

Counting Protein Structures by DDFS

Overview

Lat. Protein HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decomposition DDFS

Results

Counting Protein Structures by DFS with Dynamic Decomposition

Sebastian Will and Martin Mann

Albert-Ludwigs-University Freiburg Bioinformatics at the Department of Computer Science

Workshop on Constraint Based Methods for Bioinformatics 2006

Overview Lattice Proteins

Counting Protein Structures by DDFS

Overview

Lat. Proteir HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decomposition DDFS

Results

'Counting Protein Structures by DFS with Dynamic Decomposition'

X

What we need to know:

- Protein Structures ?
- Prediction as CSP ?
- Counting by Decomposition ?

Protein structures

Counting Protein Structures by DDFS

Overview

- Lat. Proteins HP-Model Applications
- The CSP Idea Modelling Solving
- Counting DFS Redundancy Decompositior DDFS

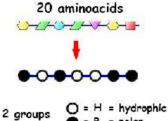
Results

Real protein structure

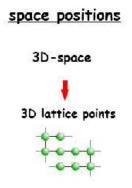
Simple lattice proteins

Lattice Proteins

- protein simplified to chain of monomers
- structure depends on underlying lattice
- energy depends on contact energy function



HP-Model Abstractions


Counting Protein Structures by DDFS

HP-Model

alphabet

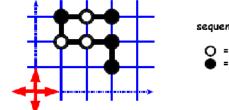
HP-Model Structure Model

Counting Protein Structures by DDFS

Structure

• sequence monomers are placed on lattice positions

Overview


Lat. Proteins HP-Model Applications

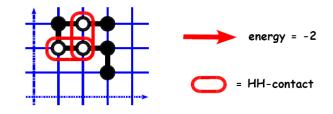
The CSP Idea Modelling Solving

Counting DFS Redundancy Decompositior DDFS

Results

 $\bullet\,$ structure = selfavoiding walk on the lattice

sequence = PHPHHPP = H = hydrophic = P = polar


HP-Model Energy function

Counting Protein Structures by DDFS

HP-Model

Energy function

- focus on hydrophobic forces
- ${\ensuremath{\, \circ }}$ contact based \rightarrow HH-contacts

Simple and nice... But what for? Applications

Counting Protein Structures by DDFS

Applications e.g.

o . . .

- Neutral nets and protein evolution
- Exploring energy landscapes and protein kinetic
- Base for more complex protein models

Therefore you need:

Prediction of optimal structures

- NP-complete in 3D-lattice (Berger & Leighton, 1998) (even in 2D)
- can be solved by Constraint Programming ! (Backofen & Will, 2006)

Lat. Proteins HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decomposition DDFS

Results

Ok, what next? CSP formulation

Counting Protein Structures by DDFS

Overview

Lat. Proteir HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decomposition DDFS

Results

'Counting Protein Structures by DFS with Dynamic Decomposition'

X

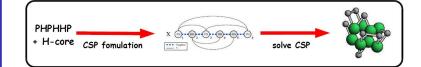
What we need to know:

- Protein Structures ?
- Prediction as CSP ?
- Counting by Decomposition ?

The Constraint Satisfaction Problem

Counting Protein Structures by DDFS

Overview


Lat. Protein HP-Model Applications

The CSP Idea Modelling Solving

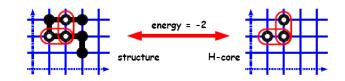
Counting DFS Redundancy Decomposition DDFS

Results

A CSP for optimal structure prediction in the HP-lattice-model

Rolf Backofen and Sebastian Will 'A constraint-based approach to fast and exact structure prediction

in three-dimensional protein models' 2006



Preliminary H-Cores

Counting Protein Structures by DDFS

H-Core of a given structure

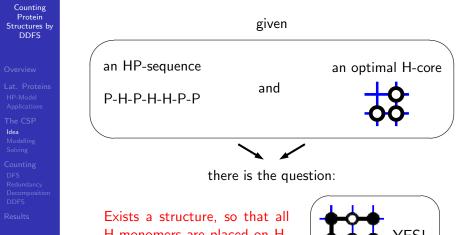
- H-Core = set of H-monomer positions
- Core energy \leftrightarrow structure energy (only HH-contacts important)

- optimality implies optimal structure energy
- candidates can be precomputed based on H-number
- hard problem too \rightarrow (solved via CP)

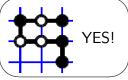
 \Rightarrow for now used as black box and given ... !

Overview

Lat. Protein HP-Model Applications


The CSP Idea Modelling Solving

Counting DFS Redundancy Decompositio DDFS


Results

The Idea

H-monomers are placed on H-core positions?

The CSP A very very simple Formulation

Counting Protein Structures by DDFS

Overview

Lat. Protein HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decompositior DDFS

Results

For a given HP-sequence and an optimal H-core:

Variables

• one for each sequence monomer

$\mathsf{Domains} = \mathsf{sets} \mathsf{ of } \mathsf{ lattice } \mathsf{ positions}$

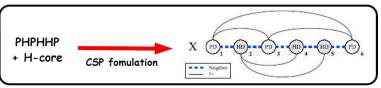
- H-Monomers: H-core positions (ensures optimality)
- P-Monomers: remaining lattice

Constraints

- binary Neighboring constraints along the chain (backbone)
- one global Alldifferent constraint (selfavoiding structure)
- \Rightarrow encodes the selfavoiding walk

Structure prediction as CSP

Overview


Lat. Proteir HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decomposition DDFS

Results

The CSP as Constraint Graph:

From Solution to structure

- a CSP solution assigns a lattice position to each monomer
- solution = structure, and optimal due to H-core !
- normal CSP-solving approaches can be applied
 e.g. DFS-branching combined with constraint propagation

Ok, what next? Decomposition strategy

Counting Protein Structures by DDFS

Overview

Lat. Proteir HP-Model Applications

The CSP Idea Modelling Solving

Counting

DFS Redundancy Decomposition DDFS

Results

'Counting Protein Structures by DFS with Dynamic Decomposition'

X

What we need to know:

- Protein Structures ?
- Prediction as CSP ?
- Counting by Decomposition ?

Counting CSP solutions via Depth-first Search (DFS)

Counting Protein Structures by DDFS

Overview

Lat. Proteins HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decomposition

Results

Counting all solutions

- is in complexity class #P-complete for counting problems
- \bullet = an important field of CP
- can be done by Constraint Propagation and DFS branching
- iterative process
- can be formulated as a recursion ...

Counting DFS recursion

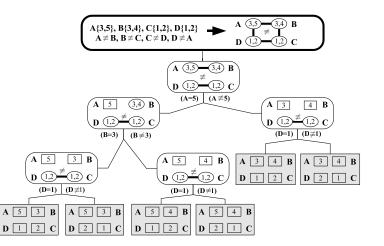
Counting Protein Structures by DDFS

- Overview
- Lat. Protein HP-Model Applications
- ldea Modelling Solving
- Counting DFS Redundancy Decompositic
- Results

- 1: function $\text{CDFS}(\mathcal{X}, \mathcal{D}, \mathcal{C})$ ▷ reduce domains 2: $(\mathcal{D}', \mathcal{C}') \leftarrow \operatorname{PROPAGATE}(\mathcal{X}, \mathcal{D}, \mathcal{C})$ b check for recursion stop if IsFAILED $(\mathcal{X}, \mathcal{D}', \mathcal{C}')$ then return 0 3: else if $IsSolved(\mathcal{X}, \mathcal{D}')$ then return 1 4: 5: else ▷ branch search $c \leftarrow \text{SELECT}(\mathcal{X}, \mathcal{D}')$ 6: return CDFS($\mathcal{X}, \mathcal{D}', \mathcal{C}' \cup \{c\}$) + CDFS($\mathcal{X}, \mathcal{D}', \mathcal{C}' \cup \{\neg c\}$) 7:
- 8: end if
- 9: end function

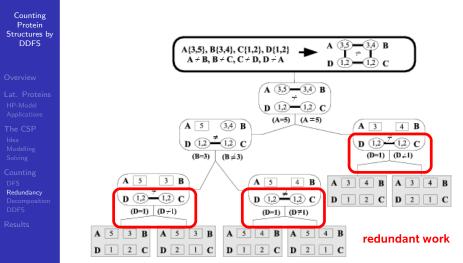
Counting DFS recursion

Overview


Lat. Proteir HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS


Decomposition DDFS

Results

Counting DFS recursion The problem: redundancy!

Counting DFS recursion

Counting Protein Structures by DDFS

Overview

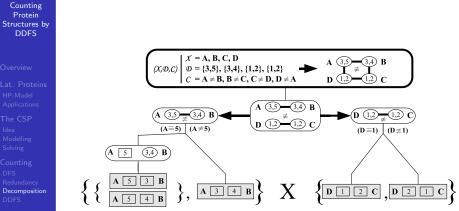
Lat. Proteins HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decomposition DDFS

Results

The problem


X Redundant work due to independent partial problems!

How to avoid?

- detect decomposition into independent partial problems
- do it dynamically during search (CSP changes)
- solve each partial problem independently
- generate the overall solution number (via product)

Counting using Decomposing DFS First try with an example

Results

Counting using Decomposing DFS

Counting Protein Structures by DDFS

Decomposition

Counting using dynamic decomposing DFS

1: function $DDFS(\mathcal{X}, \mathcal{D}, \mathcal{C})$

2: $(\mathcal{D}', \mathcal{C}') \leftarrow \operatorname{Propagate}(\mathcal{X}, \mathcal{D}, \mathcal{C})$

b check for recursion stop

 \triangleright reduce domains

- 3: if $IsFailed(\mathcal{X}, \mathcal{D}', \mathcal{C}')$ then return 0
- else if IsSolved $(\mathcal{X}, \mathcal{D}')$ then return 1 4:

 $\mathfrak{D} \leftarrow \text{Decompose}(\mathcal{X}, \mathcal{D}', \mathcal{C}')$ for all $(\hat{\mathcal{X}}, \hat{\mathcal{D}}, \hat{\mathcal{C}}) \in \mathfrak{D}$ do

```
b decomposing branching
      ▷ initialize counter
```

```
c \leftarrow \text{SELECT}(\hat{\mathcal{X}}, \hat{\mathcal{D}}) \\ s = s \cdot (\text{DDFS}(\hat{\mathcal{X}}, \hat{\mathcal{D}}, \hat{\mathcal{C}} \cup \{c\}) + \text{DDFS}(\hat{\mathcal{X}}, \hat{\mathcal{D}}, \hat{\mathcal{C}} \cup \{\neg c\}))
   g.
10:
                                       end for
```

else $s \leftarrow 1$

- 11: return s
- 12: end if

5:

6:

7:

8:

13: end function

Decomposing DFS What was it?

Counting Protein Structures by DDFS

Overview

Lat. Protein: HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decompositior DDFS

Results

DDFS

- $\bullet~\text{DFS} \rightarrow$ redundant solving of independent partial problems
- can be avoided by DDFS via dynamic decomposition
- overall solutions are generated during backtracking
- ullet = general approach for exhaustive solution enumeration

But . . .

- early and strong decompositions neccessary
- $\bullet\,\Rightarrow\,{\sf new}$ requirements to variable and value selection
- ullet \Rightarrow problem specific heuristics important
- applicable for global constraints too! (using binarisation)
- \bullet first recursion draft can be improved (see paper) $\textcircled{\sc 0}$

Ok, what next? Results

Counting Protein Structures by DDFS

Overview

- Lat. Protein HP-Model Applications
- The CSP Idea Modelling Solving
- Counting DFS Redundancy Decompositior DDFS

Results

'Counting Protein Structures by DFS with Dynamic Decomposition'

What we need to know:

- Protein Structures ?
- Prediction as CSP ?
- Counting by Decomposition ?

OK, but does it help? Results ...

Results for structure prediction

Counting Protein Structures by DDFS

Overview

Lat. Proteins HP-Model Applications

- The CSP Idea Modelling Solving
- Counting DFS Redundancy Decompositior DDFS

Results

Using DDFS for structure counting in HP-model

Decomposing versus 'normal' DFS

- in a first implementation:
 - 10x less branchings
 - 2x faster

• possible speedup higher !!!

- further algorithmic improvements
- optimize implementation (e.g. constraint graph handling)
- better problem specific branching heuristics

Counting Protein Structures by DDES

Results

'Counting Protein Structures by DFS with Dynamic Decomposition'

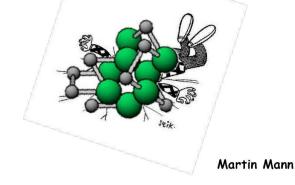
Lets summarise:

- optimal structure prediction for lattice proteins can be formulated as CSP
- 2 counting all solutions via DFS yields redundancy
- **(a)** can be avoided by dynamic decompositions \Rightarrow DDFS
- leads to big speedups and less branchings
- **ODFS** is a general approach \Rightarrow other CSPs

That's all folks!

Counting Protein Structures by DDFS

Overview


Lat. Protein HP-Model Applications

The CSP Idea Modelling Solving

Counting DFS Redundancy Decompositior DDFS

Results

Thanks for patience and interest

