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"Counting Protein Structures
by DFS with Dynamic Decomposition’

What we need to know:

@ Protein Structures ?
@ Prediction as CSP ?
@ Counting by Decomposition ?




Simple lattice proteins

Lattice Proteins

@ protein simplified to chain of monomers
@ structure depends on underlying lattice

@ energy depends on contact energy function
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@ sequence monomers are placed on lattice positions

@ structure = selfavoiding walk on the lattice

7] B sequence = PHPHHPP
B [ ) = H = hydrophic
. =F = pqlur
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Energy function
@ focus on hydrophobic forces

@ contact based — HH-contacts

-1 if (x,y == H) and (x.y neighbors)
0 else

energy(x,y) = {

s cnergy = -2

D = HH-contact
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Neutral nets and protein evolution

Exploring energy landscapes and protein kinetic

°
@ Base for more complex protein models
°

Therefore you need:

Prediction of optimal structures

@ NP-complete in 3D-lattice (Berger & Leighton, 1998) (even in 2D)

@ can be solved by Constraint Programming !
(Backofen & Will, 2006)
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A CSP for optimal structure prediction
in the HP-lattice-model

PHPHHP
+ H-core CSP fomulation

>

solve CSP

Rolf Backofen and Sebastian Will
'A constraint-based approach to fast and exact structure prediction

in three-dimensional protein models’ 2006



@ H-Core = set of H-monomer positions

@ Core energy < structure €NErgy (only HH-contacts important)

B energy = -2 -@
- —— -

structure H-core

©

optimality implies optimal structure energy

©

candidates can be precomputed based on H-number

©

hard problem too — (solved via CP)

= for now used as black box and given ... !



@

given

an HP-sequence an optimal H-core

and
P-H-P-H-H-P-P $8:

N 7

there is the question:

Exists a structure, so that all
H-monomers are placed on H- YES!
core positions?




es b For a given HP-sequence and an optimal H-core:

Variables
@ one for each sequence monomer

Domains = sets of lattice positions

@ H-Monomers: H-core positions (ensures optimality)

@ P-Monomers: remaining lattice

@ binary Neighboring constraints along the chain (backbone)

@ one global Alldifferent constraint (selfavoiding structure)

= encodes the selfavoiding walk
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DDFS The CSP as Constraint Graph:

+ H-core CSP fomulation

PHPHHP o X -@%%S-/@.j@-

From Solution to structure
@ a CSP solution assigns a lattice position to each monomer

@ solution = structure, and optimal due to H-core !

@ normal CSP-solving approaches can be applied
e.g. DFS-branching combined with constraint propagation
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Counting all solutions

@ is in complexity class #P-complete for counting problems
@ = an important field of CP

@ can be done by Constraint Propagation and DFS branching

D @ iterative process

@ can be formulated as a recursion .. .




: function CDFS(X, D, ()
> reduce domains
(D', C") + PROPAGATE(X, D, ()
> check for recursion stop
if ISFAILED(X, D’,C’) then return O
else if ISSOLVED(X, D’) then return 1
else
> branch search
¢ < SELECT(X,D')
return CDFS( X,D',C' U{c}) + CDFS( X,D',C’' U{~c})
end if
end function
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The problem
[1 Redundant work due to independent partial problems!

How to avoid?

@ detect decomposition into independent partial problems
@ do it dynamically during search (CSP changes)
@ solve each partial problem independently

@ generate the overall solution number (via product)
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oNow
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Counting using dynamic decomposing DFS

: function DDFS(X,D,(C)
> reduce domains
(D', C") «—PrOPACGATE(X, D,C)
> check for recursion stop
if ISFAILED(X, D’,C’) then return O
else if ISSOLVED(X, D’) then return 1
> decomposing branching
else s —1 > initialize counter
D « DECOMPOSE(X,D’,C")
for all (X,D,C) € D do
¢ «— SELECT(X, D)
s=s- (DDFS(X,D,CU{c}) + DDFS(X,D,CU{~c}))
end for
return s
end if
end function



@ DFS — redundant solving of independent partial problems

@ can be avoided by DDFS via dynamic decomposition
@ overall solutions are generated during backtracking

@ = general approach for exhaustive solution enumeration

early and strong decompositions neccessary

= new requirements to variable and value selection

°
°

@ = problem specific heuristics important

@ applicable for global constraints too! (using binarisation)
°

first recursion draft can be improved (see paper ) ®
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OK, but does it help? Results ...
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Using DDFS for structure counting in HP-model

Decomposing versus 'normal’ DFS

@ in a first implementation:

@ 10x less branchings
@ 2x faster

@ possible speedup higher !!!
o further algorithmic improvements

@ optimize implementation (e.g. constraint graph handling)

o better problem specific branching heuristics




"Counting Protein Structures
by DFS with Dynamic Decomposition’

Lets summarise:

© optimal structure prediction for lattice proteins can be
formulated as CSP

© counting all solutions via DFS yields redundancy

© can be avoided by dynamic decompositions = DDFS
© leads to big speedups and less branchings

© DDFS is a general approach = other CSPs



Lk

Thanks for patience and interest

Martin Mann
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