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Preface

Modern molecular biology increasingly relies upon computational methods for analyz-
ing and dealing with its vast amounts of biological data. Dueto these demands of life
sciences, bioinformatics (aka. computational biology) itself is a challenging and fast
growing area of research. By promoting and more and more enabling biological and
medical research, it is of utmost importance for our understanding of life. Major contri-
butions to this discipline can have thousands of positive effects in medicine, agriculture,
or industry. To pick out only a few examples, bioinformaticstackles problems related
to:

• Recognition, analysis, and organization of DNA sequences
• Biological systems simulations (for metabolic or regulatory networks)
• Prediction of the spatial conformation of a biological polymer, given its sequence

of monomers (in particular for proteins and RNA)

All these problems can be naturally formalized using constraints over finite domains
or intervals of reals. Biology is a source of extremely interesting and challenging prob-
lems that can be encoded exploiting the application of recent and more general tech-
niques of constraint programming. In this framework, some problems that have been
successfully tackled are:

• The fundamental bioinformatics problem of sequence alignment can be solved by
recent inference based constraint methods

• Biological systems simulations can be easily designed using concurrent constraint
programming, and

• the constrained-based prediction of protein conformations promoted the develop-
ment of new search strategies, new constraint solvers, and general symmetry break-
ing.

The workshop WCB06 ties in with the successful CP workshops on Constraints and
Bioinformatics/Biocomputing held in CP’97 and CP’98 and itis an immediate follow
up to the workshop WCB’05 (ICLP’05).

The main aim of this workshop is to share recent results in this area (new constraint
solvers, new prediction programs) and to present new challenging problems that can
be addressed using constraint-based methods. Among the papers submitted, seven of
them have been judged deserved to be presented. Moreover, the workshop experiences
the invited talk by François Fages (INRIA Rocquencourt, France) who describes how
temporal logics with constraints can be used to express the biological properties of
cellular processes, to model-check them, and to search for reaction rules and parameters
satisfying them.

Alessandro Dal Palù
Agostino Dovier
Sebastian Will

i



ii



Contents

On Using Temporal Logic with Constraints to Express Biological Properties of Cell
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 1

François Fages

Modeling Biological Systems in Stochastic Concurrent Constraint Programming . . . . 6
Luca Bortolussi and Alberto Policriti

Chemera: Constraints in Protein Structural Problems . . . . .. . . . . . . . . . . . . . . . . . . . . . . 30
Ludwig Krippahl and Pedro Barahona

Exploiting Model Checking in Constraint-based
Approaches to the Protein Folding Problem. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .46

Elisabetta De Maria, Agostino Dovier, Angelo Montanari, and Carla Piazza

Global Constraints for Discrete Lattices . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 55
Alessandro Dal Pal̀u, Agostino Dovier, and Enrico Pontelli

Suffix arrays and weighted CSPs . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 69
Matthias Zytnicki, Christine Gaspin, and Thomas Schiex

Supertree Construction with Constraint Programming:
recent progress and new challenges . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 75

Patrick Prosser

Counting Protein Structures by DFS with Dynamic Decomposition . . . . . . . . . . . . . . .83
Sebastian Will and Martin Mann

Author index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .91

iii





On Using Temporal Logic with Constraints to Express
Biological Properties of Cell Processes

François Fages

INRIA Rocquencourt, France
Francois.Fages@inria.fr

Abstract

One promise of systems biology is to model biochemical processes at a sufficiently
large scale so that the behavior of a complex system can be predicted under various
conditions inin silico experiments. The language approach to systems biology aims
at designing formal languages for describing biochemical mechanisms, processes and
systems at different levels of abstraction, and for providing automated reasoning tools
to assist the biologists [1].

The pioneering use of theπ-calculus process algebra for modeling cell signalling
pathways in [2], has been the source of inspiration of numerous works in the line of pro-
cess calculi [3] and of their stochastic extensions [4]. Thebiochemical abstract machine
BIOCHAM1 [5] has been designed as a simplification of the process calculi approach to
model biological processes, using a language of reaction rules that is both more natural
to the biologists, and well suited to consider different dynamics and use model-checking
techniques [6].

In BIOCHAM, the rule-based language is used for modeling biochemical networks
at three abstraction levels:

1. the boolean semantics, where one associates to each object (protein, gene, etc.) a
boolean variable representing its presence or absence in the system, and the reaction
rules are interpreted by a highly non-deterministicasynchronous transition system
representing competition between reactions;

2. the concentration semantics, where one associates to each object a real number rep-
resenting its concentration, and the reaction rules are interpreted with their kinetic
expressions by a set of non-linear ordinary differential equations (ODE);

3. the stochastic semantics. where one associates to each BIOCHAM object an integer
representing the number of molecules in the system, and the rules are interpreted
as a continuous time Markov chain.

One striking feature of this multi-level approach is that inthe three cases, temporal
logic can be used to formalize the biological properties of the system, and verify them
by different model-checking techniques [7]. The thesis is that, to a large extend, one
can make the following identifications:

1 BIOCHAM is a free software implemented in Prolog and distributed under the GPL license. It
is downloadable on the web athttp://contraintes.inria.fr/BIOCHAM
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biological model = transition system,
biological property = temporal logic formula,

biological validation = model-checking.

At the boolean level, theComputation Tree LogicCTL [8] allows us to expressqual-
itative propertiesabout the production of some protein (reachability), the checkpoints
for its production, the stability or oscillations for its presence, etc. These properties
are known from biological experiments in wild-life or mutated organisms. Some of the
most used CTL formulae are abbreviated in BIOCHAM as follows:

– reachable(P) stands forEF(P);
– steady(P) stands forEG(P);
– stable(P) stands forAG(P);
– checkpoint(Q,P) stands for !E(!Q U P);
– oscil(P) stands forAG((P⇒ EF !P)∧ (!P⇒ EF P)).

In this setting, such properties can be checked with state-of-the-art symbolic model
checkers such as NuSMV using binary decision diagrams [9]. The performances ob-
tained on a large model of the mammalian cell cycle control after Kohn’s map [10],
involving 800 rules and 500 variables, have been shown to be of the order of a few
tenths of seconds to compile the model, and check simple CTL formulae [11].

At the concentration level, we use a first-order fragment of Linear Time Logic
(LTL) with arithmetic constraintscontaining equality, inequality and arithmetic opera-
tors ranging over the real values of concentrations and of their derivatives. For instance
F([A]>10) expresses that the concentration ofA eventually gets above the threshold
value 10.G([A]+[B]<[C]) expresses that the concentration ofC is always greater
than the sum of the concentrations ofA andB. Oscillation properties, abbreviated as
oscil(M,K), are defined as a change of sign of the derivative ofM at leastK times in
the time horizon:
F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...))). The abbre-
viated formulaoscil(M,K,V) adds the constraint that the maximum concentration of
M must be above the thresholdV in at leastK oscillations.

Under the hypothesis that the initial state is completely defined, numerical integra-
tion methods (such as Runge-Kutta or Rosenbrock methods) provide a discrete sim-
ulation trace. This trace constitutes a linear Kripke structure in which LTL formulae
with constraints can be interpreted and model-checked [7].Since constraints refer not
only to concentrations, but also to their derivatives, we consider traces of the form
(< t0,x0,dx0/dt >,< t1,x1,dx1/dt >,...) where at each time point,ti , the trace asso-
ciates the concentration values of thexi ’s and the values of their derivativesdxi/dt.

Beyond making simulations, and checking properties of the models, the temporal
properties can also be turned into specifications and temporal logic constraints for auto-
matically searching and learning modifications or refinements of the model when incor-
porating new biological knowledge. This is implemented in BIOCHAM by a combina-
tion of model-checking, search and machine learning techniques in the three abstraction
levels.

For instance, in a simple continuous model of the cell cycle after Tyson [12], the
search of parameter values for kinetic parametersk3 andk4, so that the concentration
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of the cyclinCdc2-Cyclin p1 oscillates three times in the time horizon 150, can be
formalized as follows :

biocham: learn_parameters([k3, k4], [(0, 200), (0, 200)], 20,

oscil(Cdc2-Cyclin~{p1},3),150).

First values found that make oscil(Cdc2-Cyclin~{p1},3) true:

parameter(k3,).

parameter(k4,).

The system finds the parameter valuesk3 = 10 andk4 = 70 satisfying the specifica-
tion. However, the corresponding curve depicted in Fig. 1 exhibits damped oscillations.
The addition of the constraint of reaching a concentration value greater than 0.1 for
this complex produces the valuesk3 = 10, k4 = 120 and the curve depicted in Fig. 2.
The specification can be further refined by imposing a constraint of period equal to 35
time units,period(Cdc2-Cyclin~{p1},35). This produces the curve depicted in Fig. 3
which is close to the original model.

Fig. 1.Cyclin concentration curve for the parameter valuesk3 = 10 andk4 = 70 found in response
to the queryoscil(Cdc2-Cyclin~{p1},3).

These first results implemented in BIOCHAM are quite encouraging and motivate
us to go further in the direction of the formal specification of biological systems and in
the improvement of the search algorithms. A coupled model ofthe cell cycle and the
circadian cycle is under development along these lines in BIOCHAM with applications
to cancer chronotherapies.

Acknowledgements.The BIOCHAM project is a joint work with Nathalie Chabrier-Rivier,
Sylvain Soliman and Laurence Calzone, with contributions from Sakina Ayata, Loı̈c Fosse, Lucie
Gentils, Shrivaths Rajagopalan and Nathalie Sznajder. In addition, support from the EU STREP
project April-II and the EU Network of Excellence REWERSE are warmly acknowledged.
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Fig. 2. Concentration curve for parameter valuesk3 = 10 andk4 = 120 found in response to the
queryoscil(Cdc2-Cyclin~{p1},3,0.1).

Fig. 3. Concentration curve fork3 = 10 et k4 = 190 obtained in response to the query
period(Cdc2-Cyclin~{p1},35).
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Modeling Biological Systems in Stochastic Concurrent
Constraint Programming⋆

Luca Bortolussi and Alberto Policriti

Dept. of Mathematics and Informatics
University of Udine, Udine, Italy

bortolussi|policriti@dimi.uniud.it

Abstract. We present an application of stochastic Concurrent Constraint Pro-
gramming (sCCP) for modeling biological systems. We provide a library of sCCP
processes that can be used to describe straightforwardly biological networks. In
the meanwhile, we show that sCCP proves to be a general and extensible frame-
work, allowing to describe a wide class of dynamical behaviours and kinetic laws.

1 Introduction

Computational Systems Biology is a extremely fertile field,where many different mod-
eling techniques are used [7] in order to capture the intrinsic dynamics of biological
systems. These techniques are very different both in spiritand in the mathematics they
use. Some of them are based on the well known instrument ofDifferential Equations,
mostly ordinary, and therefore they represent phenomena ascontinuous and determin-
istic, cf. [8] for a survey. On the other side we findstochastic and discretemodels,
that are usually simulated withGillespie’s algorithm[14], tailored for simulating (ex-
actly) chemical reactions. In the middle, we find hybrid approaches like theChemical
Langevin Equation[11], a stochastic differential equation that bridges partially these
two opposite formalisms.

In the last few years a compositional modeling approach based onstochastic pro-
cess algebras(SPA) emerged [22], based on the inspiring parallel betweenmolecules
and reactions on one side and processes and communications on the other side. Stochas-
tic process algebras, like stochasticπ-calculus [20], have a simple and powerful syntax
and a stochastic semantics expressed in terms of ContinuousTime Markov Chains [19],
that can be simulated with an algorithm equivalent to Gillespie’s one. Since their intro-
duction, SPA have been used to model, within the same framework, biological systems
described at different level of abstractions, like biochemical reactions [21] and genetic
regulatory networks [1].

Stochastic modeling of biological systems works by associating a rate to each active
reaction (or, in general, interaction); rates are real numbers representing the frequency
or propensity of interactions. All active reactions then undergo a (stochastic) race con-
dition, and the fastest one is executed. Physical justification of this approach can be

⋆ This work has been partially supported by PRIN 2005 project 2005015491 and by FIRB 2003
project RBNE03B8KK.
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found in [13]. These rates encode all the quantitative information of the system, and
simulations produce discrete temporal traces with variable delay between events.

In this work we show how stochastic Concurrent Constraint Programming [2] (sCCP),
another SPA recently developed, can be used for modeling biological systems. sCCP is
based on Concurrent Constraint Programming [23] (CCP), a process algebra where
agents interact by posting constraints on the variables of the system in the constraint
store, cf. Section 2.

In order to underline the rationale behind the usage of sCCP,we take an high level
point of view, providing a general framework connecting elements of biological sys-
tems with elements of the process algebra. Subsequently, weshow how this general
framework gets instantiated when focused on particular classes of biological system,
like networks of biochemical reactions and gene regulatorynetworks.

In our opinion, the advantages of using sCCP are twofold: thepresence of both
quantitative information and computational capabilitiesat the level of the constraint
systems and the presence of functional rates. This second feature, in particular, allows
to encode in the system different forms of dynamical behaviours, in a very flexible way.
Quantitative information, on the other hand, allows a more compact representation of
models, as part of the details can be described in relations at the level of the store.

The paper is organized as follows: in Section 2 we review briefly sCCP, in Sec-
tion 3 we describe a high level mapping between biological systems and sCCP, then we
instantiate the framework for biochemical reactions (Section 3.1) and gene regulatory
networks (Section 3.2). Finally, in Section 4, we draw final conclusions and suggest
further directions of investigation.

2 Stochastic Concurrent Constraint Programming

In this section we present a stochastic version [2] of Concurrent Constraint Program-
ming [23], which will be used in the following as a modeling language for biological
systems.

2.1 Concurrent Constraint Programming

Concurrent Constraint Programming (CCP [23]) is a process algebra having two distinct
entities: agents and constraints. Constraints are interpreted first-order logical formulae,
stating relationships among variables (e.g.X = 10 orX +Y < 7). CCP-Agents compute
by adding constraints (tell) into a “container” (theconstraint store) and checking if
certain relations are entailed by the current configurationof the constraint store (ask).
The communication mechanism among agents is therefore asynchronous, as informa-
tion is exchanged through global variables. In addition toask andtell, the language
has all the basic constructs of process algebras: non-deterministic choice, parallel com-
position, procedure call, plus the declaration of local variables. This dichotomy between
agents and the constraint store can be seen as a form of separation between computing
capabilities (pertaining to the constraint store) and the logic of interactions (pertaining
to the agents). From a general point of view, the main difference between CCP andπ-
calculus resides really in the computational power of the former.π-calculus, in fact, has

7



Program= D.A

D = ε | D.D | p(x) : −A

π = tellλ(c) | askλ(c)
M = π.A | π.A.p(y) | M +M

A = 0 | tell∞(c).A | ∃xA | M | (A ‖ A)

Table 1.Syntax of of sCCP.

to describe everything in terms of communications only, a fact that may result in cum-
bersome programs in all those situations in which “classical” computations are directly
or indirectly involved.

The constraint storeis defined as an algebraic lattice structure, using the theory
of cylindric algebras [15]. Essentially, we first choose a first-order language together
with an interpretation, which defines a semantical entailment relation (required to be
decidable). Then we fix a set of formulae, closed under finite conjunction, as the prim-
itive constraints that the agents can add to the store. The algebraic lattice is obtained
by considering subsets of these primitive constraints, closed by entailment and ordered
by inclusion. The least upper bound operation in the latticeis denoted by⊔ and it ba-
sically represents the conjunction of constraints. In order to model local variables and
parameter passing, the structure is enriched with cylindrification and diagonalization
operators, typical of cylindric algebras [15]. These operators allow to define a sound
notion of substitution of variables within constraints. Inthe following we denote the
entailment relation by⊢ and a generic constraint store byC . We refer to [6,24,23] for a
detailed explanation of the constraint store.

2.2 Syntax of sCCP

The stochastic version of CCP (sCCP [2]) is obtained by adding a stochastic duration
to the instructions interacting with the constraint storeC , i.e.ask andtell. More pre-
cisely, each instruction is associated with a continuous random variableT, representing
the time needed to perform the corrisponding operations in the store (i.e. adding or
checking the entailment of a constraint). This random variable is exponentially dis-
tributed (cf. [19]), i.e. its probability function is

f (τ) = λe−λτ, (2.1)

whereλ is a positive real number, called the rate of the exponentialrandom variable,
which can be intuitively seen as the expected frequency per unit of time.

In our framework, the rates associated toask andtell are functions

λ : C → R
+,

8



depending on the current configuration of the constraint store. This means that the speed
of communications can vary according to the particular state of the system, though in
every state of the store the random variables are perfectly defined (their rate is evaluated
to a real number). This fact gives to the language a remarkable flexibility in modeling
biological systems, see Section 3 for further material on this point.

The syntax of sCCP can be found in Table 1. An sCCP program consists in a list of
procedures and in the starting configuration. Procedures are declared by specifying their
name and their free variables, treated as formal parameters. Agents, on the other hand,
are defined by the grammar in the last three lines of Table 1. There are two different
actions with temporal duration, i.e.ask andtell, identified byπ. Their rateλ is a
function as specified above. These actions can be combined together into a guarded
choiceM (actually, a mixed choice, as we allow both ask and tell to be combined with
summation). In the definition of such choice, we force procedure calls to be always
guarded. In fact, they are instantaneous operations, thus guarding them by a timed action
allows to avoid instantaneous infinite recursive loops, like those possible inp : −A ‖
p. In summary, an agentA can choose between different actions (M), it can perform
an instantaneoustell, it can declare a variable local (∃xA) or it can be combined in
parallel with other agents.

The syntax presented here is slightly different from that of[2]. In fact, the class of
instantaneous actions is expanded: in [2] it contained onlythe declaration of local vari-
ables, while here it contains also procedure call and a version oftell. Nevertheless, the
congruence relation defined in [2], ascribing the usual properties to the operators of the
language (e.g. associativity and commutativity to+ and‖), remains the same. The con-
figurations of sCCP programs will vary in the quotient space modulo this congruence
relation, denoted byP .

2.3 Operational Semantics of sCCP

The definition of the operational semantics is given specifying two different kinds of
transitions: one dealing with instantaneous actions and the other with stochastically
timed ones. This is also a novelty w.r.t. [2], though in the previous version an instanta-
neous transition was implicitly defined in order to deal withlocal variables. The basic
idea of this operational semantics is to apply the two transitions in an interleaved way:
first we apply the transitive closure of the instantaneous transition, then we do one step
of the timed stochastic transition. To identify a state of the system, we need to take
into account both the agents that are to be executed and the current configuration of the
store. Therefore, a configuration will be a point in the spaceP × C .

The recursive definition of the instantaneous transition−→⊆ (P × C )× (P × C ) is
shown in Table 2. Rule(IR1) models the addition of a constraint in the store through the
least upper bound operation of the lattice. Recursion corresponds to rule(IR2), which
consists in substituting the actual variables to the formalparameters in the definition
of the procedure called. In rule(IR3), local variables are replaced by fresh global vari-
ables, while in(IR4) the other rules are extended compositionally. Observe thatwe do
not need to deal with summation operator at the level of instantaneous transition, as
all the choices are guarded by (stochastically) timed actions. The syntactic restrictions
imposed to instantaneous actions guarantee that−→ can be applied only for a finite
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(IR1) 〈tell∞(c).A,d〉 −→ 〈A,d⊔c〉

(IR2) 〈p(x),d〉 −→ 〈A[x/y],d〉 if p(y) : −A

(IR3) 〈∃xA,d〉 −→ 〈A[y/x],d〉 with y fresh

(IR4)
〈A1,d〉 −→

〈

A′
1,d

′
〉

〈A1 ‖ A2,d〉 −→
〈

A′
1 ‖ A2,d′

〉

Table 2. Instantaneous transition for stochastic CCP

(SR1) 〈tellλ(c).A,d〉 =⇒(1,λ(d))

−−−−−→
〈A,d⊔c〉

(SR2) 〈askλ(c).A,d〉 =⇒(1,λ(d))

−−−→
〈A,d〉 if d ⊢ c

(SR3)
〈M1,d〉 =⇒(p,λ)

−−−−→
〈

A′
1,d

′
〉

〈M1 +M2,d〉 =⇒(p′,λ′)

−−−−→
〈

A′
1,d

′
〉

with p′ = pλ
λ+rate(M2,d) andλ′ = λ+ rate(M2,d)

(SR4)
〈A1,d〉 =⇒(p,λ)

−−−−→
〈

A′
1,d

′
〉

〈A1 ‖ A2,d〉 =⇒(p′,λ′)

−−−−−−−−→
〈

A′
1 ‖ A2,d′

〉

with p′ = pλ
λ+rate(A2,d)

andλ′ = λ+ rate(A2,d)

Table 3.Stochastic transition relation for stochastic CCP

number of steps. Moreover it can be proven that it is confluent. Given a configuration

〈A,d〉 of the system, we denote by
−−−→
〈A,d〉 the configuration obtained by applying the

transitions−→ as long as it is possible (i.e., by applying the transitive closure of−→).

The confluence property of−→ implies that
−−−→
〈A,d〉 is well defined.

The stochastic transition=⇒⊆ (P ×C )× [0,1]×R
+×(P ×C ) is defined in Table 3.

This transition is labeled by two numbers: intuitively, thefirst one is the probability
of the transition, while the second one is its global rate, see Section 2.4 for further
details. Rule(SR1) deals with timed tell action, and works similarly to rule(IR1).
Rule(SR2), instead, defines the behaviour of the ask instruction: it isactive only if the
asked constraint is entailed by the current configuration ofthe constraint store. Rules
(SR3) and (SR4), finally, deal with the choice and the parallel construct. Note that,
after performing one step of the transition=⇒, we apply the transitive closure of−→.
This guarantees that all actions enabled after one=⇒ step are timed. In Table 3 we use

10



the function rate :P × C → R, assigning to each agent its global rate. It is defined as
follows:

Definition 1. The functionrate :P × C → R is defined by

1. rate(0,d) = 0;
2. rate(tellλ(c).A,d) = λ(d);
3. rate(askλ(c).A,d) = λ(d) if d ⊢ c;
4. rate(askλ(c).A,d) = 0 if d 6⊢ c;
5. rate(M1 +M2,d) = rate(M1,d)+ rate(M2,d).
6. rate(A1 ‖ A2,d) = rate(A1,d)+ rate(A2,d);

Using relation=⇒, we can build a labeled transition system, whose nodes are con-
figurations of the system and whose labeled edges correspondto derivable steps of=⇒.
As a matter of fact, this is a multi-graph, as we can derive more than one transition con-
necting two nodes (consider the case of tellλ(c)+ tellλ(c)). Starting from this labeled
graph, we can build a Continuous Time Markov Chain (cf. [19] and next section) as
follows: substitute each label(p,λ) with the real numberpλ and add up the numbers
labeling edges connecting the same nodes. More details about the operational semantics
can be found in [2].

2.4 Continuous Time Markov Chains and Gillespie’s Algorithm

A Continuous Time Markov Chain (CTMC for short) is a continuous-time stochastic
process(Xt)t≥0 taking values in a discrete set of statesSand satisfying the memoryless
property,∀n,t1, . . . ,tn,s1, . . . ,sn:

P{Xtn = sn | Xtn−1 = sn−1, . . . ,Xt1 = s1} = P{Xtn = sn | Xtn−1 = sn−1}. (2.2)

A CTMC can be represented as a directed graph whose nodes correspond to the states
of Sand whose edges are labeled by real numbers, which are the rates of exponentially
distributed random variables (defined by the probability density (2.1)). In each state
there are usually several exiting edges, competing in a racecondition in such a way
that the fastest one is executed. The time employed by each transition is drawn from
the random variable associated to it. When the system changes state, it forgets its past
activity and starts a new race condition (this is the memoryless property). Therefore, the
traces of a CTMC are made by a sequence of states interleaved by variable time delays,
needed to move from one state to another.

The time evolution of a CTMC can be characterized equivalently by computing,
in each state, the normalized rates of the exit transitions and their sum (called the exit
rate). The next state is chosen according to the probabilitydistribution defined by the
normalized rates, while the time spent for the transition isdrawn from an exponentially
distributed random variable with parameter equal to the exit rate.

This second characterization can be used in a Monte-Carlo simulation algorithm.
Suppose to be in states; then draw two random numbers, one according to the proba-
bility given by the normalized rates, and the second according to an exponential proba-
bility distribution with parameter equal to the exit rate. Then choose the next state ac-
cording to the first random number, and increase the time according to the second. The
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procedure sketched here is essentially the content of the Gillespie’s algorithm [13,14],
originally derived in the context of stochastic simulationof chemical reactions. Indeed,
the stochastic description of chemical reactions is exactly a Continuous Time Markov
Chain [12].

2.5 Stream Variables

In the use of sCCP as a modeling language for biological systems, many variables will
represent quantities that vary over time, like the number ofmolecules of certain chem-
ical species. In addition, the functions returning the stochastic rate of communications
will depend only on those variables. Unfortunately, the variables we have at our dis-
posal in CCP are rigid, in the sense that, whenever they are instantiated, they keep that
value forever. However, time-varying variables can be easily modeled as growing lists
with an unbounded tail:X = [a1, . . . ,an|T]. When the quantity changes, we simply need
to add the new value, sayb, at the end of the list by replacing the old tail variable with
a list containingb and a new tail variable:T = [b|T ′]. When we need to compute a
function depending on the current value of the variableX, we need to extract from the
list the value immediately preceding the unbounded tail. This can be done by defining
the appropriate predicates in the first-order language overwhich the constraint store is
built. As these variables have a special status in the presentation hereafter, we will refer
to them asstream variables. In addition, we will use a simplified notation that hides
all the details related to the list update. For instance, if we want to add 1 to the current
value of the stream variableX, we will simply writeX = X +1. The intended meaning
of this notation is clearly: “extract the last ground element n in the listX, consider its
successorn+1 and add it to the list (instantiating the old tail variable as a list containing
the new ground element and a new tail variable)”.

2.6 Implementation

We have developed an interpreter for the language that can beused for running simula-
tions. The simulation engine is based on the Gillespie’s Algorithm, therefore it performs
a Monte-Carlo simulation of the underlying CTMC. The memoryless property of the
CTMC guarantees that we do need to generate all its nodes to perform a simulation, but
we need to store only the current state. By syntactic analysis of the current set of agents
in execution, we can construct all the exit transitions and compute their rates, evaluating
rate functions w.r.t. the current configuration of the store(actually, those functions de-
pend only on stream variables, thus their computation has two steps: extract the current
value of the variables and evaluate the function). Then we apply the Gillespie’s proce-
dure to determine the next state and the elapsed time, updating the system by modifying
the current set of agents and the constraint store accordingto the chosen transition.

The interpreter is written in SICStus Prolog [10]. It is composed by a parser, ac-
cepting a program written in sCCP and converting it into an internal list-based repre-
sentation. The main engine operates therefore by inspecting and manipulating the lists
representing the program. The constraint store is managed using the constraint solver
on finite domains of SICStus. Stream variables are not represented as lists, but rather as
global variables using the meta-predicatesassert andretract of Prolog. The choice

12



Measurable Entities↔ Stream Variables

Logical Entities↔
Processes

(Control Variables)

Interactions↔ Processes

Table 4.Schema of the mapping between elements of biological systems (left) and sCCP (right).

of working with finite domains is mainly related to the fact that the biological systems
analyzed can be described using only integer values1.

In every execution cycle we need to inspect all terms in orderto check if they enable
a transition. Therefore, the complexity of each step is linear in the size of the (repre-
sentation) of the program. This can be easily improved by observing that an enabled
transition that is not executed remains enabled also in the future.

The correctness of the virtual machine can be proven by showing that it simulates
exactly the same CTMC defined by the sCCP program. This can be done by showing
that the exit rate and the probability distribution on exiting transitions are computed
correctly, according to the operational semantics of sCCP.

3 Modeling Biological Systems

Taking an high level point of view, biological systems can beseen as composed essen-
tially by two ingredients: (biological) entities and interactions among those entities. For
instance, in biochemical reaction networks, the moleculesare the entities and the chem-
ical reactions are the possible interactions, see [22] and Section 3.1. In gene regulatory
networks, instead, the entities into play are genes and regulatory proteins, while the
interactions are production and degradation of proteins, and repression and enhance-
ment of gene’s expression, cf. [1] and Section 3.2. In addition, entities fall into two
separate classes: measurable and logical. Measurable entities are those present in a cer-
tain quantity in the system, like proteins or other molecules. Logical entities, instead,
have a control function (like gene gates in [1]), hence they are neither produced nor
degraded. Note that logical entities are not real world entities, but rather they are part
of the models.

The translation scheme between the previously described elements and sCCP ob-
jects is summarized in Table 4. Measurable entities are associated exactly to stream
variables introduced at the end of Section 2. Logical entities, instead, are represented as
processes actively performing control activities. In addition, they can use variables of
the constraint store either as control variables or to exchange information. Finally, each

1 The real valued rates and the stochastic evolution are tightwith the definition of the semantics
and not with the syntax of the language, thus we do not need to represent them in the store.
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interaction is associated to a process modifying the value of certain measurable stream
variables of the system.

Associating variables to measurable entities means that weare representing them as
part of the environment, while the active agents are associated to the different actions
capabilities of the system. These actions have a certain duration and a certain propensity
to happen: a fact represented here in the standard way, i.e. associating to each action a
stochastic rate. Actually, the speed of most of these actions depends on the quantity of
the basic entities they act on. This fact shows clearly the need for having functional
rates, which can be used to describe these dependencies explicitly.

In the next subsections we instantiate this general scheme,in order to deal with two
classes of biological systems: networks of biochemical reactions and genetic regulatory
networks.

3.1 Modeling Biochemical Reactions

Network of biochemical reactions are usually modeled through chemical equations of
the formR1+ . . .+Rn →k P1+ . . .+Pm, where then reactantsRi ’s (possibly in multiple
copies) are transformed into them productsPj ’s. In the equation above, eithern or m
can be equal to zero; the casem= 0 represents a degradation reaction, while the case
n = 0 represents an external feeding of the products, performedby an experimenter.
Actually, the latter is not a proper chemical reaction but rather a feature of the envi-
ronmental setting, though it is convenient to represent it within the same scheme. Each
reaction has an associated ratek, representing essentially its basic speed. The actual rate
of the reaction isk · [R1] · · · [Rn], where[Ri ] denotes the number of moleculesRi present
in the system. There are cases when a more complex expressionfor the rate of the re-
action is needed, see [25] for further details. For instance, one may wish to describe an
enzymatic reaction using a Michaelis-Menten kinetic law [8], rather than modeling ex-
plicitly the enzyme-substrate complex formation (as simple interaction/communication
among molecules, cf. example below). A set of differentbiochemical arrows(corre-
sponding to different biochemical laws) is shown in Table 5;this list is not exhaustive,
but rather a subset of the one presented in [25]. Adding further arrows is almost always
straightforward.

In Table 5, we also show how to translate biochemical reactions into sCCP pro-
cesses. The basic reactionR1 + . . . + Rn →k P1 + . . .Pm is associated to a process that
first checks if all the reactants needed are present in the system (asking if all[Ri ] are
greater than zero), then it modifies the variables associated to reactants and products,
and finally it calls itself recursively. Note that all thetell instructions have infinite
rate, hence they are instantaneous transitions. The rate governing the speed of the re-
action is the one associated toask instruction. This rate is nothing but the function
rMA(k,X1, . . . ,Xn) = k ·X1 · · ·Xn representing mass action dynamics. Note that⇋ is a
shorthand for the forward and the backward reactions. The arrow 7→E

K,V0
has a differ-

ent dynamics, namely Michaelis-Menten kinetics:rMM(K,V0,S) = V0S
S+K . This reaction

approximates the conversion of a substrate into a product due to the catalytic action of
enzymeE when the substrate is much more abundant than the enzyme (quasi-steady
state assumption, cf. [8]). The last arrow, instead, is associated to Hill’s kinetics. The
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R1 + . . .+Rn →k P1+ . . .+Pm

reaction(k, [R1, . . . ,Rn], [P1, . . . ,Pm]) : −
askrMA(k,R1,...,Rn) (

Vn
i=1(Ri > 0)) .

(

‖n
i=i tell∞(Ri = Ri −1) ‖

‖m
j=1 tell∞(Pj = Pj +1)

)

.

reaction(k, [R1, . . . ,Rn], [P1, . . . ,Pm])

R1 + . . .+Rn ⇋
k1
k2

P1+ . . .+Pm
reaction(k1, [R1, . . . ,Rn], [P1, . . . ,Pm]) ‖
reaction(k2, [P1, . . . ,Pm], [R1, . . . ,Rn])

S 7→E
K,V0

P
mm reaction(K,V0,S,P) askrMM(K,V0,S)(S> 0).

(tell∞(S= S−1) ‖ tell∞(P = P+1)) .
mm reaction(K,V0,S,P)

S 7→E
K,V0,h

P
hill reaction(K,V0,h,S,P) askrHill (K,V0,h,S)(S> 0).

(tell∞(S= S−h) ‖ tell∞(P = P+h)) .
Hill reaction(K,V0,h,S,P)

where

rMA(k,X1, . . . ,Xn) = k ·X1 · · ·Xn; rMM(K,V0,S) = V0S
S+K ; rHill (k,V0,h,S) = V0Sh

Sh+Kh

Table 5.Translation into sCCP of different biochemical reaction types, taken from the list of [25].
The reaction process models a mass-action-like reaction. It takes in input the basic rate of the
reaction, the list of reactants, and the list of products. These list can be empty, corresponding to
degradation and external feeding. The process has a blocking guard that checks if all the reactants
are present in the system. The rate of the ask is exactly the global rate of the reaction. If the process
overcomes the guard, it modifies the quantity of reactants and products and then it calls itself
recursively. The reversible reaction is modeled as the combination of binding and unbinding.
The third arrow corresponds to a reaction with Michaelis-Menten kinetics. The corresponding
process works similarly to the reaction one, but the rate function is different. Here, in fact, the
rate function is the one expressing Michaelis-Menten kinetics. See Section 3.1 for further details.
The last arrow replaces Michaelis-Menten kinetics with Hill’s one (see end of Section 3.1).

dynamics represented here is an improvement on the Michaelis-Menten law, where the
exponenth encodes some information about the spatial behaviour of thereaction.

Comparing the encoding of biochemical reaction into sCCP with the encoding into
other process algebras likeπ-calculus [22], we note that the presence of functional rates
gives much more flexibility in the modeling phase. In fact, this form of rates allows to
describe dynamics that are different from Mass Action. Notable examples are exactly
Michaelis-Menten’s and Hill’s cases, represented by the last two arrows. This is not
possible wherever only constant rates are present, as the definition of the operational
semantics constrain the dynamics to be Mass-Action like. More comments about this
fact can be found in [3].
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enz reaction(k1,k−1,k2,S,E,ES,P) :-
reaction(k1, [S,E], [ES]) ‖ reaction(k−1, [ES], [E,S]) ‖ reaction(k2, [ES], [E,P]).

enz reaction(k1,k−1,k2,S,E,ES,P) ‖ reaction(kprod, [], [S]) ‖ reaction(kdeg, [P], [])

Table 6. sCCP program for an enzymatic reaction with mass action kinetics. The first block
defines the predicate enzreaction(k1,k−1,k2,S,E,ES,P), while the second block is the definition
of the entire program. The predicate reaction has been defined in Table 5.

Example: Enzymatic Reaction As a first and simple example, we show the model of
an enzymatic reaction. We provide two different descriptions, one using a mass action
kinetics, the other using a Michaelis-Menten one, see Table5.

In the first case, we have the following set of reactions:

S+E ⇋
k1
k−1

ES→k2 P+E; P→kdeg; →kprod S, (3.1)

corresponding to a description of an enzymatic reaction that takes into account also
the enzyme-substrate complex formation. Specifically, substrateS and enzymeE can
bind and form the complexES. This complex can either dissociate back intoE andS,
or be converted into the productP and again enzymeE. Moreover, in this particular
system we added degradation ofP and external feeding ofS, in order to have contin-
uous production ofP. The sCCP model of this reaction can be found in Table 6. It
is simply composed by 5 reaction agents, one for each arrow ofthe equations (3.2).
The three reactions involving the enzyme are grouped together under the predicate
enz_reaction{k1,k-1,k2,S,E,ES,P}, that will be used in following subsections.

Simulations were performed with the simulator described inSection 2.6, and the
trend of productP is plotted in Figure 1 (left). Parameters of the system were chosen in
order to have, at regime, almost all the enzyme molecules in the complexed state, see
caption of Figure 1 (top) for details.

For this simple enzymatic reaction, the quasi-steady stateassumption holds [8],
therefore replacing the substrate-enzyme complex formation with a Michaelis-Menten
kinetics should leave the system behaviour unaltered. Thisintuition is confirmed by
Figure 1 (bottom), showing the plot of the evolution over time of productP for the
following system of reactions:

S 7→E
K,V0

P; P→kdeg; →kprod S,

whose sCCP can be derived easily from Table 5.
A slightly more complicated version of the above example is the case in which some

level of cooperativity of the enzyme is to be modeled (Hill’scase). The set of reactions
in this case is an extension of the above one and can be writtenas:

n×S+E ⇋
k1
k−1

ESn →k2 n×P+E; P→kdeg; →kprod S. (3.2)

In this case the sCCP program is a straightforward extensionof the previous one:
while the rest of the coding is entirely similar to the previous case.
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Fig. 1. (top) Mass Action dynamics for an enzymatic reaction. The graph shows the time evo-
lution of the productP. Rates used in the simulation arek1 = 0.1, k−1 = 0.001, k2 = 0.5,
kdeg = 0.01, kprod = 5. Enzyme moleculesE are never degraded (though they can be in the
complex status), and initial value is set toE = 10. Starting value forS is 100, while forP is zero.
Notice that the rate of complexation ofE andS into ESand the dissociation rate ofES into E
andP are much bigger than the dissociation rate ofESinto E andS. This implies that almost all
the molecules ofE will be found in the complexed form. (bottom) Michaelis-Menten dynamics
for an enzymatic reaction. The graph shows the time evolution of the productP. Rateskdeg and
kprod are the same as above, whilstK = 5.01 andV0 = 5. These last values are derived from

mass action rates in the standard way, i.e.K = K2+k−1
k1

andV0 = k2E0, whereE0 is the starting
quantity of enzymeE, cf. [8] for a derivation of these expressions. Notice that the time spawn by
this second temporal series is longer than the first one, despite the fact that simulations lasted the
same number of elementary steps (of the labeled transition system of sCCP). This is because the
product formation in the Michaelis-Menten dynamics model is a one step reaction, while in the
other system it is a two step reaction (with a possible loop because of the dissociation of ES into
E and S).

Also in this case a comparison with the reaction obtained with the computed Hill
coefficient

S 7→E
K,V0,n P; P→kdeg; →kprod S,
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n enz reaction(k1,k−1,k2,S,E,ES,P) :-
reaction(k1, [n×S,E], [ESn]) ‖ reaction(k−1, [ESn], [E,n×S]) ‖ reaction(k2, [ESn], [E,n×P]).

enz reaction(ka,kd,kr ,KKK,E1,KKKE1,KKKS) ‖
enz reaction(ka,kd,kr ,KKKS,E2,KKKSE2,KKK) ‖
enz reaction(ka,kd,kr ,KK,KKKS,KKKKKS,KKP) ‖
enz reaction(ka,kd,kr ,KKP,KKP1,KKPKKP1,KK) ‖
enz reaction(ka,kd,kr ,KKP,KKKS,KKPKKKS,KKPP) ‖
enz reaction(ka,kd,kr ,KKPP,KKP1,KKPPKKP1,KKP) ‖
enz reaction(ka,kd,kr ,K,KKPP,KKKPP,KP) ‖
enz reaction(ka,kd,kr ,KP,KP1,KPKP1,K) ‖
enz reaction(ka,kd,kr ,KP,KKPP,KPKKPP,KPP) ‖
enz reaction(ka,kd,kr ,KPP,KP1,KPPKP1,KP)

Table 7.sCCP code for the MAP-Kinase signaling cascade. The enzreaction predicate has been
defined in Section 3.1. For this example, we set the complexation rates (ka), the dissociation rates
(kd) and the product formation reaction rates (kr ) equal for all the reactions involved. For the
actual values used in the simulation, refer to Figures 3 and 4.

can be easily carried out. Notice that the Hill’s exponent corresponds exactly to the
degree of cooperativity of the enzyme.

Also a more refined approach to the case of Hill’s kinetics is possible, decomposing
the n-fold reaction in a series ofn separated by Mass Action equation simulations.

Example: MAP-Kinase CascadeA cell is not an isolated system, but it communicates
with the external environment using complex mechanisms. Inparticular, a cell is able
to react to external signals, i.e. to signaling proteins (like hormones) present in the
proximity of the external membrane. Roughly speaking, thismembrane is filled with
receptor proteins, that have a part exposed toward the external environment capable of
binding with the signaling protein. This binding modifies the structure of the receptor
protein, that can now trigger a chain of reactions inside thecell, transmitting the signal
straight to the nucleus. In this signaling cascade a predominant part is performed by
a family of proteins, called Kinase, that have the capability of phosphorylating other
proteins. Phosphorylation is a modification of the protein fold by attaching a phosphorus
molecule to a particular amino acid of the protein. One interesting feature of these
cascades of reactions is that they are activated only if the external stimulus is strong
enough. In addition, the activation of the protein at the endof the chain of reactions
(usually an enzyme involved in other regulation activities) is very quick. This behaviour
of the final enzyme goes under the name of ultra-sensitivity [17].

In Figure 2 a particular signaling cascade is shown, involving MAP-Kinase proteins.
This cascade has been analyzed using differential equations in [17] and then modeled
and simulated in stochastic Pi-Calculus in [4]. We can see that the external stimulus,
here generically represented by the enzymeE1, triggers a chain of enzymatic reactions.
MAPKKK is converted into an active form, called MAPKKK*, that is capable of phos-
phorylating the protein MAPKK in two different sites. The diphosphorylated version
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Fig. 2. Diagram of the MAP-Kinase cascade. The round-headed arrow schematically represents
an enzymatic reaction, see Section 3.1 for further details.This diagram has been stolen from a
presentation of Luca Cardelli, held in Dobbiaco, September2005.

MAPKK-PP of MAPKK is the enzyme stimulating the phosphorylation of another Ki-
nase, i.e. MAPK. Finally, the diphosphorylated version MAPK-PP of MAPK is the
output of the cascade.

The sCCP program describing MAP-Kinase cascade is shown in Table 7. The pro-
gram itself is very simple, and it uses the mass action description of an enzymatic reac-
tion (cf. Table 5). It basically consists in a list of the reactions involved, put in parallel.
The real problem in studying such a system is in the determination of its 30 parameters,
corresponding to the basic rates of the reactions involved.In addition, we need to fix a
set of initial values for the proteins that respects their usual concentrations in the cell.
Following [4], in Figure 3 we skip this problem and assign a value of 1.0 to all basic
rates, while putting 100 copies of MAPKKK, MAPKK and MAPK, 5 copies of E2,
MAPKK-P’ase, and MAPK-P’ase and just 1 copy of the input E1. This simple choice,
however, is enough to predict correctly all the expected properties: the MAPK-PP time
evolution, in fact, follows a sharp trend, jumping from zeroto 100 in a short time.
Remarkably, this property is not possessed by MAPKK-PP, theenzyme in the middle
of the cascade. Therefore, this switching behaviour exhibited by MAPK-PP is intrin-
sically connected with the double chain of phosphorylations, and cannot be obtained
by a simpler mechanism. Notice that the fact that the networkworks as expected using
an arbitrary set of rates is a good argument in favor of its robustness and resistance to
perturbations.

In Figure 4, instead, we choose a different set of parameters, as suggested in [17]
(cf. its caption). We also let the input strength vary, in order to see if the activation effect
is sensitive to its concentration. As we can see, this is the case: for a low value of the
input, no relevant quantity of MAPK-PP is present in the system.

3.2 Modeling Gene Regulatory Networks

In a cell, only a subset of genes are expressed at a certain time. Therefore, an impor-
tant mechanism of the cell is the regulation of gene expression. This is obtained by
specific proteins, calledtranscription factors, that bind to the promoter region of genes
(the portion of DNA preceding the coding region) in order to enhance or repress their
transcription activity. These transcription factors are themselves produced by genes,
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Fig. 3. Temporal trace for some proteins involved in the MAP-Kinasecascade. Traces were gen-
erated simulating the sCCP program of Table 7. In this simulation, the rateska, kd, kr were all set
to one. We can notice the sharp increase in the concentrationof the output enzyme, MAPK-PP,
and its stability in the high expression level. The enzyme MAPKK-PP, the activator of MAPK
phosphorylations, instead has a more unstable trend of expression.

thus the overall machinery is a networks of genes producing proteins that regulate other
genes. The resulting system is highly complex, containing several positive and negative
feedback loops, and usually very robust. This intrinsic complexity is a strong argument
in favor of the use of a mathematical formalism to describe and analyze them. In the
literature, different modeling techniques are used, see [7] for a Survey. However, we
focus on a modeling formalism based on stochasticπ-calculus [1].

In [1], the authors propose to model gene networks using a small set of “logical”
gates, calledgene gates, encoding the possible regulatory activities that can be per-
formed on a gene. Specifically, there are three types of gene gates:nullary gates, pos-
itive gatesandnegative gates. Nullary gates represent genes with transcriptional ac-
tivity, but with no regulation. Positive gates are genes whose transcription rate can be
increased by a transcription factor. Finally, negative gates represent genes whose tran-
scription can be inhibited by the binding of a specific protein. At the level of abstraction
of [1], the product of a gene gate is not a mRNA molecule, but directly the coded pro-
tein. These product proteins are then involved in the regulation activity of the same or
of other genes and can also be degraded.

We propose now an encoding of gene gates within sCCP framework, in the spirit
of Table 4. Proteins are measurable entities, thus they are encoded as stream variables;
gene gates, instead, are logical control entities and they are encoded as agents. The
degradation of proteins is modeled by the reaction agent of Table 5. In Table 8 we
present the sCCP agents associated to gene gates. A nullary gate simply increases the
quantity of the protein it produces at a certain specified rate. Positive gates, instead,
can produce their coded protein at the basic rate or they can enter in an enhanced state
where production happens at an higher rate. Entrance in thisexcited state happens at a
rate proportional to the quantity of transcription factorspresent in the system. Negative
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gates behave similarly to positive ones, with the only difference that they can enter an
inhibited state instead of an enhanced one. After some time,the inhibited gate returns to
its normal status. A specific gene, generally, can be regulated by more than transcription
factor. This can be obtained by composing in parallel the different gene gates.

null gate(kp,X) : −
tellkp

(X = X +1).null gate(kp,X)

pos gate(kp,ke,kf ,X,Y) tellkp
(X = X +1).pos gate(kp,ke,kf ,X,Y)

+askr(ke,Y)(true).tellke
(X = X +1).pos gate(kp,ke,kf ,X,Y)

neggate(kp,ki ,kd,X,Y) tellkp
(X = X +1).neg gate(kp,ki ,kd,X,Y)

+askr(ki ,Y)(true).askkd
(true).neggate(kp,ki ,kd,X,Y)

wherer(k,Y) = k ·Y.

Table 8. Scheme of the translation of gene gates into sCCP programs. The null gate is modeled
as a process continuously producing new copies of the associated protein, at a fixed ratekp.
The negative gate is modeled as a process that can either produce a new protein or enter in an
repressed state due to the binding of the repressor. This binding can happen at a rate proportional
to the concentration of the repressor. After some time, the repressor unbinds and the gate return
in the normal state. The enhancing of activators in the pos gate, instead, is modeled here in an
“hit and go” fashion. The enhancer can hit the gate and make itproduce a protein at an higher rate
than usual. The hitting rate is proportional to the number ofmolecules of the stimulating protein.

Example: Bistable Circuit The first example, taken from [1], is a gene network com-
posed by two negative gates repressing each other, see Figure 5. The sCCP model for
this simple network comprehends two negative gates: the first producing proteinA and
repressed by proteinB, the second producing proteinB and repressed by proteinA.
In addition, there are the degradation reactions for proteins A andB. This network is
bistable: only one of the two proteins is expressed. If the initial concentrations ofA
andB are zero, then the stochastic fluctuations happening at the beginning of the sim-
ulations decide which of the two fix points will be chosen. In Figure 5 we show one
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possible outcome of the system, starting with zero molecules of A andB. In this case,
proteinA wins the competition. Notice that the high sensitivity of this system makes it
unsuitable for biological system.

Example: Repressilator The repressilator [9] is a synthetic biochemical clock com-
posed of three genes expressing three different proteins,tetR, λcI, LacI , that have a
regulatory function in each other’s gene expression. In particular, proteintetR inhibits
the expression of proteinλcI, while proteinλcI represses the gene producing protein
LacI and, finally, proteinLacI is a repressor for proteintetR. The expected behavior is
an oscillation of the concentrations of the tree proteins with a constant frequency.

The model we present here is extracted from [1], and it is constituted by three nega-
tive gene gates repressing each other in cycle (see Figure 6). The result of a simulation
of the sCCP program is shown in Figure 6, where the oscillatory behaviour is manifest.
In [1] it is shown that the oscillatory behaviour is stable w.r.t. changes in parameters.
Interestingly, some models of the repressilator using differential equations do not show
this form of stability. More comments on the differences between continuous and dis-
crete models of repressilator can be found in [3].

3.3 Modeling the Circadian Clock

In this section we provide as a final example the model of a system containing regu-
latory mechanism both at the level of genes and at the level ofproteins. The system is
schematically shown in Figure 7. It is a simplified model of the machinery involved in
the circadian rhythm of living beings. In fact, this simple network is present in a wide
range of species, from bacteria to humans. The circadian rhythm is a typical mechanism
responding to environmental stimuli, in this case the periodic change between light and
dark during a day. Basically, it is a clock, expressing a protein periodically with a stable
period. This periodic behaviour, to be of some use, must be stable and resistant to both
external and internal noise. Here with internal noise we refer to the stochastic fluctu-
ations observable in the concentrations of proteins. The model presented here is taken
from [26], a paper focused on the study of the resistance to noise of this system. In-
terestingly, they showed that the stochastic fluctuations make the oscillatory behaviour
even more resistant. Our aim, instead, is that of showing howa system like this can
be modeled in an extremely compact way, once we have at disposal the libraries of
Sections 3.1 and 3.2.

The system is composed by two genes, one expressing an activator protein A, the
other producing a repressor protein R. The generation of a protein is depicted here in
more detail than in Section 3.2, as the transcription phase of DNA into mRNA and
the traduction phase of mRNA into the protein are both modeled explicitly. Protein
A is an enhancer for both genes, meaning that it regulates positively their expression.
Repressor R, instead, can capture protein A, forming the complex AR and making A
inactive. Proteins A and R are degraded at a specific rate (seethe caption of Figure 7
for more details about the numerical values), but R can be degraded only if it is not in
the complexed form, while A can be degraded in any form. Notice that the regulation
activity of A is modeled by an explicit binding to the gene, which remains stimulated
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pos gate(αA,α′
A,γA,θA,MA,A) ‖

pos gate(αR,α′
R,γR,θR,MR,A) ‖

reaction(βA, [MA], [A]) ‖
reaction(δMA, [MA], []) ‖
reaction(βR, [MR], [R]) ‖
reaction(δMR, [MR], []) ‖

reaction(γC, [A,R], [AR]) ‖
reaction(δA, [AR], [R]) ‖

reaction(δA, [A], []) ‖
reaction(δR, [R], [])

Table 9.sCCP program for the circadian rhythm regulation system of Figure 7. The agents used
have been defined in the previous sections. The first four reaction agents model the translation
of mRNA into the coded protein and its degradation. Then we have complex formation,
and the degradation ofR and A. The posgate agent has been redefined as follows, in order
to take into account the binding/unbinding of the enhancer:pos gate(Kp,Ke,Kb,Ku,P,E)
:- pos gateoff(Kp,Ke,Kb,Ku,P,E); posgateoff(Kp,Ke,Kb,Ku,P,E) :- tellKp(P =
P+ 1).posgateoff(Kp,Ke,Kb,Ku,P,E) + askrma(Kb,E)(E > 0).posgateon(Kp,Ke,Kb,Ku,P,E);
pos gateon(Kp,Ke,Kb,Ku,P,E) :- tellKe(P = P + 1).posgateon(Kp,Ke,Kb,Ku,P,E) +
askKu(true).posgateoff(Kp,Ke,Kb,Ku,P,E).

until A unbinds. This mechanism is slightly different from the positive gate described in
Section 3.2, but the code can be adapted in a straightforwardmanner (we simply need
to define two states for the gene: bound and free, see caption of Table 9).

The code of the sCCP program modeling the system is shown in Table 9. It makes
use of the basic agents defined previously, and it is very compact and very easy and
quick to write. In Figure 8 (top) we show the evolution of proteins A and R in a nu-
merical simulation performed with the interpreter of the language. As we can see, they
oscillate periodically and the length of the period is remarkably stable. Figure 8 (bot-
tom), instead, shows what happens if we replace the bind/unbind model of the gene
gate with the “hit and go” code of Section 3.2 (where the enhancer do not bind to the
gene, but rather puts it into a stimulated state that makes the gene produceonly the next
proteinquicker). The result is dramatic, the periodic behaviour islost and the system
behaves in a chaotic way.

4 Conclusion and future work

In this paper we presented an application of stochastic concurrent constraint program-
ming for modeling of biological systems. We dealt with two main classes of biological
networks: biochemical reactions and gene regulation. The main theme is the use of
constraints in order to store information about the biological entities into play; this lead
straightforwardly to the definition of a general purpose library of processes that can be
used in the modeling phase (see Sections 3.1 and 3.2). However, this is only a part of
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the general picture, as there are more complex classes of biological systems that need to
be modeled, like transport networks and membranes. In addition, all these systems are
strongly interconnected, and they must be modeled altogether in order to extract deep
information about living beings. We believe that the flexibility of constraints makes
sCCP a powerful general purpose language that can be simply programmed, extended
with libraries, and used to model all these different classes of systems in a compact way.
For instance, different kinds of spatial information, likeexact position of molecules or
the compartment they are in, can be easily represented usingsuitable constraints.

Biochemical reactions can be challenging to model, becauseproteins can form very
big complexes that are built incrementally. Therefore, we can find in the cell a huge
number of sub-complexes. Usually, these networks are described by biologists with di-
agrams, like Kohn maps [18], that are very compact, because they represent complexes
and sub-complexes implicitly. Modeling these networks explicitly, instead, can be ex-
tremely difficult, due to the blow up of the number of different molecules of the system.
A calculus having complexation as a primitive operation, the κ-calculus, has been de-
veloped in [5]. It offers a compact way to represent formallythese diagrams. Constraints
can be used to encode this calculus elegantly, by representing complexes implicitly, i.e.
as lists of basic constituents.

Another interesting feature that sCCP offers are functional rates. As shown in Sec-
tion 3.1, they can be used to represent more complex kinetic dynamics, allowing a more
compact description of the networks. In this direction, we need to make deeper analysis
of the relation between these different kinetics in the context of stochastic simulation, in
order to characterize the cases where these different kinetics can be used equivalently.
Notice that the use of complex rates can be seen as an operation on the Markov Chain,
replacing a subgraph with a smaller one, hiding part of its complexity in the expression
of rates. This seems to be a sort of non-trivial lumpability relation [19], though further
studies are necessary.

In [3], the authors investigate the expressivity gained by the addition of functional
rates to the language. They suggest that there is an increaseof power in terms of dy-
namical behaviours that can be reproduced, after encoding in sCCP a wide class of
differential equations. This problem, together with the inverse one of describing sCCP
programs by differential equations, is an interesting direction of research, which may
lead to an integration of these different techniques, see [16,3] for further comments.

Finally, we plan to implement a more powerful and fast interpreter for the language,
using also all available tricks to increase the speed of stochastic simulations [12]. More-
over, we plan to tackle also the problem of distributing efficiently the stochastic simu-
lations of programs written in sCCP.
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Fig. 4.Comparison of the temporal evolution of the MAP-Kinase cascade for different concentra-
tions of the enzyme MAPKKK. As argued in [17], this is equivalent to the variation of the input
signal E1. Rates are equal for all reactions, and have the following values:ka = 1, kd = 150,
kr = 150. This corresponds to a Michaelis-Menten rate of 300 for all the enzymatic reactions.
The initial quantity of MAPKK and MAPK is set to 1200, the initial quantity of phosphatase
MAPK-P’ase is set to 120, the initial quantity of other phosphatase and the enzyme E2 is set to
5, and the initial quantity of E1 is 1. (top) The initial quantity of MAPKKK is 3. We can see
that there is no sensible production of MAPK-PP. (middle) The initial quantity of MAPKKK is
30. Enzyme MAPK-PP is produced but its trend is not sharp, as expected. (bottom) The initial
quantity of MAPKKK is 300. The system behaves as expected. Wecan see that the increase in the
concentration of MAPK-PP is very sharp, while MAPKK-PP grows very slowly in comparison.
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Fig. 5. Bistable circuit. (right ) Diagram of gene gates involved. (left) Time evolution of the cir-
cuit. The negative gates have the same rates, set as follows:basic production rate is 0.1 (kp in
Table 8), degradation rate of proteins is 0.0001, inhibition rate (ki) is 1 and inhibition delay rate
(kd) is 0.0001. Both proteins have an initial value of zero. Thisgraph is one of the two possible
outcomes of this bistable network. In the other the roles of the two proteins are inverted.

Fig. 6.Repressilator. (right ) Diagram of gene gates involved. (left) Time evolution of the circuit.
The negative gates have the same rates, set as follows: basicproduction rate is 0.1 (kp in Table 8),
degradation rate of proteins is 0.0001, inhibition rate (ki) is 1 and inhibition delay rate (kd) is
0.0001. All proteins have an initial value of zero. The time evolution of the repressilator is stable:
all simulation traces show this oscillatory behaviour. However, the oscillations among different
traces usually are out of phase, and the frequency of the oscillatory pattern varies within the same
trace. Remarkably, the average trend of the three proteins shows no oscillation at all, see [3] for
further details.
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Fig. 7. Biochemical network for the circadian rhythm regulatory system. The figure is taken
from [26], like numerical values of rates. Rates are set as follows: αA = 50,α′

A = 500,αR = 0.01,
α′

R = 50, βA = 50, βR = 5, δMA = 10, δMR = 0.5, δA = 1, δR = 0.2, γA = 1, γR = 1, γC = 2,
θA = 50,θR = 100.
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Fig. 8. Time evolution for circadian rhythm model in sCCP. (top) Thefigure refers to the system
described in Figure 7, with parameters described in the caption of the figure. We can see the
regularity of the period of the oscillations. (bottom) The graph shows the time evolution for the
model where the process governing the gene is the posgate described in Table 8. The periodic
behaviour, with this simple modification, is irremediably lost.
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Abstract. Chemera is a molecular modelling software package that includes the 
algorithms BiGGER (Bimolecular complex Generation with Global Evaluation 
and Ranking), for modelling protein interactions and protein complex structures 
[1,2,3], and PSICO (Processing Structural Information with Constraint 
programming and Optimisation), to integrate experimental and theoretical data 
to solve protein structures [4, 5]. This paper focuses on the constraint 
programming aspects of Chemera, namely constrained docking, which allows 
the user to restrict the search for protein-protein complex models in a manner 
consistent with the ambiguity of some experimental data, and the processing of 
structural constraints to generate approximate models of protein structures from 
heterogeneous data. This allows the user to take advantage of experimental data 
obtained by a wide range of techniques, from spectroscopy to site-directed 
mutagenesis, and to integrate these data with theoretical considerations such as 
homology models, secondary structure prediction, or reaction mechanisms. For 
modelling protein complexes, this is done by specifying sets of potential 
contacts between the two proteins and how many of those contacts must be 
enforced, without having to specify exactly which contacts to enforce, which 
models the possibility of some of experimental results being due to effects other 
than proximity to the docking partner. For modelling the structure of a single 
protein, the information can be encoded as distances between atoms, as fixed 
relative positions for groups of atoms, or of constraints on angles of rotation 
around atomic bonds connecting rigid groups. 

1. Introduction 

Protein-protein interactions play a central role in biochemical reactions, and 
understanding these interactions is an important step in several fields of biochemical 
research. Modelling software provides useful tools to help researchers elucidate 
protein interaction mechanisms, and two decades since the pioneering work of Katzir 
and others [6] have seen significant developments in algorithms to generate models 
and scoring functions to select the most likely candidates. Examples from the CAPRI 
(Critical Assessment of Protein Interactions) experiment [7] illustrate the diversity of 
protein interaction modelling (protein docking) packages currently available [8, 9, 10, 
11]. 

A common trend in these approaches is to try to model interactions using only 
knowledge derived from the structure and physicochemical properties of the proteins 
involved. Some algorithms have been developed [1, 12] or adapted [13] to use data on 
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the interaction mechanisms, but this approach is still the exception rather than the 
norm. BiGGER is one of these exceptions, and the Chemera modelling package has 
been developed from the start to help the researcher bring into the modelling process 
as much data as available. Previous results show that BiGGER can be a powerful 
modelling tool when used in this manner [2, 14, 15, 16, 17, 18]. 

Important as it is to have a good model of the structure formed by the interaction of 
different proteins (a protein complex), it is even more important to know the structure 
of each partner, a prerequisite for modelling the complex. In this field the common 
approaches have been either theoretical, to try to predict the structure from the 
physical properties of the amino acid sequence in the protein, or homologies with 
other known structures, or experimental, specializing on the processing of data from 
specific techniques like Nuclear Magnetic Resonance (NMR) spectroscopy. PSICO 
aims at bringing the two approaches together by providing a flexible framework for 
processing geometrical constraints and thus integrate information from all relevant 
sources in the modelling of a protein structure. NMR data can be modelled as distance 
constraints [5, 4] or as torsion-angle constraints [3], homology or secondary structure 
prediction data can be modelled as rigid-group constraints [3], energy functions can 
be included in the local-search optimization stage, and amino acid properties relevant 
for protein folding, such as hydrophobicity, can be part of the enumeration heuristics 
during constraint processing. 

2. BiGGER: the docking algorithm. 

At the core of our protein docking algorithm is the representation of the protein 
shapes and the measure of surface contact. The former is a straightforward 
representation using a regular cubic lattice of cells, similar to that commonly used in 
the Fast Fourier Transform (FFT) methods derived from [6]. In BiGGER the cells do 
not correspond to numerical values, but each cell can be either an empty cell, a 
surface cell, or a core cell. The surface cells define the surface of the structure, and 
the overlap of surface cells measures the surface of contact. Figure 1 illustrates these 
concepts, showing on the first two panels a cutaway diagram of the grid representing 
a protein structure, and on the third panel a cutaway diagram of two grids in contact, 
showing the contact region corresponding to a set of overlapping surface cells.  

This representation has several advantages over the FFT approach, requiring about 
a thousand times less memory (approximately 15Mb in BiGGER vs 8Gb for FFT in 
large proteins) and being up to ten times faster than FFT [19]. BiGGER also models 
side-chain flexibility implicitly by adjusting the core grid representation [1] and 
allows for hard or soft docking simulations depending on the nature of the interaction 
to model. Furthermore, this representation and the search algorithm can take 
advantage of information about the interaction to simultaneously improve the results 
and speed up the calculations. 
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Fig. 1. The image on the left shows a protein structure overlaid on a cutaway of the respective 
grid, with spheres representing the atoms of the protein. The centre figure shows only the grid 
generated for this protein, cut to show the surface in light blue and the core region in grey. The 
rightmost image shows two grids (red and blue) in contact.  

2.1 Restricting the search to surface overlapping regions. 

A significant proportion of all possible configurations for the two grids results in no 
surface overlap. Much can be gained by restricting the search to those configurations 
where surface cells of one grid overlap surface cells of the other. This is achieved by 
encoding the grids in a convenient way: instead of individual cells, grids are 
composed of lists of intervals specifying the segments of similar cells along the X 
coordinate. These lists are arranged in a two-dimensional array on the Y-Z plane.  

This encoding not only reduces the memory requirements for storing the grids, but 
also leads naturally to searching along the X axis by comparing segments instead of 
by running through all the possible displacements along this coordinate. Given two 
surface segments, one from each structure and aligned in the same Y and Z 
coordinates, we can calculate the displacements where overlap will occur simply from 
the X coordinates of the extremities of the segments.  

Representing by a variable the displacement of one structure relative to the other 
along the X direction, this approach of comparing segments efficiently enforces the 
constraint requiring surface overlaps by reducing the domain of this variable to only 
those values where the constraint is verified, as we explain in the next section. 

2.2 Eliminating regions of core overlap 

Another important constraint in this problem is that the core regions of the grids 
cannot overlap, for that indicates the structures are occupying the same space instead 
of being in contact. By identifying the configurations where such overlaps occur, it is 
possible to eliminate from consideration those surface segments on each structure that 
cannot overlap surface segments on the other structure without violating the core 
overlap constraint. Some surface segments can thus be discarded from each search 
along the X axis. Figure 2 illustrates this procedure.  

One structure, labelled A, is shown in the centre of the image. The other structure, 
labelled B, will be moved along the horizontal direction to scan all possible 
configurations but, from the overlap of core segments, a set of positions along the 
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horizontal direction can be eliminated. Structure B is shown in position 1 to the right 
of A and in position 39 to the left of A, but, in this case, it cannot occupy positions in 
the centre.  

 
 

Pruned AllowedAllowed 

BB  

AA

BB  
1 12

2 3

3

Discarded 
Segments 

1 5 30 39 

L1 

L5 

 
Fig. 2. Grid B is translated along the horizontal direction relative to grid A. The vertical arrows 
marked 1 indicate the position of B on the lower horizontal bar, which shows the allowed and 
forbidden values for the position of B. The arrows marked 2 and 3 show the allowed 
displacement of B. The group of horizontal arrows indicates segments to be discarded. 

The domain of variable x, representing the displacement of one structure relative to 
the other along the X direction, can be pruned from the values 5 to 30. This is a 
contiguous interval in this example, but the domain of x can be an arbitrary set of 
intervals in the general case. This domain reduction due to the core overlap constraint 
propagates to the surface overlap, since some surface segments of A and B will not 
overlap in valid configurations. Some of these are shown in Figure 3 by the group of 
arrows to the left of structure A (Discarded Segments, Figure 3). For the last double 
arrow, for example, the surface cells of structures A and B would only overlap for 
x=7, a value pruned from the domain of x. In contrast, in the line below such overlap 
occurs for x = 3, a value kept in the domain.  The top three arrows point to surface 
segments on structure A which can be ignored in this case. The top three surface 
segments on structure B cannot be ignored because they may overlap with the surface 
segments of A on the other side, once B is moved to the right of A, but the following 
four arrows indicate that both the segments to the left of A and those to the right of B 
can be ignored. Thus the core overlap constraint allows us to reduce the number of 
surface segments to consider when counting surface overlaps. 

This approach can be generalized for the translational search. Three variables, z, y, 
and x, and their respective domains, Dz, Dy, and Dx, represent the translation of B 
with respect to A. The domains are initialised to include all translations that may 
result in contacts by a bounds consistency check: if MaxA/MaxB and MinA/MinB are 
the maximum/minimum coordinate values along the Z axis for the surface grid cells 
of the two structures, Dz is initialised to [(MinA-MaxB; MaxB-MinA)]. The same 
procedure applies to Dy and Dx (lines 3 and 5), but only considering the parts of the 
structure that can overlap (Dy depends on the value of z, Dx depends on the values of 
z and y). We shall see in the next sections that these domains can be further pruned by 
other constraints on the minimum overlap score (section 2.3) and distances between 
points in the two structures (Section 2.4), so Dz, Dy, and Dx are not necessarily single 
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intervals but sets of intervals. This pruning (Sections 2.3 and 2.4) occurs at the 
initialisation of the domains. 

For each z and y translation value, Dx is initialized (line 5), and a list generated for 
the matching sets of core grid segments for the two structures. Grid segment sets are 
matching when they are aligned by the z, y translation of the B structure, so each 
entry on this list corresponds to a location in the Z,Y plane and contains the core 
segments of both structures that are aligned at that location by translating the B 
structure by the z, y values. Figure 2 shows two such sets, marked L1 and L5, which 
would be respectively the first and fifth entries of the list of matching core grid 
segments. L1 contains one core grid segment from A and one from B, L5 contains two 
core grid segments from A and one from B. 

The BiGGER algorithm then (line 7) imposes bounds consistency on these sets of 
core grids segments, which requires O(k2) operations, where k is the number of 
intervals defined by the core grid segments for each line and for each structure. This 
reduces the possible translation values, Dx, and affects the generation the surface 
segments lists to take into account Dx, including only those segments that could 
overlap given this domain (again, by imposing bounds consistency on the intervals). 
Finally, the overlap of surface cells is determined for each allowed translation value 
in Dx. This requires testing the bounds of the matching surface segments in a way 
similar to imposing bounds consistency, which is of O(k2) for each line, and then 
counting the contacts along X, which is of O(N). 

The algorithm performs O(N2) steps by looping through the Dz and Dy (lines 2 and 
4), and in each of these steps it loops through the Z,Y plane twice to find the matching 
core and surface segments (lines 6 and 8) and compare the segment bounds. So each 
step in the z, y loop is O(N2k2), where k is the number of segments per line. Except 
for fractal structures, k is a small constant. For convex shapes, for example, k is 
always two or less, and even for complex shapes like proteins k is seldom larger than 
two. Thus the time complexity of the search algorithm when imposing bounds 
constraints on the overlap of surface and core grid cells is O(N4), very close to the 
O(N3Log(N)) of the FFT method. Furthermore, the comparisons done in the BiGGER 
algorithm are much faster and this constant factor makes BiGGER more efficient for 
values of N up to several hundred [5]. Finally, the space complexity of BiGGER is 
O(N2), significantly better and with a lower constant factor than the FFT space 
complexity of O(N3). 

2.3 Restricting the lower bounds on surface contact 

Branch and Bound is a common technique that Constraint Programming often uses 
in optimisation problems, to restrict the domains of the variables to where it is still 
possible to obtain a better value for the function to optimise. In this case, we wish to 
optimise the overlap of surface cells, and restrict the search to those regions where 
this overlap can be higher than that of the lowest ranking model to be kept.  

This constraint is applied to the Z and Y coordinate search loops, by counting the 
total surface cells for each grid as a function of the Z coordinate (that is, the sum over 
each X, Y plane) and as a function of each Y, Z pair (that is, the sum of each line in 
the X axis). The determination of the Z translation domain considers the list of total 
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surface cells for each X,Y plane along the Z axis. For each Z translation value these 
two lists will align in a different way, as the one structure is displaced in the Z 
direction relative to the other. The minimum of each pair of aligned values gives the 
maximum possible surface overlap for that X,Y plane at this Z translation, and the 
sum of these minima gives the maximum possible surface overlap for this Z 
translation. Since there are O(N) possible Z translations to test and, for each, O(N) 
values to compare and add, this step requires O(N2) operations. 

The same applies to restricting the Y translation domain, but taking into account 
the current value of variable z. This is also an O(N2) operation identical to the pruning 
of the Z domain, but must be repeated for each value of the z translation variable, 
adding a total time complexity of O(N3) to the algorithm. Since the BiGGER 
algorithm has a time complexity of O(N4), these operations do not result in a 
significant efficiency loss. 

By setting a minimum value for the surface contact count, or by setting a fixed 
number of best models to retain, this constraint allows the algorithm to prune the 
search space so as to consider only regions where it is possible to find matches good 
enough to include in the set of models to retain. In general, this pruning results in a 
modest efficiency gain of up to 30% in medium-sized grids, but with decreasing 
returns as higher grid sizes lead to thinner surface regions and shift the balance 
between the total surface counts and the size of the grid [5]. However, this can benefit 
some applications like soft docking [1], where the surface and core grids are 
manipulated to model flexibility in the structures to dock, or if the minimum 
acceptable surface contact is high. 

2.4 Constraining the Search Space 

In some cases there is information about distances between points in the structures, 
information that can be used to restrict the search region. If this information is a 
conjunction of distance limits, then it is trivial to restrict the search to the volumes 
allowed by all the distances. However, real applications may be more complex. 

For modelling protein interactions, it is often the case that one can obtain data on 
important residues or atoms from such techniques as site directed mutagenesis or 
NMR titrations, or even from theoretical considerations, but it is rare to be absolutely 
certain of these data. The most common situation is to have a set of likely distance 
constraints of which not all necessarily hold. Typically, we would like to impose a 
constraint of the form: 

At least K atoms of set A must be within R of at least one atom of set B (1) 

where set A is on one protein and set B on the other, and R a distance value. This 
constraint results in combinatorial problem with a large number of disjunctions, since 
the distances need only hold for at least one of any combination of K elements of A. 

Since the real-space (geometrical) search of BiGGER can be seen as three nested 
cycles spanning the Z, Y, and X coordinates, from the outer to the inner cycle, we can 
decompose the enforcement of constraint (1) by projecting it in each of the three 
directions: 
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At least K atoms of set A must be within Rω of at least one atom of set B (2) 

where Rω replaces the Euclidean distance R and represents the modulus of coordinate 
differences on one axis Z, Y or X. Rω has the same value of R; the different notation is 
to remind us that this is not a Euclidean distance value, but its projection on one 
coordinate axis. This makes the constraint slightly less stringent, by considering the 
distance to be a cube of side 2R instead of a sphere of diameter 2R, but this can be 
easily corrected by testing each candidate configuration to see if it also respects 
Euclidean distance. 

The propagation algorithm is the same for each axis and consists of two steps. The 
first step is to determine the neighbourhood of radius R of atoms in group B, 
projected on the coordinate axis being considered. The next step is to generate a list of 
segments representing the displacements for which at least K atoms of group A are 
inside the segments defining the neighbourhood R of the atoms in group B. 
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Fig. 3. Generating the displacement domain in one dimension. The left panel shows the 
generation of the neighbourhood of radius R of group B. The panel on the right shows the 
allowed displacements for each atom, and the final displacement domain for a K value of 2. 

The calculation of the neighbourhood of B in some coordinate (either X, Y or Z) is 
illustrated in Figure 3. The positions of atoms B1, B2 and B3 in this coordinate are 
respectively 5, 9 and 17. Their neighbourhoods within a distance 3 are (2;8), (6;12) 
and (14;20). Merging the two first intervals, the neighbourhood 3 of the atom set B is 
thus (2;12) and (14;20).  

To calculate the displacement values that place an atom of group A inside the 
neighbourhood of group B we only have to shift the segments defining the 
neighbourhood of B by the coordinate value of the atom. For example, atom A1, with 
coordinate 9, lies inside the neighbourhood 3 of B if its displacement lies in the range 
(-7;3) or (5;11). Similarly, atoms A2 and A3, with coordinate values 13 and 18, 
respectively may be displaced by (-11;-1) or (1;7) and (-16;-6) or (-4;2).  

Once we have the displacement segments for all atoms, we must generate the 
segments describing the region at least K atoms are in the neighbourhood of B, which 
is a simple counting procedure (hence, the constraint (2) need not be limited to 
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specifying a lower bound for the distances to respect. The value of K can also be an 
upper bound, or a specific value, or even any number of values).  
In this case, there are at least two atoms of set A within neighbourhood 3 of atom set 
B if the displacement lies in ranges (-11;3) and (5;7). In ranges (-7;-6) and (-4;-1) all 3 
A atoms are in the neighbourhood 3 of B. 

The propagation of constraints of the type (2) produces translation domains that are 
used to initialise domains Dx, Dy and Dz in the translation search (see section 2.2). 
Thus the propagation of constraint (2) prunes the domain of the allowed 
displacements in all 3 axes, in a nested sequence. First the domain along the Z axis is 
determined and pruned adequately; then, for each remaining value of the 
displacement along Z, the domain of the displacements along Y is pruned; finally, for 
each remaining (Z, Y) pair, the constraint is enforced on the displacement along X. 

The time complexity of enforcing constraint (2) in one axis is O(a+b+N), where a 
is the number of atoms in group A and b the number of atoms in group B, and N is the 
grid size. Since this must be done for the translation dimensions the overall 
complexity contribution is O(N3), which does not change the O(N4) complexity of the 
geometric search algorithm, and pruning the search space speeds up the search 
considerably [5]. 

3. PSICO: modelling protein structure. 

There are several sources of information that can help model the structure of a 
protein. First of all, the amino acid sequences of the protein chains determines most 
chemical bonds, restricting interatomic distances in many atom pairs, angles formed 
by atom triplets, of even larger groups of atoms that are effectively rigidily bound 
together by the chemical bonds. NMR data provides distance constraints by showing 
that two atoms must be close enough for the Nuclear Overhauser Effect to be felt, 
limits the angles of rotation around some chemical bonds, or can even suggest limits 
for relative special orientations of groups of atoms with Residual Dipolar Coupling 
data. Furthermore, homology with known structures or modelling secondary structure 
can provide detailed information of the structure of parts of the protein being 
modelled. We can divide these into three types of constraints: distance constraints 
between two atoms, group constraints that fix the relative positions of a group of 
atoms in a rigid configuration, and torsion angle constraints that restrict the relative 
orientation of two groups joined together by a chemical bond. 

3.1 Distance Constraints and Enumeration 

The chemical information that is known from the protein sequence provides bond 
length and bond angle constraints. Bond length constraints are also distance 
constraints, and the bond angles can be modelled by sets of distance constraints. In 
fact, the structure and flexibility of an amino acid can be modelled by a conjunction 
of pairwise distance constraints between all the atoms. To model this information we 
consider two types of constraints: In constraints (eq. 3) and Out constraints (eq. 4). 
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In constraint kzzyyxx ≤−+−+− 2
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Out constraint kzzyyxx ≥−+−+− 2
21

2
21

2
21 )()()(  

(4) 

 
These two constraint types are used to model all the chemical structural 

information, whether it is known beforehand or from the NMR spectroscopy 
experiments. 

 

Fig. 4. This figure shows the difference between an Euclidean distance constraint and the 
simplified constraints used in our model. Note that an In constraint region contains the 
Euclidean distance region, whereas an Out constraint must be contained within the Euclidean 
distance region. 

In practice, these Euclidean distance constraints are expensive to propagate, so we 
use an approximation (eqs. 5 and 5). 

In constraint kzzyyxx ≤−−− |)||,||,max(| 212121  (5) 

Out constraint kzzkyykxx ααα ≥−∨≥−∨≥− |||||| 212121  
3

1=α  (6) 

The parameter α is needed to insure that the simplified Out constraint does not 
exclude regions allowed by the Euclidean distance constraint. This simplification is 
illustrated in Figure 2. 

The variables we wish to determine are the positions of the geometric centres of 
the atoms, that is, the (x, y, z) coordinates in a single variable with a three 
dimensional domain, and this domain is represented as a set of cuboid regions. One 
cuboid defines the Good region, which is the volume that contains the possible 
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positions for the atom. A set of non-overlapping cuboids contained in the Good region 
defines the NoGoods region, which contains the positions from which the atom must 
be excluded (see Figure 5). 

 

 

Fig. 5. The domain for the position of an atom is composed of two regions. The Good region is 
a cuboid that defines the positions for the atom that comply with the set of In constraints. The 
NoGoods region is a set of non-overlapping cuboids that define the volumes within the Good 
region from which the atom is excluded by the Out constraints. 

We distinguished between the two types of distance constraints (In and Out) 
because of the way in which they are propagated (also see Figure 5).  
• The In constraints are propagated simply by intersection operations. The Good 

region of atom A will be the intersection of the current Good region of A with the 
neighbourhood of the Good region of atom B. This neighbourhood is defined as 
the Good region of B augmented by the distance value of the In constraint 
between A and B. After this operation the NoGoods region of A is intersected 
with the Good region to guarantee that it is always contained in the latter. The 
intersection of two cuboid blocks is very simple to calculate, requiring only Max 
and Min operations on the extremity coordinates, so propagation of In constraints 
is very efficient. 

• For an Out constraint the propagation involves adding the exclusion region 
defined by the constraint to the NoGoods region of the affected atom. The most 
complex operation in this process is insuring that the NoGoods region consists of 
non-overlapping cuboids. This reduces propagation efficiency, but simplifies the 
task of determining the cases of failure when the NoGoods region becomes 
identical to the Good region. 
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Fig. 6. This figure shows the propagation of both types of constraints. For In constraint 
propagation, the domain of atom A is reduced by intersecting the Good region of A with the 
neighbourhood of B. For Out constraint propagation a NoGood cuboid region is added. This 
NoGood region is obtained by intersecting the Good region of A with the exclusion region of B. 
Note that part of the new NoGood block in A (thick line rectangle) overlaps the original 
NoGoods region, so only the non-overlapping part is added (darker grey shaded area). 

Arc-consistency is guaranteed by propagating the constraints on each atom that 
suffered a domain restriction until no domain changes. After complete propagation, 
one atom is selected for enumeration, and the propagation step is repeated.  

Enumeration intercalates the arc-consistency enforcement following a first fail 
approach on a round robin system. First, the atom with the smallest domain that was 
not selected in the current enumeration round is selected for enumeration. Exception 
is made if the coordinate domain is smaller than 2.0Å for all three coordinates, in 
which case the atom is considered sufficiently determined and no domain reduction is 
necessary. The domain of this atom is then split into two similarly sized domains by 
‘cutting’ across the longest coordinate axis (x, y or z) of the domain. The domain of 
the atom will be one of these two ‘halves’. 

Enumeration heuristics now come into play. One simple heuristic that was shown 
to be successful [3,4] was to chose for the new domain that half less occupied by the 
domains of all other atoms, but additional considerations such as the chemical nature 
of the amino acid or the prediction of local structures can play a role at this stage to 
inform the choice of which regions of the domain to eliminate. 

 Since the domain for the enumerated atom is reduced, constraints are then 
propagated (as discussed above), and then another atom is selected for enumeration 
(the atom with the smallest domain not selected yet). This process of selection and 
domain reduction is repeated until all atoms were selected once, after which a new 
round of enumeration starts. In case of failure it is possible to backtrack and try 
different domain reductions, but backtracking is limited both for practical reasons and 
because it is often the case that the set of constraints is inconsistent due to 
experimental noise, and in these cases the user needs some structure, even if only 
partially correct, to help correct the inconsistencies by reassigning the constraints. 
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3.2 Rigid Group Constraints 

The last section outlined the basic framework for PSICO: the domain representations, 
arc-consistency intercalated with a round-robin enumeration, and limited 
backtracking. This provides an approximate solution to the problem that can then be 
refined by local search optimisation. The propagation of rigid group constraints 
extends this framework to include the information on the configuration of groups of 
atoms. These can be a prosthetic group or a domain of known structure for which we 
can know the relative positions of all atoms but which fits within the structure of the 
protein in an unknown position and orientation. This section explains how these 
constraints can be propagated in order to reduce the domains of the atoms involved. 

Given a fixed orientation, it is trivial to reduce the domains of the atoms in a rigid 
group. This requires simply that we determine the limits for the translations of the 
group that do not place any atom outside its domain. Denoting by wc one of the 
coordinates of the center of the group (x, y or z), by wj the same coordinate for atom j, 
and by wmax and wmin the upper and lower limits, respectively, for that coordinate of a 
domain (of atom j or of the center c), such limits are related by the following 
equations: 

max 1 max ( )( )n
c j j c jw w w wMin = + −=  

(7a) 

min 1 min( ( ))n
c j j c jw Max w w w== + −

 
(7b) 

Note that the absolute values of wc and wj are irrelevant; only the coordinate 
difference wc-wj is important, and is independent of translation. 

Equations 7 assume a fixed orientation of the group, but we cannot make that 
assumption, since the group is free to rotate. Without loss of generality, we shall 
consider the case of the limits in the x and y coordinates as a function of a rotation 
around the z axis, centered on the centre point of the group. Hence, the term (wj-wc) 
in equation 1 may actually stand for the x-or y-components of the vector from atom j 
to the centre of the group, or, in other words, the position of the centre relative to 
atom j.  

This vector is a function of the orientation of the group. Denoting by ψ the rotation 
around the z axis, by A the amplitude of the projection of the vector onto the xy plane 
(orthogonal to the rotation axis) and by αj the angle of the vector yc-yj at ψ=0, then 
the terms wc –wj for the x and y coordinates are given by 

 

cos( ) sin( )2c j j j jx x A A πψ α ψ α− = + = + +  (8a) 

sin( )c j jy y A ψ α− = +  (8b) 

Figure 7 shows the case for the y-coordinate (the x-coordinate is shifted by 90º). 
First, the orientation of the group around the x axis is fixed in an angle we 

designate χ. Next, the rotation around the y axis is fixed at angle ϕ. For each (χ;ϕ) 
pair, equations 2 can be used to describe the x and y coordinates for each atom as a 
function of the angle ψ, corresponding to the rotation around the z axis. An equation 
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similar to equation 2 can also be used to describe the z coordinates of atom j (related 
to the centre of the group) as a function of the second rotation, ϕ, around the y axis. 
 

 
Fig. 7. The position of an atom relative to the centre of the group as a function of the rotation 
angle ψ can be expressed as a sine function with amplitude A and phase α’. The position of the 
center relative to the atom is a similar curve, but with the phase shifted by 180º (α), giving the 
sine wave curve shown on the right. 

With no loss of generality, we may replace yc and yj in equations 8 with Lc and Lj 
to denote, respectively, the domain limits of the centre and of atom j in an arbitrary x, 
y, or z coordinate and by θ an arbitrary rotation angle (ϕ or ψ), and compute the 
contribution of each atom to the limits on the translation of the centre of the group by 
means of Equation 9 below: 

sin( )c j j jL A Lθ α= + +  (9) 

To determine the limits for the placement of the group as a function of the rotation 
around one axis, considering the rotation around the other axes fixed, we need but 
intersect the contributions of all atoms to these limits. Now we need to extend this to 
rotations around all three axes. 

Dividing the rotations into finite intervals, each orientation corresponds to an 
interval of angles, instead of just a single angle, and each coordinate to an interval of 
values. This way each rotation can be divided into a manageable number of 
orientations. However, whereas rotating coordinates around an angular value gives a 
single values for the coordinates, rotating around an interval of angles results in 
intervals of coordinates. However, as long as we guarantee that the intervals for the 
angles partition the rotation with a step size that is a sub-multiple of 90º, the sine 
functions will be monotonous in each interval and the intervals of the corresponding 
coordinates are trivial to calculate (see reference 3 for more details). 

Because of this approach, the previous equations apply not to single coordinate 
values, but to intervals. However, this extension raises no problems, neither 
conceptually nor in the implementation. 
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 3.3 Torsion Angle Constraints 

In some cases, it is possible for a molecule to change configuration by groups of 
atoms rotating around a chemical bond. It is this process that allows proteins to fold 
into their shapes, and the angle of such a rotation is called the torsion angle. Some 
experimental techniques may provide constraints on torsion angles, and this is useful 
information when modelling a protein structure. 

The propagation of these constraints is an extension to the rigid group constraint 
propagation discussed in the previous section. We can consider that two rigid groups 
connected by a bond allowing rotation is a single rigid group if the torsion angle is 
fixed. If the torsion angle is an interval, we can account for the relative coordinates of 
all atoms in the two groups by using the corresponding intervals, in a way similar to 
that discussed in the previous section (also see reference 3). 

The extension is thus to add another rotation for every torsion angle to account for, 
and this procedure allows us to extend the rigid group constraint propagation to any 
number of rigid groups connected by torsion angles. 

While the addition of one torsion angle multiplies the computational cost of 
propagation by the number of angle intervals to consider, the increase in the size of 
the rigid group by considering the two connected groups as a single group in each 
angular step generally decreases the computation cost by restricting the orientations in 
which the atoms can be placed without violating the limits of their domains, because 
with larger groups it is harder to respect all domains in any given orientation than it is 
to do so with smaller groups. 

There is a trade off between total group size and number of torsion angles to use, 
and the right trade off is also a function of the constraints on the torsion angles and 
the size of the atom domains at the time of propagation, so currently we are 
researching the best ways to optimize torsion angle constraint propagation taking into 
account all these factors. 

4. Chemera: current applications and future work 

Chemera is the interface to all BiGGER and PSICO calculations and, in addition, a set 
of tools that can be used to visualise the properties of the interaction partners and the 
models generated for protein complexes and single protein structures. These tools are 
all integrated in a single visual environment, and include: 

Electrostatics. Chemera calculates and displays electrostatic fields using the 
Poisson-Boltzmann equations, which take into account the ionic strength of the 
medium (Figure 8-A). 

Clustering and Scoring. Chemera can group similar models together according to 
user-defined thresholds of similarity; calculate new scores based on contacts, average, 
or minimum distances between groups of atoms; export and import scores and lists of 
models to and from spreadsheet applications, display groups of models selected 
according to different scores and display groups of models using simplified 
representations that show the distribution of many models simultaneously. (Figure 8-
B)  
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Fig. 8. Visualisation possibilities in Chemera. See text for details. 

Web Services. Chemera can also interface with several web services, to assign 
secondary structure elements, identify domains, display sequence conservation along 
the protein structure (Figure 8-C). Integration of Web services in Chemera is being 
developed as part of the European Network of Excellence project REWERSE [20], 
for the development of Web reasoning and semantics. 

Thus constraint programming techniques in Chemera are seamlessly integrated into 
a general molecular modelling package. This is an important aspect because research 
and development in this area is very dependent on a close interaction with the end 
users in the biochemistry community. Past experience [2, 14, 15, 16, 17, 18] and work 
currently in progress on several protein interactions (e.g. Aldehyde Oxidoreductase 
and Flavodoxin, Ferredoxin NADP Reductase and Ferredoxin, Fibrinogen and 
Gelatinase A) demonstrate this for the BiGGER docking algorithm, which is currently 
available in Chemera 3.0 [21]. Our efforts at present involve forming a similar 
partnership for the testing and application of PSICO to real problems with the aim of 
future inclusion of this algorithm in a publicly available release of Chemera.  
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Abstract. In this paper we show how model checking can be used to drive the so-
lution search in the protein folding problem encoded as a constraint optimization
problem. The application of the model checking technique allows us to distin-
guish between meaningful protein conformations and bad ones. This classifica-
tion of conformations can then be exploited by constraint solvers to significatively
prune the search space of the protein folding problem. Furthermore, our approach
seems promising in the study of folding/energy landscapes of proteins.

1 Introduction

In this paper we show how model checking can be used to drive the solution search in
the protein folding problem encoded as a constraint optimization problem. Given the
molecular composition of a protein, i.e., a list of amino acids, known as itsprimary
structure, theprotein structure prediction(or protein folding) problem consists in de-
termining the 3D shape (tertiary structureor conformation) that the protein assumes in
normal conditions in biological environments [5].

To solve the protein folding problem it is crucial to determine the conformations of
the amino acid sequences in the 3D space with minimum energy.It is indeed widely
accepted that a state with minimum energy represents the protein’s natural shape (a.k.a.
thenative conformation). The energy of a conformation can be modeled by means of
suitableenergy functions, which express the energy level in terms of the interactions
between pairs of amino acids [3]. Since the protein folding problem is extremely com-
plex, it is often simplified in several respects. A common simplification consists in using
lattice space modelsto restrict the admissible positions of the amino acids in the space
[11]. The energy function can be simplified as well, e.g., by adopting the 20×20 poten-
tial matrix proposed by [7,8] or the simpler HP model [1,2]. For the sake of simplicity,
in the following we assume a 2D finite lattice included inN

2 and the HP energy model.
However, our approach can be easily extended to 3D lattices.Furthermore, it is not dif-
ficult to replace the HP model with a more refined energy model that keeps track of the
variety of interactions among the 20 kinds of amino acids.

In this work we show how model checking techniques can be exploited to investi-
gate the relationships among the different possible conformations of proteins. We model

⋆ This work has been partially supported by PRIN 2005 project 2005015491 and by FIRB 2003
project RBNE03B8KK.
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the solution space of the protein folding problem as a finite transition system whose
states are all the possible conformations of a protein and whose transitions represent ad-
missible transformations of conformations. Then, we take advantage of temporal logic
to specify and check relevant properties of such a system. Asan example, we show
how to check whether there exists a path from a given conformation to a conformation
with an energy level below a certain threshold whose length is less than or equal to
a given value. In particular, we are interested in identifying patterns common to dif-
ferent proteins. These patterns can be used to improve the solution search in existing
constraint-based protein folding algorithms as well as to understand protein functions.
In general, constraints allow one to easily model minimization problems. Once the con-
straint model is defined, a constraint solver can indeed be used to search for solutions.
This search exploits the constraints to prune the solution space. In the following, we
show how model checking can be used to identify meaningful properties of protein
conformations that can be encoded as additional constraints to be used to further reduce
the solution space.

The paper is organized as follows. In Section 2 we introduce the HP model. In
Section 3 we describe how to generate, for any given protein,the corresponding finite
transition system. In Section 4 we show how to express relevant properties of protein
conformations in temporal logic. In Section 5 we report preliminary experimental re-
sults and we outline some ongoing developments of the work.

2 The HP model of proteins

The HP model on a 2D discrete lattice, where every conformation of a protein is a self-
avoiding walk inZ

2, is commonly used to represent the conformations and the energy
function of proteins [12]. Such a model reduces the 20-letter alphabet of amino acids to
a two-letter alphabet{H,P}, where H (resp., P) represents a hydrophobic (resp., polar)
amino acid. The energy function states that the energy contribution of acontactbetween
two amino acids is -1 if both of them are H amino acids, 0 otherwise.

Hereafter, we represent an HP sequence as an element in{0,1}∗, where 1 (resp.,
0) stands for an H (resp., P) amino acid. Furthermore, fori = 0,1, . . . ,n, we denote by
si the i-th element of a sequences of n+ 1 elements. The subset of admissible protein
conformations is defined as follows.

Definition 1 (Folding). A foldingω of a sequence s= s0 . . .sn is a functionω : [0. . .n]→
Z

2 such that

(i) ∀0≤ i < n(|ω(i)−ω(i+1)|= 1), that is, ifω(i)= (Xi,Yi) andω(i+1)= (Xi+1,Yi+1),
then|Xi−Xi+1|+ |Yi−Yi+1|= 1;

(ii) ∀i 6= j(ω(i) 6= ω( j)) (ω is self avoiding).

We say that two amino acidssi andsj of a given foldingω areconnected neighborsif
j = i±1 and that they aretopological neighborsif they are not connected and|ω(i)−
ω( j)|= 1.
In the HP model, the energy of a folding is given by the opposite of the number of
topological HH neighbors, e.g., if there existk topological HH neighbors inω, then the
energy ofω is−k.

47



Definition 2 (Folding Energy). Given a sequence s= s0 . . .sn, the energy of a folding
of s is:

E = ∑
1≤i+1< j≤n

Bi, j ·δ(si ,sj )

where Bi, j is equal to−1 whenever both si and sj are H amino acids,0 otherwise, and
δ(si ,sj) is 1 if si and sj are topological neighbors,0 otherwise.

Hence, a folding has minimum energy if it maximizes the number of HH contacts.
Given a sequences= s0 . . .sn, we assume its length to ben, i.e., it is equal to the number
of “segments” it is made of. To represent the conformations of a sequence of lengthn,
we use the subsetL = {(i, j) : i ∈ [0,2n], j ∈ [0,2n]} of N

2.
Without loss of generality, we assumeω(0) = (n,n) and, in order to avoid simple sym-
metries, we fixω(1) = (n,n+1).
Notice that, once the coordinates of a segment have been fixed, the next segment in the
sequence can only assume three possible directions with respect to the preceding one:
left (l), forward (f ), and right (r). As a result, a folding of a sequence of lengthn can
be represented as a string of lengthn−1 on the alphabet{l , f , r} 1. As an example, the
sequence of Figure 1 is represented by the stringrllf .

5

5

n = 5

Fig. 1. Stringrllf on 10× 10 lattice.

The number of all possible foldings of a sequence of lengthn, where the orientation
of the first segment is fixed as above, is bounded by 3n−1. It is commonly accepted
that the numberCn of self-avoiding walks of lengthn grows according to the following
formulaCn = B ·µn ·nγ−1, whereB∼ 1.93,µ∼ 2.63, andγ = 43/32 [13], and thus the
number of self-avoiding walks of lengthn, where the orientation of the first segment is
fixed, isDn = Cn/4. In [15] Ngo and Marks have shown that protein folding problem
on 2D-lattices is NP-complete.

Now we formally define the set of valid transformations amongfoldings. Roughly
speaking, a valid transformation of a given foldingf consists in selecting at random a

1 To avoid symmetries it is possible to consider only strings with prefixes of the formf ∗r.
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position in f and performing a rotation of the part off between this position and the
ending position (pivot move).

Definition 3 (Pivot move).Let f = f2 . . . fn, with fi ∈ {l , f , r} for all 2≤ i ≤ n, be a
folding of a sequence s of length n. A folding f′ of s is obtained from f through apivot
movewith pivot k−1, with 2≤ k≤ n, if f ′i = fi for all i 6= k and f′k 6= fk.

Given a folding of a sequence of lengthn, since the number of possible pivots isn−1
and each one may give rise to two moves, i.e., rotations, the number of successor fold-
ings is at most 2(n− 1) (some of these conformations could violate the self avoiding
condition). As an example, consider the sequence of length 4whose folding is repre-
sented by the stringffl. The foldings obtained by pivot moves are the 6 foldingslfl, rfl,
fll, frl , fff, ffr. They are graphically depicted in Figure 2. It is possible toshow that pivot
moves are ergodic, namely, they cover the entire folding space [5].

1

2

3

ffl

fll frlrfllf l fff ffr

pivot : 1

pivot : 2

pivot : 3

Fig. 2. Pivot moves from stringffl.

3 Protein transition systems

In this section we propose an approach to the formal verification of interesting protein
conformation properties based onmodel checking[4]. Model checking allows one to
verify desirable properties of a system by an exhaustive enumeration of all the states
reachable by the system. We model the set of protein foldingsand their relationships as
a finite transition system and we use (linear or branching) propositional temporal logic
to specify relevant system properties [9,17].

Definition 4 (Transition System).Let AP be a set of atomic propositions. Atransition
systemover AP is a tuple M= (Q,T,L), where

– Q is a finite set of states;
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– T ⊆Q×Q is a total transition relation, that is, for every state q∈Q there is a state
q′ ∈Q such that T(q,q′);

– L : Q→ 2AP is a labeling function that maps every state into the set of atomic
propositions that hold at it.

The 2D Protein Transition System is defined as follows:

Definition 5 (2D Protein Transition System).The 2D Protein Transition System of a
string P of length n over{0,1} is a tuple MP = (Q,T,L), where

– Q is the set of all foldings of length n on the2n×2n 2D lattice;
– T ⊆ Q×Q contains the pairs of states(q1,q2) such that q2 can be obtained from

q1 by a pivot move;
– L : Q→ 2AP is a labeling function over the set AP of atomic propositionswhich

consists of the following 3(n-1) predicates
2nd l , . . . ,nth l , 2nd f , . . . ,nth f , 2nd r, . . . ,nth r,

plus the following three predicates
min en, inter en, maxen,

where for all2≤ i ≤ n, the predicate ithl (resp., ith f , ith r) holds at a state q if
the i-th segment of q has aleft (resp.,forward, right) orientation and minen (resp.,
inter en, maxen) holds at a state q if the energy of q is minimum (resp., intermedi-
ate, 0).

It is possible to prove that the 2D Protein Transition Systemcorresponding to a given
protein has the following properties.

Proposition 1 (Properties of the 2D Protein Transition System).

1. It is strongly connected, i.e., for each pair of states q1 and q2, there is a path from
q1 to q2.

2. It is symmetric, i.e., for each pair of states q1 and q2, if (q1,q2) belongs to T, then
(q2,q1) belongs to T.

3. Themaximum incidence degreeD=maxq∈Q |{(q,q′) : (q,q′) ∈ T}| is 2(n-1).

Item 1 of Proposition 1 holds since pivot moves are ergodic [5]. Item 2 of Proposition 1
holds because, if stateq2 can be obtained from stateq1 performing a pivot move, then
q1 can be obtained fromq2 performing the opposite move. Item 3 immediately follows
from Definition 3.

As far as the energy of a protein is concerned, from our experimental results it
turns out that the majority of states has a high energy and that only a few states have
minimum energy. Furthermore, the value of the energy difference between the source
and destination nodes of most edges is 0.

4 Model checking properties of proteins

Temporal logics are formalisms for describing sequences oftransitions between states.
We restrict our attention to two well-known fragments of thecomputation tree logic
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CTL∗, namely, thebranching timelogic CTL and thelinear timelogic LTL [9]. CTL∗

formulae describe properties of computation trees and theyare obtained by (repeatedly)
applying Boolean connectives,path quantifiers, andstate quantifiersto atomic formu-
lae. The path quantifierA (resp.,E) can be used to state that all paths (resp., some path)
starting from a given state have some property. The state quantifiers are the next time
operatorX, which can be used to impose that a property holds at the next state of a path,
the operatorF (sometimes in the future), that requires that a property holds at some state
on the path, the operatorG (always in the future), that specifies that a property is true
at every state on the path, and the until binary operatorU, which holds if there is a state
on the path where the second of its argument properties holdsand, at every preceding
state on the path, the first of its two argument properties holds.

CTL allows one to quantify over the paths starting from a given state. Unlike CTL∗,
it constrains every state quantifier to be immediately preceded by a path quantifier. In
LTL one may only describe events along a single computation path. Its formulae are
of the formA f , where f does not contain path quantifiers, but it allows the nesting
of state quantifiers. CTL and LTL have different expressive powers [9]. We chose to
use both of them to benefit from their advantages. On the one hand, the complexity
of model checking for CTL is linear in the number of states andedges of the transition
system, while the model checking problem for LTL is PSPACE-complete. Furthermore,
there are many tools for checking if finite state systems satisfy CTL formulae (see, e.g.,
SMV [14]). On the other hand, algorithms for on-the-fly modelchecking, a technique
that allows one to contrast the state explosion problem trying not to build the entire
transition system, mainly deals with LTL formulae. As a matter of fact, all the relevant
properties of Protein Transition Systems we identified belong to the intersection of CTL
and LTL.

Given a 2D Protein Transition SystemMP = (Q,T,L) and a temporal logic formula
f expressing some desirable property of the system, themodel checking problemcon-
sists in finding the set of all states inQ satisfying f :

J f K = {q∈Q : MP,q |= f}.

When a state does not satisfy a formula, model checking algorithms produce a coun-
terexample that falsifies it, thus providing an insight to understand failure causes and
important clues for fixing the problem.

We conclude the section by showing how meaningful properties of 2D Protein Tran-
sition Systems can be encoded in both CTL and LTL.

F1: Does it exist a path of length at mostk that reaches a state with minimum en-
ergy?
CTL :min en∨EXminen∨·· ·∨EX . . .EX

︸ ︷︷ ︸

k

min en≡ Wk
i=0E1X1 . . .EiXimin en.

LTL : A(¬min en∧X¬min en∧XX¬min en∧·· ·∧X . . .X
︸ ︷︷ ︸

k

¬min en) ≡

A(
Vk

i=0X1 . . .Xi¬min en).
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Notice that the property expressed in LTL actually is the negation of property F1. How-
ever, it is sufficient to complement the set of states that satisfy this property to obtain
the set of states satisfying F1.

F2: Is energy the minimum one? Alternatively, if energy is the maximum one, is it
possible to reach a state with minimum energy without passing through states with in-
termediate energy?
CTL, LTL : A(maxen U minen).

F3: Is it possible to reach in one step a folding where the first half of the sequence
is a helix of the formrrllrr . . .?
Here we must distinguish between the case in whichm = ⌊n/2⌋ is even and that in
which it is odd.
If m is odd, we have:
CTL : EX(

Vm−1
i=2,i=2+4· j , j≥0(ith r ∧ i +1th r)∧

Vm−1
i=4,i=4+4· j , j≥0(ith l ∧ i +1th l)).

LTL : AX(
Wm−1

i=2,i=2+4· j , j≥0(¬ith r ∨¬i +1th r)∨Wm−1
i=4,i=4+4· j , j≥0(¬ith l ∨¬i +1th l)).

If m= 2+4 · j, j ≥ 0, we have:
CTL : EX(

Vm−1
i=2,i=2+4· j , j≥0(ith r∧ i+1th r)∧

Vm−1
i=4,i=4+4· j , j≥0(ith l∧ i+1th l)∧mth r).

LTL : AX(
Wm−1

i=2,i=2+4· j , j≥0(¬ith r ∨¬i +1th r)∨Wm−1
i=4,i=4+4· j , j≥0(¬ith l ∨¬i +1th l)∨¬mth r).

If m= 4+4 · j, j ≥ 0, we have:
CTL : EX(

Vm−1
i=2,i=2+4· j , j≥0(ith r∧ i+1th r)∧

Vm−1
i=4,i=4+4· j , j≥0(ith l∧ i+1th l)∧mth l).

LTL : AX(
Wm−1

i=2,i=2+4· j , j≥0(¬ith r ∨¬i +1th r)∨Wm−1
i=4,i=4+4· j , j≥0(¬ith l ∨¬i +1th l)∨¬mth l).

F4: Is it true that every state which is at mostk steps far from the current one has
maximum energy, i.e., energy equal to 0?
CTL : maxen∧AXmaxen∧·· ·∧AX . . .AX

︸ ︷︷ ︸

k

maxen≡ Vk
i=0A1X1 . . .AiXimaxen.

LTL : A(max en∧Xmaxen∧·· ·∧X . . .X
︸ ︷︷ ︸

k

max en) ≡

A(
Vk

i=0X1 . . .Ximax en).

In the next section we report the outcomes of some experiments where we model
checked these (and other) properties on proteins of small dimension.
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5 Experimental results and future developments

We implemented the proposed approach to the verification of properties of foldings in
SICStus Prolog and we experimented it on some simple test cases. More precisely, we
developed an algorithm for encoding 2D Protein Transition Systems, and then we im-
plemented model checking algorithms to verify whether somespecific 2D Protein Tran-
sition Systems satisfy or not a set of relevant properties, including F1-F4. We confined
ourselves to test cases where protein length was at most 10. As for F1, for instance,
we searched for states with energy equal to 0 that satisfy propertyF1 whenk = 1, i.e.,
states with maximum energy that reach in one step a state withminimum energy. For
n=8, given the string 111111111, wheremin en= −4, it came out that only 8 states
fulfil the request. They are (every state is followed by the state testifying the satisfi-
abily of the property):lr f l f l f → ll f l f l f , l f f l f l f → ll f l f l f , rl f r f r f → rr f r f r f ,
r f f r f r f → rr f r f r f , f l f l f rl → f l f l f ll , f l f l f f l → f l f l f ll , f r f r f lr → f r f r f rr ,
and f r f r f f r → f r f r f rr . Similar experiments were performed in the cases of prop-
erties F2-F4. We used our tool to model check a number of othermeaningful prop-
erties. As an example, we used it to check whether there existstates with an energy
different from the minimum one that may reach in one step a state with a greater en-
ergy which, in its turn, may reach in a few steps (how many, it depends on the length
of the protein) a state with minimum energy. The answer is positive. For example, for
n=7, given the string 11111111, wheremin en= −3, the following state satisfies the
property (the entire witness path is reported and every state is followed by its energy):
lrl f ll (−2)→ lrl f f l (0)→ lrll f l (−3). The existence of such paths shows that, in order
to decrease the number of edges of the 2D Protein Transition System, it is not sound
to cut edges connecting states where the source energy is lower than the destination
energy because from the destination state we could rapidly reach states with minimum
energy.

As for the future developments of our work, one of the main issues of model check-
ing is the state explosion problem. In our case, a protein of lengthn gives rise to a
transition system where the number of states isΘ(3n−1). This leads to both time and
space problems. On-the-fly model checking [6,10] has been proposed to cope with the
state explosion problem. This approach in many cases avoidsthe construction of the
entire state space of the system, because the property to test guides the construction of
the system. When a state falsifying the property under analysis is reached, the construc-
tion is stopped. Only in the worst case (when the property is satisfied) the entire system
must be built. Exploiting on-the-fly model checking, we planto apply our approach to
proteins with a significant length.
Another technique proposed to control the state-explosionproblem is symbolic model
checking [14,4]. Symbolic model checking is based on the useof Ordered Binary De-
cision Diagrams (OBDDs) to compactly represent transitionsystems. In the worst case,
the OBDD and the represented system have the same size. However, this is usually not
the case when the transition system has some “regularities”. We intend to study what
happens if we use OBDDs to represent 2D Protein Transition Systems and, if possible,
to exploit symbolic model checking techniques.
Finally, we plan to extend our approach to 3D-lattices and toswitch to an energy model
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that considers all the 20 kinds of aminoacids. In this context we intend to analyse the
usefulness of our approach not only for the protein folding problem, but more in general
for the study of folding/energy landscapes of proteins.
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Abstract. Constraint solving on discrete lattices has gained momentum as a
declarative and effective approach to solve complex problems such as protein
folding determination. In particular, [8] presented a comprehensive constraint
solving platform (COLA) dealing with primitive constraints in discrete lattices.
The purpose of this paper is to discuss some preliminary ideas on possible global
contraints that can be introduced in a constraint system like COLA. The paper
discusses various alternatives and provides preliminary results concerning the
computational properties of the different global constraints.

1 Introduction

Discrete finite lattices are often used for approximated studies of 3D conformations
of molecular structures. These models are used, in particular, to compute reasonable
approximations of foldings of protein structures in 3D space [19,12,1]. Polymers are
laid out in particular subsets ofN

3. These subsets are often described by the vectors that
specify the set of neighbors of each point. Lattice models like FCC and chess knight are
among them.

The protein folding problem in the context of discrete lattice structures has been
studied as aConstraint Optimization Problemin the FCC lattice, using a simplified en-
ergy model in [2] and with a more precise energy model in [7]. In these approaches,
each pointP of the lattice is identified by a triplet offinite domain variables(Px,Py,Pz),
where each variable separately describes a coordinate of the point. Following this ap-
proach, propagation algorithms operate on points by means of projection of domain
information on individual coordinates. Considering each coordinate separately limits
the power ofpropagationamong points as single objects, rather than as triples of FD
variables. In [8] we proposed the constraint solver calledCOLA (COnstraint solver on
LAttices), whose primitive domain considers lattice points as atomicvalues.

In this paper, we propose a study targeting the problem of dealing with global con-
straints in the general context of constraint solvers on lattice domain—and specifically
in COLA. Global constraints are proven constructs that facilitate the declarative encod-
ing of problems; at the same time, they allow the programmer to express knowledge
about relationships between variables, that can be effectively employed by the search
algorithm to prune infeasible parts of the solution search space. We introduce different
global constraints, and we study the complexity of their satisfiability and of the associ-
ated propagation process.

55



We hope this paper will inspire further interest in this problem and promote discus-
sion about suitable global constraints for discrete lattice structures and efficient imple-
mentation techniques.

2 Lattices and COLA

A discrete lattice(or, simply, alattice) is a graph(P,E), whereP is a set of triples
(x,y,z) ∈N

3, connected by undirected edges (E). GivenA= (x,y,z) ∈P, we will denote
x,y,z with Ax,Ay,Az respectively.

Lattices contain strong symmetries and present regular patterns repeated in the
space. If all nodes have the same degreeδ, then the lattice is said to beδ-connected.
Three examples of lattices are described next (and depictedin Fig. 1).

Definition 1. A cubic lattice(P,E) is defined by the following properties:

– P = {(x,y,z) | x,y,z∈ N};
– E = {(A,B) | A,B∈ P,sqeucl(A,B) = 1}.

where sqeucl(A,B) = (Bx−Ax)
2 +(By−Ay)

2 +(Bz−Az)
2.

The cubic lattice is 6-connected—see Fig. 1(a).

Definition 2. AnFCC lattice (P,E) is defined by the sets:

– P = {(x,y,z) | x,y,z∈ N∧x+y+z is even};
– E = {(A,B) | A,B∈ P,sqeucl(A,B) = 2}.

Thus, in anFCC lattice we consider the 3D space organized in cubes, each side having
length 2, and where the center point of each face is also admitted. The practical rule to
compute the points belonging to the lattice is to check whether the sum of the point’s
coordinates (x,y,z) is even. Pairs of points at Euclidean distance

√
2 are linked and

form the edges of the lattice; their distance is calledlattice unit. Observe that, for lattice
units, it holds that|xi−x j |+ |yi−y j |+ |zi−zj |= 2. TheFCC lattice is 12-connected—
see Fig. 1(b).

Definition 3. A chess knightlattice is defined as follows:

– P = {(x,y,z) | x,y,z∈ N };
– E = {(A,B) | A,B∈ P,sqeucl(A,B) = 5}.

Each edge allows a move like a knight on a chessboard, i.e., 2 units in one direction, 1 in
another direction, 0 in the third direction. The chess knight lattice is 24-connected—see
Fig. 1(c).

In COLA, adomain Dis described by a pair of lattice points〈low(D),up(D)〉. The
domainD defines a set of lattice points in the 3Dbox identified by the two opposite
verticeslow(D) andup(D)—i.e.,

Box(D) =

{

(x,y,z) ∈ P
low(D)x≤ x≤ up(D)x, low(D)y ≤ y≤ up(D)y,
low(D)z≤ z≤ up(D)z

}
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(a) (b) (c)

Fig. 1. Basic Component of a Cubic,FCC, and Chess Knight Lattices

COLA handles the domain operations ofintersection, union, anddilation, described
in [8]. In modeling a constraint satisfaction problem, eachvariable represents an entity
to be placed in a point in the lattice space. The variableV is associated to adomain
DV = 〈low(DV),up(DV)〉.

Let V1,V2 denote two lattice variables, letB1 = Box(DV1) andB2 = Box(DV2), let
d ∈ N, and letP1,P2 be two lattice points. The following constraints are admitted in
COLA:

DIST LEQ(V1,V2,d)⇔ ∃P1 ∈ B1,∃P2 ∈ B2 s.t. norm∞(P1,P2)≤ d
EUCL(V1,V2,d) ⇔ ∃P1 ∈ B1,∃P2 ∈ B2 s.t. sqeucl(P1,P2) = d
EUCL LEQ(V1,V2,d)⇔ ∃P1 ∈ B1,∃P2 ∈ B2 s.t. sqeucl(P1,P2)≤ d
EUCL GEQ(V1,V2,d)⇔ ∃P1 ∈ B1,∃P2 ∈ B2 s.t. sqeucl(P1,P2)≥ d

wherenorm∞(A,B) = max{|Bx−Ax|, |By−Ay|, |Bz−Az|}.
The work presented in [8] describes the implementation of these concepts in a con-

crete constraint solving system, capable of performingbounds consistencyon the pre-
viously described constraints. The COLA solver has been applied to the problem of
solving the protein folding problem in theFCC lattice [8], producing interesting results
for proteins of length up to 100.

3 Global constraints

The main contribution of this paper is the identification of which global constraints
should be introduced in COLA to enhance its declarative nature and facilitate the effi-
cient resolution of complex problems. In particular, we expect our design to be general
and applicable to other constraint solvers on lattice domains. In order to be able to
perform forms of consistency which are more accurate than bounds consistency, we as-
sume that the finite domain associated to each variable is a finite set of lattice points,
instead of a simple box, as in COLA.

Intuitively, a global constraint is a non-binary constraint. More formally, givenn
variablesX1, . . . ,Xn, respectively having domainsDX1, . . . ,DXn, a global constraint C
on the variablesX1, . . . ,Xn can be defined as a subsetC⊆ DX1×·· ·×DXn.

For each global constraintC, we are interested in verifying two properties [4]:
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– consistency (CON): C6= /0
– generalized arc consistency (GAC):∀i ∈ {1, . . . ,n}∀ai ∈ DXi

∃a1 ∈ DX1 · · ·∃ai−1 ∈ DXi−1∃ai+1 ∈ DXi+1 · · ·∃an ∈ DXn (a1, . . . ,an) ∈C

In the specific case where the constraintC is binary, i.e., it involves only two variables
X1,X2, the GAC notion is known asarc consistency (AC): C is arc-consistent iff

∀a1 ∈ DX1 ∃a2 ∈ DX2. (a1,a2) ∈C∧∀a2 ∈ DX2 ∃a1 ∈ DX1. (a1,a2) ∈C

Related to the notion ofGAC is the notion offiltering, i.e., the problem of removing
values from the domains of variables in order to obtain an equivalent constraint which
is GAC. If the filtering is computationally too expensive, one can run fast approximated
algorithms, that eliminate some values in some domains obtaining an equivalent con-
straintC′, which is not, however, ensured to be GAC.

Other properties are of interest, e.g., generalized boundsconsistency and directional
arc/bounds consistency [10]. Nevertheless, in this paper,we only deal with the two
properties described above.

By definition (assuming the domains non empty), GAC implies CON. Thus, if we
prove that testing GAC is polynomial, the same will hold for CON. If CON is NP-
complete, then GAC will be NP-hard. Let us proceed with the analysis of different
global constraints in the context of lattices.

3.1 alldifferent

Thealldifferent constraint [20] is probably the most well-known global constraint
used in constraint programming. Its semantics is as follows: if X1, . . . ,Xn are variables
with domainsDX1, . . . ,DXn, then

alldifferent(X1, . . . ,Xn) = (DX1×·· ·×DXn) \
{

(a1, . . . ,an) ∈ (DX1×·· ·×DXn) : ∃i, j. (1≤ i < j ≤ n ∧ ai = a j)
}

It is well-known that testing the CON and GAC properties, as well as performing
GAC filtering for thealldifferent constraint can be done in polynomial time. These
problems can be solved, for example, by adapting algorithmsfor bipartite graph match-
ing (the first contribution in this direction is [18]).

Thealldifferent constraint has a significant role in the modeling of the protein
folding problem on discrete lattices [8]—e.g., to express the fact that a point in the
lattice cannot be used to accommodate two distinct amino acids.

3.2 contiguous

Thecontiguous global constraint is used to describe the fact that a list of variables
represent lattice points that are adjacent (in terms of positions in the lattice graph). Let
E be the set of edges in a lattice, and letX1, . . . ,Xn be a list of variables (respectively,
with domainsDX1, . . . ,DXn). Thecontiguous constraint can be defined as follows:

contiguous(X1, . . . ,Xn) = (DX1×·· ·×DXn) \
{

(a1, . . . ,an) ∈ (DX1×·· ·×DXn) : ∃ i. (1≤ i < n ∧ (ai ,ai+1) /∈ E)
}
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Testing the GAC ofcontiguous can be done in polynomial time. In fact, the
contiguous constraint is equivalent to the conjunction of then−1 binary constraints
of the formCi,i+1, with i ∈ {1, . . . ,n−1}, such that

Ci,i+1 = (DXi ×DXi+1)\{(ai,ai+1) : ai ∈ DXi ∧ ai+1 ∈ DXi+1 ∧ (ai ,ai+1) /∈ E}

The graph induced by these constraint is acyclic. Thus, under these conditions AC im-
plies GAC [11]. This result can also be justified as follows. Let us assume that for every
i ∈ {1, . . . ,n−1}, Ci,i+1 is arc consistent. Choosei ∈ {1, . . . ,n} and chooseai ∈DXi .

– SinceCi−1,i is AC, then it existsai−1 ∈ DXi−1 such that(ai−1,ai) ∈ Ci−1,i . Apply
back the same process untilC1,2 is reached.

– SinceCi,i+1 is AC, then it existsai+1∈DXi+1 such that(ai ,ai+1)∈Ci,i+1. Apply the
same process forward untilCn−1,n is reached.

Going backward and forward we have collected a set of elements such that(a1, . . . ,ai , . . . ,an)∈
C, thus proving thatcontiguous(X1, . . . ,Xn) is GAC.

Observe also that, if there existsCi,i+1 that is not AC, thenC is not GAC. In fact, that
would imply that there isai ∈ DXi s.t.∀bi+1 ∈ DXi+1 we have that(ai ,bi+1) /∈ E. This
means, in particular, that for allb1 ∈DX1, . . . , bi−1 ∈DXi−1, bi+1 ∈DXi+1, . . . , bn ∈DXn,
we have that(b1, . . . ,bi−1,ai ,bi+1, . . . ,bn) 6∈C.

Since AC for binary constraints can be tested in polynomial time, the same holds
for GAC. Polynomiality of CON follows.

Thecontiguous is particularly relevant when modeling protein folding problems
as it allows one to state that the sequence of amino acids composing the primary se-
quence of a protein should remain contiguous in the discretelattice.

3.3 saw

Thesaw constraint is used to require that each assignment to the variablesX1, . . . ,Xn

represents a self-avoiding walk (SAW) in the lattice. More formally, the constraint can
be defined as follows:

saw(X1, . . . ,Xn) = contiguous(X1, . . . ,Xn)∩alldifferent(X1, . . . ,Xn)

Thesaw constraint can be used, for example, to model the fact that the primary sequence
of a protein can not create cycles when placed in the 3D space.

Testing the CON property forsaw is clearly in NP. We prove that it is NP-complete
by reduction of the NP-complete Hamiltonian Cycle (HC) problem on a particular class
of planar graphs, calledspecial planar graphsin [6]. The proof consists of two steps.
First we show how to embed each special planar graphG in a graphG′ whose nodes and
edges are in a cubic lattice. Then we “enlarge”G′ (replacing every edge by two edges
connected by a new node) obtaining a new graphG′′ that we use to define variables and
domains for an equivalentsaw problem. We sketch here the proof.

A special planar graphG = (N,E) [6] is composed of a number ofloops, each
containing only nodes with degree 3, along withpathsof length 2 connecting nodes
that belong to distinct loops (see Fig. 2). Letn = |N|.
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Fig. 2.An example of special planar graphG

It is easy to see that if there is a loop in the graph containingan odd number of
nodes, then no HC exists forG. For this reason, we concentrate on graphs containing
only loops with even numbers of nodes. Observe that loops have to contain at least four
nodes. We assume, moreover, thatG contains at least 2 loops (otherwise the result is
obviously true).

Let us define how to obtainG′ from G. For each loopi, of size 2ni, and consisting
of the nodesp1, . . . , p2ni , we generate a subgraph ofG′, calledgadget, which contains
2ni× (ni + 2) nodes arranged as follows. These nodes are obtained using a clockwise
enumeration of the loops—the starting point is irrelevant.There is a core of the gadget
made of a loop of 2ni nodes, arranged as a 2×ni rectangle. From each of the core nodes
there is a path leading to the nodesp1, . . . , p2ni . Those nodes are called theoutputnodes
of the gadget. In Figure 3 we report a gadget for a 8-nodes loop.

Fig. 3. Example of gadget for a loop of size 8

Let us fix one of the dimensions of the cube (w.l.o.g.,z= 0) and let us work on the
resulting 2-dimensional plane. Let us consider an arbitrary enumeration of the loops
ℓ1, . . . , ℓk of G and let us align the gadgets on the plane according to such ordering. In
particular, all the output nodes of the gadget havey = 0, and they are adjacent in thex
dimension (see Fig. 4). All other nodes of the gadget havey > 0.
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Fig. 4. The aligned gadgets for graphG in Fig. 2

Consider, in lexicographical ordering, the loop pairs〈ℓa, ℓb〉, a < b, that are con-
nected by edges inE. We wish to create copies of the output nodes ofℓa andℓb in a
separate plane (to avoid intersection of edges) and recreate on this plane the connection
structure ofG.

Let us illustrate the process for all the pairs〈ℓ1, ℓb1〉, . . . ,〈ℓ1, ℓbh〉 such that there are
edges between loop 1 and loopbi in G.

In the planei, we add copies of the “relevant” output nodes for loop 1 andbi . E.g., if
an output node of loop 1 or loopbi is at coordinates(x,y,0), and such node is part of an
edge connecting these two loops, then a copy of such node willbe created at coordinates
(x,y, i). Furthermore, copies of such nodes are also placed in all theintermediate planes
(planes 0≤ z≤ i −1), and edges connecting these copies are created—i.e., edges of
the type((x,y,z),(x,y,z+ 1)). The edges between the nodes of distinct loops ofG are
simulated by paths in the planei. The output nodes of the gadgets 1 andbi respect a
clockwise traversal of the loops 1 andbi. SinceG is planar, we can connect using non-
intersecting paths in planei (see Fig. 5). As a strategy, start with the rightmost output
node of loop 1.

Fig. 5. The encoding of the edges outgoing from loop 1 in Fig. 2

The process is repeated for all the other pairs of connected loops (incrementing the
plane levels). In Fig. 6 we show the graphG′ corresponding to the graphG of Fig. 2.

A rough estimate of the size of the resulting graph is the following. The number of
x indices used isO(n) (gadgets outputs are the same as loop lengths). The number of
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values ofy used isO(n) for the gadgets plusO(|E|) = O(n2). The number of values of
z used is againO(|E|) = O(n2). Thus the global “box” containingG′ containsO(n5)
points.

Since the graphG′ maintains the topology (and at most introduces new nodes with
degree 2 on paths), it holds that the Hamiltonian Cycle problem onG′ has a solution iff
G has. Basically,G′ is a copy ofG where the edges linking distinct loops are stretched
(by adding new nodes of degree 2). We will refer these sequences of edges asloop2loop.
loop2loops have always length at most 4 (out of the gadgets) plus 2 (within the gadgets).
We will use the same terminology inG′′.

Fig. 6. The graphG′ obtained fromG in Fig. 2

Fig. 7.Loops inG,G′, andG′′. Observe that the Hamiltonian paths inG andG′ cannot touch half
of the extra nodes added in loops inG′′
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We need an additional step to encode the HC problem using thesaw constraint. The
basic idea is that a self-avoiding walk is an Hamiltonian Path. The problem is that in
G′ representatives of elements ofN may lie at distance 1 in spite of them not being
connected by an edge inE. If we introduce variables and assign to their domains the
nodes ofN′, self-avoiding walks on the nodes ofN′ can have trajectories that are not
allowed inG.

We thus define the graphG′′ = (N′′,E′′) as follows:

– for every edge((x,y,z),(x+1,y,z)) introduce inN′′ the nodesa = (2x,2y,2z), b =
(2x+1,2y,2z),c= (2x+2,2y,2z), and the edges(a,b),(b,c).

– for every edge((x,y,z),(x,y+1,z)) introduce inN′′ the nodesa = (2x,2y,2z), b =
(2x,2y+1,2z),c= (2x,2y+2,2z), and the edges(a,b),(b,c).

– for every edge((x,y,z),(x,y,z+1)) introduce inN′′ the nodesa = (2x,2y,2z), b =
(2x,2y,2z+1),c= (2x,2y+2,2z+2), and the edges(a,b),(b,c).

The graphG′′ is a copy ofG′, in which each edge is substituted by a subgraph of
the form (edge, new node, edge). Letm= |N′′|. In Fig. 7, on the right it is depicted a
fragment ofG′′ obtained from the fragment ofG in the center of the figure. Observe
that edges inE′′ connect nodes at Euclidean distance 1. This property can be exploited
by thesaw constraint to simulate the graph connectivity.

Consider again Figure 7 from left to right. Let us assume thatG admits an Hamil-
tonian Cycle. Any Hamiltonian Cycle traverses the loop in a way similar to the one
depicted. There is a corresponding Hamiltonian Cycle traversing the loop inG′. A cor-
responding path exists inG′′; however it is not Hamiltonian sincehalf of the nodes
of the loopcannot be traversed by that path. We must take care of that designing our
encoding.

Let L be the global number of nodes in loops ofG divided by 2. Define the variables
X1 . . .Xm−L, and for 1< i < 2m let DXi = N′′. For the variablesX1 andXm−L we specify
a singleton domain as follows. Identify inG′′ two consecutive nodes of degree 2 in a
loop2loop. Let us call themα andζ (see also Fig. 7—right). ThenDX1 = {α},DXm−L =
{ζ}. The definition of the CSP is completed by the constraintsaw(X1, . . . ,Xm−L).

Theorem 1. G′ admits an Hamiltonian Cycle iff G′′ admits a self avoiding walk with
m−L nodes starting fromα and ending inζ.

Proof. (→) Let us assume thatG′ has an HC. The same cycle can be mimicked on the
extended graphG′′. All nodes in loop2loops are traversed by this path. Instead, for each
loop, a number of points which is half of the number of points of the original loop inG
is not traversed by the path. Then, the cycle has lengthm−L.

Sinceα andζ have degree 2 and are in a loop2loop, the cycle must contain the edge
(α,ζ). Removing such edge from the path we obtain a SAW of lengthm−L starting in
α and ending inζ.

(←) Let α, p2, . . . , pL−m−1,ζ be a a SAW consisting ofm−L nodes ofG′′ starting from
α and ending inζ. Since|N′′|= m, exactlyL nodes ofN′′ are left out by this SAW.

1. If the SAW enters and exists all the loops as in Fig. 7, then it will leave outL nodes
and it corresponds to an Hamiltonian Path inG′ starting inα and ending inζ. Since

63



α andζ are consecutive nodes of degree 2, it is sufficient to add the edge(ζ,α) to
find the cycle which corresponds to an Hamiltonian Cycle inG.

2. Sinceα andζ are in the same loop2loop it is impossible that a SAW startingin α
and ending inζ does not enter any loops, unlessm−L = 1, which cannot be true
by construction ofG′′.

3. It remains to analyze the case in which the SAW traverses a loop in a way different
from that of point 1. Assuming that it exists, we will find a contradiction with its
lengthm−L. For these SAWs, there is at least one loop2loop left out froma path
traversing one loop, as in the following figure:

We have already seen that loops2loops are of length≥ 6 in G′ (13 in G′′). Let e
andd be the first two nodes of the loop2loop left out. These two nodes cannot be
crossed by the SAW. As a matter of fact, ifd or eare reached by a SAW, there is no
way to come back toζ without repeatedly visiting the same nodes.
On the other hand, the SAW inside the loop visits both the pointsa andc adjacent to
the entering pointb of the analyzed loop2loop. With respect to a SAW of the form
dealt with in point 1, the SAW visits one additional point in the loop but looses
two points outside the loop. This happens for every loop and for every loop2loop
excluded by the SAW. Thus, more thanL points ofG′′ are left out. This is a contra-
diction. ⊓⊔

This reduction is polynomial, thus the CON ofsaw global constraint is NP-complete,
and, consequently, GAC is NP-hard.

Observe that the proof has been carried out using the cubic lattice. It is easy to
modify the mapping for other 3D lattices.

3.4 alldistant

When we model biologically motivated problems (e.g., protein folding) on a discrete
lattice, we often observe that thealldifferent global constraints is not sufficiently
expressive. In particular, we often require that values assigned to a group of variables
are sufficiently spread in the lattice, ensuring a minimal distance between each pair of
points assigned to the variables. This is required, for example, to address the fact that
different amino acids of a protein have different volume occupancy.

In thealldistant constraint, givenn variablesX1, . . . ,Xn, with respective domains
DX1, . . . ,DXn, andn numbersc1, . . . ,cn, we are looking for a solutionX1 = p1, . . . ,Xn =
pn such that, for each pair 1≤ i, j ≤ n, we have thatpi andp j are located at distance at
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leastci +c j . More formally:

alldistant(X1, . . . ,Xn,c1, . . . ,cn) = (DX1×·· ·×DXn) \
{(a1, . . . ,an) ∈ (DX1×·· ·×DXn) :

∃i, j. 1≤ i < j ≤ n ∧ sqeucl(ai,a j) < (ci +c j)
2}

Note that if we consider thealldistant with c1 = 1
2, . . . ,cn = 1

2 then we achieve the
same effect asalldifferent.

We show how to reduce the BIN-Packing problem to the consistency problem for
thealldistant constraint. Let us considern items of sizec1, . . . ,cn andk bins (bin 0,
. . . , bink−1) of capacityB. W.l.o.g., let us assume that, for alli ∈ {1, . . . ,n}, it holds
thatci ≤ B (otherwise the problem is trivially unsatisfiable).

We reduce the problem using only one dimension of the lattice(assume, e.g. that all
y andzcoordinates are fixed to 0). We consider consecutive latticecollinear points. For
the sake of simplicity, we consider lattice points(0,0,0),
(1,0,0),(2,0,0), . . . and we refer to them simply as 0,1,2, . . .4

The reduction is defined as follows. Let us introducen lattice variablesX1, . . . ,Xn.
For i ∈ {1, . . . ,n} the domainDXi is defined as

DXi =
k−1[
j=0

[4 jB+ci ..4 jB+2B−ci]

For example, consider the instance:c1 = 4,c2 = 3,c3 = 5,c4 = 1,B = 7,k = 2.
ThenD1 = [4..10]∪ [32..38], D2 = [3..11]∪ [31..39], D3 = [5..9]∪ [33..37], D4 =
[1..13]∪ [29..41].

Intuitively, each interval[0..2B], [4B..6B], [8B..10B], . . . corresponds to a bin.
Each assignment of the variableXi in Di is such that all values[Xi − ci ,Xi + ci ] are
included in exactly one of the above intervals (intuitively, the item i is assigned to
the bin corresponding to such interval). If the values ofXi andXj are in two different
intervals, then|Xi−Xj |> 2B≥ ci +c j .

We show that there is a solution for the instance of the BIN-packing problem if and
only if there is a solution for the CSPalldistant(X1, . . . ,Xn,c1, . . . ,cn). In the above
example, a solution of the CSP isX1 = 4, X2 = 11,X3 = 33,X4 = 40, from which one
can conclude that we should place items 1 and 2 in bin 0 and items 3 and 4 in bin 1.

For one direction, assume that the CSP admits a solutionσ. Consider all the vari-
ables taking values inσ(Xi)∈ [4B j ..4B j+2B]. Assume that those variables areX j

1, . . . ,X j
mj ,

and assume thatσ(X j
1) < · · ·< σ(X j

mj ). This means that

– σ(X j
1)≥ 4B j +c j

1 (constraint on the domain),

– σ(X j
2)≥ 4B j +c j

1+(c j
1 +c j

2) = 4B j +2c j
1+c j

2 (alldistant constraint),
– σ(X j

3) ≥ 4B j + c j
1 + (c j

1 + c j
2) + (c j

2 + c j
3) = 4B j + 2c j

1 + 2c j
2 + c j

3 (alldistant
constraint),

4 For some lattice structures, it may be necessary to choose a different subset of points. The proof
can be adapted by choosing, e.g., a collinear set of lattice points (some scaling of coefficients
may be needed).
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– and so on, untilσ(X j
mj )≥ 4B j +2(c j

1+c j
2+c j

mj−1)+c j
mj

Moreover, for the constraint on the domain, it holds thatσ(X j
mj )≤ 4B j+2B−c j

mj . This

means that 2(c j
1+c j

2+ · · ·+c j
mj )≤ 2B. Thus, put all items associated to the considered

variables to binj to obtain a solution of the bin packing.
The vice versa is similar. Given a solution of the bin packing, for each binj, consider

the itemsitem j
1,item

j
2, . . . ,item

j
mj assigned in to the binj. Then setσ(X j

1) = 4B j +

c j
1,σ(Xk

2) = 4B j +2c j
1+c j

2, . . . ,σ(X j
mj ) = 4B j +2(c j

1+c j
2+c j

mj−1)+c j
mj .

NP completeness of GAC follows, as usual. The problem of filtering is open, and it
could be investigated, e.g., through adaptation of thesweep algorithmsused in [3].

3.5 rigid block

It is a frequent situation, when dealing with protein structure determination, to have
knowledge of local features of the structure, e.g., presence of secondary structure com-
ponents (such asα-helices andβ-strands); thus, we may wish to be able to express the
fact that a collection of points have to be located in the discrete lattice according to a
predefined pattern.

This notion can be represented using another type of global constraint, calledrigid
block constraint. A rigid block defines a layout of points in the space that has to be
respected by all admissible solutions. LetX1, . . . ,Xn be a list of variables (having, re-
spectively, domainsDX1, . . . ,DXn), and letB= B1, . . . ,Bn be a list of lattice points—that,
intuitively, describe the desired layout of the rigid block. block(X1, . . . ,Xn,B) is ak-ary
constraint, whose solutions are assignments of lattice points to the variablesX1, . . . ,Xn,
that can be obtained fromB modulotranslationsandrotations.

More precisely, we define arotationof a lattice pointp= (px, py, pz) asrot(φ,θ,ψ)(p)=
X ·Y ·Z · pT , where

X =





1 0 0
0 cosφ sinφ
0−sinφ cosφ



 , Y =





cosθ 0 sinθ
0 1 0
−sinθ 0 cosθ



 , Z =





cosψ sinψ 0
−sinψ cosψ 0
0 0 1





Although the rotation anglesφ,θ,ψ are real valued, only few combinations of them
define automorphisms on the lattice in use. The total numbersof distinct automorphisms
r depends on the lattice—e.g., in the cubic lattice, we have that r = 16, and in theFCC
we have thatr = 24.

We extend the definition of rotation to the case of lists of lattice points,rot(φ,θ,ψ)(B),
whereB is a list of points and the result is a list in which every element of B is rotated
according to the previous definition.

Given a list of pointsB, we define the concept oftemplatesas the set:

Templ(B) =

{

rot(φ,θ,ψ)(B) :
∃φ,θ,ψ. rot(φ,θ,ψ)(B) is an
automorphism on the lattice

}

which contains the distinct 3-dimensional rotations of thepointsB in the lattice. Note
that, for a given list of points(B), the cardinality ofTempl(B) is at mostr. We say
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thatℓ = (ℓx, ℓy, ℓz) is a lattice vectorif the translation byℓ of lattice points generates an
automorphism on the lattice. Note that, for some asymmetriclattices, it is possible that
lattice vectors do not exist.

Let ℓ be a lattice vector; withShift[ℓ] we denote a mapping that translates a rigid
block according to the vectorℓ. Formally, for eachi = 1, . . . ,k, Shift[ℓ](B)[i] = Bi + ℓ.
Shifts are used to place a template into the lattice space, preserving the orientation and
the distances between points.

A rigid block constraintblock(X1, . . . ,Xn,B) is then defined as the set:

{

(a1, . . . ,an) ∈ D1×·· ·×Dn : ∃ℓ∃P.

(

P∈ Templ(B)∧
Shift[ℓ](P) = (a1, . . . ,an)

)}

With a fixed rotation of the block, CON is linear in the size of the smallest vari-
able domain (a simple intersection of possible translations for each domain has to be
performed). GAC is polynomial as well, since it is sufficientto repeat the CON test for
each domain.

Propagation of this kind of constraint is studied in a wider context in [16]. Moreover,
the idea of considering rigid blocks to model substructuresof proteins has also been
introduced in [9].

4 Conclusions and future work

In this paper we presented a preliminary study of various global constraints that can be
used to provide declarative encoding of problems in discrete lattices. The introduction
of global constraints has been motivated by problems derived from the use of constraint
solving in discrete lattices to solve the protein folding determination problem. We pro-
pose different types of constraints and investigate their computational properties.

A number of issues are open and deserve consideration. Firstof all, it is interesting
to investigate the relative expressive power of the different constraints—e.g., to under-
stand the importance of having one type of global constraints versus the others. It is also
important to gain a clear understanding of the computational properties of the different
global constraints, with particular attention to the complexity of verifying the properties
CON and GAC and the cost of performing filtering. Throughout the paper we hinted at
the high complexity (e.g., NP-completeness) of some of these problems; in such cases,
it will be important to detect approximated polynomial filtering algorithms, that can be
effectively introduced in a constraint solver like COLA.

Furthermore, we plan to study the constraints among rigid blocks (e.g., parallelism,
angles between them, or proximity between them as proposed by Krippahl and Bara-
hona).
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8. A. Dal Palù, A. Dovier and E. Pontelli. A Constraint LogicProgramming Approach to 3D
Structure Determination of Large Protein Complexes.Proc. of LPAR 2005.
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Suffix arrays and weighted CSPs

Matthias Zytnicki, Christine Gaspin, Thomas Schiex
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Abstract. In this paper, we describe a new constraint that uses some interesting
data structure, the suffix array, well-known in pattern matching. We show how
it helps answering the question of non-coding RNA detectionin bio-informatics,
and more precisely, finding the best hybrid in a duplex constraint.

1 Introduction

Thanks to the recent major advances in molecular biology, the problem of the detection
of non-coding RNA (ncRNA) is now a hot topic in bio-informatics (cf. [1] for review).
A ncRNA is usually represented by a sequel of letters, ornucleotides: A, C, G and
T. An ncRNA also containsinteractions—mainly A–T andC–G— that are essential
to its biological function. In this paper, we will suppose weknow thestructureof a
ncRNA family. The structure is the set of information located on a ncRNA that discrim-
inate for a given biological function. Our aim is the following: how can I get all the
candidates matching a given structure, in a sequence that may contain several billions
of nucleotides? Put in other words, knowing an interaction map and some nucleotide
positions, which regions of my sequence match this map and contain these nucleotides?

Among the proposed formalisms used to solve this problem, one of the most fa-
mous ones uses statistical information in a context-free grammar that describes this
structure [5]. However, some complex ncRNA families cannotbe described within this
formalism and [6] showed that only NP-hard formalisms may correctly describe them.
This favors a CSP model of the problem and such a work has been been done in [7].

However, usual queries give hundred of thousands of solutions and, in practice,
it is impossible to exploit this huge amount of solutions. Obviously, by looking more
carefully at the solutions, some are better than others and it would be useful to give only
the best ones to the user. This is why we used the weighted CSP formalism to solve the
ncRNA detection problem.

One interesting element of structure that we would like to model is the duplex. It is
the ability from the ncRNA tohybridize, i.e. to develop a stretch of interactions with a
DNA strand, or another RNA. We would like to embed this element of structure into a
global constraint. Since this problem is very similar to theapproximate string match-
ing, many formalisms have already been proposed (cf. [2] forreview) to compute the
underlying algorithm. Most of them are based on a dynamic programming algorithm
that computes a kind ofedit distancebetween a word and the subsequences of a long
sequence. To save time and space, these algorithms have beenported to different struc-
tures, such as the suffix tree. This structure makes it possible to focus the search on
the most promising regions and dramatically speeds up the search. Recently, some pa-
pers [3,4] also proposed theenhanced suffix array—or suffix arrayfor short— to solve
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this kind of problem, with an enhancement that provides several advantages compared
with the suffix tree, with no drawback.

In this paper, we present a new global constraint that checkswhether there exists
a word that matches a subsequence of a given long sequence, with a possible given
number of errors, using a suffix array.

2 The WCSP model

The weighted CSP (WCSP) [8] framework is an extension of the CSP, that makes it
possible to expresspreferencesamong solutions thanks tosoft constraints. It has already
been applied to resource allocation, scheduling, combinatorial auction, CP networks
and probabilistic reasoning.

The valuation structureS = 〈E,⊕,≤〉 specifies the costs, where:E = [0..k] ⊆ N

is theset of costs, k, which is the highest cost, can possibly be∞, and it represents
an inconsistency; ≤ is the usual operator onN; ⊕, the addition on E, is defined by
∀(a,b) ∈ N

2,a⊕b = min{a+b,k}. A WCSP is a tupleP = 〈S ,X ,D ,C 〉, where:S is
the valuation structure;X = {x1, . . . ,xn} is a set ofn variables; D = {D(x1), . . . ,D(xn)}
is the set of possiblevaluesof each variable, ordomains, and the size of the largest one
is d; C = {c1, . . . ,ce} is the set ofe soft constraints.

An assignmentt on the set of variablesY ⊆ X is a function that associates to each
variable ofY one of its possible value:t = (y1← v1, . . . ,ym← vm). A soft constraintci

involves a list ofr i variablesvar(ci) = (y1, . . . ,yr i ) (r i is thearity of ci), and it associates
to every assignmentt of the involved variables a costci(t) in E. Given a constraintci and
an assignmentt of var(ci), ci(t) = k means that the constraint forbids the corresponding
assignment. Another cost means the assignment is permittedby the constraint with the
corresponding cost. The cost of a total assignment (i.e. of all the variables) is the sum
of the costs of all the cost functions. A total assignmentt is asolutionif its cost is less
thank.

In our model, as described in [7], the variables represent the positionson the se-
quence of the elements of structure. The initial domain of the variables will therefore
be equal to the size of the sequence. The constraints enforcethe presence of the wished
elements of structure between the specified variables. Within this model, a solution is
a position for each variable, such that all the elements of structure specified by the
constraints can be found. Our aim is to find all the solutions of the problem, given a
maximum costk.

We will not describe here all the constraints used, and we will focus on theduplex
constraint. This constraint ensures that there exists a setof interactions between our
sequence (themain sequence) and another given sequence (thetarget sequence). It has
two parameters: the target sequence and the maximum number of errors in the inter-
action set. Similarly to the edit distance, the number of errors of a hybridization is the
number of nucleotides that do not interact with any other nucleotide, plus the number
of pairs of nucleotides associated through a non-allowed interaction. This will be the
cost given by the constraint. Theduplex constraint involves four variables:xi , x j , yk

andyl . xi represents the start position of the main stem,x j represents its end position,
whereasyk andyl represent the start and end positions of the target stem. To solve the
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problem, we use a depth-first branch-and-boundalgorithm that maintains a extension of
2B-consistency adapted to soft constraints, calledbound arc consistency(BAC*, [9]).

In our implementation, theduplex constraint remains idle until thex variables are
assigned, and BAC* is only enforced on they variables. Waiting for thex variables to be
assigned means that we know the word on the main sequence thatwill take part in the
interaction. Thus, our aim here will be to design an algorithm that efficiently finds the
minimum number of errors between the given word and any subsequence of the target
stem, bounded by they variables.

3 Suffix arrays

The suffix tree is a tree with edges labeled with words. This data structure has been
widely used in pattern matching algorithms. Given a text, the paths from the root node
of its suffix tree and its terminal nodes enumerate all the suffixes of this text (cf.Fig. 1(a)
for the stringAAACA). It is a particularly convenient data structure, since it requires
linear space w.r.t. the size of the text, takes linear time tobuild, and searching whether a
word is contained in this text requires time proportional tothis word (and is independent
in the size of the text).

However, given a sequenceT of sizem, its suffix arraySalso requires a linear time
to build, takes as much time to find a word, but requires a bit less space, and lead to
less cache misses, thanks to the array structure [4]. Basically, a suffix array is an array
where all the suffixes of a text are sorted through lexicographic order (cf.Fig. 1(b)). Of
course, only the positionsu f[i] of the first letter of each suffixi is stored. Additional
information is also stored on each line of the array. First, the size of the longest common
prefix (denotedlcp) between the suffix of linei and linei−1 is inserted on linei (by
convention,lcp[0] = 0).

(i, j) is called al-interval iff: lcp[i] < l , ∀k∈ (i, j], lcp[k] ≥ l , ∃k∈ (i, j], lcp[k] = l ,
andlcp[ j +1] < l . Thesel -intervals can be compared with the nodes of the suffix tree.
For example, the interval(2,3), on figure 1(b), is correlated with the node4 of the suffix
tree, and since this node represents the two-letters wordAA, (2,3) is a 2-interval. An
interval represents an interior node ifi 6= j, and it a leaf otherwise. Using linear space,
we can build in linear time a function that, given anl -interval, gets their childl ′-intervals
(i′, j ′). With this function in hand, we can simulate a suffix tree withour suffix array.
Using the same notations, we will denoteletters(i, j) the subsequenceT[su f[i]..su f[i]+
l ], andletters((i, j)→ (i′, j ′)) the subsequenceT[su f[i]+ l ..su f[i]+ l ′]. In our example,
since the intervals(1,4) and(2,3) are correlated with the nodes2 and4 respectively,
letters(2,3) is AA andletters((1,4)→ (2,3)) is A.

4 An algorithm for approximate matching

4.1 First algorithm

This algorithm takes as an input the suffix arrayS, a wordw of sizen and a maximum
edit distancemaxErr. It returns the minimum distance betweenw and any subsequence
of T, or maxErr+1 if this distance is greater thanmaxErr. It uses a hybridization cost
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matrix chyb, that, given two nucleotides, returns the hybridization penalty (0 being a
perfect hybridization).cins is the penalty cost for a non-hybridized nucleotide.

The main function,getApproximateWord(), works as follows. On line1, we con-
sider anl -interval, between the linesi and j in the array. We suppose that we have
matchedpre fw letters ofw so far, and we have encounterednbErr errors. The function
getChildren() returns in constant time (by using some appropriate data structure) all the
child intervals of(i, j). The line3 checks whether the considered childl ′-interval is an
interior node or a leaf. In the former case, we try to matchletters((i, j)→ (i′, j ′)) with
the remaining unmatched letters ofw through the functiongetApproximateWord() on
line 4. If the flag f of an element returned by this function is set totrue(line 5), then all
the letters ofw have been matched and we may have a solution. Otherwise (line6), we
have to continue the exploration. For that, we store the current configuration (including
the bounds and thelcp of the current interval, and the number of errors found so far) in
a stack, that we will examine afterwards. If the current child interval is a leaf (line7),
then there is only one possibility to match the remaining unmatched letters ofw. Thus,
we simply callgetCandidates() and only keep the solutions that match all the letters of
w on line8.

Let us now explain the functiongetCandidates(). It gets two strings,w andb, of
sizes andt respectively, and tries to match them. It also takesnbErr as a parameter,
which gives the maximum allowed distance betweenw andb. Basically, it is a simple
Needleman-Wunsch dynamic programming algorithm. The onlydifference is that it
returns a list containing all the solutions with a cost less thannbErr that are located on
the last row or on the last column of the dynamic programming matrix. If it is on the
last row, thenb has been totally matched with a prefix ofw; if it is on the last column,
w has been totally matched with a prefix ofb. Each element of the solution list contains
the number of matched letters of the prefix, the score of the match, and a boolean that
states whether the solution is on the last row or on the last column.
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Algorithm 1: Functions used for approximate search

Function getApproximateWord(suffix array S, string w, int maxErr): int
stack.push(0, n− 1, 0, 0) ; min← maxErr + 1 ;
while (¬stack.empty()) do

(i, j, prefw, nbErr)← stack.pop() ;1

for (i′, j′) ∈ getChildren(i, j) do2

if (i′ 6= j′) then3

list← getCandidates(letters((i, j)→4

(i′, j′)), w[prefw..m− 1], maxErr− nbErr) ;
while (¬list.empty()) do

(len, score, f)← list.pop() ;
if (f) then min← min{nbErr + score,min} ;5

else stack.push(i′, j′, prefw + len, nbErr + score) ;6

else

list← getCandidates(letters((i, j)→7

(i′, i′)), w[prefw..m− 1], maxErr− nbErr);
while (¬list.empty()) do

(len, score, f)← list.pop() ;
if (f) then min← min{nbErr + score,min} ;8

return min ;
Function getCandidates(string w, string b, int nbErr): list (int, int,bool)

for i ∈ [0..s] do mat[i][0] = i ; for j ∈ [1..t] do mat[0][j] = j ;
for i ∈ [1..s] do for j ∈ [1..t] do

mat[i][j]← min

�
mat[i− 1][j − 1] + chyb(w[i− 1], b[j − 1]),
mat[i− 1][j] + cins, mat[i][j − 1] + cins

;

for j ∈ [0..t] do if (mat[s][j] ≤ nbErr) then list.add(j, mat[s][j], true) ;
for i ∈ [0..s] do if (mat[i][t] ≤ nbErr) then list.add(i, mat[i][t], false) ;
return list ;

4.2 Optimizations

We also have implemented several optimizations. First, we observed that the exploration
often visits several times the samel -intervals with exactly the same configuration, or
even with less interesting configurations (they contain more errors, with the same num-
ber of matched letters). Obviously, some work is unnecessarily done. To avoid it, with-
out using too much space, we store at each node the last configuration that visited it.

Second, we propagate information between they variables. For example, if we have
some information about theyk variable, then we may shrink the domain of theyl vari-
able, knowing the size ofw, and the number of allowed errors.

Then, we tried to take advantage of the information given by the WCSP. For in-
stance, the solver might have reduced the bounds of theyk variable (which represents
the beginning of the duplex in the target sequence), and thisinformation should be
used to prune some branches of the suffix array. To achieve this dynamical pruning, we
added on eachl -interval(i, j) the smallest interval ofT that contains the subsequence
letters(i, j), so that the values ofyk that have been deleted by the WCSP solver will
never be explored by the suffix array.
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A first, rough, evaluation of the worst time complexity of ouralgorithm isO ((m+
maxErr)m+maxErr+1σmaxErr), whereσ is the size of the alphabet. On real life examples,
where the main and the target sequences contain several millions of nucleotides, enforc-
ing this constraint usually takes not more than a few secondsin the whole execution of
the program. This is all the more encouraging as our program findsall the solutions of
the problem.

5 Conclusions and future work

In this paper we have presented a new constraint, dedicated to bio-informatics prob-
lems (or, more generally, to text-based problems), that uses suffix arrays, in an attempt
of combining constraints with pattern matching algorithms. In the future, we would like
to compare our method with other existing ones, and provide for an empirical evalua-
tion of our approach. You can use the tool that implements thedescribed framework at
carlit.toulouse.inra.fr/Darn/index.php.
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Supertree Construction with Constraint Programming:
recent progress and new challenges
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1 Introduction
One goal of biology is to build theTree of Life(ToL), a representation of the evo-
lutionary history of every living thing. To date, biologists have catalogued about 1.7
million species, yet estimates of the total number of species ranges from 4 to 100 mil-
lion. Of the 1.7 million species identified only about 80,000species have been placed
in the ToL [10]. There are applications for the ToL: to help understand how pathogens
become more virulent over time, how new diseases emerge, andto recognise species
at risk of extinction [10,7]. One approach to building the ToL is to combine smaller
trees into “supertrees”. Phylogenetic trees have been created for relatively small sets of
species [14]. These trees are then combined together into supertrees.

In 2003 Ian Gent, Barbara Smith, Christine Wu Wei, and myselfreported the first
constraint programming model for supertree construction [3]. This was essentially a
proof of concept, showing that constraint programming could address this problem in
principle although our implementation was somewhat inefficient. This has recently been
re-implemented using a faster constraint programming toolkit (JChoco, a java constraint
programming tool [5]) and has allowed us to look at larger problems and get a better
idea of the limits of this encoding. Furthermore, with this new implementation we are
able to demonstrate the flexibility of our model, something that should be expected
when using a versatile technology such as constraint programming.

The remainder of this article is organised as follows. First, I reintroduce the prob-
lem of supertree construction and briefly present the constraint encoding of [3]. Next,
I present a study that attempts to reproduce the results of building a relatively large
supertree of sea birds, reported by Kennedy and Page in [6]. Ithen describe a richer
version of the supertree problem, where ancestral dates areincluded within species
trees [12] and show how the constraint model can be modified toaddress this. Finally,
we look at what limits these models, what we might do to break through those limits,
and then draw to a conclusion.

2 Previous Work
The problem is to combine leaf labelled species trees, wherethere is an intersection
in the leaf labels of those trees. The trees must be combined whilst respecting all the
arboreal relationships in each tree. An example of this is shown in Figure 1, as a rectan-
gular cladogram displayed using Rod Page’s TREEVIEW [9]. The two input trees are
A and B from [6]. One of the first techniques for supertree construction is the OneTree
algorithm of Ng and Wormald [8] and is based on the build algorithm of [1]. OneTree
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Fig. 1. Two species trees made up of sea birds, and on the right a supertree that combines both.
Shared species are highlighted in boxes. The trees correspond to A and B in [6].

is based on the observation that in a tree any three leaf nodesdefine a unique relation
with respect to their most recent common ancestor (mrca1, such thatmrca(a,b) is the
interior node furthest from the root that has both leaf nodesa andb as descendants.
Given three leaf nodes (labelled a, b, and c) one of four relations must hold2:

(1) mrca(a,b) > mrca(a,c) = mrca(b,c)

(2) mrca(a,c) > mrca(a,b) = mrca(c,b)

(3) mrca(b,c) > mrca(b,a) = mrca(c,a)

(4) mrca(a,b) = mrca(a,c) = mrca(b,c)

This is shown pictorally in Figure 2. Using the terminology from [8] we can say that
in (1), (2) and (3) we have the triples(ab)c, (ac)b, and (bc)a3 and in (4) we have
the fan(abc). Prior to applying the OneTree algorithm two (or more) species trees are
broken up into triples and fans via the BreakUp algorithm [8], and the supertree is then
constructed (if possible) using this as input.

1 Note that mrca is sometimes refered to as lca, for least or lowest common ancestor.
2 It is assumed labels a, b, and c are all different.mrca(a,b) delivers an actual interior node in

the tree and that ifmrca(a,b) is equal tox andmrca(b,c) equalsy, x > y if nodex exists at a
greater depth in the tree thany, andx = y if and only if x andy are the very same node. Note
also that if relation (4) is omitted trees are forced to be binary.

3 ... where(xy)z can be read as “x is closer to y than z”
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Fig. 2. The four possible relationships between three leaf nodes ina tree: i.e. the three triples
(ab)c, (ac)b, and(bc)a, and the fan(abc).

In [3] we presented the first constraint programming model for this problem. This
was based on the rather simple observation that any rooted tree isultrametric4. That
is, if interior nodes of a tree are labelled with their depth in that tree then any path
from the root to a leaf node must be a strictly increasing sequence, and in [4] this is
called a min-ultrametric tree. Further, in [4] it is proved that an ultrametric tree has
an ultrametric matrix. In an ultrametric matrixM, for any three indicesi, j, k where
i 6= j ∧ i 6= k ∧ j 6= k one of three relations must hold

Mi, j > Mi,k = M j ,k

Mi,k > Mi, j = M j ,k

M j ,k > Mi, j = Mi,k

Mi, j = Mi,k = M j ,k

In an ultrametric treeT, and its corresponding ultrametric matrixM, given two leaf
nodesi and j in T, mrca(i, j) will have the same value (and that might possibly be depth
in that tree) asMi, j . In [4] it is also proved that an ultrametric matrix has a corresponding
ultrametric tree, and the proof given is constructive and istherefore an algorithm.

Our constraint encoding starts by producing ann×nmatrixM of constrained integer
variables, each with a domain 1 ton−1. Amongst the trees to be combined there are
exactlyn species and each species is mapped to an integer. The arrayM is symmetric
such thatMi, j is the same constrained integer variable asM j ,i and all diagonal elements
Mi,i are preset to zero. An ultrametric constraint is blanketed across the array. By that I

4 A metric on a set of objects is given by the assignment of a realnumberd(x,y) to every pair
of objectsx andy such thatd(x,y) has the following properties:

– d(x,y) > 0 for x 6= y

– d(x,y) = 0 for x = y

– ∀x,y [d(x,y) = d(y,x)]

– ∀x,y,z [d(x,y)≤ d(x,z)+d(y,z)] (triangular inequality)

To be ultrametric we have the additional property:∀x,y,z [d(x,y)≤max(d(x,z),d(y,z)].
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mean that for alli, j,k where 1≤ i < j < k≤ n the following constraint is posted:

Mi, j > Mi,k = M j ,k∨

Mi,k > Mi, j = M j ,k∨

M j ,k > Mi, j = Mi,k∨

Mi, j = Mi,k = M j ,k

The species trees are then broken up, using the BreakUp algorithm [8], into triples and
fans. If in a tree we have the fan(s0,s1, ...,sm), i.e. speciess0 to sm have the same
most recent common ancestor, then the set ofmC3 3-fans{(s0,s1,s2), (s0,s1,s3), ...,
(s0,s1,sm) , ...,(sm−2,sm−1,sm)} are produced by our BreakUp algorithm. These triples
and 3-fans are then used to break disjunctions in the above constraint. TheM variables
are then the decision variables, and a solution is found. Assuming a solution exists,
the resultant supertree is constructed from the ultrametric matrix using the algorithm in
chapter 17 of [4].

3 A Supertree of Sea birds

One obvious limiting factor of our constraint model is its sheer size. It generatesO(n2)
constrained integer variables andO(nC3) ultrametric constraints as above. A study was
performed to determine just how far this model could be pushed. The model was re-
coded in JChoco, a free java constraint solver [5], and can bedownloaded from [13]. An
attempt was made to reconstruct the supertree produced by Kennedy and Page [6]. The
data set is seven species trees of sea birds, identified as A through to G. This is shown in
Table 1. A table entry gives the number of species involved ina pair of trees, and along
the diagonal the number of species in an individual tree. Forexample, combining tree A
(17 species) with tree B (14 species) results in a supertree with 29 species. Therefore A
and B have 2 species in common. A table entry in closed round brackets shows that the
two trees are incompatible. In particular, trees A and C are incompatible, B and C are
incompatible, C and G are incompatible, as are D and G. An entry of a dash (-) means
that the data set was too large to model.

A B C D E F G
A 17 29 (32) 47 - 31 46
B 29 14 (29) 42 - 30 40
C (32) (29) 20 50 - 34 (44)
D 47 42 50 30 - 44 (56)
E - - - - 90 - -
F 31 30 34 44 - 16 (38)
G 46 40 (44) (56) - (38) 30

Table 1.Size of species trees and supertrees for the 7 trees in [6]. The diagonal gives the size of
individual trees. Off the diagonal is given the size of the supertree, in brackets if incompatible,
and a dash if too large to model.
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In the Auk paper [6] Kennedy and Page went back to the underlying evidence to suc-
cessfully combine all of these trees. I cannot do that, and from Table 1 it can be seen
that the best that can be done is to combine trees A, B, D and F5. The trees can be con-
structed in a number of ways, i.e. by adding A to B to get supertree AB, adding D to F
to get supertree DF, and then combining supertrees AB and DF.This was in fact done,
however there is a risk associated with this. Supertree AB isnot unique, and neither is
DF. Furthermore AB and DF may be incompatible! This was demonstrated by Sander-
son, Purvis, and Henze in [11]. The input program was modifiedsuch that it takes as
input a file containing names of trees to be combined, i.e. theencoding takes as input a
forest. This forest is then broken up into triples and 3-fansbefore solving. The resultant
supertree is shown in Figure 4 at the end of this paper. This took about 20 seconds to
produce on a 3 GHz processor. The supertree has 69 species.

4 Ancestral Divergence Dates
In [12] ancestral divergence dates are added to the interiornodes of trees, where dates
may be relative or explicit. The RANKEDTREE algorithm (proposed in [2]) takes as
input two species trees where interior nodes are assigned integer values such that if the
divergence of species A and B predates the divergence of species X and Y then the most
recent ancestor of A and B will be assigned a value less than the most recent common
ancestor of species X and Y.

This is trivial to incorporate into the constraint model. Ifwe assume that trees have
already been ranked, and some or all interior nodes have beenlabelled, then for each
pair of species (X,Y) in the leaf set of a tree we get the value of mrca(i, j) wherei and
j are the integer indices corresponding to species X and Y respectively. The constraint
integer variableMi, j is then set to the value ofmrca(i, j) if and only if mrca(i, j) is
labelled. The tree is then broken up into its triples and 3-fans and these constraints are
then used as disjunction breakers. In [13] this has been implemented as the RBuild
(Rank Build) method.

In fact, we can go one step further. We associate a decision variableDi, j ,k with each
ultrametric constraint and post the following constraints:

Di, j ,k = 1 ↔ Mi, j > Mi,k = M j ,k

Di, j ,k = 2 ↔ Mi,k > Mi, j = M j ,k

Di, j ,k = 3 ↔ M j ,k > Mi, j = Mi,k

Di, j ,k = 4 ↔ Mi, j = Mi,k = M j ,k

Therefore, rather than instantiate the variables inM we instantiate the disjunction break-
ing decision variablesD. As a consequence of this, in a solution variables inM may have
ranges of values. This is demonstrated in Figure 3. On the left and right we have two
ranked species trees of cats taken from [12] (where cat nameswere given three-letter

5 Table 1 can be considered as an adjacency matrixA of a graph where an entryAi, j not in closed
round brackets means that there is an edge(i, j) signifying that treei is compatible with tree
j . In the corresponding graph ofA the largest clique has 4 vertices and those vertices are A, B,
D and F.
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abbreviations). On the right we have one of the 17 possible resultant supertrees. Note
that the most recent common ancestor of PTE and LTI is labelled with the range [6..9].
In total 7 of the 17 solutions contain interior nodes with ranges. Without this 30 so-
lutions are produced. This addresses one of the issues raised in [12], i.e. to enumerate
all supertrees compactly. Our constraint model has been further modified such that a

Fig. 3.Two ranked trees of cats taken from [12] and on the right one ofthe 17 possible supertrees,
this one with the most recent common ancestor of PTE and LTI having a range of values.

penalty is taken when a decision variableDi, j ,k takes a value 4, i.e. when a fan is se-
lected. The penalties are then minimised to produce the supertree that contains the least
number of fans. This might not be biologically sound but it has been implemented to
demonstrate the versatility of the model. Again, this is available at [13].

5 Limitations, Future Work, Conclusion
Clearly the model is self limiting by its cubic size. There are O(n3) ternary constraints
and the same number of variables when we address the optimisation problem (min-
imising fans). The largest trees we have built have about 70 species. One obvious next
step is to make this model more compact, and this might be doneby implementing a
specialised ultrametric constraint that involves three variables. This constraint might
propagate more efficiently than as at present (using toolkitprimitives) and each of the
constraints might take less space. However, we still haveO(n3) of these constraints.
Therefore the step after that might be to design an n-ary ultrametric constraint that
takes as arguments then×n arrayM.

Our model is now available, being re-implemented in java using JChoco [13]. We
have been able to demonstrate the versatility of the constraint programming technol-
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ogy, by taking a model that essentially does the same as OneTree, modified it to take a
forest as input, dealt with ancestral divergence dates, been able to produce all solutions
compactly, and address an optimisation problem (although this might not be biologi-
cally sound). However, the model is limited in what it can do by its sheer size, and this
should be addressed soon.

Where to next? In [12] the authors pose the question “what common information
is carried in all these supertrees?” I believe that constraint programming will be the
technology to address this next challenge.
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Fig. 4.The supertree constructed using the trees A, B, D, and F from the study in [6] via the forest
build method in [13].
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Abstract. We introduce depth-first search with dynamic decompositionfor count-
ing the solutions of a binary CSP completely. In particular,we use the method for
computing the number of minimal energy structures for a discrete protein model.

1 Introduction

The number of minimal energy structures of proteins in a discrete model is an impor-
tant measure, which is strongly related to protein stability. The enumeration of optimal
and suboptimal structures has applications in the study of protein evolution and kinet-
ics [12,20,27,26]. The prediction of protein structures insimplified protein models is
a complex, NP-complete [6] combinatorial optimization problem that received lots of
interest in the past, e.g. [16,28]. Importantly for our workhere, it can be successfully
modeled as Constraint Satisfaction Problem (CSP) [2,4].

Recently, counting solutions of a CSP and related problems gained a lot of inter-
est over considering only satisfiability [1,9,18,22]. Thisis partly due to the increased
complexity of counting compared to deciding on satisfiability [19]. For general CSPs
and in particular for protein structure prediction, solving is NP-complete. However, the
counting of CSP solutions is an even harder problem in the complexity class #P. This
class was defined by Valiant [24] as the class of counting problems associated with
nondeterministic polynomial time computations.

Standard solving methods in constraint programming like Depth-First Search (DFS)
combined with constraint propagation are well suited for determining one solution, but
leave room for saving redundant work when counting all solutions. Here, we present
a method that is especially tailored for this case. Applied to the CSP formulation of
structure prediction, it improves exhaustive counting andenumeration of optimal pro-
tein structures.

Basically, our new methoddynamicallydecomposes the constraint (sub-)problems
that emerge during the search into independent partial problems along connected com-
ponents of the problem’s associated constraint graph. Separate counting in the partial
problems still allows to infer the number of solutions of thecomplete problem.

Instead ofstatically exploiting only properties of the initial constraint graph, dy-
namic strategies analyze the emerging constraint graphs during the search and employ
their features. We believe this is a major advantage in many constraint problems. In
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particular, if the initial constraint network is very dense(as in our structure prediction
problem), static methods don’t make an impact.

Decomposing into connected components and, more generally, utilizing the special
structure of the constraint graph is discussed already for along time. In the beginning,
[13] proposed statically decomposing a CSP and solving the partial problems indepen-
dently. As a more recent example, [9] introduced AND/OR search for solution counting,
again this approach relies on static analysis of the constraint graph. To our knowledge,
dynamic decomposition was discussed more thoroughly only for very special cases.
[18] showed that adding this idea to counting models of 3-SATby a Davis-Putnam
procedure [8] results in a very successful new strategy. Similar ideas are discussed for
SAT-solvers in [7].

As our main contribution, we demonstrate that the ideas of employing the graph
structure dynamically are applicable to binary CSPs, even including certain global con-
straints, and are useful for constraint programming. In particular, this allows us to use
the strategy in the complex problem of protein structure counting. Furthermore, we dis-
cuss several ideas going beyond previous approaches. For example, dynamic decompo-
sition can yield a more compact representation of the solution space. We discuss how
analyzing the constraint graph can further improve counting and how search strategies
can be tailored in order to maximize the benefits from our strategy.

2 Dynamic Decomposition

2.1 Definitions

A Constraint Satisfaction Problem (CSP)is a triple (X ,D ,C ) of the variablesX =
X1, . . . ,Xn, their associated domainsD = D1, . . . ,Dn, i.e. finite sets of values, and a
finite set of constraintsC on the variables inX . A solutionof the CSP is an assignment
of each variable inX to one value in its associated domain. A variableXi is determined
byD , iff its associated domainDi in D is singleton. We call(X ,D ,C ) solved, iff each
variable inX is determined byD . The CSP isfailed, iff at least one of the variables in
X has an empty domain. Asubproblem of a CSP(X ,D ,C ) is a CSP(X ,D ,C ′), where
C ⊆ C ′. A CSP(X̂ , D̂ , Ĉ ) is calledpartial problem of(X ,D ,C ), whereX̂ ⊆ X andD̂
andĈ are restrictions ofD andC to X̂ , respectively. We call a CSPn-ary, iff each of its
constraints is at most n-ary. For a constraintc, we denote byX(c) theset of variables
of c. The constraint graphof a binary CSP(X ,D ,C ) is the undirected graph(V,E)
defined byV = X andE = {(Xi,Xj) ∈ X

2|c∈ C ,{Xi,Xj} ⊆X(c),Xi 6= Xj}. Two partial
CSPs(X̂ , D̂ , Ĉ ) and(X̂ ′, D̂ ′, Ĉ ′) of (X ,D ,C ) areindependent, iff X̂ ∩ X̂ ′ = /0 and there
is no constraintc in C , whereX(c) shares elements witĥX andX̂ ′.

2.2 Counting DFS

The usual approach to counting solutions of a CSP is by DFS in combination with con-
straint propagation. As preparation to our approach, we present a recursive formulation,
which we temporarily call Counting Depth-First Search (CDFS).
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1: function CDFS(X ,D ,C )
2: (D ′,C ′)← PROPAGATE(X ,D ,C )
3: if ISFAILED (X ,D ′,C ′) then return 0
4: else if ISSOLVED(X ,D ′) then return 1
5: else c← SELECT(X ,D ′)
6: return CDFS(X ,D ′,C ′ ∪{c}) + CDFS(X ,D ′,C ′∪{¬c})
7: end if
8: end function

In our formulation,CDFS(X ,D ,C ) yields the number of solutions to(X ,D ,C ). Note
that the function performs full propagation of constraintsto the domains (also, entailed
constraints ofC are removed inC ′) in line 2. The tests for failure and determination by
the propagated domainsD ′ are in line 3 and 4. Line 6 allows the algorithm an arbitrary
branching selection; often one selects a variableXi from X and a valued ∈ D i and
enumerates byc = (Xi ≡ d). Finally, the solution count of each subproblem adds to the
total number of solutions in line 7.

Fig. 1. DFS search tree traversed by CDFS.

We provide an example CSP and a corresponding search tree forCDFS solution
counting in Figure 1. Each node corresponds to a propagated subproblem of the initial
problem given in the root and is visualized as a constraint graph.

2.3 Dynamically Decomposing DFS

Even in the minimal example of Figure 1, the main problem of CDFS is visible. The par-
tial problem on variablesC andD is solved redundantly in each of the search branches.
This could be saved due to the independence of the two partialproblems on variables
A and B and variablesC and D. Our new methodDecomposing Depth-First Search
(DDFS)avoids such unnecessary work.
1: function DDFS(X ,D ,C )
2: (D ′,C ′)← PROPAGATE(X ,D ,C )
3: if ISFAILED (X ,D ′,C ′) then return 0
4: else if ISSOLVED(X ,D ′) then return 1
5: else s← 1 ⊲ initialize counter
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6: D← DECOMPOSE(X ,D ′,C ′)
7: for all (X̂ , D̂ , Ĉ ) ∈D do
8: c← SELECT(X̂ , D̂ )
9: s = s ·

(

DDFS(X̂ , D̂ , Ĉ ∪{c}) + DDFS(X̂ , D̂ , Ĉ ∪{¬c})
)

10: end for
11: return s
12: end if
13: end function

The code differs from CDFS only in lines 5 to 11, which correspond to the decom-
position into independent partial problems. In line 6, we completely decompose the
propagated CSP(X ,D ′,C ′) into its pairwise independent partial problems.

Fig. 2.Search tree traversed by DDFS.

Note that the independent partial problems correspond to the connected components
in the constraint graph. Consequently, our decomposition can be computed in linear
time by depth first traversal of the graph. As a technicality,we fuse all solved partial
problems to an (arbitrary) unsolved partial problem. As a consequence, all remaining
problems inD are unsolved. In line 11,s is the product of the solution counts of all CSPs
in D. SinceD is a complete decomposition of(X ,D ′,C ′) into pairwise independent
partial problems,s equals the number of solutions for(X ,D ,C ). Each solution of this
CSP is a combination of a selection of one solution from each partial problem.

Using this extension the CSP in Figure 1 can be solved as givenin Figure 2 with
DDFS avoiding the redundant work. With only one decompositions and two branchings
instead of five branchings the overall solution number can bedetermined.

Note that a simple modification of the counting algorithm yields a new way to retain
the set of all solutions. Instead of adding and multiplying solution counts, we can build
up a tree-like compact representation of the solution space. Examples are given at the
bottom of Figure 2 and later in Figure 3c. Of course, the compression does not improve
the theoretical worst-case space complexity. Nevertheless, the space savings are of equal
size as potential reductions of the search tree by our methodand can be large in practice.
In order to finally enumerate the solutions, the compact representation is expanded.
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2.4 Further Improvements

As a first important improvement, we can derive that a CSP has no solution as soon
as one of its independent partial problems has no solution. This is also reflected in
multiplying the solution counts. A simple improvement is toskip counting in further
partial problems, whenever a partial problem returns no solutions.

By this, the order of the partial problems is critical for avoiding unnecessary work.
Optimally, partial problems with high chance of failing areexplored first. The ordering
can be based on heuristics analogous to the variable selection for branching. Additional
savings result from checking if all partial problems are satisfiable, before we start to
count all solution of any partial problem.

The solution number for partial problems with an empty set ofconstraints can be
derived directly without further decomposition or enumeration. In this case, the number
of solutions can be determined as product of the domain sizes. This effect is already
shown in Figure 2.

DDFS profits most from early and well balanced decompositions. Therefore, new
strategies for variable and value selection are desirable that support good decomposi-
tion. Constraint graph based variable selection, e.g. detection of articulation points, can
guide the variable selection and domain splitting instead of single value branching may
lead to sturdy decompositions. Even deeper analysis of the constraint graph structure
can guide the heuristics further. Many techniques are already investigated and proved
beneficial for the static case [14,15,17,23]. For example, we could strive for the break-
ing of circles in the constraint graph in order to obtain a tree structure. Solutions of
tree-structured CSPs can be enumerated more efficiently. Note that the detecting when
the graph becomes a tree is for free if we already look for graph decompositions.

Albeit presented in this fashion, DDFS is not completely restricted to binary con-
straint graphs. Many widely used n-ary and global constraints (e.g.AllDifferent) can
be used as well, if a suitable binarization is at hand [5,21].The method can then employ
the strong propagation of the global constraint and use the semantically equivalent set
of binary constraints for checking dependencies in the constraint graph.

3 Application to Structure Prediction and Results

In [4], a constraint-based approach for exact structure prediction in theHP-modelof
the cubic and face-centered cubic lattice has been presented. In this simplified protein
model, the amino-acids of the protein are classified intohydrophobic (H)and polar
(P) ones and each is represented by a single point, its center of mass. It models water-
soluble globular proteins. The folding of such proteins is mainly driven by hydrophic
forces, that leads to the emergence of compact hydrophobic cores. Astructurein this
model is a placing of the H/P-monomers to nodes of the lattice(e.g. 3D-cubic lattice),
such that successive monomers are lattice neighbors and each node is only occupied
once (self-avoidance). For a structure the set of positions of all H-monomers is called
its H-core and corresponds to the hydrophobic core of real proteins. The energy is
calculated as shown in Figure 3a by counting HH-contacts. The example structure for
the sequence HPPHPPHPHP in Figure 3b has an energy of -2.
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Fig. 3. a) Energy function b) Structure of square lattice HP-model (H-monomer: black, P-
monomer: white, structure back bone: grey, HH-contact: dotted) c) Compression of the structure
space representation for PHHP from 9 structures down to 3 by 3partial structures.

The prediction ofoptimal structures (with minimal energy) can be formulated as
CSP and was namedConstraint-based Protein Structure Prediction (CPSP)[2,4]. It is
a fast approach for enumerating all these structures for a given HP-sequence using DFS.

Its main idea is the pre-calculation ofcompact H-cores. These can be used in
the approach since optimal structures tend to form maximally compact H-cores. The
construction of compact H-cores is a hard problem by itself,which was solved us-
ing constraint-programming too [3,25]. Since the compact point sets of a given size
are sequence-independent, they can be pre-calculated and used for the last sequence-
specific part of CPSP. For the remaining task, it is necessaryto search for self-avoiding
walks with the restriction that H-monomers are placed in a given H-core. Therefore,
we introduce a variable for each sequence position with lattice nodes as values. H-
monomers are constrained to H-core positions, P-domains are left with a finite domain
of non-H-core positions. The self-avoiding walk conditioncan be expressed by a global
AllDifferent constraint and a sequence of neighbor constraints, which can be mod-
eled asXi −Xi+1 = Ni . There,Xi represents the variable for theith sequence position
andNi contains all possible lattice specific neighbor vectors1.

CPSP is effectively solved using DFS and so CDFS for solutioncounting can be
applied too. As mentioned before the number of optimal structures of a protein is an
important measure. It provides information about the character of the energy landscape
and degeneracy and can be used for their further investigation [11,10,12,20,27,28].

As discussed before, a semantically equal set of binary inequality constraints can be
used to represent the globalAllDifferent constraint in the constraint graph. DDFS
was applied using problem specific heuristics in addition tonode degree and articulation
point identification. A first prototypical implementation uses ILOG Solver 6.1TM. We
present some results from this program in the following table.

test suitebranchfail time pos. timedecomp.
T33 7.8 0.7 1.5 4.7 42
T54 7.7 0.9 1.7 5.2 26

We investigated two test suites T33/T54 with random HP-sequences of length 33/54
in the cubic lattice. To show the contraction of the search tree the ratio of branchings
CDFS/DDFS is given in columnbranch. It can be reduced by decomposition up to a
factor of 8 in average with the presented average number of decompositions. Due to a

1 In practice, lattice positions and the neighborhoodN are indexed by integers such that standard
constraint solvers for finite domains over integers are applicable.
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non-optimal partial problem ordering DDFS yields slightlymorefails than CDFS. This
can be avoided by the mentioned improvement of first checkingfor one solution for
each partial problem before its complete investigation. The ratio of the mean time con-
sumption of CDFS/DDFS in columntime illustrates the reduced number of branching.
Since the current implementation is not at all optimized, the time-behavior can certainly
be improved. The time ratio in columnpos. timeis calculated using DDFS without
versus with decomposition. It demonstrates that the possible speedup using DDFS for
faster implementations is around 5 times. We expect furtherspeedups and search tree
reductions using better partial problem ordering and variable selection heuristics.

4 Discussion

We presented a general method Decomposing DFS (DDFS) for completely counting
and enumerating the solutions of a binary CSP by dynamicallyexploiting decomposi-
tion of (sub-)CSPs. Furthermore, we demonstrated that the method can be generalized
such that even global constraints can be used. As we could show, our strategy of dy-
namically decomposing the (sub-)problems into partial problems reduces the search tree
significantly. Since partial problems can be efficiently detected using well established
graph algorithms, this results in a speed up of the search. Beyond this, we discussed
how the graph structure can guide the variable and value selection in order to achieve
many balanced decompositions, e.g. by the identification ofarticulation points. Such
considerations go beyond previous work on constraint graphdecomposition.

The application of DDFS to the CPSP problem shows the large capabilities of
the method. First results with a prototypic implementationalready show a significant
speedup. Improving our ability for counting and enumerating optimal structures has im-
portant implications for the investigation of protein evolution and the folding process.

We could give evidence that the more general approach of dynamically analyzing
the constraint graph during the search and employing its special structure has a large
potential for solution counting in constraint programming. To our conviction, exploring
these possibilities even further is an interesting field forfuture research.
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