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Introduction Overview

Introduction

Biology is an incredible source of challenging problems for
computer science
Problems are often hidden or vaguely defined and emerge only
after several cycles of feedback with biologists, physicists,
chemists, etc

Solving one of these problems can be of unpredictable importance
for life sciences and medicine
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Introduction Bioinformatics

Introduction

Bioinformatics
Bioinformatics deals with modeling and solving problems, analyzing
and filtering data, from biology and related life sciences.

Data availability is huge.
Data is affected by experimental errors.
Computer science tools should help in analyzing and filtering.
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Introduction Bioinformatics

Introduction

Bioinformatics applications are divided in three categories:

1) Support infrastructure for analysis and experiments
Applications of computational methods for automated environments for
workflow management, description and annotation of experiments,
minimal reporting requirements, ...

2) Polynomial time solvable problems
The input size is large: e.g. string matching problems over DNA
sequences.

3) Intractable problems
NP-complete or worse problems. Mainly covered by this lecture.
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Introduction Bioinformatics

Areas of Bioinformatics

1 Genomics. Study of the genomes. Huge amount of data, fast
algorithms (not always), limited to sequence analysis.
· · · G A T C T G T A C T G A G T · · ·
· · · G A T C T G T A C T G A A T · · ·

2 Structural Bioinformatics. Study of the folding process of
bio-molecules. Less structural data than sequence data available.

⇑ ⇑

⇓
3 Systems Biology. Study of complex interactions in biological

systems. High level of representation.
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Introduction Bioinformatics

Why Constraint Programming?

Models are rarely stable and static. Constraint Programming
provides the level of elaboration-tolerance to support model
modifications and incremental addition of new knowledge.
Linear Programming is not enough (in particular for modeling
energy models)
Declarative formalism is elegant and concise!
Model execution can be later speed-up with usual CP techniques
(symmetry breaking, search heuristics, constraint based local
search, parallelism, developing ad-hoc global constraints, etc)
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Introduction Bioinformatics

What we’ll see in more details

We’ll survey the various areas by introducing some challenging
problems and showing their (high level) constraint model just to give a
taste of the feasibility of the CP approach.

Genomics:
X Haplotype Inference
X Phylogenetic trees

Structural Bioinformatics:
X RNA secondary structure prediction
X Protein structure prediction (on lattice)

Systems Biology:
X Reasoning on Biological Networks
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Introduction General References

Some introductory references

P. Clote and R. Backofen. Computational Molecular Biology. An
Introduction. Wiley, 2000.
Nice introductory slides by Sebastian Will
math.mit.edu/classes/18.417/Slides/intro.pdf

A movie on DNA replication
www.youtube.com/watch?v=bee6PWUgPo8

A movie on DNA transcription
www.youtube.com/watch?v=5MfSYnItYvg

A movie on Central Dogma
www.youtube.com/watch?v=9kOGOY7vthk

A movie on Systems Biology
www.youtube.com/watch?v=lmB0xoRP9l4

F. Crick. Central dogma of molecular biology. Nature, 227:561–3, 1970.
A. Lesk. Introduction to Bioinformatics. Oxford Univ. Press, 2008.
X. Xia. Bioinformatics and the Cell: Modern Computational Approaches
in Genomics, Proteomics and Transcriptomics. Springer, 2007.
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Introduction General References

Some references focused on Constraints and
Bioinformatics

11 (+2) Workshops on Constraint-based methods for
Bioinformatics: WCB05 (Sitges)–WCB15 (Cork)
http://clp.dimi.uniud.it/wcb/
(workshops also in CP’97 and CP’98)
Constraints, Volume 13. Special Issue on Bioinformatics and
Constraints, 2008.
∗ Algorithms for Molecular Biology (Thematic Series of AMB on

Constraints and Bioinformatics), since 2012.
P. Barahona, L. Krippahl, and O. Perriquet. Bioinformatics: A
Challenge to Constraint Programming. Book Chapter in Hybrid
Optimization (The Ten Years of CPAIOR), Springer, 2011.
A. Dal Palù, A. Dovier, A. Formisano, and E. Pontelli. Exploring
Life through Logic Programming: Logic Programming in
Bioinformatics. Book Chapter, to appear.
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Haplotype inference
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Genomics: Haplotype Inference Introduction

DNA and Genome in a nutshell
DNA (DeoxyriboNucleic Acid) is
characterized by a string of nucleotides: A,
C, G, and T (Adenine, Cytosine, Guanine,
Thymine)
Given a sequence s ∈ {A,C,G,T}∗ the
complementary sequence s̄ is
deterministically obtained by reversing s and
substituting A↔ T and C ↔ G
s and s̄ fold together forming the famous
double helix
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Genomics: Haplotype Inference Introduction

DNA and Genome in a nutshell

DNA strings are long (106–1010 nucleotides).
Differences between the DNAs of two members of the same
specie are limited (e.g., 1 in 1000 for humans)
Some fragments of the DNA, called Genes, encode proteins (we’ll
be back on that later).
After the Human Genome Project, it is estimated that there are
16–20K protein-coding genes in human DNA.
Differences of some nucleotides in the same gene characterize a
property of an individual w.r.t. another.
The set of all genes of an individual is called Genome
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Genomics: Haplotype Inference Definitions

Haplotype Inference

Genes are packaged in bundles called chromosomes.
(Chromosomes are therefore regions of DNA)
In diploid organisms (like humans) there are almost identical
chromosome pairs. Each pair is made of an inherited
chromosome from the father and another from the mother.
A haplotype is a DNA sequence that has been inherited from one
parent.
A genotype is a pairing of two corresponding haplotypes.

Agostino Dovier (Univ. of Udine, DIMI) Constraints and Bioinformatics Cork, Sept. 4, 2015 13 / 98



Genomics: Haplotype Inference Definitions

Haplotype Inference

Each person inherits two haplotypes (from the mother and from the
father) for most regions of the genome.

· · · G A T C T G T A C T G A G T · · ·
· · · G A T C T G T A C T G A A T · · ·

⇑ ⇑ ⇑ ∗ ⇑ ∗

In some typical positions, the bases are subject to mutations.
In the most common case, there is a Single Nucleotide Polymorphism
(SNP).

Mutations are C ↔ T and A↔ G
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Genomics: Haplotype Inference Definitions

Haplotype Inference
Single Nucleotide Polymorphism (SNP)

Each person has two haplotypes (from the mother and from the father)
for most regions of the genome:

G A A T C T T C G T A C T G A G T
G A A T C T T C G T A C T G A A T

Let us focus on the SNPs:
A C T G
A C T A

We encode SNPs according to: A 7→ 0 C 7→ 0 G 7→ 1 T 7→ 1

0 0 1 1
0 0 1 0

But this is the situation of complete knowledge. In practice, we can
detect a mismatch but not its single components.
0 0 1 2 The genotype is set to 2 if there is a mismatch
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Genomics: Haplotype Inference Definitions

Haplotype Inference
Looking for an explanation
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Genomics: Haplotype Inference Definitions

Haplotype Inference

A string of {0,1}∗ is called a haplotype
A string of {0,1,2}∗ is called a genotype
Two equal length haplotypes generate a unique genotype
The rules are 0⊕ 0 = 0, 1⊕ 1 = 1, 0⊕ 1 = 2
E.g., 0010,0101⇒ 0222
If we have a genotype, we can only conjecture (potentially
exponentially many) haplotypes that generated it
(observe that, e.g., 0110,0001⇒ 0222)
Biological experiments allow us to know genotypes!
Investigating sets of genotypes for a population, helps in
understanding the relationships between SNPs and physical
features as well as medical information
Since genotypes are introduced in evolution, it is reasonable to
find minimal sets of haplotypes explaining the known genotypes.
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Genomics: Haplotype Inference Model

Haplotype Inference

Let H be the set of haplotypes (of given length n) and
G be a set of genotypes (of the same length n) .
Given h1,h2 ∈ H and g ∈ G, {h1,h2} explains g if and only if
|h1| = |h2| = |g| and ∀i ∈ [1..n]:

g[i] ≤ 1 −→ h1[i] = h2[i] = g[i]
g[i] = 2 −→ h1[i] 6= h2[i]

A set of haplotypes H explains a set of genotypes G if for all g ∈ G
there are h1,h2 ∈ H such that {h1,h2} explains g.
Given a set of genotypes G and an integer k , the haplotype
inference problem (HIP) by pure parsimony is the problem of
finding a set H that explains G and such that |H| = k (decision
version—NP complete).
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Genomics: Haplotype Inference Model

Haplotype Inference
CP encoding

Let us focus on the decisional version: Is there an explanation for
G with k haplotypes?
Generate m = 2|G| vectors of 0-1 FD variables H1, . . . ,Hm of
length n
Add a <-lexicographical constraint on each pair
(H1,H2), (H3,H4), . . . , (Hm−1,Hm) (repetitions in different pairs are
allowed!)
Build a constraint of the form:

(∀Gi ∈ G) (〈H2i−1,H2i〉 explain G)

Namely:
n∧

j=1

(
Gi [j] ≤ 1→ (H2i1 [j] = Hi2 [j] = G2i [j])∧
Gi [j] = 2→ (H2i1 [j] 6= H2i [j])

)
We need to state (using constraints!) that |{H1, . . . ,Hm}| = k .
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Genomics: Haplotype Inference Model

Haplotype Inference
2nd CP encoding

For a,b ∈ [1..m] we set Fa,b ↔
∧n

i=1 Ha[i] = Hb[i].
Namely Fa,b is a Boolean variable that is true iff Ha and Hb will be
equal in the solution

Then define Ma ↔
∨m

b=a+1 Fa,b

Ma is again a Boolean variable that is true if and only if there is
another vector in Ha+1,Ha+2, . . . ,Hm equal to Ha

The size of H can be therefore expressed as
∑n

a=1(1−Ma)
(viewing Boolean truth values as 0/1)
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Genomics: Haplotype Inference References

Haplotype Inference
Some References

Gusfield and Orzack. Haplotype Inference (Survey, and ILP
formulations) In CRC Handbook on Bioinformatics, 2006
Lancia, Pinotti, Rizzi. [LPR04] Haplotyping Populations by Pure
Parsimony: Complexity of Exact and Approximation Algorithms.
INFORMS Journal on Computing 16(4):348–359, 2004.
Graça, Marques-Silva, Lynce, Oliveira. Several works on
SAT-based and specialized 0-1 ILP for Haplotype Inference. (e.g.
WCB 08, WCB 09)
Di Gaspero, Roli. Stochastic local search for large-scale instances
of the haplotype inference problem by pure parsimony. J.
Algorithms 63(1-3): 55-69 (2008) (also in WCB 08).
Erdem, Erdem, Türe. HAPLO-ASP: Haplotype Inference Using
Answer Set Programming. LPNMR 2009: 573–578
James Cussens Maximum likelihood pedigree reconstruction
using integer programming. WCB 10.
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Genomics: Phylogenetic trees

Phylogenetics
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Genomics: Phylogenetic trees Introduction

Phylogenetic trees
Basics

A phylogeny describes evolutionary relationships among entities.
Comparative biology: investigates similarities and differences
More reliable than pattern matching
Applied outside biology: e.g. Indo-European languages [Erdem03]
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Genomics: Phylogenetic trees Introduction

Phylogenetic trees
Basics

The entities a set L of elementary taxonomic units, known as taxa
(e.g., L = {English,German,French,Spanish, Italian} or
L = {dog, cat ,horse, chicken})
A set C of characters is assigned to each element of L (e.g.,
characters “hand” and “father”, or characters “number of legs”,
“length of the tail”, etc.)
Characters are evaluated with FD values (e.g. {1 (hand), 2
(mano/main)} for “hand” and {1 (father/padre), 2 (vater/père)} for
“father”) Each element in L is assigned a value for each character.
Let us focus on Boolean characters
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Genomics: Phylogenetic trees Model

Phylogenetic tree reconstruction

A phylogeny
(V ,E ,L,C,D, f )

for a set L of taxa is a
finite binary tree (V ,E) with leaves L ⊆ V (taxa=leaves, with a
slight abuse of notation)
along with two finite sets C and D and a function f : L× C −→ D.

V \ L describes the ancestral units and E evolutionary
relationships.
C is the set of characters, and D contains their domain values
(also knows are states)
f labels every leaf v ∈ L by assigning a state for each character
i ∈ C
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Genomics: Phylogenetic trees Model

Phylogenetic trees
Example (from Erdem11)

A phylogeny (V ,E ,L,C,D, f ) where
L = {English,German,French,Spanish, Italian} (taxa)
C = {Hand,Father} (characters), D = {1,2} (states).
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Genomics: Phylogenetic trees Character compatibility

Phylogenetic trees
Example (from Erdem 2011)

A character i ∈ C is
compatible with a
phylogeny if the taxa
that present the same
value for i are
connected by a
subtree.

Character Hand is compatible with the above tree
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Genomics: Phylogenetic trees Character compatibility

Phylogenetic trees
Example (from Erdem 2011)

A character i ∈ C is
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phylogeny if the taxa
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Otherwise it is
incompatible

Character Father is incompatible with the above tree
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Genomics: Phylogenetic trees Character compatibility

Phylogenetic trees
k -incompatibility

The above subtree requirement implicitly states that when a
character changes (in the evolution) it never go back to the
previous value (Camin-Sokal). Moreover, that the change occurs
in a unique place (Dollo).

k -INCOMPATIBILITY PROBLEM
Given sets L (taxa/leaves), C (characters), and D (states), a function
f : L× C −→ D, and k ∈ N, decide the existence of a phylogeny
(V ,E ,L,C,D, f ) with at most k incompatible characters.

This problem is NP-complete (Day, Sankoff 1986).
The number of possible phylogenies is exponential in L
NP-complete (Day, Sankoff 1986).
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Genomics: Phylogenetic trees CP Modeling

Encoding
Input

Input vector L of n elements (taxa) each of them characterized by
a m-tuple of (character) values.
For simplicity, let us focus on Boolean encodings.
E.g. m = 3,n = 4:

L = [[0,1,1], [1,0,0], [1,1,0], [1,0,1]]

(four elements/taxa with three characters)
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Genomics: Phylogenetic trees CP Modeling

Encoding: Binary tree

The Tree can be represented
by a FD vector of t = 2n − 1
elements valued in
(n+)1, . . . , t + 1.
Tree[i] = j means that node i
is a son of node j . For the root
r , Tree[r ] = t + 1.
The tree is binary: for
i = 1, . . . ,n:
count(i ,Tree,≤,2)

7

5

1

6

2 3 4

5 5 6 6 7 7 8

1 2 3 4 5 6 7

Symmetries:
X Taxa are the leaves of the tree: nodes 1 . . . n
X Tree[1] = n + 1 X Tree[t ] = t + 1 (t is the root)
X For i , j ∈ {1, . . . , t}: i < j → Tree[i] ≤ Tree[j]
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Genomics: Phylogenetic trees CP Modeling

Encoding
Hypercube tree

Each node of the tree is assigned a m-tuple of Boolean Values.
This is stored in a vector Chars.
Chars[1]–Chars[n] are assigned using the input L. Values for
internal nodes must be computed.
For i < j , if Tree[i] = j , the Hamming difference of the
corresponding tuples is 1. Precisely:

Tree[i] = j →

(
m∑
`=1

|Chars[i][`]− Chars[j][`]|

)
= 1

Actually, we can either relax the above constraint to ≤ 1 (see e.g.
hand/father example, italian and spanish) or (alternatively)
Add the redundant constraint

AllDifferentTuples(Chars)
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Genomics: Phylogenetic trees CP Modeling

Encoding
k -incompatibility

We need to state that a character changes (actually, increases) in
at most one node. This makes the tree compatible with that
character.
Let Comp be a vector of m elements (one per character).
For i < j , let Fi,j = 1 if Tree[i] = j , Fi,j = 0 otherwise.
Then, for ` = 1, . . . ,m (and i , j = 1, . . . ,n:

Comp[`] =
∑
i<j

Fi,j(Chars[i][`]− Chars[j][`])

Basically, after variable instantiation, Comp[`] will contain the
number of changes of character ` in the tree.
The number of values different from 1 and 0 in Comp is forced to
be less than or equal to k .
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Genomics: Phylogenetic trees References
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RNA secondary structure prediction DNA and RNA

RNA and Central Dogma

T
C

G
C

G A T C G
G

A
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A G  C    G     C      U      A      G      C     C    U  A
mRNA

DNA

      S                 A                     S                   L Protein

transcription

translation

A

G
C

G
C T A G

C
C

T
A

RNA is a sequence of nucleotides (A,C,G,U) that (often) is just an
intermediary between DNA and proteins
DNA strands are transcribed to mRNA, in order to exit the cell’s
nucleus
Nucleotides replacement: DNA T 7→ RNA U.
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RNA secondary structure prediction DNA and RNA

RNA Secondary Structure

          C   U   U   G        C   U
          G   A   G   C        G   A

U

U

U

C

A G C
U

U

UG UG
U
U

Stem Loop

Mismatch

RNA folds according to favorable matchings (A-U, C-G, ∼ U-G)
The secondary structure is the set of its base pairings
Secondary structure determines the 3D properties
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RNA Secondary Structure
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RNA secondary structure prediction Definitions

Mathematically

A RNA sequence ~s = s1s2 · · · sn is a string in {A,C,G,U}∗

A RNA secondary structure is a (partial) injective function
P ⊆ {1, . . . ,n}2 such that

(i , j) ∈ P ↔ (j , i) ∈ P
(i , j) ∈ P only if
(si , sj ) ∈ {(A,U), (U,A), (C,G), (G,C), (U,G), (G,U)}

We are interested in a solution with maximal pairings (and/or
minimizing a more complex energy function)

1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13 14
A      C       C        U       G       G       U       A        U       C       G        A       C       A
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RNA secondary structure prediction Complexity

Complexity

The general problem is NP-complete [Lyngsø and Pedersen
2000].
A large sub-class has polynomial time complexity:
the absence of pseudo-knots, e.g. (8,10).

1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13 14
A      C       C        U       G       G       U       A        U       C       G        A       C       A
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RNA secondary structure prediction Complexity

Pseudo-knots

To avoid pseudo-knots, we impose a constraint:
If i < ` < j and (i , j) ∈ P, and ((`, k) ∈ P or (k , `) ∈ P), then i < k < j .

1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13 14
A      C       C        U       G       G       U       A        U       C       G        A       C       A
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RNA secondary structure prediction Modeling

A simple CP encoding

Input s1, . . . , sn ∈ {A,C,G,U}
Variables Pairs = [P1, . . . ,Pn] with domain 0..n.
Let Sx = {i ∈ {1, . . . ,n} | si = x}.
If si = A, then dom(Pi) = {0} ∪ SU .
If si = C, then dom(Pi) = {0} ∪ SG.
If si = G, then dom(Pi) = {0} ∪ SC ∪ SU .
If si = U, then dom(Pi) = {0} ∪ SA ∪ SG.
For i = 1, . . . ,n, if Pi > 0 then PPi = I. If Pi = 0 no constraint. In
CLP(FD) we can state:

element(P + 1, [I|Pairs], I)

Pseudo-knots: If Pi > 0 then (Pi+1 ∈ [i + 3..PPi − 1]) ∨ (Pi+1 = 0)
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RNA secondary structure prediction Modeling

A simple CP encoding

As cost function we want either to maximize contacts or (as done
by Dahl-Bavarian, WCB 05),
a solution close to the statistics, namely 35% for AU, 53% for CG,
12% for GU.
Let NC = n −#contacts
We minimize therefore a weighted sum of the form

c1
NC
n

+ c2
#(AU)− .35(n − NC)

n
+ c3

#(CG)− .53(n − NC)

n

(c1, c2, c3 constants that can be changed. The denominator n can
be omitted for minimization)
Other functions can be implemented, of course.
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RNA secondary structure prediction Modeling
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Protein Structure Prediction

Protein Structure Prediction
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Protein Structure Prediction Central Dogma and Proteins

Proteins and Central Dogma
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The translation phase starts from a mRNA sequence and
associates a protein sequence
Proteins are made of amino acids (20 common different types)
Amino acids are defined by letters {A, . . . ,Z} \ {B, J,O,U,X ,Z}
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Protein Structure Prediction Central Dogma and Proteins

Universal code

G A C U

G A C U

G
A
C
U

G

G
A

C
U

E D

G
A
C
U

A

G
A
C
U

V

G
A

C
U

R S

G
A

C
U

K N

G C
U

M I

G G GA A AC C CU U U

T

G

U

A
C

A G
A
C
U

R

G
A

C
U

Q H

G
A
C
U

P

G
A
C
U

L W

G
G
A U

L F

CG
A
C
U

S

U
G
A

C
U

Y⊣⊣

A

C

C

The translation selects 3 RNA basis and associates 1 amino acid.
The translation rules are encoded in the universal code.
The code contains stop symbol and some redundant RNA triplets.
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Protein Structure Prediction Amino acids

Proteins
Amino acids

Proteins are molecules made of a linear sequence of amino acids.
Amino acids are combined through peptide bond.

The purple dots represent the side chains, that depend on the
amino acid type
Side chains have different shape, size, charge, polarity, etc.
A side chain contains from 1 (Glycine) up to 18 (Tryptophan)
atoms.
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Protein Structure Prediction Amino acids

Proteins
Amino acids

There are 2 degrees of freedom (black arrows) for each amino
acid
A protein with n amino acids has 2n degrees of freedom (plus side
chains)!
Typical size range from 50 to 500 amino acids
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Protein Structure Prediction The PSP problem

The structure prediction problem

Given the primary structure of a protein (its amino acid sequence)
For each amino acid, output its position in the space (tertiary
structure of a protein)

A L F W K L R R ...

? ⇓ ?

Secondary structures are rigid subparts (helices, sheets) that can
be “easily” predicted
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Protein Structure Prediction The PSP problem

Proteins
Facts

Folding is consistent⇒ same protein folds in the same way
[Anfinsen74]
Folding is fast⇒ 1ms – 1s
Driven by non covalent forces: electrostatic interactions, volume
constraints, Hydrogen Bonding, van der Waals, Salt/disulfide
Bridges
Backbone is rigid, interaction with water, ions and ligands
There is a fixed distance (3.8Å) between the Cα atoms of
consecutive aminoacids.
There are several statistics on (bend/torsional) angles.
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Protein Structure Prediction The PSP problem

The structure prediction problem

... and this is the hard part:

In nature a protein has a unique/stable 3D conformation
A cost function (that mimics physics laws) can be used to score
each conformation
Searching for the optimal score produces the best candidate is
difficult (NP-complete even in extremely simplified modelings)

Agostino Dovier (Univ. of Udine, DIMI) Constraints and Bioinformatics Cork, Sept. 4, 2015 50 / 98



Protein Structure Prediction Modeling

The protein structure prediction problem

A first simplification (HP):
Protein model: only one atom per amino acid, only 2 classes of
amino acids (hydrophobic and polar)

=⇒

A second simplification:
Spatial model: 2D square lattice to represent amino acid positions
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Protein Structure Prediction Modeling

The protein structure prediction problem
Model

The input is a list S of amino acids S = s1, . . . , sn,
where si ∈ {h,p}
Each si is placed on a 2D grid with integer coordinates
Any pair of two amino acids can’t occupy the same position
If two amino acids are at distance 1, they are in contact
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Protein Structure Prediction Modeling

The protein structure prediction problem
Model

A folding is a function ω : {1, . . . ,n} −→ N2 where
∀i next(ω(i), ω(i + 1)) and
∀i , j (i 6= j → ω(i) 6= ω(j))
next(〈X1,Y1〉, 〈X2,Y2〉)⇐⇒ |X1 − X2|+ |Y1 − Y2| = 1.

Find a folding that minimizes the (simplified) energy function:

E(S, ω) =
∑

1 ≤ i ≤ n − 2
i + 2 ≤ j ≤ n

Pot(si , sj) · next(ω(i), ω(j))

where Pot(p,p) = Pot(h,p) = Pot(p,h) = 0 and Pot(h,h) = −1.
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Protein Structure Prediction Modeling

The protein structure prediction problem
Complexity

With N2 and HP, establishing whether there is a folding with
energy < k is NP-complete
(Crescenzi, Goldman, Papadimitriou, Piccolboni, Yannakakis. On
the Complexity of Protein Folding. Journal of Computational
Biology 5(3): 423-466 (1998))
This formulation of the problem has a nice property: you can
teach it to a children without speaking of proteins and so on:
Write a folding using paper and pencil that maximizes the contacts
between “H” aminoacids (black circles)
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Protein Structure Prediction Modeling

Example of PF HP N2

Yellow: H, Grey: P. All foldings have energy -6
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Protein Structure Prediction Modeling

HP on N2: FD encoding

Primary = [a1, . . . ,an] = [h/p,p/p,h/p, ...]
Tertiaryx = [X1, . . . ,Xn],Tertiaryy = [Y1, . . . ,Yn]

W.l.o.g., let X1 = X2 = Y1 = n, Y2 = n + 1.
Namely, we start with

n − 1 n n + 1

n − 1

n

n + 1

y6
y

dom(X1) = · · · = dom(Xn) = dom(Y1) = · · · = dom(Yn) = 1..2n
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Protein Structure Prediction Modeling

HP on N2: FD encoding

Tertiaryx = [X1, . . . ,Xn],Tertiaryy = [Y1, . . . ,Yn]

contiguous: for i = 1, . . . ,n − 1: |Xi − Xi+1|+ |Yi − Yi+1| = 1
no-overlap: for i = 1, . . . ,n − 1, for j = i + 1, . . . ,n:
|Xi − Xi |+ |Yi − Yj | ≥ 1

We want to express that (Xi ,Yi) 6= (Xj ,Yj). Can we use
alldifferent?
Let [P1, . . . ,Pn] be a list and M a “big” integer (100 is ok for us).
for i = 1, . . . ,n − 1: Pi = Xi + MYi .
We can now post: alldifferent([P1, . . . ,Pn]).
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Protein Structure Prediction Modeling

HP on N2: FD encoding

Primary = [a1, . . . ,an] = [h,p,p,h,p,p,h, ...]
Tertiaryx = [X1, . . . ,Xn],Tertiaryy = [Y1, . . . ,Yn]

energy: for i = 1, . . . ,n − 2, for j = i + 2, . . . ,n: ci,j ∈ {0,−1}

ci,j = −1↔ (|Xi − Xi |+ |Yi − Yj)| = 1) ∧ (ai = aj = h)

Energy =
∑n−2

i=1
∑n

j=i+2 ci,j
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Protein Structure Prediction Modeling

3D Lattice models: Cube, FCC, Chess Knight
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Protein Structure Prediction Modeling

The FCC lattice

The Face Centered Cube lattice models the discrete space in
which the protein can fold.
It is proved to allow realistic conformations.
The cube has size 2.

Two points are connected
(next) iff
|xi − xj |2 + |yi − yj |2+
|zi − zj |2 = 2,
Each point has 12
neighbors (but 60◦ and
180◦ can be removed).
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Protein Structure Prediction Modeling

The protein folding problem
HP on FCC

Backofen and Will fold HP-proteins up to length 200 on FCC using
constraint programming
Clever propagation, an idea of stratification and some geometrical
results on the lattice.
Drawbacks: It is only an abstraction. The solutions obtained are
far from reality. For instance, helices and sheets are never
obtained.
Problems:
◦ Energy function too simple.
◦ Contact too strict.
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Protein Structure Prediction A 20 × 20 energy function

The protein folding problem
A more realistic Energy function

A 20× 20 potential matrix Pot storing the contribution for each pair
of aminoacids is used.
Values are either positive or negative.
The notion of contact (easy) on lattice models is slightly extended:

if distance (ai ,aj) < k then Pot(ai ,aj) else Pot(ai ,aj )

distance2

COLA (COnstraint solving on LAttices) can predict on FCC
proteins of length 100–120 in reasonable time
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Protein Structure Prediction Global constraints

Global constraints
contiguous

Let X1, . . . ,Xn be variables with domains D1, . . . ,Dn:

contiguous(X1, . . . ,Xn) = (D1 × · · · × Dn) \
{(a1, . . . ,an) ∈ (D1 × · · · × Dn) :
∃ i . (1 ≤ i < n ∧ (ai ,ai+1) /∈ E)}

where E is the set of lattice edges.
CON (consistency chcking) and GAC (generalized arc consistency
filtering) are polynomial
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Protein Structure Prediction Global constraints

Global constraints
alldifferent

Let X1, . . . ,Xn be variables with domains D1, . . . ,Dn:

alldifferent(X1, . . . ,Xn) = (D1 × · · · × Dn) \
{(a1, . . . ,an) ∈ (D1 × · · · × Dn) :

∃i , j . (1 ≤ i < j ≤ n ∧ ai = aj)}

CON and GAC are polynomial
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Protein Structure Prediction Global constraints

Global constraints
self avoiding walk

Given n variables X1, . . . ,Xn, with domains D1, . . . ,Dn, the global
constraint saw is the following:

saw(X1, . . . ,Xn) =
alldifferent(X1, . . . ,Xn)∩
contiguous(X1, . . . ,Xn)

CON (and GAC) are NP-complete (Dal Palù, Dovier, Pontelli.
IJDMB 4(1), 2010)
Other global constraints have been studied (all distant, chain, rigid
block, density maps)
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Protein Structure Prediction References

Some References
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P. Barahona and L. Krippahl, Constraint programming in structural
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Fragment Assembly

Fragment assembly

Small number of angles allowed by a lattice models: large errors
are unavoidable for long proteins.
Difficult to reuse known information from deposited proteins
(state-of-the-art methods are largely built upon this idea).
We would like to model the PSP off-lattice, but using finite domain
variables.
The main idea is to analyze the known proteins and find some
statistics between the angles formed by fragments of 4 (or more)
amino acids.
Then, using some clustering (in R3), assigning a set of available
fragments (indexed by an integer) to subsequences of the known
protein.
The approach might be incomplete, however, we (and others)
assume that if nature prefers some local shapes =⇒ we should do
it as well
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Fragment Assembly Clustering

Preprocessing

The Protein Data Bank contains ≥ 60K protein sequences with their
observed 3D structures (X-ray/NMR)

A L F W K L R R ...

m
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Fragment Assembly Clustering

PDB: extract information

We get fragments composed of 4 consecutive amino acids
and collect the corresponding shapes (indexed by sequence)

A A A A

m

A A A C

m

. . .
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Fragment Assembly Clustering

Clustering (same 4-ple, different shapes)

Clustering according to their similarity (RMSD ≤ threshold)
White and green form a single cluster
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Fragment Assembly Clustering

Clustered conformations for AAAA

Each color has a representative and frequency count
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Fragment Assembly Clustering

Library of fragments

For each 4 aa sequence,
store the clustered repre-
sentatives (RMSD ≤ .5Å)

tupla([A,A,A,A],
[0.0,0.0,0.0,
2.5,-2.8,0.3,
1.9,-3.1,4.0,
-1.9,-3.4,3.6],
Freq, ID).

A A A A A A A C A A A D
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Fragment Assembly Linking fragments

Combiningthe blocks

F Y V A H . . .
F Y V A

Y V A H
V A H . . .

How to assemble fragments?

F Y V A

?⇐⇒

Y V A H
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Fragment Assembly Linking fragments

Inductive step: combine the blocks

F Y V A
Y V A H

Two fragments are compatible only if the
3 common amino acids have a low RMSD
(similar bend angle)
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Fragment Assembly Linking fragments

Inductive step: combine the blocks

F Y V A
Y V A H

Each compatible pair of fragments is
stored as

next(Fi ,Fj ,M)

with optimal rotation matrix M (that rotates
Fj in the reference of Fi )
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Fragment Assembly Linking fragments

Inductive step: combine the blocks
The assembly

Given a target sequence, pick the first 4-aa fragment.
The protein is grown by attaching compatible fragments (next).
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Fragment Assembly Cαs and centroids

Enriching the model

Given a Cα 4-tuple in 3D, a small degree of freedom for the
position of the side chain is allowed
Different amino acids have different occupation
A pure Cα-Cα model does not keep into account these
differencies
We consider the positions of the centroids of the side chains.
Roughly, a centroid is the expected center of mass of the side
chain
We used a model with 4 (real) atoms, plus the centroid. Briefly,
5@-model.
We skip the CP modeling. We just focus on one global constraint.
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Fragment Assembly Cαs and centroids

The Joined-Multibody Constraint

A rigid block B is an ordered list of at least three (distinct) 3D
points, denoted by points(B). start(B) and end(B) are the lists of
the first three and the last three points of points(B).
For two lists of points ~p and ~q, we write ~p _ ~q if they can be
perfectly overlapped by a roto-translation.

A multi-body is a sequence S1, . . . ,Sn of non-empty sets of rigid
blocks.
A sequence of rigid blocks B1, . . . ,Bn, is called a rigid body if, for
all i = 1, . . . ,n − 1, end(Bi) _ start(Bi+1).

Basically, the JM constraint is the formalization of the problem of
finding a rigid body from a multi body that fulfills a set of spatial
constraints.
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Fragment Assembly Cαs and centroids
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Fragment Assembly The complete tool

FIASCO: Fragment-based Interactive Assembly for
protein Structure prediction with COnstraints

Constraint based local search is implemented.
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Fragment Assembly References

Some References

A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. CLP-based protein
fragment assembly. TPLP 10(4–6):709–724, July 2010,

A. Dal Palù, A. Dovier, F. Fogolari, and E. Pontelli. Exploring Protein
Fragment Assembly Using CLP. In IJCAI 2011, pp. 2590-2595.

F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, and E. Pontelli: A
Constraint Solver for Flexible Protein Model. J. Artif. Intell. Res. (JAIR)
48: 953-1000 (2013). (also CP 2012 and WCB 12)

F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, F. Fogolari, E. Pontelli,
et al. Introducing FIASCO: Fragment-based Interactive Assembly for
protein Structure prediction with COnstraints. WCB 11

To conclude, I suggest to: Play with Foldit http://fold.it/portal/
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Fragment Assembly Protein Docking

Protein Docking

Standard methods (ClusPro) rely on a-posteriori filtering of good
results (and of an idea of using FFT)
BiGGER (Barahona and Kripphal) use constraint propagation and
symmetry breaking (see Krippahl and Barahona contribution to
WCB 15 — and many other publication of the group)
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Fragment Assembly CPD

Computational Protein Design

We want to find a primary sequence that will fold in a desired way.
Usually, a simplification is made. Fix some parts (eg secondary
structures) and replace some of the other aminoacids in all
possible ways: choose those that minimize the overall energy.
Viricel, Simoncini, Allouche, de Givry, Barbe, and Schiex
contribution to WCB 15 — and previous (many) works of the
group.
Hugo Bazille and Jacques Nicolas (WCB 14, with ASP)
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Systems Biology

Systems Biology
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Systems Biology Introduction

Biological Networks

A cell contains complex systems of interacting components
E.g. small molecules, DNA, proteins
Each system can be modeled by means of networks

mRNA

Protein

transcription factor

DNA
Gene

Metabolite

Heterogeneous
components

A + C       AC     B + C

Transcriptional regulatory network

Gene regulatory network

Protein interaction network

Metabolic network

Signaling network

Molecules Networks
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Systems Biology Introduction

Biological Networks

The problem is to model a network from biological knowledge
The model has to be validated w.r.t. experimental data
Data is incomplete, sometimes unreliable
Models need to be modified, repaired and/or extended
Models can guide the design of new experiments

mRNA

Protein

transcription factor

DNA
Gene

Metabolite

Heterogeneous
components

A + C       AC     B + C

Transcriptional regulatory network

Gene regulatory network

Protein interaction network

Metabolic network

Signaling network

Molecules Networks
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Systems Biology Gene Regulatory Networks

Influence Graph
Operon Lactose in E. coli (example from Gebser, Schaub, Thiele, Veber, 2011)

Simplest type of Gene Regulatory Network
Edges show how a gene influence other genes
The influence can be positive or negative
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Systems Biology Influence Graphs

Influence Graphs

An influence graph is a directed graph G = 〈N,E , σ〉 s.t.
σ : E → {+,−} is a labeling of the edges.
σ can be partial. We consider it as total in this presentation.
i −→ j where σ(i , j) = + means that i influences positively j (e.g. a
positive (negative) variation of the level of i causes a positive
(negative) variation of the level of j).
i −→ j where σ(i , j) = − means that i influences negatively j (e.g.
a positive (negative) variation of the level of i causes a negative
(positive) variation of the level of j). It is often denoted as i ——–| j .
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Systems Biology Influence Graphs

Influence Graphs

Among the nodes there are input nodes, where we can increase
or decrease the level of some substances
From experimental results one builds a set of observations,
namely, some partial assignments µ : N → {−,+} for the “level” of
the nodes.
One of the first problems is understanding if these partial
observations are “consistent”
G = (N,E , σ) and µ are consistent whether there is a total
extension µ′ of µ (defined for all nodes in N) such that for each
non-input node n ∈ N there is an edge (m,n) ∈ E such that

σ(m,n)µ′(m) = µ′(n)

(i.e. ++ = −− = +, +− = −+ = −, using the rule of sign)
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Systems Biology Influence Graphs

Operon Lactose in E. coli
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Systems Biology Influence Graphs

Operon Lactose in E. coli
Some examples

1 2 3 4 5 6 7 8
+ + + + + + + + NO (8)

+ + + + + - + - YES
+ - - ? ? ? ? + SAT
+ - - - - + - + YES
+ - - + + - + + YES
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Systems Biology Detecting Inconsistencies

Problem definition

Checking Consistency
Given an influence graph G = 〈N,E , σ〉 and a partial assignment µ of
the nodes N, establish whether G and µ are consistent.

If µ is total, it is just a polynomial check.
If µ is partial, it is NP-complete [Veber06]
We are interested in finding the minimal modifications on edges to
make the network consistent.
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Systems Biology Modeling

Influence graphs
Modeling

Let G = (V ,E), V = {V1, . . . ,Vn}
Introduce X1, . . . ,Xn with domain {−1,1} (−1 for -, +1 for +)
Assign the “known” values Xi = σ(Vi).
For i = 1, . . . ,n, if Vi is not “input” then, let

(Vi1 ,Vi , σ(i1,i)), . . . , (Vik ,Vi , σ(ik ,i))

be its entering edges. Then we set the constraint:

Vi ∈ {Xi1σ(i1,i), . . . ,Xikσ(ik ,i)}
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Systems Biology Repairing inconsistencies

Problem definition

Once inconsistency has been detected, the biologist would receive
some guess on where the error can be. There are several chances.
We show one.

Repairing
Given an influence graph G = 〈N,E , σ〉 and a partial assignment µ of
the nodes N: find µ′ such that G and µ′ are consistent and µ′ is
obtained from µ by changing as few values as possible.

This can be used for reasoning on the network.
Similarly, one may ask for the minimum number of edges to be labeled
in a different way, or to be added, and so on.
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Systems Biology Repairing inconsistencies

Influence graphs
Repairing

Let G = (V ,E), V = {V1, . . . ,Vn}
Introduce X1, . . . ,Xn and D1, . . . ,Dn valued in {−1,1}
Intuitively, Xi is the value of the node i , Di is 1 (-1) if node i is
consistent (inconsistent).
Assign the “known” values Xi = σ(Vi).
For input nodes and for nodes not assigned by σ: Di = 1
For i = 1, . . . ,n, if Vi is not “input” then, let

(Vi1 ,Vi , σ(i1,i)), . . . , (Vik ,Vi , σ(ik ,i))

be its entering edges. Then we set the constraints:

ViDi ∈ {Xi1σ(i1,i), . . . ,Xikσ(ik ,i)}

Maximize D1 + · · ·+ Dn
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Systems Biology Repairing inconsistencies

Biocham (the BIOCHemical Abstract Machine)

Biocham (Fages, Soliman et al.) is a software environment for
modeling biochemical systems. (e.g., WCB 06, . . . , WCB 13)
It allows the analysis and simulation of boolean, kinetic and
stochastic models (using a rule-based language) and
the formalization of biological properties in temporal logic
(LTL/CTL)
It uses CLP, SAT and other constraint-based techniques.
A lot of successful experiments with real data have been
performed.
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Conclusions

Conclusions

We have surveyed the three main areas of Bioinformatics, focusing on
a pair of problems per area:

Genomics:
X Haplotype Inference
X Phylogenetic trees

Structural Bioinformatics:
X RNA secondary structure prediction
X Protein structure prediction (and docking, and engineering)

Systems Biology:
X Reasoning on Biological Networks

There’s still a lot to do for us. On the problems seen and on a lot of
other problems. CP, in combination with SAT, LS can play a central role
in the present (and future) of Bioinformatics.
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Conclusions

Global Constraint Catalog
http://sofdem.github.io/gccat/gccat/Kbioinformatics.html

Three constraints from bioinformatics are enlisted
The constraint: all_differ_from_at_least_k_pos is
basically an error correcting code generator, inspired by [Frutos et
al, Nucleic Acids Research 25, 1997]. Given a set S of vectors it
enforce all pairs of distinct vectors in S to differ each other from at
least k positions.
The constraint sequence_folding (by Justin Pearson) is a
global constraint that can be used in the encoding of the RNA
secondary structure prediction problem. It explicitly avoids
“pseudo knots” (in this case, however, the problem is in P).
The stable_compatibility constraint (by Pierre Flener,
inspired by [Beldiceanu et al, CPAIOR 2006]) used for supertree
reconstruction. Subsequent works by Moore and Prosser
[JAIR2008] improve it.

The saw and the JM constraint deserve to be added.
Agostino Dovier (Univ. of Udine, DIMI) Constraints and Bioinformatics Cork, Sept. 4, 2015 97 / 98

http://sofdem.github.io/gccat/gccat/Kbioinformatics.html


Conclusions

Acknowledgments

Thank you!

CP/ICLP organizers
(in particular Willem-Jan Van Hoeve and Mats Carlsson)
My main collaborators/co-authors in Bioinformatics:

Ferdinando Enrico Alessandro Federico Federico Andrea
Fioretto Pontelli Dal Palù Fogolari Campeotto Formisano

and the friends that helped in the organizations of WCB 05–15:
Rolf Backofen, Sebastian Will, Francois Fages, Nicos
Angelopoulos, Simon de Givry

Agostino Dovier (Univ. of Udine, DIMI) Constraints and Bioinformatics Cork, Sept. 4, 2015 98 / 98


	Introduction
	Overview
	Bioinformatics
	General References

	Genomics: Haplotype Inference
	Introduction
	Definitions
	Model
	References

	Genomics: Phylogenetic trees
	Introduction
	Model
	Character compatibility
	CP Modeling
	References

	RNA secondary structure prediction
	DNA and RNA
	Definitions
	Complexity
	Modeling

	Protein Structure Prediction
	Central Dogma and Proteins
	Amino acids
	The PSP problem
	Modeling
	A 2020 energy function
	Global constraints
	References

	Fragment Assembly
	Clustering
	Linking fragments
	Cs and centroids
	The complete tool
	References
	Protein Docking
	CPD

	Systems Biology
	Introduction
	Gene Regulatory Networks
	Influence Graphs
	Detecting Inconsistencies
	Modeling
	Repairing inconsistencies
	References

	Conclusions



