onto the xy plane
(orthogonal to the rotation axis) and by a; the angle of the vector y.-y; at w=0, then
the terms w, —w; for the x and y coordinates are given by

= Min{_, (w,

ax j

_ 8
X, —X; = AjCos(y +a) = A sm(l//+a,-+%) (a)

Y. —Y; = Asin(y +a) (8b)

Figure 7 shows the case for the y-coordinate (the x-coordinate is shifted by 90°).

First, the orientation of the group around the x axis is fixed in an angle we
designate . Next, the rotation around the y axis is fixed at angle ¢. For each (y;0)
pair, equations 2 can be used to describe the x and y coordinates for each atom as a
function of the angle v, corresponding to the rotation around the z axis. An equation
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similar to equation 2 can also be used to describe the z coordinates of atom j (related
to the centre of the group) as a function of the second rotation, ¢, around the y axis.

y o] YeYi
A Asin(y + a)

Fig. 7. The position of an atom relative to the centre of the group as a function of the rotation
angle y can be expressed as a sine function with amplitude A and phase o’. The position of the
center relative to the atom is a similar curve, but with the phase shifted by 180° (a), giving the
sine wave curve shown on the right.

With no loss of generality, we may replace y. and y; in equations 8 with L. and L;
to denote, respectively, the domain limits of the centre and of atom j in an arbitrary X,
y, or z coordinate and by 6 an arbitrary rotation angle (¢ or ), and compute the
contribution of each atom to the limits on the translation of the centre of the group by
means of Equation 9 below:

L, = A;sin(@+a;)+L, ©)

To determine the limits for the placement of the group as a function of the rotation
around one axis, considering the rotation around the other axes fixed, we need but
intersect the contributions of all atoms to these limits. Now we need to extend this to
rotations around all three axes.

Dividing the rotations into finite intervals, each orientation corresponds to an
interval of angles, instead of just a single angle, and each coordinate to an interval of
values. This way each rotation can be divided into a manageable number of
orientations. However, whereas rotating coordinates around an angular value gives a
single values for the coordinates, rotating around an interval of angles results in
intervals of coordinates. However, as long as we guarantee that the intervals for the
angles partition the rotation with a step size that is a sub-multiple of 90°, the sine
functions will be monotonous in each interval and the intervals of the corresponding
coordinates are trivial to calculate (see reference 3 for more details).

Because of this approach, the previous equations apply not to single coordinate
values, but to intervals. However, this extension raises no problems, neither
conceptually nor in the implementation.

42



3.3 Torsion Angle Constraints

In some cases, it is possible for a molecule to change configuration by groups of
atoms rotating around a chemical bond. It is this process that allows proteins to fold
into their shapes, and the angle of such a rotation is called the torsion angle. Some
experimental techniques may provide constraints on torsion angles, and this is useful
information when modelling a protein structure.

The propagation of these constraints is an extension to the rigid group constraint
propagation discussed in the previous section. We can consider that two rigid groups
connected by a bond allowing rotation is a single rigid group if the torsion angle is
fixed. If the torsion angle is an interval, we can account for the relative coordinates of
all atoms in the two groups by using the corresponding intervals, in a way similar to
that discussed in the previous section (also see reference 3).

The extension is thus to add another rotation for every torsion angle to account for,
and this procedure allows us to extend the rigid group constraint propagation to any
number of rigid groups connected by torsion angles.

While the addition of one torsion angle multiplies the computational cost of
propagation by the number of angle intervals to consider, the increase in the size of
the rigid group by considering the two connected groups as a single group in each
angular step generally decreases the computation cost by restricting the orientations in
which the atoms can be placed without violating the limits of their domains, because
with larger groups it is harder to respect all domains in any given orientation than it is
to do so with smaller groups.

There is a trade off between total group size and number of torsion angles to use,
and the right trade off is also a function of the constraints on the torsion angles and
the size of the atom domains at the time of propagation, so currently we are
researching the best ways to optimize torsion angle constraint propagation taking into
account all these factors.

4. Chemera: current applications and future work

Chemera is the interface to all BIGGER and PSICO calculations and, in addition, a set
of tools that can be used to visualise the properties of the interaction partners and the
models generated for protein complexes and single protein structures. These tools are
all integrated in a single visual environment, and include:

Electrostatics. Chemera calculates and displays electrostatic fields using the
Poisson-Boltzmann equations, which take into account the ionic strength of the
medium (Figure 8-A).

Clustering and Scoring. Chemera can group similar models together according to
user-defined thresholds of similarity; calculate new scores based on contacts, average,
or minimum distances between groups of atoms; export and import scores and lists of
models to and from spreadsheet applications, display groups of models selected
according to different scores and display groups of models using simplified
representations that show the distribution of many models simultaneously. (Figure 8-
B)
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Fig. 8. Visualisation possibilities in Chemera. See text for details.

Web Services. Chemera can also interface with several web services, to assign
secondary structure elements, identify domains, display sequence conservation along
the protein structure (Figure 8-C). Integration of Web services in Chemera is being
developed as part of the European Network of Excellence project REWERSE [20],
for the development of Web reasoning and semantics.

Thus constraint programming techniques in Chemera are seamlessly integrated into
a general molecular modelling package. This is an important aspect because research
and development in this area is very dependent on a close interaction with the end
users in the biochemistry community. Past experience [2, 14, 15, 16, 17, 18] and work
currently in progress on several protein interactions (e.g. Aldehyde Oxidoreductase
and Flavodoxin, Ferredoxin NADP Reductase and Ferredoxin, Fibrinogen and
Gelatinase A) demonstrate this for the BIGGER docking algorithm, which is currently
available in Chemera 3.0 [21]. Our efforts at present involve forming a similar
partnership for the testing and application of PSICO to real problems with the aim of
future inclusion of this algorithm in a publicly available release of Chemera.

Acknowledgements: We thank CENTRIA and the financial support of the
Fundacdo para a Ciéncia e Tecnologia (BD 19628/99; BPD 12328/03, PROTEIN
project).
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Abstract. In this paper we show how model checking can be used to drévedh

lution search in the protein folding problem encoded as &traimt optimization

problem. The application of the model checking techniguewna us to distin-

guish between meaningful protein conformations and bad.oheis classifica-
tion of conformations can then be exploited by constraihtess to significatively

prune the search space of the protein folding problem. Etmtbre, our approach
seems promising in the study of folding/energy landscapesateins.

1 Introduction

In this paper we show how model checking can be used to drévedhution search in
the protein folding problem encoded as a constraint opétion problem. Given the
molecular composition of a protein, i.e., a list of aminodaciknown as itprimary
structure the protein structure predictiorfor protein folding problem consists in de-
termining the 3D shapesd(tiary structureor conformation that the protein assumes in
normal conditions in biological environments [5].

To solve the protein folding problem it is crucial to detememthe conformations of
the amino acid sequences in the 3D space with minimum enkrgyindeed widely
accepted that a state with minimum energy represents theipsnatural shape (a.k.a.
the native conformation The energy of a conformation can be modeled by means of
suitableenergy functionswhich express the energy level in terms of the interactions
between pairs of amino acids [3]. Since the protein foldirgpfem is extremely com-
plex, it is often simplified in several respects. A commongifitation consists in using
lattice space model® restrict the admissible positions of the amino acids emgpace
[11]. The energy function can be simplified as well, e.g., 8g@ing the 26 20 poten-
tial matrix proposed by [7,8] or the simpler HP model [1,2r Ehe sake of simplicity,
in the following we assume a 2D finite lattice included¥fiand the HP energy model.
However, our approach can be easily extended to 3D latfiagthermore, it is not dif-
ficult to replace the HP model with a more refined energy mddslkeeps track of the
variety of interactions among the 20 kinds of amino acids.

In this work we show how model checking techniques can beogepl to investi-
gate the relationships among the different possible comditions of proteins. We model

* This work has been partially supported by PRIN 2005 projéo6215491 and by FIRB 2003
project RBNEO3B8KK.
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the solution space of the protein folding problem as a find@gition system whose
states are all the possible conformations of a protein arbe/transitions represent ad-
missible transformations of conformations. Then, we takeatage of temporal logic
to specify and check relevant properties of such a systemanAsxample, we show
how to check whether there exists a path from a given confilom&o a conformation
with an energy level below a certain threshold whose lengtless than or equal to
a given value. In particular, we are interested in idemifypatterns common to dif-
ferent proteins. These patterns can be used to improve thgososearch in existing
constraint-based protein folding algorithms as well asrtdasstand protein functions.
In general, constraints allow one to easily model minimaraproblems. Once the con-
straint model is defined, a constraint solver can indeed bé tssearch for solutions.
This search exploits the constraints to prune the solutpate. In the following, we
show how model checking can be used to identify meaningfoperties of protein
conformations that can be encoded as additional congtraite used to further reduce
the solution space.

The paper is organized as follows. In Section 2 we introdheeHP model. In
Section 3 we describe how to generate, for any given prateencorresponding finite
transition system. In Section 4 we show how to express retguaperties of protein
conformations in temporal logic. In Section 5 we report ipnglary experimental re-
sults and we outline some ongoing developments of the work.

2 The HP model of proteins

The HP model on a 2D discrete lattice, where every confoonatf a protein is a self-
avoiding walk inZ?2, is commonly used to represent the conformations and theygne
function of proteins [12]. Such a model reduces the 20+latfghabet of amino acids to
a two-letter alphabeliH, P}, where H (resp., P) represents a hydrophobic (resp., polar)
amino acid. The energy function states that the energyibaoitizn of acontactbetween
two amino acids is -1 if both of them are H amino acids, O otlssw

Hereafter, we represent an HP sequence as an elem¢@tlip*, where 1 (resp.,
0) stands for an H (resp., P) amino acid. Furthermorej fo0,1,..., n, we denote by
s thei-th element of a sequensaf n+ 1 elements. The subset of admissible protein
conformations is defined as follows.

Definition 1 (Folding). Afolding wof a sequences s ...s,is afunctionw: [0...n] —
72 such that

() VO<i<n(|w(i)—w(i+1)| =1),thatis, ifw(i) = (X, Yi) andw(i + 1) = (Xi+1, Yi+1),
then|X — X1 + Y = Yip1| = 1;
(i) Vi # j(w(i) # w(])) (wis self avoiding).

We say that two amino acids ands; of a given foldingw areconnected neighboi
j =i=£1 and that they artpological neighbor# they are not connected ana(i) —
w(j)l =1,

In the HP model, the energy of a folding is given by the oppositthe number of
topological HH neighbors, e.g., if there existopological HH neighbors in, then the
energy ofwis —k.
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Definition 2 (Folding Energy). Given a sequence=s ... S, the energy of a folding
ofsis:
E= Z Bi,j 6(S7SJ)
1<i+I<j<n

where B is equal to—1 whenever bothjsand § are H amino acids) otherwise, and
d(s,sj) is 1if 5 and g are topological neighborg) otherwise.

Hence, a folding has minimum energy if it maximizes the nundféiH contacts.
Given asequence=S ... S, We assume its length to loei.e., it is equal to the number
of “segments” it is made of. To represent the conformatidres ®equence of length,
we use the subset = {(i, ) :i € [0,2n], ] € [0,2n]} of N2,

Without loss of generality, we assura#0) = (n,n) and, in order to avoid simple sym-
metries, we fixo(1) = (n,n+1).

Notice that, once the coordinates of a segment have been fivedext segment in the
sequence can only assume three possible directions witkce® the preceding one:
left (1), forward ), and right ¢). As a result, a folding of a sequence of lengthan
be represented as a string of length 1 on the alphabefl, f,r} 1. As an example, the
sequence of Figure 1 is represented by the stilhg

n=>5
[ T T R I R R B
L4 _L__1_L__1_L_
R
Folmt—F——+—F-l—+—F -
L
rTT T T
Ll 1L J_1_L
I R
he-I—+-r--¥-r-—+-r-
R
[ T T e I R R B
L4 _L__d1_L__1_L_
R T R N T
Folmt—F——+—F-l—t—F -
R
[ T T e I R B B
L4 _L__¢_L_l_1_L_l
)

Fig. 1. Stringrllf on 10x 10 lattice.

The number of all possible foldings of a sequence of lengtithere the orientation
of the first segment is fixed as above, is bounded by .3lt is commonly accepted
that the numbe€, of self-avoiding walks of length grows according to the following
formulaC, = B- - n¥~1, whereB ~ 1.93,u ~ 2.63, andy = 43/32 [13], and thus the
number of self-avoiding walks of length where the orientation of the first segment is
fixed, isDn = Cy/4. In [15] Ngo and Marks have shown that protein folding peobl
on 2D-lattices is NP-complete.

Now we formally define the set of valid transformations amésidings. Roughly
speaking, a valid transformation of a given foldifgonsists in selecting at random a

1 To avoid symmetries it is possible to consider only stringgh wrefixes of the form*r.
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position in f and performing a rotation of the part 6fbetween this position and the
ending positiongivot move.

Definition 3 (Pivot move).Let f = f,... f,, with f € {I,f,r} forall2<i<n,bea
folding of a sequence s of length n. A foldingof s is obtained from f through givot
movewith pivot k— 1, with2 <k <n, if f/ = f; foralli # k and f # fi.

Given a folding of a sequence of lengthsince the number of possible pivotsis- 1
and each one may give rise to two moves, i.e., rotations,uhger of successor fold-
ings is at most &h— 1) (some of these conformations could violate the self avgidin
condition). As an example, consider the sequence of lengthaske folding is repre-
sented by the strinffl. The foldings obtained by pivot moves are the 6 folditfgsfl,

fll, frl, fff, ffr. They are graphically depicted in Figure 2. It is possiblshiow that pivot
moves are ergodic, namely, they cover the entire foldingepa.

3
2
1

il
/ l \ pivot : 3
pivot : 2
pivot : 1
1fl rfl fll frl frr frr

Fig. 2. Pivot moves from strindfl.

3 Protein transition systems

In this section we propose an approach to the formal verificaif interesting protein

conformation properties based orodel checking4]. Model checking allows one to
verify desirable properties of a system by an exhaustivenemation of all the states
reachable by the system. We model the set of protein foldinggheir relationships as
a finite transition system and we use (linear or branchingp@sitional temporal logic

to specify relevant system properties [9,17].

Definition 4 (Transition System).Let AP be a set of atomic propositionstransition
systemover AP is a tuple M= (Q,T,L), where

— Qs afinite set of states;
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— T CQxQis atotal transition relation, that is, for every state=dQ there is a state
d € Q such that Tq,q);

— L:Q— 2P is a labeling function that maps every state into the set ofrat
propositions that hold at it.

The 2D Protein Transition System is defined as follows:

Definition 5 (2D Protein Transition System).The 2D Protein Transition System of a
string P of length n ovef0,1} is a tuple Mp = (Q,T,L), where

— Qs the set of all foldings of length n on tAe x 2n 2D lattice;

— T C Q x Q contains the pairs of statds,q2) such that g can be obtained from
g1 by a pivot move;

— L:Q— 2P s a labeling function over the set AP of atomic propositiarsch
consists of the following 3(n-1) predicates

2ndd,...,nthl, 2nd_f,...,nth.f, 2nd.r,... nthr,
plus the following three predicates
minen interen maxen,

where for all2 <i < n, the predicate itH (resp., ith.f, ith_r) holds at a state q if
the i-th segment of g hasleft (resp.,forward, righ) orientation and micen (resp.,
inter_en, maxen) holds at a state g if the energy of q is minimum (resp.trimeeli-
ate, 0).

It is possible to prove that the 2D Protein Transition Systemresponding to a given
protein has the following properties.

Proposition 1 (Properties of the 2D Protein Transition Sys¢m).

1. Itis strongly connected.e., for each pair of states;gand @, there is a path from
Q1 tO .

2. Itissymmetrigi.e., for each pair of statesycand @, if (g1, 02) belongs to T, then
(g2,01) belongsto T.

3. Themaximum incidence degré®=max,q|{(9,q) : (0,q) € T}|is 2(n-1).

Item 1 of Proposition 1 holds since pivot moves are ergodid{®m 2 of Proposition 1
holds because, if statp can be obtained from statg performing a pivot move, then
g1 can be obtained fromy, performing the opposite move. Item 3 immediately follows
from Definition 3.

As far as the energy of a protein is concerned, from our erpartal results it
turns out that the majority of states has a high energy artcotlg a few states have

minimum energy. Furthermore, the value of the energy difiee between the source
and destination nodes of most edges is 0.

4 Model checking properties of proteins

Temporal logics are formalisms for describing sequencésaasitions between states.
We restrict our attention to two well-known fragments of tteamputation tree logic
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CTL*, namely, thébranching timdogic CTL and thdinear timelogic LTL [9]. CTL*
formulae describe properties of computation trees anddahepbtained by (repeatedly)
applying Boolean connectivegath quantifiersandstate quantifierso atomic formu-
lae. The path quantifigk (resp.,E) can be used to state that all paths (resp., some path)
starting from a given state have some property. The statetifjeas are the next time
operatoiX, which can be used to impose that a property holds at the teggtaf a path,
the operatoF (sometimes in the future), that requires that a propertgihat some state
on the path, the operat@® (always in the future), that specifies that a property is true
at every state on the path, and the until binary opetadtevhich holds if there is a state
on the path where the second of its argument properties boldisat every preceding
state on the path, the first of its two argument propertiedol

CTL allows one to quantify over the paths starting from a gistate. Unlike CTL,
it constrains every state quantifier to be immediately ptedeby a path quantifier. In
LTL one may only describe events along a single computataih.dts formulae are
of the formAf, wheref does not contain path quantifiers, but it allows the nesting
of state quantifiers. CTL and LTL have different expressigegrs [9]. We chose to
use both of them to benefit from their advantages. On the ond,tae complexity
of model checking for CTL is linear in the number of states addes of the transition
system, while the model checking problem for LTL is PSPAGIplete. Furthermore,
there are many tools for checking if finite state systemsfa@ TL formulae (see, e.g.,
SMV [14]). On the other hand, algorithms for on-the-fly modeécking, a technique
that allows one to contrast the state explosion problenmgryiot to build the entire
transition system, mainly deals with LTL formulae. As a raatif fact, all the relevant
properties of Protein Transition Systems we identified bgko the intersection of CTL
and LTL.

Given a 2D Protein Transition Systevp = (Q, T,L) and a temporal logic formula
f expressing some desirable property of the systemmibael checking probleron-
sists in finding the set of all states@satisfyingf:

[f] = {qeQ: Mp,q = f}.

When a state does not satisfy a formula, model checking ithgas produce a coun-
terexample that falsifies it, thus providing an insight t@erstand failure causes and
important clues for fixing the problem.

We conclude the section by showing how meaningful propeai@D Protein Tran-
sition Systems can be encoded in both CTL and LTL.

F1: Does it exist a path of length at mostthat reaches a state with minimum en-

ergy?
CTL:minenv EXminenv---VEX...EXminen=
N—_——

k
Vik:o Ei1X1...EiXimin_en

LTL : A(-minenA X—minenA XX-minenA--- A X...X-minen) =
N——

K
AN oX1... Xi—minen).
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Notice that the property expressed in LTL actually is theatieg of property F1. How-
ever, it is sufficient to complement the set of states thasfgahis property to obtain
the set of states satisfying F1.

F2: Is energy the minimum one? Alternatively, if energy is thaximum one, is it
possible to reach a state with minimum energy without pasirough states with in-
termediate energy?

CTL, LTL : A(maxen U minen).

F3: Is it possible to reach in one step a folding where the firdt dfathe sequence
is a helix of the fornrrllrr ...?

Here we must distinguish between the case in whith |n/2| is even and that in
which it is odd.

If mis odd, we have:

CTL: EX(AM S —24 4 jo(ithor Al 2thr) AATS 4 4 jso(ithd AT+ 1th)).

LTL : AX(VE S g4 jso(mithr v —i 4 1thr) v
D si—araj jzo(mith vV =i+ 1thl)).

Ifm=2+4.j,j>0,we have:
CTL: EX(A S oy a jso(thor Ai+2thr) AANTE s io(ithd Al 4 2th) Amthur).

LTL : AX(VIZSh g4 jso(-ithr v—i 4 1thr) v
M si—araj jzo(nith v =i+ 1thl) v -mthr).

Ifm=4+4-j,j >0, we have:
CTL: EX(ASi—ora jsolithr Ai+1thr) AATL 4 41 o(ithd Ai+1th 1) Amthl).

LTL : AX(VIZgi_s 4.j.jso(Tithr v =i+ 1thr) v
D ai—araj jzo(mith vV =i+ 1th1) v —mthl).

F4: Is it true that every state which is at mdssteps far from the current one has
maximum energy, i.e., energy equal to 0?
CTL: maxenA AXmaxenA --- AAX...AXmaxen=

——

k
A oALX1 ... AXimaxen

LTL : A(maxenA XmaxenA---AX...Xmaxen) =
——"
k
AN oX1... Ximaxen).
In the next section we report the outcomes of some expersnemére we model
checked these (and other) properties on proteins of srma#miion.
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5 Experimental results and future developments

We implemented the proposed approach to the verificatiomagfgsties of foldings in
SICStus Prolog and we experimented it on some simple teeschfore precisely, we
developed an algorithm for encoding 2D Protein Transitigat&ns, and then we im-
plemented model checking algorithms to verify whether sepezific 2D Protein Tran-
sition Systems satisfy or not a set of relevant propertredyuding F1-F4. We confined
ourselves to test cases where protein length was at mostslfborA1, for instance,
we searched for states with energy equal to 0 that satisfygptpF1 whenk =1, i.e.,
states with maximum energy that reach in one step a statemitimum energy. For
n=8, given the string 111111111, wharén_.en= —4, it came out that only 8 states
fulfil the request. They are (every state is followed by treestestifying the satisfi-
abily of the property)irflflf — IIfIflf, [ffIflf — IfIfIf, rifrfrf — rrfrfrf,
rffrirf — rrfrfrf, fIflfrl — fIFIFIL, FIFIEFI — FIFLFI, fricflr — frirfrr,
and frfrffr — frfrfrr. Similar experiments were performed in the cases of prop-
erties F2-F4. We used our tool to model check a number of atteaningful prop-
erties. As an example, we used it to check whether there stets with an energy
different from the minimum one that may reach in one step & stéth a greater en-
ergy which, in its turn, may reach in a few steps (how manyefehds on the length
of the protein) a state with minimum energy. The answer istipes For example, for
n=7, given the string 11111111, whem@in.en= —3, the following state satisfies the
property (the entire witness path is reported and everg sdbllowed by its energy):
Il flIl (=2) — IrIf I (0) — Irll fI (—3). The existence of such paths shows that, in order
to decrease the number of edges of the 2D Protein Transitiete, it is not sound
to cut edges connecting states where the source energy és than the destination
energy because from the destination state we could rapgdlgtr states with minimum
energy.

As for the future developments of our work, one of the mainéssof model check-
ing is the state explosion problem. In our case, a proteirenfithn gives rise to a
transition system where the number of state®(8"1). This leads to both time and
space problems. On-the-fly model checking [6,10] has beepased to cope with the
state explosion problem. This approach in many cases atlwédsonstruction of the
entire state space of the system, because the propertyt tputdses the construction of
the system. When a state falsifying the property under aisiy reached, the construc-
tion is stopped. Only in the worst case (when the propertstisfied) the entire system
must be built. Exploiting on-the-fly model checking, we ptarapply our approach to
proteins with a significant length.

Another technique proposed to control the state-explgsioblem is symbolic model
checking [14,4]. Symbolic model checking is based on theafigerdered Binary De-
cision Diagrams (OBDDs) to compactly represent transisigstems. In the worst case,
the OBDD and the represented system have the same size. Blpivey is usually not
the case when the transition system has some “regularitlés’intend to study what
happens if we use OBDDs to represent 2D Protein Transitiate®ys and, if possible,
to exploit symbolic model checking techniques.

Finally, we plan to extend our approach to 3D-lattices argltibch to an energy model
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that considers all the 20 kinds of aminoacids. In this caniexintend to analyse the
usefulness of our approach not only for the protein foldiraptem, but more in general
for the study of folding/energy landscapes of proteins.
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Abstract. Constraint solving on discrete lattices has gained monmnerds a
declarative and effective approach to solve complex problsuch as protein
folding determination. In particular, [8] presented a coefgnsive constraint
solving platform (COLA) dealing with primitive constrasin discrete lattices.
The purpose of this paper is to discuss some preliminansidagossible global
contraints that can be introduced in a constraint systeen@iOLA. The paper
discusses various alternatives and provides preliminasylts concerning the
computational properties of the different global consttsi

1 Introduction

Discrete finite lattices are often used for approximatedistiof 3D conformations

of molecular structures. These models are used, in paaticid compute reasonable
approximations of foldings of protein structures in 3D ¥p§t9,12,1]. Polymers are
laid out in particular subsets dF. These subsets are often described by the vectors that
specify the set of neighbors of each point. Lattice modkésHCC and chess knight are
among them.

The protein folding problem in the context of discrete ttistructures has been
studied as &onstraint Optimization Problerm the FCC lattice, using a simplified en-
ergy model in [2] and with a more precise energy model in [@]tHese approaches,
each poinP of the lattice is identified by a triplet dinite domain variable$P, R, P,),
where each variable separately describes a coordinate gfdimt. Following this ap-
proach, propagation algorithms operate on points by meapsogection of domain
information on individual coordinates. Considering eaobrdinate separately limits
the power ofpropagationamong points as single objects, rather than as triples of FD
variables. In [8] we proposed the constraint solver call€l A (COnstraint solver on
LAttices) whose primitive domain considers lattice points as atoraiges.

In this paper, we propose a study targeting the problem dfrdpaith global con-
straints in the general context of constraint solvers diclattomain—and specifically
in COLA. Global constraints are proven constructs thatitaté the declarative encod-
ing of problems; at the same time, they allow the programmexpress knowledge
about relationships between variables, that can be efédgtemployed by the search
algorithm to prune infeasible parts of the solution seapats. We introduce different
global constraints, and we study the complexity of theiisfiability and of the associ-
ated propagation process.
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We hope this paper will inspire further interest in this gesb and promote discus-
sion about suitable global constraints for discrete latsituctures and efficient imple-
mentation techniques.

2 Lattices and COLA

A discrete lattice(or, simply, alattice) is a graph(P,E), whereP is a set of triples
(x,Y,2) € N3, connected by undirected edg&.(GivenA = (x,y,z) € P, we will denote
X, Y,z with Ax, Ay, A; respectively.

Lattices contain strong symmetries and present reguldernpat repeated in the
space. If all nodes have the same degdyethen the lattice is said to b&connected
Three examples of lattices are described next (and degitted. 1).

Definition 1. A cubic lattice(P,E) is defined by the following properties:

-P= {(vavz) | X\y,Ze N},
- E={(AB) | A,B€P,sgeuc(A B) =1}.

where sgqeuciA, B) = (Bx — A2+ (By — Ay)2 + (B, — A)?.
The cubic lattice is 6-connected—see Fig. 1(a).
Definition 2. AnFCC lattice (P, E) is defined by the sets:

- P={(xy,2) | x,y,ze NAX+y+zis even;
- E={(AB) | A,B e P,sqeuc(A,B) =2}.

Thus, in arnFcC lattice we consider the 3D space organized in cubes, eaethaving
length 2, and where the center point of each face is also setinithe practical rule to
compute the points belonging to the lattice is to check wéretiie sum of the point’s
coordinatesX y,2) is even. Pairs of points at Euclidean distané¢2 are linked and
form the edges of the lattice; their distance is calétice unit Observe that, for lattice
units, it holds thatx; — xj| + |vi — Yj| + |z — zj| = 2. TheFCC lattice is 12-connected—
see Fig. 1(b).

Definition 3. A chess knighlattice is defined as follows:

- P={(xy,2) | xy,zeN};
- E={(AB) | A,B e Psgeuc(A B) = 5}.

Each edge allows a move like a knight on a chessboard, i.eit®io one direction, 1 in
another direction, 0 in the third direction. The chess khigttice is 24-connected—see
Fig. 1(c).

In COLA, adomain Dis described by a pair of lattice poinfew(D),up(D)). The
domainD defines a set of lattice points in the 3idx identified by the two opposite
verticeslow(D) andup(D)—i.e.,

BoxD) = {(x,y, 2)eP

low(D)x < x < up(D)x,low(D)y <y < up(D)y, }
low(D); < z<up(D);
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Fig. 1. Basic Component of a CubiCC, and Chess Knight Lattices

(a\

COLA handles the domain operationsiofersection union, anddilation, described
in [8]. In modeling a constraint satisfaction problem, eaatiable represents an entity
to be placed in a point in the lattice space. The varidbie associated to domain
DY = (low(D"),up(D")).

Let V4,V denote two lattice variables, 18 = BoxDV1) andB; = BoxD"2), let
d € N, and letP;, P, be two lattice points. The following constraints are adeditin
COLA:

DIST_LEQ(V1,V,d) < 3Py € B1,3P, € By s.t. normy (P, P2) <d
EUCL(V1,Vy,d) < 3P € By, 3P, € By s.t. sqeudPy,P2) =d
EUCL_LEQ(V1,V,d) < 3Py € B1,3P, € By s.t. sqeudP;,P,) <d
EUCL_GEQ(V1,V2,d) < 3P; € B1,3P, € By s.t. sqeudP,P;) > d

wherenorm, (A, B) = max{|Bx — A/, |By — Ay|, |B; — Az }.

The work presented in [8] describes the implementationeséhconcepts in a con-
crete constraint solving system, capable of perforniagnds consistenan the pre-
viously described constraints. The COLA solver has beetiegpto the problem of
solving the protein folding problem in tHReC lattice [8], producing interesting results
for proteins of length up to 100.

3 Global constraints

The main contribution of this paper is the identification dfigh global constraints
should be introduced in COLA to enhance its declarativeneadnd facilitate the effi-
cient resolution of complex problems. In particular, we estour design to be general
and applicable to other constraint solvers on lattice domdin order to be able to
perform forms of consistency which are more accurate thamté®consistency, we as-
sume that the finite domain associated to each variable ista §et of lattice points,
instead of a simple box, as in COLA.

Intuitively, a global constraint is a hon-binary consttaidore formally, givenn
variablesXy, ..., X,, respectively having domair®*,...,D*, a global constraint C
on the variable¥Xy, . .., X, can be defined as a sub&g D* x --- x DX,

For each global constraiftt we are interested in verifying two properties [4]:
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— consistency (CON): &0
— generalized arc consistency (GAG):c {1,...,n} Va € D%

Jag € DX1... 31 € D133, € DX+1...3a, € DX (ay,...,a,) €C

In the specific case where the constr&ris binary, i.e., it involves only two variables
X1, X2, the GAC notion is known aarc consistency (ACYL is arc-consistent iff

Vay € D*t 3a, € D*2. (ag,a) € CAVap € D2 3a; € DX (ag,a) € C

Related to the notion dBACis the notion ofiltering, i.e., the problem of removing
values from the domains of variables in order to obtain arivedgnt constraint which
is GAC. If the filtering is computationally too expensive, one can fast approximated
algorithms, that eliminate some values in some domaindrabtaan equivalent con-
straintC’, which is not, however, ensured to be GAC.

Other properties are of interest, e.g., generalized bocmialsistency and directional
arc/bounds consistency [10]. Nevertheless, in this paperonly deal with the two
properties described above.

By definition (assuming the domains non empty), GAC impli€&NC Thus, if we
prove that testing GAC is polynomial, the same will hold foDE. If CON is NP-
complete, then GAC will be NP-hard. Let us proceed with thalysis of different
global constraints in the context of lattices.

3.1 alldifferent

Thealldifferent constraint [20] is probably the most well-known global cioamt
used in constraint programming. Its semantics is as foll@w, . .., X, are variables
with domainsD*¢, ..., D%, then

alldifferent(Xy,...,Xn) = (D1 x --- x D*) \
{(a1,...,an) € (Dt x---x D) 1 FJi,j. (1<i<j<nAa=a)}

It is well-known that testing the CON and GAC properties, adl\as performing
GAC filtering for thealldifferent constraint can be done in polynomial time. These
problems can be solved, for example, by adapting algorifiomsipartite graph match-
ing (the first contribution in this direction is [18]).

Thealldifferent constraint has a significant role in the modeling of the prote
folding problem on discrete lattices [8]—e.g., to exprdss fact that a point in the
lattice cannot be used to accommodate two distinct amirdsaci

3.2 contiguous

The contiguous global constraint is used to describe the fact that a listaofables
represent lattice points that are adjacent (in terms oftiposiin the lattice graph). Let
E be the set of edges in a lattice, andXgt. .., X, be a list of variables (respectively,
with domainsD*t, ..., D*). Thecontiguous constraint can be defined as follows:

contiguous(Xy,...,Xq) = (DX x --- x D*) \
{(a,...,an) € (DXt x---xD*) : Ji. (1<i<nA (a,a41) ¢E)}
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Testing the GAC ofcontiguous can be done in polynomial time. In fact, the
contiguous constraint is equivalent to the conjunction of the 1 binary constraints
of the formC; 1, withi € {1,...,n—1}, such that

Ciit1= (D x D)\ {(aj,ai11) : @ € DY Aaipp € DY A (a,841) ¢ E}

The graph induced by these constraint is acyclic. Thus, uheése conditions AC im-
plies GAC [11]. This result can also be justified as followst s assume that for every
i€{1,...,n—1},Cij1 is arc consistent. Choose {1,...,n} and choosg; € D*.

— SinceCi_1; is AC, then it existsa_; € D*-1 such that(a_1,a) € Ci_1,;. Apply
back the same process urdil, is reached.

— SinceCi ;1 is AC, then it existsy 1 € D%+t such thata,ai11) € Cij+1. Apply the
same process forward un@h_1  is reached.

Going backward and forward we have collected a set of elesseich thatay, . . . , &, ...,an) €
C, thus proving thatontiguous(Xy,...,Xn) is GAC.

Observe also that, if there exi€ls | 1 thatis not AC, thei€ is not GAC. In fact, that
would imply that there is; € D% s.t.Vbj,1 € D%+t we have thata;,bi 1) ¢ E. This
means, in particular, that for d € D1, ..., bj_; € DX-1, b,y € DX+, ... b, e DX,
we have thatby,...,bi_1,a,bit1,...,bn) € C.

Since AC for binary constraints can be tested in polynonmagf the same holds
for GAC. Polynomiality of CON follows.

Thecontiguous is particularly relevant when modeling protein folding plems
as it allows one to state that the sequence of amino acids @singpthe primary se-
quence of a protein should remain contiguous in the distagtiee.

3.3 saw

The saw constraint is used to require that each assignment to thablesX, ..., X,
represents a self-avoiding walk (SAW) in the lattice. Mavenfially, the constraint can
be defined as follows:

saw(Xy,...,Xn) = contiguous(Xy,...,Xy) Nalldifferent(Xy,...,Xn)

Thesaw constraint can be used, for example, to model the fact tegiimary sequence
of a protein can not create cycles when placed in the 3D space.

Testing the CON property faraw is clearly in NP. We prove that itis NP-complete
by reduction of the NP-complete Hamiltonian Cycle (HC) genbon a particular class
of planar graphs, callesbecial planar graph# [6]. The proof consists of two steps.
First we show how to embed each special planar g@apha graphG’ whose nodes and
edges are in a cubic lattice. Then we “enlar@’(replacing every edge by two edges
connected by a new node) obtaining a new gr@ftthat we use to define variables and
domains for an equivalestw problem. We sketch here the proof.

A special planar grapls = (N,E) [6] is composed of a number dbops each
containing only nodes with degree 3, along withthsof length 2 connecting nodes
that belong to distinct loops (see Fig. 2). lcet |N]|.
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Fig. 2. An example of special planar gragh

It is easy to see that if there is a loop in the graph contaimimgpdd number of
nodes, then no HC exists f@. For this reason, we concentrate on graphs containing
only loops with even numbers of nodes. Observe that loops teawontain at least four
nodes. We assume, moreover, tliatontains at least 2 loops (otherwise the result is
obviously true).

Let us define how to obtai&’ from G. For each loop, of size 2y, and consisting
of the nodey, ..., p2n,, We generate a subgraph@f, calledgadget which contains
2n; x (nj + 2) nodes arranged as follows. These nodes are obtained uslogkavise
enumeration of the loops—the starting point is irrelevahere is a core of the gadget
made of a loop of & nodes, arranged as a2y rectangle. From each of the core nodes
there is a path leading to the nod®s. . ., p2n,. Those nodes are called thetputnodes
of the gadget. In Figure 3 we report a gadget for a 8-nodes loop

Py P Ps P+ Ps P Pr Ps

Fig. 3. Example of gadget for a loop of size 8

Let us fix one of the dimensions of the cube (w.l.ozg= 0) and let us work on the
resulting 2-dimensional plane. Let us consider an arlyitegnrumeration of the loops
l1,...,¢ of G and let us align the gadgets on the plane according to suehiogd In
particular, all the output nodes of the gadget have0, and they are adjacent in the
dimension (see Fig. 4). All other nodes of the gadget lyave.
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A B C D A B C D A B C D A& B ¢ D E FJ
Y=4
X
Y

Loop | Loop 2 Loop 3 Loop 4

Fig. 4. The aligned gadgets for graghin Fig. 2

Consider, in lexicographical ordering, the loop pdifs, %), a < b, that are con-
nected by edges i&. We wish to create copies of the output nodegpdnd/y, in a
separate plane (to avoid intersection of edges) and recoeahis plane the connection
structure ofG.

Let us illustrate the process for all the paifs, /p, ), . . . (¢1,4p,) Such that there are
edges between loop 1 and lobjpn G.

In the plane, we add copies of the “relevant” output nodes for loop 1lané.g., if
an output node of loop 1 or lodp is at coordinateéx, y,0), and such node is part of an
edge connecting these two loops, then a copy of such nodeenilleated at coordinates
(x,y,1). Furthermore, copies of such nodes are also placed in dhtienediate planes
(planes < z< i — 1), and edges connecting these copies are created—i.es efig
the type((x,Y,2), (x,y,z+ 1)). The edges between the nodes of distinct loopS afe
simulated by paths in the plameThe output nodes of the gadgets 1 dndespect a
clockwise traversal of the loops 1 abd SinceG is planar, we can connect using non-
intersecting paths in plarigsee Fig. 5). As a strategy, start with the rightmost output
node of loop 1.

Loop 1 Loop 2 Loop 3 Loop 4 Y

Fig. 5. The encoding of the edges outgoing from loop 1 in Fig. 2

The process is repeated for all the other pairs of conneotgasl(incrementing the
plane levels). In Fig. 6 we show the gra@hcorresponding to the gragh of Fig. 2.

A rough estimate of the size of the resulting graph is thefaithg. The number of
x indices used i©(n) (gadgets outputs are the same as loop lengths). The number of
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values ofy used isO(n) for the gadgets plu®(|E|) = O(n?). The number of values of
z used is agaiD(|E|) = O(n?). Thus the global “box” containin@’ containsO(n®)
points.

Since the grapl®’ maintains the topology (and at most introduces new nodés wit
degree 2 on paths), it holds that the Hamiltonian Cycle gnoldnG’ has a solution iff
G has. BasicallyG' is a copy ofG where the edges linking distinct loops are stretched
(by adding new nodes of degree 2). We will refer these seaqsarfeedges deop2loop
loop2loops have always length at most 4 (out of the gadgktsPa(within the gadgets).
We will use the same terminology &".

aloop2loop -

LO(;p 2 Loé)p 3 Ldop 4

Fig. 6. The graphG’ obtained fronG in Fig. 2

Loop in G Loop in G’ Loop in G”

Fig. 7.Loops inG,G/, andG”. Observe that the Hamiltonian pathsGrandG’ cannot touch half
of the extra nodes added in loops@®{
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We need an additional step to encode the HC problem usingatheonstraint. The
basic idea is that a self-avoiding walk is an HamiltoniarhP&he problem is that in
G’ representatives of elements Nfmay lie at distance 1 in spite of them not being
connected by an edge . If we introduce variables and assign to their domains the
nodes ofN’, self-avoiding walks on the nodes Nf can have trajectories that are not
allowed inG.

We thus define the grapgt’ = (N”,E") as follows:

— for every edgé(x,Y,2), (x+1,y,2)) introduce inN” the nodes = (2x,2y,2z), b=
(2x+1,2y,27),c = (2x+ 2, 2y,22), and the edge&, b), (b, c).

— for every edgé(x,Y,2), (X,y+1,2)) introduce inN” the nodes = (2x,2y,2z), b=
(2x,2y+1,2z),c = (2x,2y+ 2,2z), and the edge&, b), (b, c).

— for every edgé(x,Y.2), (X,y,z+ 1)) introduce inN” the nodes = (2x,2y,2z), b=
(2x,2y,2z+1),c = (2x,2y + 2,2z+ 2), and the edge&, b), (b,c).

The graphG” is a copy ofG’, in which each edge is substituted by a subgraph of
the form (edge, new node, edge). lret= [N”|. In Fig. 7, on the right it is depicted a
fragment ofG” obtained from the fragment @ in the center of the figure. Observe
that edges ife” connect nodes at Euclidean distance 1. This property cardieied
by thesaw constraint to simulate the graph connectivity.

Consider again Figure 7 from left to right. Let us assume Gatmits an Hamil-
tonian Cycle. Any Hamiltonian Cycle traverses the loop in aywgimilar to the one
depicted. There is a corresponding Hamiltonian Cycle tsimg the loop inG'. A cor-
responding path exists i&”; however it is not Hamiltonian sinckalf of the nodes
of the loopcannot be traversed by that path. We must take care of thegrieg our
encoding.

LetL be the global number of nodes in loopg®iiivided by 2. Define the variables
X1...Xm-L, and for 1< i < 2mlet DX = N”. For the variable¥; andXm,_. we specify
a singleton domain as follows. Identify & two consecutive nodes of degree 2 in a
loop2loop. Let us call thera andZ (see also Fig. 7—right). TheD*t = {a},D*m-L =
{C}. The definition of the CSP is completed by the constrasnt(X, ..., Xm_L)-

Theorem 1. G’ admits an Hamiltonian Cycle iff Gadmits a self avoiding walk with
m— L nodes starting fronat and ending irZ.

Proof. (—) Let us assume th&’' has an HC. The same cycle can be mimicked on the
extended grap&®”. All nodes in loop2loops are traversed by this path. Instiadach
loop, a number of points which is half of the number of poirftthe original loop inG
is not traversed by the path. Then, the cycle has lemgth_.

Sincea and{ have degree 2 and are in a loop2loop, the cycle must contaigdihe
(a,¢). Removing such edge from the path we obtain a SAW of lengthL starting in
a and ending irC.

(<) Leta, p2,...,pL_m-1,{ be aa SAW consisting oh— L nodes ofG" starting from
a and ending ir{. Since|N”| = m, exactlyL nodes ofN” are left out by this SAW.

1. If the SAW enters and exists all the loops as in Fig. 7, theillileave outL nodes
and it corresponds to an Hamiltonian Patl@starting ina and ending ir{. Since
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o and{ are consecutive nodes of degree 2, it is sufficient to adddbe €&, a) to
find the cycle which corresponds to an Hamiltonian Cycl&in

2. Sincea and{ are in the same loop2loop it is impossible that a SAW statiiting
and ending in, does not enter any loops, unless- L = 1, which cannot be true
by construction of5”.

3. Itremains to analyze the case in which the SAW traversesgih a way different
from that of point 1. Assuming that it exists, we will find a ¢adiction with its
lengthm— L. For these SAWS, there is at least one loop2loop left out fagmath
traversing one loop, as in the following figure:

o /AN
K

To another loop

We have already seen that loops2loops are of lexgéhin G’ (13 in G”). Lete
andd be the first two nodes of the loop2loop left out. These two samnot be
crossed by the SAW. As a matter of factdibr e are reached by a SAW, there is no
way to come back tg without repeatedly visiting the same nodes.

On the other hand, the SAW inside the loop visits both thetg@iandc adjacent to
the entering poinb of the analyzed loop2loop. With respect to a SAW of the form
dealt with in point 1, the SAW visits one additional point metloop but looses
two points outside the loop. This happens for every loop ane¥ery loop2loop
excluded by the SAW. Thus, more thlampoints ofG” are left out. This is a contra-
diction. O

This reduction is polynomial, thus the CON=fw global constraint is NP-complete,
and, consequently, GAC is NP-hard.

Observe that the proof has been carried out using the cuthicelalt is easy to
modify the mapping for other 3D lattices.

3.4 alldistant

When we model biologically motivated problems (e.g., profelding) on a discrete
lattice, we often observe that tha@1different global constraints is not sufficiently
expressive. In particular, we often require that valuegyassl to a group of variables
are sufficiently spread in the lattice, ensuring a minimatatice between each pair of
points assigned to the variables. This is required, for gento address the fact that
different amino acids of a protein have different volumeuwgaancy.

Inthealldistant constraint, givem variablesXy, ..., X,, with respective domains
DX, ...,D%, andnnumbersy, ..., ¢y, we are looking for a solutiod; = py,..., X, =
pn such that, for each pair4 i, j < n, we have thap; andp; are located at distance at
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leastc; + cj. More formally:

alldistant(Xy,...,Xn,C1,...,Cn) = (DX x .- x DX) \
{(a,...,an) € (DX x --- x D*) :
Ji,j. 1<i< j<nAsqeucla,aj) < (¢ +¢j)?}

Note that if we consider thelldistant with ¢; = 1,...,cn = 5 then we achieve the
same effect aslldifferent.

We show how to reduce the BIN-Packing problem to the consisteroblem for
thealldistant constraint. Let us considaritems of sizecs, ..., cy andk bins (bin O,
..., bink— 1) of capacityB. W.l.o.g., let us assume that, for ak {1,...,n}, it holds
thatc; < B (otherwise the problem is trivially unsatisfiable).

We reduce the problem using only one dimension of the lafissume, e.g. that all
y andz coordinates are fixed to 0). We consider consecutive latbtlenear points. For
the sake of simplicity, we consider lattice poif@s0, 0),

(1,0,0),(2,0,0),... and we refer to them simply asD?2,...4

The reduction is defined as follows. Let us introdndattice variables<y, ..., X.

Fori € {1,...,n} the domairD* is defined as

k-1
DN = | J[4jB+ci..4jB+2B—¢|]
j=0

For example, consider the instaneg:= 4,c, = 3,c3 = 5,4 = 1,B=7k = 2.
ThenD; = [4..100U[32..38], D2 = [3..11] U [31..39], D3 = [5..9] U[33..37], D4 =
[1..13 U[29..41]].

Intuitively, each interval0..2B], [4B..6B], [8B..10B], ... corresponds to a bin.
Each assignment of the variab¥ in D; is such that all valuefX; — ci, X + ¢i| are
included in exactly one of the above intervals (intuitivelye itemi is assigned to
the bin corresponding to such interval). If the valuesoandX; are in two different
intervals, ther)X; — Xj| > 2B > ¢ +c;.

We show that there is a solution for the instance of the Blkjpay problem if and
only if there is a solution for the CS&L.1distant(Xy,...,Xn,C1,...,Cn). In the above
example, a solution of the CSPXg = 4, X, = 11, X3 = 33, X4 = 40, from which one
can conclude that we should place items 1 and 2 in bin 0 angifeamnd 4 in bin 1.

For one direction, assume that the CSP admits a solati@@onsider all the vari-
ables taking values i(X;) € [4B] .. 4B+ 2B]. Assume that those variables &g ..., X,

and assume that(X{) < --- < cr(XrJnj ). This means that

- (Xll:) >4Bj+ ci (constraint on the domain),

— 0(X}) > 4Bj+c} + (c] +cy) = 4Bj+ 2c] + C) (alldistant constraint),

- 0(X3) > 4Bj+cl +(c] +¢b) + (¢, +c}) = 4Bj+2c] + 2¢c5 + ¢} (alldistant
constraint),

4 For some lattice structures, it may be necessary to chodfferedt subset of points. The proof

can be adapted by choosing, e.g., a collinear set of lattsggp(some scaling of coefficients
may be needed).
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— and so on, untib(xrjﬁj) > 4Bj+ 2(c{+ c£+cﬂnj_l) + cﬁnj

Moreover, for the constraint on the domain, it holds ﬂn@%j )<4Bj+2B— cﬂnj . This

means that @] + ¢} + - - + iy ) < 2B. Thus, put all items associated to the considered
variables to binj to obtain a solution of the bin packing.

The vice versa is similar. Given a solution of the bin packfogeach binj, consider
the itemsiten),item),...,itemd; assigned in to the bif. Then set(X{) = 4Bj+
€1,0(X) = 4Bj+2¢; +¢j,...,0(Xmy) = 4Bj+2(C; +C3+ Cpy, 1) + Ciny.

NP completeness of GAC follows, as usual. The problem offifilggis open, and it
could be investigated, e.g., through adaptation otlhieep algorithmased in [3].

3.5 rigid block

It is a frequent situation, when dealing with protein stawetdetermination, to have
knowledge of local features of the structure, e.g., presefisecondary structure com-
ponents (such as-helices ang-strands); thus, we may wish to be able to express the
fact that a collection of points have to be located in theréigclattice according to a
predefined pattern.

This notion can be represented using another type of glaeteaint, calledigid
block constraint A rigid block defines a layout of points in the space that ltabd
respected by all admissible solutions. D&t ..., X, be a list of variables (having, re-
spectively, domain®*, ..., D*"), and letB = By, ..., B, be alist of lattice points—that,
intuitively, describe the desired layout of the rigid bloblock(X, ..., Xn,B) is ak-ary
constraint, whose solutions are assignments of latticetpto the variableXy, ..., X,
that can be obtained froBimodulotranslationsandrotations

More precisely, we defineratationof a lattice poinip = (px, py, pz) asrot(@,6,y)(p) =
X-Y-Z-p', where

10 0 cosf 0 sinB cosy siny 0
X=1]0cosp sing|,Y=|0 10 , Z=| —siny cosy 0
0 —sing cosp —sinB 0 coH 0 0 1

Although the rotation angleg 6, Y are real valued, only few combinations of them
define automorphisms on the lattice in use. The total nundjelistinct automorphisms
r depends on the lattice—e.g., in the cubic lattice, we haaertl 16, and in therCC
we have that = 24.

We extend the definition of rotation to the case of lists dfdatpointsyot (g, 0, y)(B),
whereB is a list of points and the result is a list in which every elei&f B is rotated
according to the previous definition.

Given a list of point8B, we define the concept tédmplatesas the set:

- . 39,6,y. rot(¢,6,)(B) is an
Templ(B) = {rot((p, 0.4)(B) : automorphism on the lattic

which contains the distinct 3-dimensional rotations of plointsB in the lattice. Note
that, for a given list of point$B), the cardinality ofTempl(B) is at mostr. We say
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that? = (¢, ly,¢;) is alattice vectorif the translation by of lattice points generates an
automorphism on the lattice. Note that, for some asymmigtttices, it is possible that
lattice vectors do not exist.

Let ¢ be a lattice vector; wittshift[¢] we denote a mapping that translates a rigid
block according to the vectdr Formally, for each = 1,... k, Shift[¢](B)[i] = B; + £.
Shifts are used to place a template into the lattice space, pregeihe orientation and
the distances between points.

A rigid block constrainblock(Xy, ..., Xn, B) is then defined as the set:

) P € Templ(B) A
{(al,...,an)GDlx...an : 3639( € IS)hift[E](P)(al,...,an)>}

With a fixed rotation of the block, CON is linear in the size bétsmallest vari-
able domain (a simple intersection of possible translation each domain has to be
performed). GAC is polynomial as well, since it is sufficiémtrepeat the CON test for
each domain.

Propagation of this kind of constraint is studied in a widamntext in [16]. Moreover,
the idea of considering rigid blocks to model substructurfegroteins has also been
introduced in [9].

4 Conclusions and future work

In this paper we presented a preliminary study of variouba@loonstraints that can be
used to provide declarative encoding of problems in disdadtices. The introduction
of global constraints has been motivated by problems defieen the use of constraint
solving in discrete lattices to solve the protein foldingestenination problem. We pro-
pose different types of constraints and investigate th@infmutational properties.

A number of issues are open and deserve considerationoFa#f it is interesting
to investigate the relative expressive power of the difiec®nstraints—e.g., to under-
stand the importance of having one type of global conssaiatsus the others. Itis also
important to gain a clear understanding of the computatiormgerties of the different
global constraints, with particular attention to the coexgly of verifying the properties
CON and GAC and the cost of performing filtering. Throughdwetpaper we hinted at
the high complexity (e.g., NP-completeness) of some ofelpesblems; in such cases,
it will be important to detect approximated polynomial filteg algorithms, that can be
effectively introduced in a constraint solver like COLA.

Furthermore, we plan to study the constraints among rigidkd (e.g., parallelism,
angles between them, or proximity between them as propogé&dippahl and Bara-
hona).
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Suffix arrays and weighted CSPs

Matthias Zytnicki, Christine Gaspin, Thomas Schiex

INRA Toulouse — BIA

Abstract. In this paper, we describe a new constraint that uses soeregting
data structure, the suffix array, well-known in pattern rmatg. We show how
it helps answering the question of non-coding RNA detedtidio-informatics,
and more precisely, finding the best hybrid in a duplex caustr

1 Introduction

Thanks to the recent major advances in molecular biologyptbblem of the detection
of non-coding RNA (ncRNA) is now a hot topic in bio-informedi(cf. [1] for review).
A ncRNA is usually represented by a sequel of lettersnueleotides A, C, G and
T. An ncRNA also containgteractions—mainly A-T and C-G— that are essential
to its biological function. In this paper, we will suppose Wweow thestructureof a
ncRNA family. The structure is the set of information lochten a ncRNA that discrim-
inate for a given biological function. Our aim is the followg: how can | get all the
candidates matching a given structure, in a sequence thatomain several billions
of nucleotides? Put in other words, knowing an interacti@prand some nucleotide
positions, which regions of my sequence match this map anhrothese nucleotides?

Among the proposed formalisms used to solve this problera,ajrthe most fa-
mous ones uses statistical information in a context-freengnar that describes this
structure [5]. However, some complex ncRNA families carrotescribed within this
formalism and [6] showed that only NP-hard formalisms mayextly describe them.
This favors a CSP model of the problem and such a work has mdone in [7].

However, usual queries give hundred of thousands of seisitand, in practice,
it is impossible to exploit this huge amount of solutionsv@bsly, by looking more
carefully at the solutions, some are better than otherstamalild be useful to give only
the best ones to the user. This is why we used the weighted @8flism to solve the
ncRNA detection problem.

One interesting element of structure that we would like taeids the duplex. Itis
the ability from the ncRNA tdwybridize i.e. to develop a stretch of interactions with a
DNA strand, or another RNA. We would like to embed this eletrédrstructure into a
global constraint. Since this problem is very similar to #pproximate string match-
ing, many formalisms have already been proposed (cf. [2tdoiew) to compute the
underlying algorithm. Most of them are based on a dynamiggmming algorithm
that computes a kind cddit distanceébetween a word and the subsequences of a long
sequence. To save time and space, these algorithms havpdréedto different struc-
tures, such as the suffix tree. This structure makes it plestibfocus the search on
the most promising regions and dramatically speeds up trelseRecently, some pa-
pers [3,4] also proposed tlemhanced suffix array-or suffix arrayfor short— to solve
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this kind of problem, with an enhancement that providesrsdaalvantages compared
with the suffix tree, with no drawback.

In this paper, we present a new global constraint that chetlether there exists
a word that matches a subsequence of a given long sequerhbeq wossible given
number of errors, using a suffix array.

2 The WCSP model

The weighted CSP (WCSP) [8] framework is an extension of tB&,Ghat makes it
possible to expregweferenceamong solutions thanks soft constraintsit has already
been applied to resource allocation, scheduling, combirgtauction, CP networks
and probabilistic reasoning.

The valuation structures = (E,®, <) specifies the costs, wherg:= [0..k] C N
is the set of costsk, which is the highest cost, can possibly deand it represents
an inconsistency< is the usual operator oN; &, the additionon E, is defined by
V(a,b) € N2 a® b= min{a+Db,k}. AWCSP is a tupler = (s,x,D,c), where:s is
the valuation structure; = {x1,...,X} is a set oh variables © = {D(x1),...,D(Xn)}
is the set of possiblealuesof each variable, olomainsand the size of the largest one
isd; ¢ ={cu,...,Ce} is the set ok soft constraints.

An assignment on the set of variableg C x is a function that associates to each
variable ofY one of its possible valu¢:= (y1 < vi,...,Ym < V). A soft constraint;
involves a list ofrj variablesrar(ci) = (y1,...,Yr) (fi is thearity of ¢;), and it associates
to every assignmenbf the involved variables a cosft) in E. Given a constrairt; and
an assignmerttof var(c;), ¢i(t) = k means that the constraint forbids the corresponding
assignment. Another cost means the assignment is perrhittdae constraint with the
corresponding cost. The cost of a total assignment (i.ell i@ variables) is the sum
of the costs of all the cost functions. A total assignmdatasolutionif its cost is less
thank.

In our model, as described in [7], the variables represenptisitionson the se-
quence of the elements of structure. The initial domain efuriables will therefore
be equal to the size of the sequence. The constraints erf@@eesence of the wished
elements of structure between the specified variables.ifitlis model, a solution is
a position for each variable, such that all the elements roicgire specified by the
constraints can be found. Our aim is to find all the solutiohthe problem, given a
maximum cosk.

We will not describe here all the constraints used, and wef@gus on theduplex
constraint. This constraint ensures that there exists afseteractions between our
sequence (thmain sequengeand another given sequence (theget sequengelt has
two parameters: the target sequence and the maximum nurhbeocs in the inter-
action set. Similarly to the edit distance, the number afrsrof a hybridization is the
number of nucleotides that do not interact with any othedentie, plus the number
of pairs of nucleotides associated through a non-allowtstaation. This will be the
cost given by the constraint. Thizplex constraint involves four variables;, X;, yk
andy. x; represents the start position of the main stgprepresents its end position,
whereasy andy; represent the start and end positions of the target stenolVe the
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problem, we use a depth-first branch-and-bound algoritlatmtiaintains a extension of
2B-consistency adapted to soft constraints, caileaind arc consistendBAC*, [9]).

In our implementation, thduplex constraint remains idle until thevariables are
assigned, and BAC* is only enforced on theariables. Waiting for th& variables to be
assigned means that we know the word on the main sequencegiliitake part in the
interaction. Thus, our aim here will be to design an algaomithat efficiently finds the
minimum number of errors between the given word and any sjuesee of the target
stem, bounded by thevariables.

3 Suffix arrays

The suffix tree is a tree with edges labeled with words. This d&ructure has been
widely used in pattern matching algorithms. Given a tex,ghths from the root node
of its suffix tree and its terminal nodes enumerate all thidaasf of this text (cfFig. 1(a)
for the stringAAACA). It is a particularly convenient data structure, sinceefjuires
linear space w.r.t. the size of the text, takes linear timauitdl, and searching whether a
word is contained in this text requires time proportiondhtig word (and is independent
in the size of the text).

However, given a sequendeof sizem, its suffix arraySalso requires a linear time
to build, takes as much time to find a word, but requires a Bi Epace, and lead to
less cache misses, thanks to the array structure [4]. Bysieauffix array is an array
where all the suffixes of a text are sorted through lexicolgiaprder (cf.Fig. 1(b)). Of
course, only the positioau f[i] of the first letter of each suffikis stored. Additional
information is also stored on each line of the array. Firet,dize of the longest common
prefix (denotedcp) between the suffix of linéand linei — 1 is inserted on liné (by
convention|cp[0] = 0).

(i,]) is called d-interval iff: lcp[i] <1, vk € (i, j],lcplk] > 1, Ik € (i, j],Icpk] =1,
andlcp[j + 1] < I. Thesd-intervals can be compared with the nodes of the suffix tree.
For example, the intervé®, 3), on figure 1(b), is correlated with the nodef the suffix
tree, and since this node represents the two-letters ward 2,3) is a 2-interval. An
interval represents an interior node i j, and it a leaf otherwise. Using linear space,
we can build in linear time a function that, givenlaimterval, gets their chilt!-intervals
(i, j’). With this function in hand, we can simulate a suffix tree vdtlr suffix array.
Using the same notations, we will dentgterdi, j) the subsequendgsu f[i]..suf[i] +
[], andletterd(i, j) — (', j')) the subsequendgsu f[i] +1..suffi] +1']. In our example,
since the interval$l,4) and(2,3) are correlated with the nodesand4 respectively,
letterg2,3) is AA andletterg(1,4) — (2,3)) is A.

4 An algorithm for approximate matching

4.1 First algorithm

This algorithm takes as an input the suffix ar@&y wordw of sizen and a maximum
edit distancenaxErr. It returns the minimum distance betwegmnd any subsequence
of T, ormaxErr+ 1 if this distance is greater thamaxErr. It uses a hybridization cost
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i i suf lcp text
al-interval T1 4 ¢
(1,4) 2 0 1 ACA
az-interval_,3 1 2JAACA
(2,3) 4 2 1(AC
53 0CA
letterq(1,4) — (2,3)) =A

(a) the suffix tree (b) the suffix array

Fig. 1. Two representations of the suffixesAAACA

matrix chyp, that, given two nucleotides, returns the hybridizationglty (0 being a
perfect hybridization)cins is the penalty cost for a non-hybridized nucleotide.

The main functiongetApproximateWord(), works as follows. On ling, we con-
sider anl-interval, between the lineisand j in the array. We suppose that we have
matchedpre f,, letters ofw so far, and we have encounterdsE rr errors. The function
getChildren() returns in constant time (by using some appropriate datatsire) all the
child intervals of(i, j). The line3 checks whether the considered cHildnterval is an
interior node or a leaf. In the former case, we try to maatterg(i, j) — (i’, j')) with
the remaining unmatched letterswfthrough the functiorgetApproximateWord() on
line 4. If the flag f of an element returned by this function is settee(line 5), then all
the letters ofv have been matched and we may have a solution. Otherwises)jine
have to continue the exploration. For that, we store theectigonfiguration (including
the bounds and thiep of the current interval, and the number of errors found spiffar
a stack, that we will examine afterwards. If the currentctinterval is a leaf (ling),
then there is only one possibility to match the remaining atuimed letters ofv. Thus,
we simply callgetCandidates() and only keep the solutions that match all the letters of
won lines.

Let us now explain the functiogetCandidates(). It gets two stringsy andb, of
sizes andt respectively, and tries to match them. It also takbErr as a parameter,
which gives the maximum allowed distance betwaeandb. Basically, it is a simple
Needleman-Wunsch dynamic programming algorithm. The diffgrence is that it
returns a list containing all the solutions with a cost IéssynbErr that are located on
the last row or on the last column of the dynamic programmirdrix If it is on the
last row, therb has been totally matched with a prefixwfif it is on the last column,
w has been totally matched with a prefixtofEach element of the solution list contains
the number of matched letters of the prefix, the score of thehmand a boolean that
states whether the solution is on the last row or on the |dahoo.
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Algorithm 1: Functions used for approximate search

Function getApproximateWord(suffix array S, string w, int mazErr): int
stack.push(0,n —1,0,0) ; min — mazxErr+ 1 ;
while (—stack.empty()) do
(¢, 7, prefuw,nbErr) «— stack.pop() ;
for (¢, ;') € getChildren(i, j) do
if (' # j/) then
list «— getCandidates(letters((i,7) —
(#',7),wlprefw..m — 1], mazErr — nbErr) ;
while (—list.empty()) do
(len, score, f) « list.pop() ;
5 if (f) then min «— min{nbErr + score,min} ;
else stack.push(i’,j', prefw + len,nbErr + score) ;
else
7 list — getCandidates(letters((i,j5) —
(#',4")), wlprefuw..m — 1], mazErr — nbErr);
while (—list.empty()) do
(len, score, f) « list.pop() ;
8 if (f) then min «— min{nbErr + score,min} ;
return min ;
Function getCandidates(string w, string b, int nbErr): list (int, int, bool)
for i € [0..s] do mat[i][0] =i ; for j € [1..t] do mat[0][j] =J ;
for i € [1..s] do for j € [1..t] do
matfi — 1)[j — 1] + eagb(wli — 11,5 — 1]), |
mat[i — 1][§] + cins, mat[i][j — 1] + cins '
for j € [0..t] do if (mat[s][j] < nbErr) then list.add(j, mat[s][j], true) ;
for i € [0..s] do if (mat[i][t] < nbErr) then list.add(i, mat[d][t], false) ;
return list ;

[ R VI

mati][j] — min {

4.2 Optimizations

We also have implemented several optimizations. First,lveeved that the exploration
often visits several times the sarmtervals with exactly the same configuration, or
even with less interesting configurations (they containevasrors, with the same num-
ber of matched letters). Obviously, some work is unnecégsime. To avoid it, with-
out using too much space, we store at each node the last catfayuthat visited it.

Second, we propagate information betweenthariables. For example, if we have
some information about thg variable, then we may shrink the domain of thevari-
able, knowing the size of, and the number of allowed errors.

Then, we tried to take advantage of the information givenHg/WCSP. For in-
stance, the solver might have reduced the bounds ofithariable (which represents
the beginning of the duplex in the target sequence), andinfasmation should be
used to prune some branches of the suffix array. To achieveyimamical pruning, we
added on eachinterval (i, j) the smallest interval of that contains the subsequence
letterdi, j), so that the values of; that have been deleted by the WCSP solver will
never be explored by the suffix array.
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A first, rough, evaluation of the worst time complexity of @lgorithm iso ((m+
maxE rr™maxEr-1gmaxem) whereg is the size of the alphabet. On real life examples,
where the main and the target sequences contain sevetiahsitif nucleotides, enforc-
ing this constraint usually takes not more than a few secontiie whole execution of
the program. This is all the more encouraging as our prognaasill the solutions of
the problem.

5 Conclusions and future work

In this paper we have presented a new constraint, dedicatbibtinformatics prob-
lems (or, more generally, to text-based problems), thag sgffix arrays, in an attempt
of combining constraints with pattern matching algorithinghe future, we would like
to compare our method with other existing ones, and prowadarm empirical evalua-
tion of our approach. You can use the tool that implementslédseribed framework at
carlit.toulouse.inra.fr/Darn/index.php.
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Supertree Construction with Constraint Programming:
recent progress and new challenges

Patrick Prosser

Department of Computing Science, University of Glasgovatiand.pat@dcs.gla.ac.uk

1 Introduction

One goal of biology is to build th@ree of Life(ToL), a representation of the evo-
lutionary history of every living thing. To date, biologishave catalogued about 1.7
million species, yet estimates of the total number of spge@ages from 4 to 100 mil-
lion. Of the 1.7 million species identified only about 80,3Q&cies have been placed
in the ToL [10]. There are applications for the ToL: to helglarstand how pathogens
become more virulent over time, how new diseases emergeoamtognise species
at risk of extinction [10,7]. One approach to building the_Tis to combine smaller
trees into “supertrees”. Phylogenetic trees have beerettéar relatively small sets of
species [14]. These trees are then combined together iptytsees.

In 2003 lan Gent, Barbara Smith, Christine Wu Wei, and mysgibrted the first
constraint programming model for supertree construct®in This was essentially a
proof of concept, showing that constraint programming d@ddress this problem in
principle although our implementation was somewhat inieffic This has recently been
re-implemented using a faster constraint programmindtb@Choco, a java constraint
programming tool [5]) and has allowed us to look at largerbpems and get a better
idea of the limits of this encoding. Furthermore, with thenimplementation we are
able to demonstrate the flexibility of our model, somethingttshould be expected
when using a versatile technology such as constraint pnugiag.

The remainder of this article is organised as follows. Firstintroduce the prob-
lem of supertree construction and briefly present the caimétencoding of [3]. Next,
| present a study that attempts to reproduce the resultsitafitoy a relatively large
supertree of sea birds, reported by Kennedy and Page in {ogn describe a richer
version of the supertree problem, where ancestral datemeleled within species
trees [12] and show how the constraint model can be modifiadidoess this. Finally,
we look at what limits these models, what we might do to bréa&ugh those limits,
and then draw to a conclusion.

2 Previous Work

The problem is to combine leaf labelled species trees, witene is an intersection
in the leaf labels of those trees. The trees must be combimédtwespecting all the
arboreal relationships in each tree. An example of thisaswshin Figure 1, as a rectan-
gular cladogram displayed using Rod Page’'s TREEVIEW [9F ™o input trees are
A and B from [6]. One of the first techniques for supertree tatsion is the OneTree
algorithm of Ng and Wormald [8] and is based on the build dthar of [1]. OneTree
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Procellaria cinerea
Bulweria bulwerii
Puffinus gravis
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Puffinus tenuirostris
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Macronectes giganteus
Fulmarus glacialis

Fig. 1. Two species trees made up of sea birds, and on the right atse#rat combines both.
Shared species are highlighted in boxes. The trees corméspd and B in [6].

is based on the observation that in a tree any three leaf rdefaee a unique relation
with respect to their most recent common ancestor (fmsizch thamrea(a, b) is the
interior node furthest from the root that has both leaf naglesdb as descendants.
Given three leaf nodes (labelled a, b, and c) one of fouricglatmust hold:

(=Y

mrca(a, b) > mrca(a, c) = mrcab, c)
mrca(a, c) > mrca(a,b) = mrca(c, b)
mrca(b, c) > mrca(b,a) = mrca(c, a)
mrca(a,b) = mrca(a, c) = mrcab, c)

N

~~ o~
A W
D — —

This is shown pictorally in Figure 2. Using the terminologgrh [8] we can say that
in (1), (2) and (3) we have the triplggb)c, (ac)b, and (bc)a® and in (4) we have
the fan(abg). Prior to applying the OneTree algorithm two (or more) spetiees are
broken up into triples and fans via the BreakUp algorithm §id the supertree is then
constructed (if possible) using this as input.

1 Note that mrca is sometimes refered to as Ica, for least cgdbaommon ancestor.

2 |t is assumed labels a, b, and c are all differemtca(a, b) delivers an actual interior node in
the tree and that inrca(a, b) is equal tox andmrca(b, c) equalsy, x > y if node x exists at a
greater depth in the tree thgnandx =y if and only if x andy are the very same node. Note
also that if relation (4) is omitted trees are forced to beabin

3 ... where(xy)z can be read as “x is closer to y than z”
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Fig. 2. The four possible relationships between three leaf nodestiee: i.e. the three triples
(ab)c, (ac)b, and(bc)a, and the far{abc).

In [3] we presented the first constraint programming modettics problem. This
was based on the rather simple observation that any roatedgultrametric*. That
is, if interior nodes of a tree are labelled with their depththat tree then any path
from the root to a leaf node must be a strictly increasing saqe, and in [4] this is
called a min-ultrametric tree. Further, in [4] it is provdtht an ultrametric tree has
an ultrametric matrix. In an ultrametric matr, for any three indices, j, k where
i #] A i#Kk Aj#kone of three relations must hold

Mij > Mjk = Mjk
Mik > M j = Mjk
Mj7k > Mi,j = Mi,k
Mi j = Mjk = Mjk

In an ultrametric tredl’, and its corresponding ultrametric matii%, given two leaf
noded andj in T, mrca(i, j) will have the same value (and that might possibly be depth
inthattree) ad/; j. In[4] itis also proved that an ultrametric matrix has a esponding
ultrametric tree, and the proof given is constructive arttiésefore an algorithm.

Our constraint encoding starts by producingiain matrixM of constrained integer
variables, each with a domain 1 to- 1. Amongst the trees to be combined there are
exactlyn species and each species is mapped to an integer. TheMuisagymmetric
such thatV j is the same constrained integer variabl®/fgs and all diagonal elements
M, are preset to zero. An ultrametric constraint is blanketedss the array. By that |

4 A metric on a set of objects is given by the assignment of ameadberd(x,y) to every pair
of objectsx andy such thatl(x,y) has the following properties:

— d(x,y) >0forx#£y
— d(x,y) =0forx=y

- Wxy [d(x,y) = d(y.x)]
— Vx,¥.z[d(xy) < d(x,2) +d(y.2)] (triangular inequality)

To be ultrametric we have the additional propekty;y,z [d(x,y) < maxd(x,2z),d(y,z)].
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mean that for all, j,k where 1<i < j < k < nthe following constraint is posted:

Mij > Mjk =MV
Mik > Mjj=MjkV
Mjk > Mjj =MV

Mij = Mjk =Mk

The species trees are then broken up, using the BreakUpthalgdB8], into triples and
fans. If in a tree we have the fai,s1,...,Sm), i.€. speciesp to sy have the same
most recent common ancestor, then the sét@f 3-fans{(s,s1,%), (S,51,%); -+
(%0,51,Sm) , -+, (Sn—2,Sm-1,Sm) } are produced by our BreakUp algorithm. These triples
and 3-fans are then used to break disjunctions in the abaatreint. TheM variables
are then the decision variables, and a solution is foundugsy a solution exists,
the resultant supertree is constructed from the ultrametaitrix using the algorithm in
chapter 17 of [4].

3 A Supertree of Sea birds

One obvious limiting factor of our constraint model is iteehsize. It generated(n?)
constrained integer variables a®d"Cs) ultrametric constraints as above. A study was
performed to determine just how far this model could be pdshide model was re-
coded in JChoco, a free java constraint solver [5], and catobmloaded from [13]. An
attempt was made to reconstruct the supertree producedrneldg and Page [6]. The
data set is seven species trees of sea birds, identified asdgtto G. This is shown in
Table 1. A table entry gives the number of species involveadpiair of trees, and along
the diagonal the number of species in an individual treeekkample, combining tree A
(17 species) with tree B (14 species) results in a supertithe2® species. Therefore A
and B have 2 species in common. A table entry in closed rouackkts shows that the
two trees are incompatible. In particular, trees A and C acempatible, B and C are
incompatible, C and G are incompatible, as are D and G. Ary@fia dash (-) means
that the data set was too large to model.

A[B|[C[DI|E[F|G
17 29((32)| 47 |- | 31| 46
29| 14((29) 42 |- |30 40
(32)[(29)] 20 [ 50 | - | 34 |(44)
47425030 - | 44 |(56)
- - - - 90| - -
31[30|34|44-]16|(38)
46 | 40 |(44)|(56)| - |(38)] 30

QM| mo|O|w >

Table 1. Size of species trees and supertrees for the 7 trees in [6]diHlgonal gives the size of
individual trees. Off the diagonal is given the size of thpestree, in brackets if incompatible,
and a dash if too large to model.
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In the Auk paper [6] Kennedy and Page went back to the undeylgvidence to suc-
cessfully combine all of these trees. | cannot do that, aochffable 1 it can be seen
that the best that can be done is to combine trees A, B, D aritie trees can be con-
structed in a number of ways, i.e. by adding A to B to get superfB, adding D to F
to get supertree DF, and then combining supertrees AB and g was in fact done,
however there is a risk associated with this. Supertree Aisinique, and neither is
DF. Furthermore AB and DF may be incompatible! This was destrated by Sander-
son, Purvis, and Henze in [11]. The input program was modgiezh that it takes as
input a file containing names of trees to be combined, i.eettteding takes as input a
forest. This forest is then broken up into triples and 3-ta@f®re solving. The resultant
supertree is shown in Figure 4 at the end of this paper. This &bout 20 seconds to
produce on a 3 GHz processor. The supertree has 69 species.

4 Ancestral Divergence Dates

In [12] ancestral divergence dates are added to the inteodes of trees, where dates
may be relative or explicit. The RANKEDTREE algorithm (posed in [2]) takes as
input two species trees where interior nodes are assigmegeinvalues such that if the
divergence of species A and B predates the divergence aespéand Y then the most
recent ancestor of A and B will be assigned a value less thmmthst recent common
ancestor of species X and Y.

This is trivial to incorporate into the constraint modelé assume that trees have
already been ranked, and some or all interior nodes havelabelted, then for each
pair of species (X,Y) in the leaf set of a tree we get the vafuma(i, j) wherei and
j are the integer indices corresponding to species X and eotisply. The constraint
integer variableV; j is then set to the value ofirca(i, j) if and only if mrca(i, j) is
labelled. The tree is then broken up into its triples andr&fand these constraints are
then used as disjunction breakers. In [13] this has beeneimghted as the RBuild
(Rank Build) method.

In fact, we can go one step further. We associate a decisitaileD; ; x with each
ultrametric constraint and post the following constraints

Di,j7k: 1« Mi,j > Mi,k: MLk
Di,j,k:2 — Mi,k > Mi,j = ijk
Dijk=3 < Mjx>Mj=M
Dijk=4 < Mjj=Mjk=Mjk

Therefore, rather than instantiate the variabldd we instantiate the disjunction break-
ing decision variableB. As a consequence of this, in a solution variabldd imay have
ranges of values. This is demonstrated in Figure 3. On theuhef right we have two
ranked species trees of cats taken from [12] (where cat namaesgiven three-letter

5 Table 1 can be considered as an adjacency maimba graph where an entdy j notin closed
round brackets means that there is an edgpe signifying that tred is compatible with tree
j. In the corresponding graph éfthe largest clique has 4 vertices and those vertices are A, B,
DandF.
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abbreviations). On the right we have one of the 17 possilsieltant supertrees. Note
that the most recent common ancestor of PTE and LTl is latbelléh the range [6..9].
In total 7 of the 17 solutions contain interior nodes withgas. Without this 30 so-
lutions are produced. This addresses one of the issued iai§E2], i.e. to enumerate
all supertrees compactly. Our constraint model has beehegumodified such that a
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Fig. 3. Two ranked trees of cats taken from [12] and on the right ortbe1.7 possible supertrees,
this one with the most recent common ancestor of PTE and Wihga range of values.

penalty is taken when a decision varialilg; x takes a value 4, i.e. when a fan is se-
lected. The penalties are then minimised to produce thesapehat contains the least
number of fans. This might not be biologically sound but it lieeen implemented to
demonstrate the versatility of the model. Again, this islatéde at [13].

5 Limitations, Future Work, Conclusion

Clearly the model is self limiting by its cubic size. There &(n®) ternary constraints
and the same number of variables when we address the optonigaoblem (min-
imising fans). The largest trees we have built have aboup@giss. One obvious next
step is to make this model more compact, and this might be bgnmplementing a
specialised ultrametric constraint that involves thregaldes. This constraint might
propagate more efficiently than as at present (using topftkiitives) and each of the
constraints might take less space. However, we still l@(#) of these constraints.
Therefore the step after that might be to design an n-argnaktric constraint that
takes as arguments the< n arrayM.

Our model is now available, being re-implemented in javagsiChoco [13]. We
have been able to demonstrate the versatility of the cdnsweogramming technol-
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ogy, by taking a model that essentially does the same as @egifrodified it to take a
forest as input, dealt with ancestral divergence dates) abke to produce all solutions
compactly, and address an optimisation problem (althohghnmight not be biologi-
cally sound). However, the model is limited in what it can gatls sheer size, and this
should be addressed soon.

Where to next? In [12] the authors pose the question “whateominformation
is carried in all these supertrees?” | believe that constq@iogramming will be the
technology to address this next challenge.
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Fig. 4. The supertree constructed using the trees A, B, D, and F fnersttidy in [6] via the forest
build method in [13].
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Abstract. We introduce depth-first search with dynamic decomposftonount-
ing the solutions of a binary CSP completely. In particuls,use the method for
computing the number of minimal energy structures for ardiscprotein model.

1 Introduction

The number of minimal energy structures of proteins in arditecmodel is an impor-

tant measure, which is strongly related to protein stabilihe enumeration of optimal
and suboptimal structures has applications in the studyaiém evolution and kinet-

ics [12,20,27,26]. The prediction of protein structuresimplified protein models is

a complex, NP-complete [6] combinatorial optimizationtgeam that received lots of

interest in the past, e.g. [16,28]. Importantly for our wbeke, it can be successfully
modeled as Constraint Satisfaction Problem (CSP) [2,4].

Recently, counting solutions of a CSP and related problesitsed a lot of inter-
est over considering only satisfiability [1,9,18,22]. Thagartly due to the increased
complexity of counting compared to deciding on satisfigpill9]. For general CSPs
and in particular for protein structure prediction, sotyia NP-complete. However, the
counting of CSP solutions is an even harder problem in thepbexity class #P. This
class was defined by Valiant [24] as the class of countinglpm$ associated with
nondeterministic polynomial time computations.

Standard solving methods in constraint programming likptbd-irst Search (DFS)
combined with constraint propagation are well suited faedaining one solution, but
leave room for saving redundant work when counting all sohs& Here, we present
a method that is especially tailored for this case. Appledhe CSP formulation of
structure prediction, it improves exhaustive counting endmeration of optimal pro-
tein structures.

Basically, our new methodynamicallydecomposes the constraint (sub-)problems
that emerge during the search into independent partialgmbalong connected com-
ponents of the problem’s associated constraint graph.r&&epeounting in the partial
problems still allows to infer the number of solutions of ttemplete problem.

Instead ofstatically exploiting only properties of the initial constraint gragpty-
namic strategies analyze the emerging constraint grapfisgaihe search and employ
their features. We believe this is a major advantage in mamgtcaint problems. In
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particular, if the initial constraint network is very dense in our structure prediction
problem), static methods don’t make an impact.

Decomposing into connected components and, more generilising the special
structure of the constraint graph is discussed already fon@time. In the beginning,
[13] proposed statically decomposing a CSP and solving &négbproblems indepen-
dently. As a more recent example, [9] introduced AND/OR sleéar solution counting,
again this approach relies on static analysis of the canstyeaph. To our knowledge,
dynamic decomposition was discussed more thoroughly amywéry special cases.
[18] showed that adding this idea to counting models of 3-®#Ta Davis-Putnam
procedure [8] results in a very successful new strategyil&indeas are discussed for
SAT-solvers in [7].

As our main contribution, we demonstrate that the ideas gfleying the graph
structure dynamically are applicable to binary CSPs, eneluding certain global con-
straints, and are useful for constraint programming. Irtipalar, this allows us to use
the strategy in the complex problem of protein structurentiog. Furthermore, we dis-
cuss several ideas going beyond previous approaches. &opéx, dynamic decompo-
sition can yield a more compact representation of the swiugpace. We discuss how
analyzing the constraint graph can further improve cogndind how search strategies
can be tailored in order to maximize the benefits from outetra

2 Dynamic Decomposition

2.1 Definitions

A Constraint Satisfaction Problem (CSB) a triple (x,?,c) of the variablesx =
Xi1,...,Xn, their associated domaing = Dy,...,Dy, i.e. finite sets of values, and a
finite set of constraints on the variables itx . A solutionof the CSP is an assignment
of each variable inx to one value in its associated domain. A variaklés determined
by 0, iff its associated domaib; in © is singleton. We callx, D, ¢) solved iff each
variable inx is determined by . The CSP idailed, iff at least one of the variables in
X has an empty domain. subproblem of a CSPx,»,¢) is a CSP(x,D,¢’), where
cCcl.A CSP(x, D ,C)is calledpartial problem of(x, D, ¢), wherex C x andD
andc are restrictions ob andc to x , respectively. We call a CSiRary, iff each of its
constraints is at most n-ary. For a constrainive denote byX(c) the set of variables
of c. The constraint graphof a binary CSP(x, D, ) is the undirected grap{V,E)
defined byv = x andE = {(X. Xj) € x?|ce ¢, {X,Xj} C X(c), X #Xj} Two partial
CSPs(x,D,c) and(x’, D', ¢ ') of (x, D, ) areindependeniff XNx'=0and there
is no constraint in ¢, WhereX( ) shares elements with andx’.

2.2 Counting DFS
The usual approach to counting solutions of a CSP is by DF8nmbination with con-

straint propagation. As preparation to our approach, wegutea recursive formulation,
which we temporarily call Counting Depth-First Search (&)F
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1: function CDFS(, D, ¢)
2 (D', ") + PROPAGATHX ,D, ()
3: if ISFAILED (x,D’,c’) then return O
4; else ifISSOLVED(x , ') then return 1
5 else ¢+ SELECT(x,D’)

6 return CDFS(x,»’,c’u{c}) + CDFS(x,p’,c’'U{—c})
end if

8: end function

In our formulationCDFS(x, D, ¢) yields the number of solutions {oc, D, ¢). Note
that the function performs full propagation of constraiotthe domains (also, entailed
constraints of are removed ir’) in line 2. The tests for failure and determination by
the propagated domains’ are in line 3 and 4. Line 6 allows the algorithm an arbitrary
branching selection; often one selects a variaghlérom x and a valued € »; and
enumerates by = (X = d). Finally, the solution count of each subproblem adds to the
total number of solutions in line 7.

((XV’D,O

N9

X =A,B,C,D A B
D=3, B4 012,012
C=A#B,B#C,C#D,D#A p (D=1 ¢

A GO
D = ¢

B=3) | (B#3)

®=n] D71

(NEIRENR)
p (D=0 ¢
=1 ] D71
A]G]s
p[2][1]c

LNER|ENp
p[z][i]c

ABIEs
p[[E]c

D @=c

D=1 | D71)

Al B]

NER|ENR
p[[2]c

A]EDB
b2 c

AGIGET B
p[r][2]c

Fig. 1. DFS search tree traversed by CDFS.

We provide an example CSP and a corresponding search tr&eDiéf solution
counting in Figure 1. Each node corresponds to a propagatgmiablem of the initial
problem given in the root and is visualized as a constrailyr

2.3 Dynamically Decomposing DFS

Even in the minimal example of Figure 1, the main problem oFSDs visible. The par-
tial problem on variable€ andD is solved redundantly in each of the search branches.
This could be saved due to the independence of the two pprtalems on variables
A andB and variablesC and D. Our new methodecomposing Depth-First Search
(DDFS)avoids such unnecessary work.

1: function DDFS(x, D, )

2: (D', ") «+ PROPAGATHX ,D, ()
if ISFAILED (x,D’,¢’) then return O

else ifIsSOLVED(x , »') then return 1
elses— 1 > initialize counter

akrw
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6: D « DEcOMPOSEX,D',¢)

7: forall (x,»,c) €D do

8: C+ SELECT(x,D) o

9: s = s (DDFS,p,cuU{c}) + DDFS(x,D,c U{-c}))
10: end for

11: return s

12: end if

13: end function

The code differs from CDFS only in lines 5 to 11, which cori@sgp to the decom-
position into independent partial problems. In line 6, wenptetely decompose the
propagated CSPx,D’, ¢’) into its pairwise independent partial problems.

Fig. 2. Search tree traversed by DDFS.

Note that the independent partial problems corresponatodhnected components
in the constraint graph. Consequently, our decompositaonlze computed in linear
time by depth first traversal of the graph. As a technicality,fuse all solved partial
problems to an (arbitrary) unsolved partial problem. As aseguence, all remaining
problemsin® are unsolved. In line 1E,is the product of the solution counts of all CSPs
in ©. Since® is a complete decomposition ¢k, D', ¢’) into pairwise independent
partial problemss equals the number of solutions for , o, ¢). Each solution of this
CSP is a combination of a selection of one solution from eactigd problem.

Using this extension the CSP in Figure 1 can be solved as givEigure 2 with
DDFS avoiding the redundant work. With only one decomposgtiand two branchings
instead of five branchings the overall solution number caddtermined.

Note that a simple modification of the counting algorithmgsea new way to retain
the set of all solutions. Instead of adding and multiplyinfytion counts, we can build
up a tree-like compact representation of the solution sgacamples are given at the
bottom of Figure 2 and later in Figure 3c. Of course, the casgipn does not improve
the theoretical worst-case space complexity. Neverthglles space savings are of equal
size as potential reductions of the search tree by our methddan be large in practice.
In order to finally enumerate the solutions, the compactasgmtation is expanded.
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2.4 Further Improvements

As a first important improvement, we can derive that a CSP basotution as soon
as one of its independent partial problems has no solutibis iE also reflected in
multiplying the solution counts. A simple improvement isskip counting in further
partial problems, whenever a partial problem returns notiois.

By this, the order of the partial problems is critical for aling unnecessary work.
Optimally, partial problems with high chance of failing @eplored first. The ordering
can be based on heuristics analogous to the variable sgldatibranching. Additional
savings result from checking if all partial problems arasdiatble, before we start to
count all solution of any partial problem.

The solution number for partial problems with an empty setafstraints can be
derived directly without further decomposition or enuntiera In this case, the number
of solutions can be determined as product of the domain.sizgs effect is already
shown in Figure 2.

DDFS profits most from early and well balanced decompositidmerefore, new
strategies for variable and value selection are desirdlalesupport good decomposi-
tion. Constraint graph based variable selection, e.gctleteof articulation points, can
guide the variable selection and domain splitting instdfasingle value branching may
lead to sturdy decompositions. Even deeper analysis ofdhsti@int graph structure
can guide the heuristics further. Many techniques are djr@avestigated and proved
beneficial for the static case [14,15,17,23]. For exampéeceuld strive for the break-
ing of circles in the constraint graph in order to obtain a tséructure. Solutions of
tree-structured CSPs can be enumerated more efficientlg. tNat the detecting when
the graph becomes a tree is for free if we already look forlydgrompositions.

Albeit presented in this fashion, DDFS is not completelytrieted to binary con-
straint graphs. Many widely used n-ary and global conssgangAl1Different)can
be used as well, if a suitable binarization is at hand [5,2ti¢ method can then employ
the strong propagation of the global constraint and useghmatically equivalent set
of binary constraints for checking dependencies in thetcaim$ graph.

3 Application to Structure Prediction and Results

In [4], a constraint-based approach for exact structurdiptien in theHP-modelof
the cubic and face-centered cubic lattice has been presdntthis simplified protein
model, the amino-acids of the protein are classified mtdrophobic (H)and polar
(P) ones and each is represented by a single point, its centeass.rt models water-
soluble globular proteins. The folding of such proteins &imty driven by hydrophic
forces, that leads to the emergence of compact hydrophobés cAstructurein this
model is a placing of the H/P-monomers to nodes of the laféag 3D-cubic lattice),
such that successive monomers are lattice neighbors ahdneae is only occupied
once 6elf-avoidanck For a structure the set of positions of all H-monomers lkeda
its H-core and corresponds to the hydrophobic core of real proteins. drrergy is
calculated as shown in Figure 3a by counting HH-contacts. &tample structure for
the sequence HPPHPPHPHP in Figure 3b has an energy of -2.
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Fig. 3. a) Energy function b) Structure of square lattice HP-mod&in{onomer: black, P-
monomer: white, structure back bone: grey, HH-contactedytc) Compression of the structure
space representation for PHHP from 9 structures down to 3dartBal structures.

The prediction ofoptimal structures (with minimal energy) can be formulated as
CSP and was namegdonstraint-based Protein Structure Prediction (CPEBY]. It is
a fast approach for enumerating all these structures fareandi P-sequence using DFS.

Its main idea is the pre-calculation eabmpact H-coresThese can be used in
the approach since optimal structures tend to form maxjin@mpact H-cores. The
construction of compact H-cores is a hard problem by itselfich was solved us-
ing constraint-programming too [3,25]. Since the compamhipsets of a given size
are sequence-independent, they can be pre-calculatedsaddfar the last sequence-
specific part of CPSP. For the remaining task, it is necessasgarch for self-avoiding
walks with the restriction that H-monomers are placed inweegiH-core. Therefore,
we introduce a variable for each sequence position witlicéatiodes as values. H-
monomers are constrained to H-core positions, P-domainietiwith a finite domain
of non-H-core positions. The self-avoiding walk conditian be expressed by a global
Al1Different constraint and a sequence of neighbor constraints, whitlheanod-
eled asXj — Xi+1 = Ni. There,X; represents the variable for thitn sequence position
andN; contains all possible lattice specific neighbor vectors

CPSP is effectively solved using DFS and so CDFS for solutmmting can be
applied too. As mentioned before the number of optimal stines of a protein is an
important measure. It provides information about the ottaraf the energy landscape
and degeneracy and can be used for their further invesiigHtil,10,12,20,27,28].

As discussed before, a semantically equal set of binaryigléy constraints can be
used to represent the glohal1Different constraint in the constraint graph. DDFS
was applied using problem specific heuristics in additiomide degree and articulation
point identification. A first prototypical implementatioses ILOG Solver 6.1, We
present some results from this program in the followingdabl

test suit¢branchfail|time|pos. timédecomp.
T33 ‘ 7.8 ‘0.7‘ 1.5‘ 4.7 ‘ 42

T54 7.7 (0917 5.2 26

We investigated two test suites T33/T54 with random HP-saqes of length 33/54
in the cubic lattice. To show the contraction of the seareh the ratio of branchings
CDFS/DDFS is given in columbranch It can be reduced by decomposition up to a
factor of 8 in average with the presented average numberaafrdpositions. Due to a

1In practice, lattice positions and the neighborhdbare indexed by integers such that standard
constraint solvers for finite domains over integers areiegple.
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non-optimal partial problem ordering DDFS yields slighttprefails than CDFS. This
can be avoided by the mentioned improvement of first chectdngne solution for
each partial problem before its complete investigatiore fidtio of the mean time con-
sumption of CDFS/DDFS in columiimeillustrates the reduced number of branching.
Since the currentimplementation is not at all optimized tttne-behavior can certainly
be improved. The time ratio in colunpos. timeis calculated using DDFS without
versus with decomposition. It demonstrates that the plessgieedup using DDFS for
faster implementations is around 5 times. We expect futheedups and search tree
reductions using better partial problem ordering and téeiaelection heuristics.

4 Discussion

We presented a general method Decomposing DFS (DDFS) fopletsy counting
and enumerating the solutions of a binary CSP by dynamieaihoiting decomposi-
tion of (sub-)CSPs. Furthermore, we demonstrated that #taed can be generalized
such that even global constraints can be used. As we coulg, shw strategy of dy-
namically decomposing the (sub-)problemsinto partiabfgms reduces the search tree
significantly. Since partial problems can be efficientlyed#¢d using well established
graph algorithms, this results in a speed up of the searcyorigkthis, we discussed
how the graph structure can guide the variable and valuetgaiein order to achieve
many balanced decompositions, e.g. by the identificatioartifulation points. Such
considerations go beyond previous work on constraint gdgglomposition.

The application of DDFS to the CPSP problem shows the largalihties of
the method. First results with a prototypic implementatdneady show a significant
speedup. Improving our ability for counting and enumetiptimal structures has im-
portant implications for the investigation of protein avtibn and the folding process.

We could give evidence that the more general approach ofrdigadly analyzing
the constraint graph during the search and employing itsiapstructure has a large
potential for solution counting in constraint programmifig our conviction, exploring
these possibilities even further is an interesting fieldfditure research.
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