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SOMMARIO/ ABSTRACT

A protein is identified by a finite sequence of amino acids,
each of them chosen from a set of 20 elements. The Protein
Structure Prediction Problem is the problem of predicting
the 3D native conformation of a protein, when its sequence
of amino acids is known. This problem is fundamental for
biological and pharmaceutical research. All current math-
ematical models of the problem are affected by intrinsic
computational limits. In particular, simulation-based tech-
niques that handle every chemical interaction between all
atoms in the amino acids (and the solvent) are not feasible
due to the huge amount of computations involved. These
programs are typically written in imperative languages and
each approach is based on a particular energy function.
There is no common agreement on which is the most re-
liable energy function to be used.

In this paper we present a novel agent-based framework
for ab-initio simulations. Each amino acid of an input pro-
tein is viewed as an independent agent that communicates
with the others. The framework allows a modular repre-
sentation of the problem and it is easily extensible for fur-
ther refinements and for different energy functions. Sim-
ulations at this level of abstraction allow fast calculation,
distributed on each agent. We provide an implementation
using the Linda package of SICStus Prolog, to show the
feasibility and the power of the method. The code is in-
trinsically concurrent and thus natural to be parallelized.

Keywords: Computational Biology, Agent-Based Tech-
nologies, Concurrent Constraint Programming.

1 Introduction

The Protein Structure Prediction Problem (PSP) is the
problem of predicting the 3Dnativeconformation of a pro-
tein, when the sequence made of 20 kinds of amino acids
(or residues) is known. The process for reaching this state
is known as the proteinfolding. This problem is fundamen-

tal for biological and pharmaceutical research. Currently,
the native conformations of more than 26000 proteins are
available in the Protein Data Bank (PDB) [3]. Restrict-
ing to proteins of typical length (i.e. less than 500), there
are more than20500 possible sequences. Moreover, for a
single protein, say of length 500, even with the unrealis-
tic simplifying assumption of two allowed positions for an
amino acid given the positions of the previous, the number
of possible conformations is2500. These numbers high-
light the need for a general computational tool.

The PSP problem can be modelled as an optimization
problem involving energy functions to be minimized and
constraints on the amino acids’ positions. Even simple ab-
stractions are NP-complete (see, e.g., [9]). Nevertheless,
in the last thirty years, the global optimization for the PSP
problem has been tackled with different classes of meth-
ods: simulated annealing [15], genetic algorithms [13],
smoothing methods [26], branch and bound [19], and con-
straints [2]. These methods are allab-initio methods,
namely, approaches that are not based on similarities to al-
ready known proteins. When some additional knowledge
is available (e.g., a database of already annotated proteins),
it is possible to employ a different class of methods (ho-
mology modelling): the protein is matched against very
similar sequences and the conformation prediction exploits
this valuable information.

In this work we concentrate onab-initio modelling. In
this case, an all-atom computer simulation is typically un-
practical. Even with strong simplifications, it would re-
quire many CPU hours for each simulated nanosecond for
a small protein on a PC. To overcome this limit, most of the
approaches usedatabase fragment assemblyand/orsimpli-
fied modelsto determine an approximate and faster solu-
tion.

Ab-initio methods are based on theAnfinsen thermody-
namic hypothesis[1]: the (native) conformation adopted
by a protein is the most stable one, i.e. the one with min-
imum free energy. A fundamental role in the design of a
predictive method is played by the spatial representation of



the protein and the static energy function, which is to be at
a minimum for native conformations.

Simplified models of proteins are attractive in many re-
spects: they allow clear derivation of kinetic and thermo-
dynamic properties; the simplified representation of the ac-
tual protein, often by one or two centers of interaction per
residue, allows a much faster computation and generates
also smoother energy hyper-surfaces which implies faster
dynamics. Unfortunately, there is no general agreement on
the potential that should be used with these models, and
several different energy functions can be found in litera-
ture [25].

In this paper we present a new high-level framework for
ab-initio simulation using Agent-based technologies. Each
amino acid in the protein is modelled as an independent
agent, which reacts to modifications of spatial positions of
other amino acids. Each process evolves in a Monte Carlo
simulation framework, exploiting the most recent informa-
tion available about the surrounding objects. Every time a
process updates its position, it also tells the changes to the
others with a communication based on Linda tuple space
(see, e.g., [7]). The system is implemented using Concur-
rent Constraint Logic Programming [24] in SICStus Pro-
log [27].

The framework is modular, being independent from the
protein spatial model and energy function. As preliminary
test, we adopt a basic energy function description, based
on a statistical analysis of known native configurations of
some proteins. In this model, each aminoacid is repre-
sented by an off-lattice, single center of interaction. The
energy function is composed by the empirical contact term
developed in [4] and used in constraint-based approach to
the problem [10]. Moreover, to model properly local in-
teractions in an off-lattice energy field, we also include a
bond length term, a bend angle term and a torsion angle
term, similar to [28]. Note that in [22] the correlation be-
tween torsion angles and related bend angles is thoroughly
studied. In this paper, we do not provide many details on
this specific energy function and tuning procedure, since
in the next future we plan to test our framework replacing
this naive energy model with a well-tested reduced model,
as, for instance, that presented in [11]. Being intrinsically
concurrent, the framework is well-suited to be parallelized.

To test our framework, we simulate a poly-alanine se-
quence, which has an high tendency to fold into anα-helix.
Even with a so coarse model (in terms of amino acid repre-
sentation and energy function), we obtain a proper helical
structure.

The paper is organized as follows. In Section 2 we
briefly discuss the main results related to the solution of the
PSP problem. The problem is then formalized in Section 3.
In Section 4 we present the Agent-based framework. In
Section 5 we describe the energy model employed. In Sec-
tion 6 we provide some details of the implementation and
in Section 7 we show our preliminary results. In Section 8
we draw some conclusions.

2 Related Work

We refer to [25] for a detailed review. We focus here on
ab-initio approaches only. All-atoms ab-initio simulations
by means of molecular dynamics (e.g. [23, 5, 17]), are
precluded by the intrinsic complexity of the needed op-
erations. More efficient methods are offered by simplified
models. It is accepted that important features of protein
sequences are the local propensity to adopt well-defined
secondary structures, as well as the polar and hydrophobic
interactions. The secondary structure propensity may be
included in simulation through either rigid constraints (as
done in [10]) or energy terms which depend on the type
of amino acids involved, derived from statistical database
analysis. Interactions between amino acids may be treated
either considering their chemical and physical properties
or using a statistical approach. One relevant problem is
the correlation between the different propensities and in-
teractions singled out: as far as empirical contact energies
are concerned, in [4] it is compiled a table which has been
proven to be rather accurate, when tested on several de-
coys’ sets. Similar tables have been provided based on
different criteria by other authors [18]. Thirumalai and
coworkers [28] have designed a forcefield suited for rep-
resenting a protein through its Cα-chain, which includes
bonds, bend, and torsion angle energy terms. Scheraga
and coworkers [16] have used a similar model including
side-chain centroids.

As we describe in Sect. 3, the problem can also be for-
mulated as a non-linear minimization problem, where the
spatial domain for the amino acids is a discrete lattice. A
constraint-based approach to this problem on the so-called
Face Centered Cubic lattice, with a further abstraction on
amino acids (they are split into two families H and P), is
successfully solved in [2] for proteins of length up to 160.
A constraint-based solution to the general problem (with
the 20 amino acids) is proposed instead in [10], where pro-
teins of length up to 50 are solved. In the latter approach,
the solution search is based on the constraint solver for fi-
nite domains of SICStus Prolog [6].

As said above, we are not currently aware of any other
approach modelling amino acids as concurrent processes.

3 Proteins and the PSP Problem

A protein is a sequence of 20 kinds of linked units, called
amino acids. This sequence is called theprimary structure
of a protein.

Each protein always reaches a peculiar 3D confor-
mation, called native conformation ortertiary structure,
which determines its function. Theprotein structure pre-
diction problemis the problem of predicting the tertiary
structure of a protein given its primary structure. It is ac-
cepted that the primary structure uniquely determines the
tertiary structure. Due to entropic considerations [1], it is
also accepted that the tertiary structure is the one that min-
imizes the global energy of the protein. Though, there is



A Alanine 4 C Cysteine 4
D Aspartic Acid 16 E Glutamic Acid 10
F Phenylalanine 14G Glycine 1
H Histidine 11 I Isoleucine 13
K Lysine 15 L Leucine 13
M Methionine 11 N Asparagine 8
P Proline 8 Q Glutamine 11
R Arg inine 17 S Serine 5
T Thr eonine 9V Valine 10
W Tr yptophan 18Y Tyr osine 15

Figure 1: Amino acids: abbreviations, full names, and
number of atoms in the side chain
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Figure 2: Amino acids: Overall structure

no common agreement on which energy function should
model correctly the phenomenon.

Each amino acid is made by several atoms (cf. Fig. 2);
there is a partcommonto all amino acids, the N-Cα-C ′

backbone, and acharacteristic partknown asside chain,
which consists of a number of atoms ranging from 1 to 18.
Each amino acid is linked to the following with the incom-
ing and outgoing edges represented by arrows in Fig. 2.
A well-defined energy function should consider all pos-
sible interactions between all atoms of every amino acid
composing the protein. A review of the various forces and
potentials at this abstraction level can be found in [21].

A more abstract view of amino acids considers each of
them as a singlespherecentered in theCα atom. The dis-
tance between two consecutiveCα atoms is assumed to be
3.8 Å, measure chosen as unitary. Recent work has been
done to model energy functions with this level of abstrac-
tion. A pair of non consecutive amino acids contributes
to the energy when the two amino acids are incontact,
namely under a given distance that can be approximated
by 2 units. A table that points out the energy associated to
pairs of amino acids in contact has been developed [18, 4].

Just as an example, we show how it is possible to formal-
ize the protein folding problem as an optimization prob-
lem. Given a sequenceS = s1 · · · sn, with si amino acids,
a folding of S is a functionω : {1, . . . , n} −→ R3 such
that: |ω(i) − ω(i + 1)| = 1, and|ω(i) − ω(j)| ≥ 1 for
i 6= j. The first constraint states that consecutive amino
acids have the fixed unitary distance; the second that each
aminoacid occupies a unitary sphere and that two spheres
cannot overlap. In Sect. 5 we present a more refined de-
scription that deals with local interactions. In particular,
the hard constraint|ω(i) − ω(j)| ≥ 1 will be rewritten as
a soft constraint, namely a smoother potential barrier that

has the effect of repelling two colliding residues, together
with other local energy interactions.

The protein folding problem can be reduced to the opti-
mization problem of finding the foldingω of S such that
the following energy is minimized [8, 10]:

E(ω) =
∑

1 ≤ i < n
i + 2 ≤ j ≤ n

contact(ω(i), ω(j)) ε(si, sj)

wherecontact(ω(i), ω(j)) is 1 if |ω(i) − ω(j)| ≤ 2, 0
otherwise.ε(x, y) denotes the energy value associated to a
contact between amino acidsx andy.

4 The Simulation Framework

In this section we describe the novel abstract framework
of simulation, which is independent on the spatial model
of the protein and on the energy model employed. Using
a Concurrent Constraint Logic Programming language we
can encode the problem associating an independent agent
to each amino acid involved. These processes react to
changes of position of other processes. We used Linda [7]
as concurrent paradigm: all the communications between
agents are performed through writing and reading logical
atoms in the Linda tuple space.

4.1 The main program

We describe, using a Prolog pseudo-code, the structure of
the program used. LetS = [s1,...,sn] be the list of
amino acids, which is the input of our program.

simulation( S ) :-
out(pos(1,initpos_1)), ...,
out(pos(n,initpos_n)),
out(trigger(1)), ...,
out(trigger(n)),
amino(1,S ) || ... || amino(n,S).

amino(i,S) :-
in(trigger(i)),
get_pos([pos(1,Pos_1),...,

pos(n,Pos_n)]),
update_pos(i,S,[pos(1,Pos_1),...,

pos(n,Pos_n)], Newpos),
out(pos(i,Newpos)),
out(trigger(1)),...,
out(trigger(i-1)),
out(trigger(i+1)),...,
out(trigger(n)),
amino(i,S).

The main procedure is the predicatesimulation .
Here we first put in the tuple space the initial posi-
tions for the different amino acids. Then we put then
atomstrigger(i) , which are the switches that regulate
agent’s activation. Finally, we launch in paralleln execu-
tions of the procedureamino(i,a) , one for each of the
different indexesi that identify the correspondent amino
acids in the chain.



The core of the simulation is the predicate
amino(i,S) , which governs the behaviour of each
agent. The first instruction is a blockingin , which
removes the switchtrigger(i) from the tuple space.
If there isn’t such an atom, thein instruction suspends
the execution of processi and waits for some other agent
to put this atom in the tuple space. When the execution
continues, the process retrieves the most recent position of
all other amino acids (get_pos ), which is stored in the
tuple space in terms of the kindpos(i,position) .
Successively, the current position of each agent is updated
by update_pos through a mechanism described in
section 4.2, and this new position is put in the tuple space
by the followingout instruction. Finally, the switches of
all other processes are turned on by thei − 1 instructions
trigger(j) , with j 6= i, and then the process recur-
sively calls itself. Actually, in the real implementation,
triggers are added only if they are not already present.
The initial positions can be chosen between three different
situations: straight line, zig-zag, and, for known proteins,
the deposited structure can be used. The program is
not terminating (the idea is that simulations run forever)
and the sequences of computed positions are stored in
an auxiliary file. Termination can be forced from the
operating system level.

4.2 Simulating moves

The procedureamino computes a new position for the
corresponding amino acid using a Monte Carlo-like sim-
ulation (cf., e.g., [8, page 44]). Each amino acid can move
in the space guided by its evaluation of the energy function.
The knowledge of other’s positions and amino acids’ type
is sufficient to completely evaluate the function. Each time
the procedureupdate pos is invoked, the amino acidai

estimates itscurrentpotentialPc, according to its position
p. Moreover, a new positionp′ is devised, according to a
moving strategy (see next Subsection).

The amino acid evaluates then thenewpotentialPn as-
sociated top′ (Pc and Pn are computed using the for-
mula (1)). IfPn < Pc, the amino acid updates its position
to p′.

If Pn ≥ Pc, the positionp′ seems not suitable to im-
prove the local potential. However, it is possible that mov-
ing the aminoacid in worse positions allows to exit from
a local minimum. The Monte Carlo technique is that of
accepting the positionp′ if a randomly generated value
r ∈ [0, 1] is less than a value depending onPn − Pc:

newPosition=

{
p′ if Pn < Pc or r < e−

Pn−Pc
Temp

p else

Temp is a parameter simulating the temperature effects.
Technically, it controls the acceptance ratio of moves that
increase the energy. In Monte Carlo simulationsTemp
remains constant and it can be proven that allowing suf-
ficient time the thermodynamic ensemble corresponding

to the selected Temp is reached. Simulating annealing
methods slowly decrease the value ofTemp during sim-
ulation (observe that whenTemp is close to 0, the test

rand < e−
Pn−Pc

Temp is typically false, and thus only moves
that decrease the energy are allowed). We stress the fact
thatTemp has no physical meaning in our framework, as
the physical temperature is “incorporated” inside the pa-
rameters of the energy function. ThusTemp works only as
a modifier of the acceptance ratio of bad–moves (which in-
crease energy). A good strategy is to keep this ratio around
5%, as an higher value tends to perform a random walk in
the configuration space. With the current energy function
we have experimentally found that a value of 0.1 forTemp
achieves this goal.

4.3 Moving Strategies

As said in Sect. 2, two consecutive amino acids tend to
stay at a distance of3.8 Å from each other. We allow to
temporarily break this constraint, forcing it by means of a
soft constraint based on the bond energy term.

We test two different moving strategies. The first one is
normally used in Monte Carlo simulation. Every new point
is selected inside a cube that is centered in the previous
amino acid position, according to an uniform distribution
of probability. The cube side is 0.1̊A long. We call this
one theuniform distribution strategy.

The second strategy, thetoroidal distribution strategy,
is as follows. Let us consider the case of an internal
aminoacidai in the sequence. If the distance between

Figure 3: Moving strategy: the 3 amino acids, moving
along the circumference and leaving the circumference.

ai and its neighbors is fixed, this residue has only one de-
gree of freedom of movement, i.e. it can move only on the
circumference which is the intersection of the two spheres
centered in its neighbors and with radius equal to the re-
spective distances. Hence, we first randomly select a point
P on this circumference according to a gaussian distri-
bution, with the maximal probability assigned to the cur-
rent position ofai. Then, allowing for little variations of
the distance, we select a point in the plane orthogonal to
the circumference and passing forP , according to a 2–
dimensional gaussian distribution centered inP (the re-
sulting distribution is a non–uniform toroidal distribution
in the space, with its peak centered in the current position
of the residue)—see Fig. 3.

The case of the first and the last amino acids is slightly
different, as they have two degrees of freedom, namely
they are free to move on the surface of the sphere centered



in their only neighbor; the consequent modification of the
probability distribution is straightforward.

5 Energy function for folding simulation

In this section we briefly describe the energy function we
use to implement our preliminary simulation of the folding
process dynamics. However, as already said, our frame-
work is parametric w.r.t. a given energy function. The
four energy contributions are related tobond distance(Eb),
bend angle(Ea), torsion angle(Et), andcontact interac-
tion (Ec) (cf. [28]). For the sake of simplicity, assume that
~s = s1, s2, . . . , sn contain the names of then amino acids
as well as their positions. The total energyE depends on~s
as follows:

E(~s) = ηb Eb(~s) + ηa Ea(~s) + ηt Et(~s) + ηc Ec(~s) (1)

whereηb, ηa, ηt, ηc are set for blending the energy contri-
butions.

For each pair ofconsecutiveamino acidssi, si+1, we
have a quadratic term

Eb(~s) =
∑

1≤i≤n−1

(r(si, si+1)− r0)
2 (2)

wherer(si, si+1) is the distance between theCα of the
two amino acids andr0 is the typical amino acid distance
of 3.8Å.

The bend energy is associated to the bend angle formed
by a triplet of consecutiveCαs. The distribution is rather
constant for every protein in the PDB and independent
from the types of amino acids involved. The profile
(see [12]) can be approximated by a combination of two
Gaussian distributions, one around 120 degrees and the
other, sharper, around 90 degrees. The energy is obtained
applying the opposite logarithm to the distribution func-
tion:

Ea(~s) =
n−2∑

i=1

− log
(
a1 e−β2

i,1 + a2 e−β2
i,2

)
, (3)

whereβi,j =
(

βi−βj

σj

)
for j = 1, 2.

The torsion angle energy function is modelled using sta-
tistical information of torsional behavior extracted from
the PDB. In detail, fourCα atoms (Cαi, Cαi+1, Cαi+2

andCαi+3) form a specific torsion angle: it is the angle
between the normal to the plane spanned byCαi, Cαi+1

and Cαi+2 and the normal to the plane spanned by
Cαi+1, Cαi+2 and Cαi+3. The angle is positive when,
looking along~r23 = Cαi+2 − Cαi+1, the atomCαi+3 ro-
tates clockwise. This angle is influenced both by the type
of the amino acids involved and by their position in the pro-
tein. The information available in the PDB does not allow
one to reconstruct a sharp distribution profile of each com-
bination of amino acids (there are only 2.000 proteins with

less than 25% identity, i.e. that carry non redundant infor-
mation). Consequently, we first identify four classes of
amino acids which share the same torsional behavior and
we calculate the distribution profile for every sequence of
4 consecutive classes. This profile is approximated by the
sum of two Gaussians. The function has the form:

Et(~s) =
n−3∑

i=1

− log
(
a1 eΦi,1 + a2 eΦi,2

)
(4)

whereΦi,j = (Φi−φj)
2

(σj+σ0)2
for j = 1, 2, and the parameters

a1, a2, σ1, σ2, φ1, φ2 depend on the classes of the four
residues, whileσ0 is used to adapt the distribution vari-
ance to an effective energy function. Actually, there is a
well-known correlation between the bend and the torsion
angles [22]. We have not used it in this paper.

For each pair of amino acidssi andsj , such that|i−j| ≥
3 we consider the contact interaction term of the form

Ec(~s) =
n−3∑

i=1

n∑

j=i+3

[|εi,j |x12
i,j + εi,jx

6
i,j

]
(5)

wherexi,j = r0(si,sj)
r(si,sj)

, εi,j = ε(si, sj), r(si, sj) is the
distance between theCα of si andsj , andr0(si, sj) is a
parameter describing the steric hindrance between a pair
of non consecutive amino acidssi andsj . In our model,
r0(si, sj) is the sum of the radii of the two spheres that
represent the two specific amino acids. An approximation
of them is derived in [12].

A crucial problem while dealing with energy functions
is to set correctly the parameters involved, as their value
changes dramatically the energy landscape and influences
the behavior of the simulation. We performed an optimiza-
tion using a sampling of 700 proteins from PDB database
with less than 25% homology. We calculated the sum of
the squares of the difference between the energy computed
for their native conformation and the folding energy (i.e.,
the free energy required to unfold a protein, which has
been roughly approximated as proportional to the number
of amino acids). Then we minimized this function using a
simulated annealing method, identifying an optimal value
for the scaling parameters. The rationale behind this pro-
cedure is to tune parameters as to have reasonable energies
computed on known native protein structures.

As said before, we do not present here the fully de-
tailed description of the methods involved, since this en-
ergy function is considered as a simple test to drive a real
implementation of our framework.

6 SICStus implementation

In this section we describe some details of the imple-
mentation of the simulation technique in the language
SICStus Prolog [27]. We have interfaced SICStus with
C++ where energy functions are computed. In particular,
the whole mechanism for updating the positions (i.e. the



update_pos predicate—Sec. 4) is implemented in C++
and dynamically linked into Prolog code. This guaran-
tees a more efficient handling of the considerable amount
of operations needed to calculate the potentials. The
Prolog code is not very different from its abstract ver-
sion presented in section 4.1. The only add-on is a con-
trol performed by the processes before putting the atom
trigger(i) in the tuple space: they insert it only if it
is not already present. In addition, to save memory, every
process removes from the tuple space its previous position
before writing its new one.

Prolog Code’s length is less than 150 lines, while C++
code is based on a previous implementation of the en-
ergy function, used for setting and testing parameters.
Codes can be found inhttp://www.dimi.uniud.
it/dovier/PF . We have also written a C++ manager
which launches SICStus Linda processes, visualizes the
protein during the folding, and in general interacts with
the Operative System.

7 Experimental results

In this section we present the results of some tests of our
program. First of all, note that we do not expect outstand-
ing results, due to the naive energy function in use. In
fact, we are interested in testing more the feasibility of the
framework than the potential. However, we successfully
run the code on a sequence of Alanines, that is known to
have a high tendency to form a single helix. As initial state
of the protein we set each amino acid along a line with a
step of the bond distance (3.8Å). We run the simulation for
60 seconds on a PC, 1GHz, 256MB. In Figure 7 we show
the resulting proper helix for a list of 14 Alanines. This
helix is folded quite rapidly, i.e. in less than 5000 Monte
Carlo steps. Moreover, the folding pathway proceeds by
first forming the correct torsional angles, and then com-
pactifying the structure.

Figure 4: The simulated sequence of Alanines

We compared the toroidal distribution strategy with the
uniform distribution strategy. It seems that, if we use the
toroidal one, we are easily trapped in a local minimum,
with no chances to escape. This probably happens due to
the limited choice of moves, which forbids going through
escaping trajectories. The uniform one, instead, does not
suffer from these limitations: in this case we can usually
see the formation of an helix from a sequence of polyala-
nines in very short time.

For completeness, we also tested the reliability of our

energy function: we run the simulation for some PDB pro-
teins (with known native conformation). It turned out that
some amino acids actually lie in a local minimum given our
simple energy model. As expected, for some others the de-
scription does not completely capture their properties. In
fact, running a simulation for some time, we noted that the
global minimum of these proteins tends to move into an-
other conformation, which has better energy according to
our model. This clearly shows that a more robust energy
model is required. See the next section for other details.

Finally, we tested how many processes our framework
in SICStus LINDA is able to deal with. It turned out that
the communication of every client process with the server,
as one can expect, becomes very slow as the number of
processes increases. We run a test for a protein with 54
amino acids. This chain can still be handled, but every
process performs about 2 moves per second, showing the
crucial need for a faster implementation.

8 Future work and Conclusions

In this paper we present a novel concurrent constraint pro-
gramming framework to simulate a protein folding pro-
cess. The approach is independent on the spatial repre-
sentation and energy model of the proteins. The objective
is to provide a powerful tool for obtaining the native con-
formation of a given protein. This scheme is general and
it allows fast prototyping. The key idea is to identify ev-
ery biological entity (i.e. amino acid, but easily extensible
to atoms and molecules) with a concurrent process. We
implemented a preliminary version, to show the feasibility
and the power of the method. We define a simplified en-
ergy function, to test the implementation, and we are able
to fold properly a helix.

In the future we plan to implement a stable version that
implements the framework presented in this paper. In par-
ticular we want to include a more refined force field. More-
over we want to reduce the computational load: this can
be accomplished by approximating and/or excluding some
non relevant contributions to the energy function. The SIC-
Stus implementation of Linda protocol revealed that each
communication takes about 10mS. This delay is the cur-
rent bottleneck of the simulation. We would like to develop
an alternative implementation that exploits the benefits of
multiprocessors with shared memory architecture.

We wish to design an optimizedcommunication frame-
work which adapts dynamically according to the 3D fold-
ing. For example, it could be possible to reduce the com-
munications between non-influent pairs of entities (e.g.
two distant amino acids provide a poor energy contribu-
tion, thus a lazy position update is feasible). Moreover,
we want to formalize a concept ofcooperative approach,
in which a cooperation strategy between processes is in-
duced dynamically by the current configuration, following
the approach of [20]. We want to investigate the possi-
bility offered by our concurrent framework to represent



the dynamical evolution of the system and to manage the
propensity to form local regular sub-conformations (e.g.
secondary structure elements), to achieve a speed up in the
folding pathway. A careful comparison with [14] and re-
lated works seems also promising for this topic.

Our concurrent constraints simulation could be com-
bined with other approaches. Since the computational
costs also depend on the complexity of the energy function,
it seems reasonable to proceed by levels: a first phase (e.g.
the simulation approach with the SICStus Prolog code de-
veloped in [10], which performs an on-lattice minimization
of a simplified contact interaction energy) could be used to
quickly generate a preliminary and coarse solution that can
be used as input of our concurrent approach. The result of
our simulation can be then refined again by an all-atom
simulation. The output of each phase is a folded protein
with an optimal folding for the specific energy model. Re-
fining the model and starting from a folding closer to the
native state, makes the next phase more effective, since the
conformational space to be searched is smaller.
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