
A Uniform Axiomatic View of Lists, Multisets, and Sets, and the

Relevant Unification Algorithms*

Agostino Dovier�

Università di Verona
dovier@sci.univr.it

Alberto Policriti�

Università di Udine
policrit@dimi.uniud.it

Gianfranco Rossi§

Università di Parma
gianfr@prmat.math.unipr.it

Abstract

The first-order theories of lists, multisets, compact lists (i.e., lists where the number of contiguous
occurrences of each element is immaterial), and sets are introduced via axioms. Such axiomatizations are
shown to be very well-suited for the integration with free functor symbols governed by the classical Clark’s
axioms in the context of (Constraint) Logic Programming. Adaptations of the extensionality principle
to the various theories taken into account is then exploited in the design of unification algorithms for
the considered data structures. All the theories presented can be combined providing frameworks to deal
with several of the proposed data structures simultaneously. The unification algorithms proposed can be
combined (merged) as well, to produce engines for such combination theories.

1 Introduction

Lists are a fundamental data structure in programming languages. In lists, the order of elements and the
number of occurrences of each element are meaningful information that can be advantageously exploited by
applications. However, there are a number of situations where these properties turn out to be too restrictive:
different data abstractions may fit more naturally the problem requirements. In particular, it is often convenient
to consider the following data abstractions:

� sets, in which the order of elements and the number of occurrences of each element do not matter;

� multisets (or bags), in which the number of occurrences of each element is important, whereas the order
of elements does not matter.

The first part of this paper is devoted to give a simple and yet sufficiently expressive axiomatic presentation
of these data abstractions. Such axiomatizations, starting from lists and considering the usual list constructor
operator (here denoted [· | ·], à la Prolog), adds more and more constraints in order to correctly characterize
(somehow minimally) the corresponding constructors for sets and multisets.

In particular, in the proposed axiomatization, sets will be presented simply as lists built starting from the
emptyset using a set constructor operator having permutativity and absorption properties. Such operator—
first defined by Bernays in axiom 2 of group II of its celebrated axiomatization of Set Theory (see [4]), and
subsequently named with in the SETL programming language (see [23])—takes an element a and a set x as
input and produces x ∪ {a} as output.

Multisets are introduced in a very similar way, using an operator which has only the permutativity property.
From this point of view, it will turn out rather natural to introduce also:

� compact lists, in which the order of elements is important whereas the number of contiguous occurrences
of each element is not.

*We acknowledge partial support from C.N.R. Grant 97.02426.CT12, C.N.R. project SETA, and from the MURST project
“Tecniche formali per la specifica, l’analisi, la verifica, la sintesi e la trasformazione di sistemi software”.

�Address for correspondence: Dipartimento Scientifico-tecnologico, Università di Verona, Strada Le Grazie, 37134, Verona,
Italy

�Address for correspondence: Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100,
Udine, Italy

§Address for correspondence: Dipartimento di Matematica, Università di Parma, Via M. D’Azeglio 85/A, 43100 Parma, Italy

Compact lists will be obtained from lists adding the absorption property only. To give an intuition of their
semantics, consider the following problem: assume a module of an operating system must keep track of the
processes using a specific resource. The operating system can record the name of the process owning the
resource at given time instants. The process can change at any instant, but the fact that in subsequent instants
the same process was granted use of the resource is immaterial. Thus, the required information is conveniently
modeled by a compact list, in which contiguous occurrences of equal elements collapse (cf. § 2.3 for the formal
definition of compact lists).

An important requirement for the axiomatizations we are looking for is that they can be easily (and
incrementally) adapted to all the data abstractions that we are considering, from lists to sets. In other words,
we would like to have an incrementally developed theory which can include as sub-cases the theories for all the
considered data structures.

The framework in which we assume the above mentioned data structures are to be incorporated is a
Constraint Logic Programming one [12]. Hence, we assume that the language provides (possibly zero or infinite)
free functional symbols in addition to the data structure constructors. The theories we are considering here,
therefore, are so-called hybrid theories, in which the basic objects are Herbrand terms built out of interpreted
as well as uninterpreted symbols. Moreover, in order to clarify the semantics of the proposed extensions of
logic programming, all the considered data structures are presented together with suitable (preferential) models
having the usual terms of a logic language as support.

The axiomatic approach of the first part of the paper, will lead us naturally, in the second part, to introduce
different, though tightly related unification algorithms for the previously defined data structures, starting from
the standard unification algorithm (cf., e.g., [11, 15, 18, 1]) for lists, up to the algorithm for the more complex
set unification problem (which has been showed to be NP-complete, for instance, in [13]).

The equality criteria introduced in the axiomatic presentation of the data structures can be easily converted
into effective procedures for testing equality to be used in the relevant unification algorithms. Moreover, though
distinct, the algorithms could be easily merged to solve the unification problem involving all the considered
data structures.

The paper is organized as follows. In § 2 we give an axiomatic characterization of the considered data
structures, showing the close connections among the relevant theories. Then, in § 3, the unification algorithms
somehow suggested by the axioms expressing equality in the different contexts considered in the previous section
are presented. Finally, some conclusions and possible directions for future work are hinted at in § 4.

2 An axiomatic view of lists, multisets, compact lists, and sets

In what follows we will use the standard Prolog syntactic conventions and notations for the list constructor
symbol [· | ·]; moreover, the constant nil will denote the empty list. As usual, the list [s1 | [s2 | · · · [sn | t] · · ·]]
will be denoted by [s1, . . . , sn | t] or simply by [s1, . . . , sn] when t is nil. Thus, for instance, [a | nil] and
[a | [b |X]], where X is a variable, are two lists, which can also be denoted simply as [a] and [a, b |X],
respectively.

In addition, the following functional symbols are introduced to denote multisets, compact lists, and sets
(empty multiset, compact list, and set are all denoted by nil):

� {[· | ·]} (of arity 2) for multisets,

� [[· | ·]] (of arity 2) for compact lists,

� {· | ·} (of arity 2) for sets.

Notational conventions similar to those used for lists will be freely exploited also for multisets, compact lists,
and sets. For example, { a, b |X} is used to denote a partially specified set with two elements a and b and a
variable part X.

2

2.1 Lists

Consider the first-order theory in a language containing equality ‘
.
=’ and membership ‘∈’ as binary predicate

symbols, and consisting of the axioms of equality and of the two following axioms

(N) ∃z∀x (x ̸∈ z)
(W) ∀y v∃w∀x (x ∈ w ↔ x ∈ v ∨ x

.
= y).

By skolemizing (N) and (W), we introduce the two functional symbols nil and [· | ·], and we can rewrite (N)
and (W) as

(N l) ∀x (x ̸∈ nil) and
(W l) ∀y v x (x ∈ [y | v] ↔ x ∈ v ∨ x

.
= y) .

The language of the theory consists of the signatures Π = { .
=,∈} for the predicate symbols, and Σ =

{nil, [· | ·], · · · } for the functional symbols. In Theorem 1 it is shown that any model of NW (the theory
consisting of the axioms (N) and (W)) must necessarily be infinite. The proof of Theorem 1 follows from the
two lemmata below.1

Lemma 1. NW ⊢ ∀yv (nil ̸ .= [y | v]).

Proof. By (N), NW ⊢ ∀x (x ̸∈ nil). If, by contradiction, NW ⊢ nil
.
= [ȳ | v̄], for some y and v, then

NW ⊢ ∀x (x ̸∈ [ȳ | v̄]) using equality axioms. On the other hand, (W) guarantees that NW ⊢ ȳ ∈ [ȳ | v̄].

From the above result we have that NW ⊢ nil ̸ .= [nil], NW ⊢ nil ̸ .= [[nil]], NW ⊢ nil ̸ .= [[[nil]]],
and so on. Let [nil]n be defined, by induction, as follows:{

[nil]0 = nil

[nil]n+1 = [[nil]n]

Lemma 2. For any pair of different and non-negative integers i and j, NW ⊢ [nil]i ̸ .= [nil]j.

Proof. Assume, without loss of generality, i < j. We prove the lemma by induction on i.
If i = 0 the claim follows directly from Lemma 1.
For i > 0. First of all notice that for any k > 0:

NW ⊢ x ∈ [nil]k → x
.
= [nil]k−1 and NW ⊢ [nil]k−1 ∈ [nil]k .

Hence, NW ⊢ [nil]i−1 ∈ [nil]i and NW ⊢ [nil]j−1 ∈ [nil]j . If we assume, by contradiction, that
NW ⊢ [nil]i

.
= [nil]j , we have that NW ⊢ [nil]i−1 .

= [nil]j−1, which negates the inductive hypothesis.

Lemma 2 guarantees that in any model of NW the [nil]is are interpreted as pairwise different objects.
Hence,

Theorem 1. Any model of NW is infinite.

Proof. Immediate from Lemmata 1 and 2.

It has been shown (cf. [27, 21, 19, 3]) that NW is undecidable as well as all its consistent extensions (essential
undecidability). Since NW is finitely axiomatizable, from this fact it follows that it is not complete (otherwise
it would be decidable), as implicitly proved also in the next sections, where we point out, for instance, that
neither [nil, nil]

.
= [nil] nor [nil, nil] ̸ .= [nil] can be derived from NW . Nevertheless, this theory can be

strengthened, by adding new axioms, in order to obtain a complete and decidable theory for suitable classes of
sentences.

1When the context is clear, we identify the axioms (N) and (W) with their skolemized versions (N l) and (W l).

3

The following three axiom schemata (called freeness axioms, or Clark’s equality axioms—see [5]) are usually
introduced in Logic Programming and will play an important role in our axiomatization:2

(F1) ∀x1 · · ·xny1 · · · yn

 f(x1, . . . , xn)
.
= f(y1, . . . , yn)

→ x1
.
= y1 ∧ · · · ∧ xn

.
= yn

 f ∈ Σ

(F2) ∀x1 · · ·xmy1 · · · yn f(x1, . . . , xm) ̸ .= g(y1, . . . , yn) f ̸≡ g

(F3) ∀x (x ̸ .= t[x])

where t[x] denotes a Σ-term having x as a proper subterm.

Axiom (F1) holds for [· | ·] as a particular case, expressing the adaptation to lists of the classical extension-
ality principle. Axiom (F3) states that there exists no term which is also a subterm of itself. Removing this
axiom would allow us to accept equalities of the form x

.
= f(x) whose solution requires to extend the interpre-

tation domain so as to take into account also the so-called rational trees. Such an extension is considered in [6]
and, for sets and multisets only, in [20, 8]. In this paper, for the sake of simplicity, we will not consider this
kind of extension.

Remark 1. Axiom (F3) recalls the so-called foundation axiom (see, e.g., [14]) which has the aim, among others,
of guaranteeing the acyclicity of membership (i.e., there are no cycles of the form x0 ∈ x1 ∈ · · · ∈ xn ∈ x0).
However, (F3) does not imply foundation: consider the structure D = ⟨D, I⟩ where:

� the domain D is the Herbrand Universe on the signature {nil,Ω, [· | ·]};

� I is the Herbrand interpretation on terms built from {nil, [· | ·]}; moreover,

� for all x, y1, y2 ∈ D

– I(x ∈ nil) = false;

– I(x ∈ [y1 | y2]) = true if and only if I(x) = I(y1) or I(x ∈ y2) = true;

– I(Ω ∈ Ω) = true.

D is a model of NW . However, D is not a model of foundation axiom, since Ω belongs to itself (such element
is not the interpretation of a term). On the other hand, (F3) excludes solutions to the equation X

.
= [nil |X],

which are perfectly consistent with foundation.

In the following three subsections we will adapt the above axioms so as to fulfill the intended meaning
of multisets, compact lists, and sets. Before proceeding further, however, we need to consider the following
problem: what are the elements of an object denoted by a term f(t1, . . . , tn), with f a free functional symbol?
This problem needs a solution also in order to establish which are the elements of a term t of the form
[r1, . . . , rm | a], since (W) guarantees that r1, . . . , rm are elements of t, whereas the remaining elements of t are
those of a, and a can be of the form f(t1, . . . , tn).

Lists, multisets, compact lists, and sets, are our ‘official’ constructors to build data-structures containing
elements, therefore it is natural enough to forbid the insertion of elements in any other term. Hence, we will
strengthen axiom (N) so as to keep empty any term which is not a list (a multiset, a compact list, a set) of
terms. We introduce the axiom schema

(K) ∀x y1 · · · yn (x ̸∈ f(y1, . . . , yn))
for any f ∈ Σ, f distinct from [· | ·], {[· | ·]}, [[· | ·]], { · | · }

which generalizes (N) and will be used in its place hereinafter.3

As a consequence of (K) and Clark’s equality axioms, all the terms of the form f(t1, . . . , tn), where f ∈ Σ,
f distinct from [· | ·], {[· | ·]}, [[· | ·]], { · | · }, ar(f) = n, denote pairwise distinct empty sets. Following [26], we
will call urelement any term of this form; moreover, an urelement will be called a kernel whenever it is ground.
Intuitively, lists (multisets, compact lists and sets) can be seen as built by starting from a kernel (in particular,

2Axioms (F1) and (F2) were originally introduced by Mal’cev in [17].
3Indeed, since nil belongs to Σ, (N l) is an instance of (K). Note also that when one of the two symbols f and g in (F2) is the

interpreted functional symbol [· | ·] ({[· | ·]}, [[· | ·]], { · | · }), then (F2) is a theorem of KW .

4

from nil) and then adding to the kernel the other elements that compose the data structure. We will use the
notation ker(t) to identify the kernel of a ground term t.

By privileged model of a theory T we mean a structure that is a substructure of any model of T . The
privileged model for the theory described so far is the classical Herbrand model, where the interpretation domain
is the Herbrand Universe HΣ, and

.
= is interpreted as the syntactic equality, whereas t ∈ s is considered true if

and only if s is of the form [· · · , t, · · ·]. Axioms (K), (W l), (F1), (F2), (F3), along with the standard equality
axioms, and the considered privileged model over HΣ, describe the (abstract) data structure of hybrid lists over
the alphabets Π and Σ.

Remark 2. In the context of lists, as well as in the other axiomatic theories we will consider, objects denoted
by ground terms are forced to have a finite number of elements. For the results presented in this paper we can
safely ignore objects that are not denoted by terms.

2.2 Multisets

The signature of a hybrid theory of multisets (or bags) must contain the binary functional symbol {[· | ·]} in
place of the previously used [· | ·], and the constant nil. By skolemization we can rewrite (W) as follows

(Wm) ∀y v x (x ∈ {[y | v]} ↔ x ∈ v ∨ x
.
= y).

The behavior of the interpreted functional symbol {[· | ·]} is regulated by the following equational axiom (per-
mutativity property):

(Em
p) ∀xyz {[x, y | z]} .

= {[y, x | z]}

which, intuitively, states that the order of elements in a multiset is immaterial. For example:

{[a, b, c, d]} .
= {[d, c, b, a]}

can be shown to hold in WmEm
p by noticing that

(1) {[a, d]} .
= {[d, a]} by (Em

p)
(2) {[c, a, d]} .

= {[c, d, a]} by (1) and equality
(3) {[a, c, d]} .

= {[d, c, a]} by (2) and (Em
p) on both sides

and that
(4) {[b, c, a]} .

= {[c, b, a]} by (Em
p)

and, hence, that

(5) {[a, b, c, d]} .
= {[b, a, c, d]} by (Em

p)
(6) {[a, b, c, d]} .

= {[b, d, c, a]} by (5), (3) on the r.h.s., and equality
(7) {[a, b, c, d]} .

= {[d, b, c, a]} by (6) and (Em
p)

(8) {[a, b, c, d]} .
= {[d, c, b, a]} by (7), (4) on the r.h.s., and equality.

This example makes it evident also that, contrary to lists, axiom schema (F1) does not hold for multisets, i.e.
when f is instantiated to {[· | ·]}. Since it will turn out that axiom schema (F1) does not hold also for compact
lists and sets, we modify it once and for all as follows:

(F ′
1) ∀x1 · · ·xny1 · · · yn

(
f(x1, . . . , xn)

.
= f(y1, . . . , yn)

→ x1
.
= y1 ∧ · · · ∧ xn

.
= yn

)
for any f ∈ Σ, f distinct from {[· | ·]}, [[· | ·]], { · | · }.

A by-product of this modification is that, in NWmEm
p , we lack in a general principle for establishing equalities

and disequalities between two multisets (the same will apply also to compact lists and sets). For instance,

KWmEm
p ̸⊢ {[nil]} ̸ .= {[nil , nil]} .

In fact, it is easy to see that there are structures such that:

M |= NWmEm
p ∧M |= {[nil]} .

= {[nil , nil]}

5

where such structures can be the näıve model of sets (formally considered in [9] and hinted at in § 2.4). This
argument proves, once more, that the theory NWmEm

p is not complete.

A viable approach to express multiset equality is to introduce a multiset extensionality axiom which, in a
sense, replaces and weakens the classical extensionality axiom for sets stating that two sets are equal if and
only if they have the same elements. Multiset extensionality ensures that two (hybrid) multisets are equal if
and only if they have the same number of occurrences of each element, regardless of their order. Unfortunately,
this axiom does not hold for other considered data structures, namely lists and compact lists. This is quite
unsatisfactory for our purposes since we are looking for a criteria that can be easily (and incrementally) adapted
to all the theories that are considered, from lists to sets. Moreover, a principle like the one previously mentioned
would not be naturally adaptable to kernels, which are all “empty”, and hence would force a special treatment
of them.

The following simple result can help us in devising a different formulation of multiset equality which turns
out to be better suited to our needs than multiset extensionality.

Lemma 3. For all n ∈ N and for all x, y1, . . . , yn

KWmEm
p ⊢ x ∈ {[y1, . . . , yn]} if and only if

KWmEm
p ⊢ ∃z ({[y1, . . . , yn]}

.
= {[x | z]}) .

Proof. The “if” direction follows immediately from (W). We prove the “only if” direction by case analysis on
n ≥ 0. If n = 0 the result is trivial. Assume n > 0 and x ∈ {[y1, . . . , yn]}. (W) ensures that x

.
= yi for some

i ∈ {1, . . . , n}. Choose z as {[y1, . . . , yi−1, yi+1, . . . , yn]}.

Lemma 3 suggests how to express membership in terms of equality. Accordingly, we introduce the following
multiset equality axiom:

(Em
k) ∀y1y2v1v2

 {[y1 | v1]}
.
= {[y2 | v2]} ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

∃z (v1
.
= {[y2 | z]} ∧ v2

.
= {[y1 | z]})


(Em

k) captures the (intuitive) semantics of multisets. Moreover, it holds for multisets with kernels as it is.

(Em
k) and (Em

p) are equivalent as far as equality is concerned. On the other hand, (Em
k) turns out to be

more powerful than (Em
p) for the general case (in particular, for establishing disequalities between bags), as

proved by the following theorems.

Theorem 2. For any formula φ
KWmEm

p ⊢ φ ⇒ KWmEm
k ⊢ φ.

Proof. We prove this by showing that (Em
k) ⇒ (Em

p). Consider the two multiset terms {[x, y | z]} and {[y, x | z]}.
If x

.
= y they are equal by equality axioms. Assume x ̸ .= y; by (Em

k) {[x, y | z]} .
= {[y, x | z]} if and only if

∃k ({[y | z]} .
= {[y | k]} ∧ {[x | z]} .

= {[x | k]}). Choosing k as ‘z’ the result follows.

The reverse entailment, however, does not hold in general. One can see this fact by showing, for instance,
that

(1) KWmEm
k ⊢ {[nil]} ̸ .= {[nil , nil]}

while we have already observed that KWmEm
p ̸⊢ {[nil]} ̸ .= {[nil , nil]}. To prove (1), apply (Em

p) to {[nil]} ̸ .=
{[nil , nil]}:

(2) KWmEm
k ⊢ {[nil]} ̸ .= {[nil , nil]} ↔

(nil ̸ .= nil ∨ nil ̸ .= {[nil]})∧
∀z (nil ̸ .= {[nil | z]} ∨ {[nil]} ̸ .= {[nil | z]}) .

The right-hand side of the bi-implication is true since one of the disjuncts in both conjuncts is trivially true.

Restricting to equalities, one can prove also the reverse implication between axioms (Em
k) and (Em

p). It
is useful to begin with the following technical lemma, which will make use of the concept of size of a term t
(namely, the number of occurrences of functional symbols in t):

size(t) =

{
0 if t is a variable
1 +

∑n
i=1 size(ti) if t is f(t1, . . . , tn)

6

Lemma 4. If KWmEm
k ⊢ ℓ

.
= r then size(ℓ) = size(r).

Proof. By induction on the number n = size(ℓ).
If n = 0, then ℓ is a variable X. Equality axioms ensure that also r must be the same variable.
Assume n > 0; this means that ℓ is either a term of the form f(t1, . . . , tm), with f distinct from {[· | ·]}, or

a term of the form {[t | s]}.

� ℓ = f(t1, . . . , tm). Since f is uninterpreted, the equality axioms guarantee that also r must have the
form f(t′1, . . . , t

′
m), for some t′1, . . . , t

′
m, and, moreover, that KWmEm

k ⊢ ti
.
= t′i for all i = 1, . . . ,m. By

inductive hypothesis, size(ti) = size(t′i) for all i = 1, . . . ,m, hence size(ℓ) = size(r).

� if ℓ = {[t | s]}, then by (K) and (Wm), r must be of the form {[t′ | s′]}. By (Em
k), one of the following two

cases holds:

– t
.
= t′ and s

.
= s′: in this case the result follows as for the uninterpreted case above;

– there exists z such that s
.
= {[t′ | z]} and s′

.
= {[t | z]}. Since, by definition of size, size(ℓ) =

1+size(t)+size(s), then size(s) < n. Hence, by inductive hypothesis, size(s) = 1+size(t′)+size(z).
This means that size({[t | z]}) < size(ℓ). Since KWmEm

k ⊢ s′
.
= {[t | z]}, by the symmetrical property

of equality and inductive hypothesis, size(s′) = 1 + size(t) + size(s). Hence,

size(ℓ) = 1 + size(t) + size(s) =
1 + size(t) + size(t′) + size(s) =
1 + size(t′) + size(s′) = size(r) .

Theorem 3. KWmEm
k ⊢ ℓ

.
= r ⇒ KWmEm

p ⊢ ℓ
.
= r, ℓ and r terms.

Proof. By induction on the number n = size(ℓ).
If n = 0, then ℓ is a variable X. This means that also r must be the same variable, hence KWmEm

p ⊢ ℓ
.
= r,

by equality axioms.
Assume n > 0; this means that ℓ is either a term of the form f(t1, . . . , tm), with f distinct from {[· | ·]} or a

term of the form {[t | s]}.

� ℓ = f(t1, . . . , tm), f distinct from {[· | ·]}. Since f is uninterpreted, the equality axioms guarantee that
also r must have the form f(t′1, . . . , t

′
m), for some t′1, . . . , t

′
m, and, moreover, that KWmEm

k ⊢ ti
.
= t′i for

all i = 1, . . . ,m. By inductive hypothesis, also KWmEm
p ⊢ ti

.
= t′i for all i = 1, . . . ,m, hence, again by

the equality axioms, KWmEm
p ⊢ ℓ

.
= r.

� if ℓ = {[t | s]}, then by (K) and (Wm), r must be of the form {[t′ | s′]}. By (Em
k), one of the following two

cases holds:

– t
.
= t′ and s

.
= s′: in this case the result follows as for the uninterpreted case above;

– there exists z such that s
.
= {[t′ | z]} and s′

.
= {[t | z]}.

By Lemma 4, z is a term such that

size(z) + size(t′) + size(t) + 2 = size({[t | s]})

Hence, both s and {[t | z]} (hence s′) have size less than n. Therefore, the inductive hypothesis
ensures that KWmEm

p ⊢ s
.
= {[t′ | z]} and KWmEm

p ⊢ s′
.
= {[t | z]}. By equality and (Em

p), the
following equalities hold in KWmEm

p ,

{[t | s]} .
= {[t, t′ | z]} .

= {[t′, t | z]} .
= {[t′ | z]} .

Thus, KWmEm
p ⊢ ℓ

.
= r.

7

A privileged model for the theory described in this section can be obtained as follows.

� As domain, choose the quotient HΣ/ ≡ of the ordinary Herbrand Universe HΣ on the alphabet Σ over
the smallest congruence relation ≡ induced by (Em

p) on HΣ.

� The interpretation of a term t is its equivalence class [t].

�
.
= is interpreted as the identity on the domain HΣ/ ≡.

� A membership atom of the form t ∈ s is considered true if and only if there is a term in [s] of the form
{[t | ·]}.

Axioms (K), (Wm), (Em
k), (F ′

1), (F2), (F3), along with the standard equality axioms, and the considered
privileged model over HΣ/ ≡, describe the (abstract) data structure of hybrid multisets over the alphabets Π
and Σ.

2.3 Compact lists

Let Σ be {nil, [[· | ·]], . . . }, and the new version of (W) for compact lists is

(W c) ∀y v x (x ∈ [[y | v]] ↔ x ∈ v ∨ x
.
= y).

The fundamental property of the compact list constructor [[· | ·]] is the absorption property, described by the
following equational axiom

(Ec
a) ∀xy [[x, x | y]] .

= [[x | y]]

which, intuitively, states that contiguous duplicates in a compact list are immaterial. An example showing
usefulness of compact lists comes from formal language theory; let s1, . . . , sm, t1, . . . , tn be elements of an
alphabet, then

s+1 · · · s+m and t+1 · · · t+n are the same regular expression
if and only if [[s1, . . . , sm]]

.
= [[t1, . . . , tn]] .

Similarly to multisets, also for compact lists axiom schema (F1) does not correctly interpret the behavior
of the functional symbol [[· | ·]], as it ensues from the following example:

[[nil | [[nil]]]] (i.e., [[nil, nil]]) .
= [[nil | nil]] (i.e., [[nil]]) .

Therefore, as for multisets, we need a general principle for establishing equality and disequality between compact
lists. Indeed, KW cEc

a is not powerful enough to derive for instance that [[nil , [[nil]]]] ̸ .= [[[[nil]] , nil]] (again,
sets are a model of KW cEc

a).
As for multisets, we can introduce a new axiom which allows us to express equality between compact lists

(with kernels) in terms of a disjunction of simpler equalities between compact lists:

(Ec
k) ∀y1y2v1v2


[[y1 | v1]]

.
= [[y2 | v2]] ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

(y1
.
= y2 ∧ v1

.
= [[y2 | v2]])∨

(y1
.
= y2 ∧ [[y1 | v1]]

.
= v2)


The first disjunct takes care of the simplest case where neither y1 nor y2 occur more than once in the given

compact lists. The second and third disjuncts, instead, are concerned with cases in which y1 and y2 occur more
than once in the left-hand side term (e.g., [[a , a]]

.
= [[a]]) and in the right-hand side term, respectively.

KW cEc
k can be proved to be at least as powerful as KW cEc

a as done for multisets, by showing that any
formula that is provable in the latter can be proved also in the former (but not vice versa).

In order to agree with the intended meaning of [[· | ·]], also freeness axiom (F3) must be suitably modified.
Indeed, as opposed to lists, an equation such as X

.
= [[nil |X]] admits a finite tree solution, namely a solution

that binds x to the term [[nil | t]], where t is any term.
The following lemma holds:

Lemma 5. In any model of KW cEc
k such that every element is denoted by a term, the following holds:

∃x (x .
= [[t1, . . . , tn |x]]) if and only if (t1

.
= t2

.
= · · · .

= tn) .

8

Proof. The “if” direction follows immediately with x as [[t1]].
To prove the converse, let n ≥ 2 (if n ≤ 1 the result is trivial). We introduce the following notation: let can be
the (normalization) function inductively defined on ground terms as follows:

can(t) =


f(can(t1), . . . , can(tn)) if t is f(t1, . . . , tn), f ̸≡ [[· | ·]]
[[can(s)]] if t is [[s]]

can([[t2 | s]]) if t is [[t1, t2 | s]], can(t1) = can(t2)

[[can(t1) | can([[t2 | s]])]] if t is [[t1, t2 | s]], can(t1) ̸= can(t2)

A compact list t is said to be canonical if can(t) = t. Moreover, we define the initial segment relation ⊑:

[[s1, . . . , sm]] ⊑ t if and only if KW cEc
k ⊢ ∃r (t

.
= [[s1, . . . , sm | r]]) .

As usual for lists, we define the length function for compact lists:

length(t) =

{
0 if t is f(t1, . . . , tn), f ̸≡ [[· | ·]]
1 + length(s) if t is [[r | s]]

We first prove that given two terms [[s1, . . . , sm]] and t, if [[s1, . . . , sm]] ⊑ t and [[s1, . . . , sm]] is canonical, then
length(t) ≥ m. We prove this fact by lexicographical induction on pairs of the form ⟨m, length(t)⟩.

For any term t, if m = 0 the result is trivial.
Assume m > 0 and [[s1, . . . , sm]] ⊑ t.
Axioms (K) and (W c) ensure that t cannot have the form f(t1, . . . , tn), f distint from [[· | ·]]. Hence, t is

of the form [[s′1 | t′]] and, by definition of ⊑, for some r, [[s1, . . . , sm | r]] .
= [[s′1 | t′]]. By (Ec

k), this means that
s1

.
= s′1 and therefore

i) [[s2, . . . , sm | r]] .
= t′, or

ii) [[s2, . . . , sm | r]] .
= [[s′1 | t′]], or

iii) [[s1, . . . , sm | r]] .
= t′.

In case i), the result follows by definition of length and by inductive hypothesis since the first element in the
pair is m − 1. Also in the case iii) the result follows by inductive hypothesis. As a matter of fact, the first
element in the pair is again m, while the second is length(t)− 1.

Case ii) does not apply since, being [[s1, . . . , sm]] canonical, can(s1) ̸= can(s2), hence s′1
.
= s1 ̸ .= s2.

Assume now that it is not the case that (t1
.
= · · · .

= tn) (n ≥ 2) and assume that t is a term satisfying

∃x (x .
= [[t1, . . . , tn |x]]).

From the hypothesis we have that can([[t1, . . . , tn]]) = [[s1, . . . , sm]], with m ≥ 2, and that the following hold:

can([[t1, . . . , tn]]) ⊑ t
can([[t1, . . . , tn, t1, . . . , tn]]) ⊑ t

can([[t1, . . . , tn, t1, . . . , tn, t1, . . . , tn]]) ⊑ t
...

Since
length([[t1, . . . , tn]]) ≥ 2,
length([[t1, . . . , tn, t1, . . . , tn]]) ≥ 4,
length([[t1, . . . , tn, t1, . . . , tn, t1, . . . , tn]]) ≥ 6,

and so on, the term t cannot have bounded height, which is a contradiction.

Remark 3. If we would accept solutions involving infinite compact lists, then, for any y1, . . . , yn, the equation

x
.
= [[y1, . . . , yn |x]]

would admit always the infinite (rational) solution

x/[[y1, . . . , yn, y1, . . . , yn, y1, . . . , yn, . . .]] .

9

In view of the previous result (Lemma 5), axiom (F3) is replaced by

(F c
3) ∀x (x ̸ .= t[x])

unless t has the form [[t1, . . . , tn |x]], x not occurring in t1, . . . , tn,
and t1

.
= · · · .

= tn.

A privileged model for this theory can be obtained by considering as domain the quotient HΣ/ ≡ of the ordinary
Herbrand Universe HΣ over the smallest equivalence relation ≡ on HΣ induced by (Ec

a). As for multisets,
.
= is

still interpreted as the syntactic equality, whereas t ∈ s is considered true if and only if there is a term in [s]
of the form [[t1, . . . , tn, t | ·]]. Axioms (K), (W c), (Ec

k), (F
′
1), (F2), and (F c

3), in addition to standard equality
axioms, with the considered privileged model HΣ/ ≡, describe the (abstract) data structure of hybrid compact
lists over the alphabets Π and Σ.

2.4 Sets

The last theory we consider is a simple theory of sets. Σ is now required to contain nil and {· | ·}, and (W)
becomes

(W s) ∀y v x (x ∈ { y | v } ↔ x ∈ v ∨ x
.
= y).

Sets have both the permutativity and the absorption properties which, in the case of the set constructor {· | ·},
can be rewritten as follows:

(Es
p) ∀xyz {x, y | z} .

= {y, x | z}
(Es

a) ∀xy {x, x | y} .
= {x | y}.

A criterion for testing equality between sets (with kernels) can be easily obtained by merging the multiset
equality axiom (Em

k) and the compact list equality axiom (Ec
k) of previous sections, suitably adapted to sets:

(Es
k) ∀y1y2v1v2


{y1 | v1}

.
= {y2 | v2} ↔
(y1

.
= y2 ∧ v1

.
= v2)∨

(y1
.
= y2 ∧ v1

.
= {y2 | v2})∨

(y1
.
= y2 ∧ {y1 | v1}

.
= v2)∨

∃k (v1
.
= {y2 | k} ∧ v2

.
= {y1 | k})


According to (Es

k) both duplicates and ordering of elements in sets are immaterial.

The modification of axiom (F3) for sets simplifies the one used for compact lists:

(F s
3) ∀x (x ̸ .= t[x])

unless t has the form {t1, . . . , tn |x}, x not occurring in t1, . . . , tn.

A privileged model for this theory can be obtained by considering as domain the quotient HΣ/ ≡ of the
ordinary Herbrand Universe HΣ over the smallest equivalence relation ≡ on HΣ induced by (Es

a) and (Es
p).

As for multisets and compact lists,
.
= is still interpreted as the syntactic equality, whereas t ∈ s is considered

true if and only if there is a term in [s] of the form {t | ·}. The hybrid theory of sets (with Π = { .
=,∈}, and

Σ = {nil, { · | · }, . . . }) is therefore identified by axioms (K), (W s), (Es
k), (F

′
1), (F2), and (F s

3), along with
standard equality axioms and the privileged model over HΣ/ ≡.

Remark 4. Notice that in every model of each of the considered theories in which all elements are denoted
by terms (hence finite—cf. Remark 2) membership can form neither cycles nor infinite descending chains
(cycles imply infinite descending chains, but the converse is not true). To this extent, the above theories can
be considered well-founded.

Differently from both multisets and compact lists, one can prove that, for ground terms, (Es
k) and (Es

aE
s
p),

as well as the classical extensionality axiom (E), extended with kernels when Σ ⊃ {nil, {· | ·} }

(Ek) x
.
= y ↔ ker(x)

.
= ker(y) ∧ ∀z (z ∈ x ↔ z ∈ y) ,

are all equivalent criteria for testing set equality. We will first prove this fact in the pure case (when Σ =
{nil, {· | ·} }); later on we will enforce the result in a hybrid context.

10

Lemma 6. Let Σ = {nil, {· | ·} }; then for any term r and any ground term t, there exists t1 such that:

NW sEs
pE

s
a ⊢ (r ∈ t → t

.
= {r | t1} ∧ r /∈ t1).

Proof. By induction on the number h = size(t).
If h = 1, then t = nil and the result holds trivially.
If h > 1, then t = {s | t̄}. If r /∈ t̄, it must be the case that s

.
= r. Otherwise, by inductive hypothesis, there

exists t̄1 such that r /∈ t̄1 and t
.
= {s | {r | t̄1}}, which, by (Es

p), is equal to {r | {s | t̄1}}.
If r ̸≡ s, then put t1

.
= {s | t̄1}. Otherwise, by (Es

a) we have that t
.
= {r | t̄1}, and hence we can take

t1 = t̄1.

We will make use of the concept of length of a set term (for the definition of that concept, see § 2.3, where
it has been defined for compact lists).

Theorem 4. Let Σ = {nil, {· | ·} }; assuming (K) and (W s), for ground terms the following axioms are
equivalent:

(i) (E) ,
(ii) (Es

k) ,
(iii) (Es

p) ∧ (Es
a) .

Proof. (i) ⇒ (ii) To see that (E) ⇒ (Es
k) assume that {y1 | v1}

.
= {y2 | v2}.

The following four cases are possible:

1. y1 /∈ v1 and y2 /∈ v2;

2. y1 /∈ v1 and y2 ∈ v2;

3. y1 ∈ v1 and y2 /∈ v2;

4. y1 ∈ v1 and y2 ∈ v2.

In case 1, y1
.
= y2 implies (by (E)) that v1

.
= v2. This case is covered by the first disjunct of (Es

k).
If y1 ̸ .= y2, then (always by (E)) y1 ∈ v2 and y2 ∈ v1. By Lemma 6 it holds that v2

.
= {y1 | v′2} and

v1
.
= {y2 | v′1}. By (E), v′1

.
= v′2: they are the existentially quantified variable k of the fourth disjunct of

(Es
k).

In case 2, if y1 ̸ .= y2 it must be that y2 ∈ v1 and, by (E), v1
.
= {y2 | v1}

.
= v2: again the fourth disjunct

of (Es
k) holds. If y1

.
= y2, then v2 and {y1 | v1} must have the same elements and therefore v2

.
= {y1 | v1}

and the second disjunct of (Es
k) holds.

Case 3 is entirely symmetric to case 2.

In case 4, v1 and v2 must have the same elements and therefore, by (E), v1
.
= v2

.
= {y1 | v1} and the last

disjunct of (Es
k) holds.

(ii) ⇒ (iii) Immediate.

(iii) ⇒ (i) Let t1 and t2 be ground terms, we must prove that

NW sEs
aE

s
p ⊢ ∀x (x ∈ t1 ↔ x ∈ t2) → t1

.
= t2 .

We will prove this fact by induction on the maximum h between the lengths of t1 and t2; we prove that
if t1 ̸ .= t2, then there exists t such that t ∈ t1 ↔ t /∈ t2.

If h = 0 the result is trivially true since t1 = t2 = nil.

If h > 0, then assume, without loss of generality, that t1 is the term of maximum length. By Lemma 6,
let t1

.
= {t | t′1} and t /∈ t

′

1. If t /∈ t2 we have concluded, otherwise, again by Lemma 6, let t2
.
= {t | t′2} and

t /∈ t
′

2.

If t
′

1 and t
′

2 were equal, then t1 and t2 would be equal and therefore it must be that t
′

1 ̸ .= t
′

2. At this point
the thesis follows by the inductive hypothesis.

11

Now, we move to the hybrid case. The kernel ker(s) of a ground set term s is obtained by decomposing s
in the form {t1 | {t2 | . . . {tn | k} . . . }}, n ≥ 0, where the main functor of k differs from {· | ·}.

Theorem 5. Assuming (K), (W s), (F ′
1), and (F2), for ground terms, the following axioms are all equivalent

(i) (Ek) ,
(ii) (Es

k) ,
(iii) (Es

1) ∧ (Es
2) .

Proof. The only difference with respect to the previous Theorem 4 is in the proof (iii) ⇒ (i). We need to prove
that for any t1 and t2 ground terms,

NW sEs
aE

s
p ⊢ (∀x (x ∈ t1 ↔ x ∈ t2) ∧ ker(t1)

.
= ker(t2)) → t1

.
= t2 .

We will prove this fact by induction on the maximum h between the lengths of t1 and t2; we prove that if
t1 ̸ .= t2, then there exists t such that t ∈ t1 ↔ t /∈ t2 or ker(t1) ̸

.
= ker(t2).

If h = 0 the result is trivially true since t1 = ker(t1) ̸
.
= ker(t2) = t2.

The case with h > 0 is the same as in the previous theorem.

Hence, (Es
k), (E

s
a) ∧ (Es

p) and (Ek) are equivalent criteria for testing set equality. Using (Es
k), instead of

the other two, is motivated by the desire to have an incrementally developed theory which can include as
sub-cases the theories for the other considered data structures. Indeed, axioms (Es

k), (E
m
k) and (Ec

k), as well as
the different versions of the (W) axiom and of the freeness axioms, can easily be combined in order to obtain
axiomatic theories capable to deal with any subset of the collection of proposed data structures (namely, lists,
multisets, compact lists, and sets).

The usage of (Es
k) (as well as of (E

m
k) and (Ec

k)) is further motivated by the observation that the selected
equality criteria can be easily converted into effective procedures for testing equality to be used in the relevant
unification algorithms, as shown in the next section.

It will turn out, also, that these algorithms could easily be merged to solve the unification problem relative
to the “combined” theories mentioned above.

3 Unification of multisets, compact lists, and sets

We start by proving NP-hardness of the unification problems for multisets, compact lists, and sets. Then, before
presenting the proposed unification algorithms for all these data structures, we briefly recall the unification
algorithm for hybrid lists, that is basically the standard non deterministic unification algorithm explicitly
applying substitutions and studied in [15, 1].4 This will allow us to introduce the style and the notation we
will also employ for the subsequent algorithms. Moreover, all actions of the standard algorithm remain almost
unchanged in all the other cases.

3.1 NP-hardness

While unification for (hybrid) lists can be performed in linear time (cf. [22, 18]), the unification problems for
multisets, compact lists, and sets are NP-complete (see [13] for an analysis of the complexity of set unification).

NP-hardness of these problems is proved in this section via reduction of the 3-SAT problem to the unification
problems at hand.

Let us consider the following instance of 3-SAT:

(X1 ∨X2 ∨ ¬X3) ∧ (¬X1 ∨X2 ∨X3) ∧ (X1 ∨ ¬X2 ∨X3) .

First, we consider set unification. The above instance of 3-SAT can be re-written as the following set unification
problem:

� { {X1, Y1}, {X2, Y2}, {X3, Y3},
{0, X1, X2, Y3}, {0, Y1, X2, X3}, {0, X1, Y2, X3} }

.
=

{ {0, 1} }
4The basic idea of the algorithm can be traced back to Herbrand ([11]) and can also be found in [18] as starting point for the

almost linear algorithm developed in that paper.

12

Unify lists(E):
while E is not in solved form apply any of the following actions

(l1) X
.
= X ∧ E 7→ E

(l2)
t
.
= X ∧ E

t is not a variable

}
7→ X

.
= t ∧ E

(l3)
X

.
= t ∧ E

X does not occur in t

X occurs in E

 7→ E [X/t] ∧X
.
= t

(l4)
X

.
= t ∧ E

X ̸≡ t and X occurs in t

}
7→ fail

(l5)
f(s1, . . . , sm)

.
= g(t1, . . . , tn) ∧ E

f ̸≡ g

}
7→ fail

(l6) f(s1, . . . , sm)
.
= f(t1, . . . , tm) ∧ E 7→

s1
.
= t1 ∧ · · · ∧ sm

.
= tm ∧ E .

Figure 1: Standard unification algorithm

where 0 and 1 can be viewed either as two constant symbols or as two distinct set terms (e.g., 0 = nil,
1 = {nil}). It is immediate to prove that any substitution fulfilling the set-set equation is also a solution for
the above formula, provided 0 is interpreted as false and 1 is interpreted as true, and vice versa.

Similarly, the same instance of 3-SAT can be re-written using multisets and compact lists:

� {[{[X1, Y1]}, {[X2, Y2]}, {[X3, Y3]},
{[X1, X2, Y3]}, {[Y1, X2, X3]}, {[X1, Y2, X3]}]} .

=
{[{[0, 1]}, {[0, 1]}, {[0, 1]},

{[1, A1, B1]}, {[1, A2, B2]}, {[1, A3, B3]}]}

� [[[[0, X1, 0, Y1, 0]], [[0, X2, 0, Y2, 0]], [[0, X3, 0, Y3, 0]],
[[1, 0, X1, X2, Y3]], [[0, Y1, X2, X3]], [[1, 0, X1, Y2, X3]]]]

.
=

[[[[0, 1, 0]],
[[1, 0, 1, A1, B1]], [[0, 1, A2, B2]], [[1, 0, 1, A3, B3]]]] .

In the first equation, multiple occurrences of the same multiset {[0, 1]} are needed to capture the semantics of
the {[· | ·]} constructor. For the same reason, the new variables Ais, Bis are introduced.

For the compact list case—second equation—observe that

[[0, X, 0, Y, 0]]
.
= [[0, 1, 0]]

admits only two solutions: [X/0, Y/1] and [X/1, Y/0]. Moreover, the alternation of the first element of the
compact lists

[[1, 0, · · ·]], [[0, · · ·]], [[1, 0, · · ·]], . . .

ensures the correct matching between the remaining compact lists.
The same technique used for rewriting the considered instance of 3-SAT as unification problems can be

applied to any instance of the 3-SAT problem. This proves the NP-hardness of the problems at hand.

3.2 Standard unification

Unification of (hybrid) lists is performed by the (standard) unification algorithm Unify lists shown in Figure 1.
Here we assume all the definitions usually employed for standard unification (cf., e.g., [15, 18]). In particular,

an equation X
.
= t of a system of equations E is said to be in solved form with respect to E if X is a variable

which does not occur elsewhere in E (X is said to be an eliminable variable). When all the equations of a
system E are in solved form with respect to E , E itself is said to be in solved form. (i.e., E has the form
X1

.
= t1 ∧ · · · ∧ Xn

.
= tn where the Xis are distinct variables not occurring in right-hand side terms of any

equation of E).
Unify lists terminates on any input system of equations E , returning an equivalent system in solved form

from which it is immediate to obtain the (unique) most general unifier for the given unification problem.

13

Theorem 6 (Termination). Unify lists terminates for any input system E.

Proof. Let AE be the number of non-eliminable variables of E . Let BE be
∑

(ℓ
.
=r) in E size(ℓ).

5 Let CE be the
number of equations of E .

The triple C(E)≡ ⟨AE , BE , CE⟩ will be used as the complexity measure for proving the algorithm termination.
We show that for each non-failing action of Unify lists the algorithm decreases the value of C(E) with respect
to the lexicographical ordering. Since the lexicographical ordering on tuples of non-negative integers is a
well-ordering, this is sufficient to prove the termination of the algorithm.

Let the number on the left indicate the action analyzed:

(l1): AE and BE can not increase. CE decreases.

(l2): AE can not increase. BE decreases.

(l3): AE decreases by 1.

(l6): AE can not increase. BE decreases.

Moreover, correctness and completeness of the algorithm can be proved with respect to the corresponding
theory presented in § 2.1 (cf., for instance, [1, 16, 15]).

Theorem 7 (Soundness and Completeness). Let e ∧ E be an equation system, e an equation not in solved
form, and E1 be the equation system resulting from the application of the action of Unify lists fired by e. Then
KW lF1F2F3 ⊢ e ∧ E ↔ E1.

Proof. The proof can be performed by case analysis, proving the claim for each single action. Actions (l1),
(l2), and (l3) are justified by equality axioms. Action (l4) by axiom schema (F3) while (l5) and (l6) by equality
axioms and freeness axiom schemata (F1) and (F2).

Action (l4) performs the so-called occur-check : it checks the well-foundedness of the unique most general
solution of the system.

In the algorithms for multisets, compact lists, and sets, action (l6), when f is the corresponding interpreted
functional symbol, will be integrated by non-deterministic actions which reflect axioms (Em

k), (Ec
k), and (Es

k),
respectively.

3.3 Unification of hybrid multisets

The first five actions of the unification algorithm for hybrid multisets are exactly the same as those of the
algorithm for hybrid lists. In addition, we need to restrict applicability of action (l6) to non-multiset terms
only (action (m6)), and to introduce a new action to deal with bag-bag equations (action (m7)), which closely
corresponds to axiom (Em

k). This new action introduces a source of don’t know non-determinism: both
alternatives (i) and (ii) of (m7) must be exploited in order to guarantee completeness (note that N is a newly
generated variable not occurring in E , yet).

(m1)–(m5) as (l1)–(l5) of Unify lists

(m6)
f(s1, . . . , sm)

.
= f(t1, . . . , tm) ∧ E

f ∈ Σ \ {{[· | ·]}}

}
7→

s1
.
= t1 ∧ · · · ∧ sm

.
= tm ∧ E

(m7) {[t | s]} .
= {[t′ | s′]} ∧ E 7→

(i) t
.
= t′ ∧ s

.
= s′ ∧ E

(ii) s
.
= {[t′ |N]} ∧ {[t |N]} .

= s′ ∧ E

Although sound and complete, the above algorithm does not always terminate. As an example, consider
the following input system (X and N variables):

{[t |X]} .
= {[t′ |X]} m7(ii)7→

X
.
= {[t′ |N]} ∧ {[t |N]} .

= X
m37→

X
.
= {[t′ |N]} ∧ {[t |N]} .

= {[t′ |N]} .
5See § 2.2 for the definition of size.

14

Unify bags(E):
E2 := ∅;
while E1 is not in solved form or E2 ̸= ∅ do

while E2 ̸= ∅ do
e := pop(E2);
if e is in solved form w.r.t. E1 ∧ E2
then E1 := E1 ∧ e
else Unify bag actions(E , e);

select arbitrarily and remove from E1 an equation e not in solved form;
Unify bag actions(E , e).

Figure 2: Multiset unification algorithm

The last system is at least as difficult as the starting one.

More generally, for any input system of the form

{[· · · |X1]}
.
= {[· · · |X2]} ∧

{[· · · |X2]}
.
= {[· · · |X3]} ∧
... ∧

{[· · · |Xn]}
.
= {[· · · |X1]} ,

X1, . . . , Xn variables, it is easy to find a non-deterministic sequence of actions leading to non-termination of the
multiset unification algorithm. An intuitive reason for non-termination over the equation {[t |X]} .

= {[t′ |X]} is
that an infinite number of possibilities, corresponding to subsequent increments of X by t and t′, is generated by
the unification algorithm. Clearly, if t and t′ are not unifiable, there is no solution using finite bags (disregarding
the value of X). If, on the contrary, t and t′ are unifiable, then there is no need to find any binding for X.

Situations like the one descrobed by the equation {[t |X]} .
= {[t′ |X]} can be easily handled as special. Let

tail and de tail be the following functions:6

tail(f(t1, . . . , tn)) = f(t1, . . . , tn) f distinct from {[· | ·]}
tail(X) = X
tail({[t | s]}) = tail(s)
de tail(X) = nil

de tail({[t | s]}) = {[t | de tail(s)]} .

Action (m7) can be split into two sub-actions. If tail(s) and tail(s′) are not the same variable then perform
action (m7). Otherwise, replace {[t | s]} .

= {[t′ | s′]} with de tail({[t | s]}) .
= de tail({[t′ | s′]}). The second sub-

action is justified by the fact that two multisets are equal if and only if they contain the same number of
occurrences of each element (as it turns out from multiset extensionality—cf. § 2.2).

However, to solve the problem also in the more general case we find it convenient to split the system E into
two parts, E1 and E2, the second of which is dealt with as a stack (with pop and push operations for element
removal and insertion, respectively). In this way, we can ensure enough determinism in the algorithm to
guarantee its termination in every cases. The deterministic part of the multiset unification algorithm is shown
in Figure 2 (it will turn out that this part is basically the same for all the considered unification algorithms).
The (non-deterministic) actions of the agorithm are shown in Figure 3.

As an example, we can see that one of the critical situations pointed out above can be dealt with correctly
by this algorithm:

{[T1 |S1]}
.
= {[T2 |S2]} ∧ {[T3 |S2]}

.
= {[T4 |S1]}

m7(ii)7→
S1

.
= {[T2 |N1]} ∧ {[T1 |N1]}

.
= S2 ∧ {[T3 |S2]}

.
= {[T4 |S1]}

m2−m3−m37→
S1

.
= {[T2 |N1]} ∧ S2

.
= {[T1 |N1]} ∧ {[T3, T1 |N1]}

.
= {[T4, T2 |N1]} .

The last equation will be replaced by {[T3, T1]}
.
= {[T4, T2]}, avoiding the loop.

6In § 3.5 we will use the function tail for sets, assuming {[· | ·]} is replaced by {· | ·} in the definition.

15

Unify bag actions(E ,e):
case e of
(m1) X

.
= X 7→ E1 := E1

(m2)
t
.
= X

t is not a variable

}
7→ push(X

.
= t, E2)

(m3)
X

.
= t

X does not occur in t

X occurs in E

 7→

E1 := (X
.
= t) ∧ E1[X/t]; E2 := E2[X/t]

(m4)
X

.
= t

X ̸≡ t and X occurs in t

}
7→ fail

(m5)
f(s1, . . . , sm)

.
= g(t1, . . . , tn)

f ̸≡ g

}
7→ fail

(m6)
f(s1, . . . , sm)

.
= f(t1, . . . , tm)

f ̸≡ {[· | ·]}

}
7→

E1 := (s1
.
= t1 ∧ · · · ∧ sm

.
= tm) ∧ E1

(m7)
{[t | s]} .

= {[t′ | s′]}
tail(s) and tail(s′)

are not the same variable

 7→

(i) E1 := (t
.
= t′) ∧ E1; push(s

.
= s′, E2)

(ii) push(s
.
= {[t′ |N]} , E2); push({[t |N]} .

= s′ , E2)

(m8)
{[t | s]} .

= {[t′ | s′]}
tail(s) and tail(s′)

are the same variable

 7→

push(de tail({[t | s]}) .
= de tail({[t′ | s′]}) , E2) .

Figure 3: Multiset unification rewriting rules

Theorem 8 (Termination). Unify bags terminates for any input system E.

Proof. Let AE be the number of non-eliminable variables of E . Let BE be
∑

(ℓ
.
=r) in E size(ℓ).

7 Let CE be the
number of equations of E .

The triple C(E)≡ ⟨AE , BE , CE⟩ will be used as the complexity measure for proving the algorithm termination.
Let us call a phase of Unify bags the finite sequence of actions starting with one of the actions of Unify bags actions

and followed by all (possibly none) consecutive actions performed in the inner while loop of Unify bags applied
to all the equations contained in E2 (until E2 becomes empty).

Next, we analize the behavior of the triple C(E) for each action of Unify bags. It will turn out that, for
each different action, the non-failing phase of the algorithm starting with this action decreases the value of
C(E) with respect to the lexicographical ordering. Since the lexicographical ordering on tuples of non-negative
integers is a well-ordering, this is sufficient to prove the termination of the algorithm.

Let the number on the left indicate the first action of a phase:

(m1): AE may decrease; BE is left unchanged; CE decreases.

(m2): AE can not increase; BE decreases.

(m3): AE decreases by 1.

(m6): AE may decrease (note that, for instance, X is non-eliminable in f(X)
.
= f(t), whereas X may turn out

to be eliminable in X
.
= t); BE decreases.

(m7)(i): AE may decrease; BE decreases;

(m7)(ii): AE may initially increase (by 1) since N is a new non-eliminable variable. However, let us analyze
the behaviour of the algorithm at the end of the phase fired by the processing of an equation of the form
{[s1, . . . , sm |S]} .

= {[t1, . . . , tn |S′]}.
7See § 2.2 for the definition of size.

16

Due to the assumption on the algorithm excution strategy, a sequence of actions (m7) ((i) and (ii))
is repeatedly applied starting from the given equation. At the end of this sequence, the algorithm
has returned a conjunction of equations of the form si1

.
= tj1 , . . . , sik

.
= tjk , i1, . . . , ik ∈ {0, . . . ,m},

j1, . . . , ik ∈ {0, . . . , n}, along with a finite number of further equations, depending on the form of S and
S′:

(a) if both S and S′ are non-variable terms and if it is the case that S = f(s1, . . . , sn) and S′ =
f(s′1, . . . , s

′
n), f distinct from {[· | ·]}, then the further equations are s1

.
= s′1, . . . , sn

.
= s′n. In any

other case, namely when S = f(· · ·) and S′ = g(· · ·), f distinct from g (one of the two possibly
{[· | ·]}), then action (m5) would detect an immediate failure;

(b) if at least one between S and S′ is a variable, then the returned equations may have one of the
following forms:

� S
.
= {[tjk+1

, . . . , tjn |N]},
S′ .

= {[sik+1
, . . . , sim |N]}, m,n ≥ k, S and S′ distinct variables, or

� S
.
= {[tjk+1

, . . . , tjn |S′]}, n ≥ k, S′ variable or f(· · ·), or
� S′ .

= {[sik+1
, . . . , sim |S]}, m ≥ k, S′ variable or f(· · ·).

After completing the processing of the given bag-bag equation, the complexity measure C(E) has changed
as follows:

� case (a): AE unchanged; BE decreases (like in (m6));

� case (b): after applying the substitutions for the variables S and S′, even if the new (non-eliminable)
variable N is introduced into the system, S and/or S′ become eliminable, so that AE decreases by
1.

Note that if S and S′ were both the same variable, the second and third case of (b) would fail (due to
occur-check), whereas the first case of (b) still applies. Applying substitutions for S and S′ leads AE to
decrease just by 1, so that, at the end, AE is unchanged. Since also BE and CE are unchanged in this
case, then C(E) does not decrease. This justifies the introduction of a new special action (action (m8))
to deal with the case of identical tail variables.

(m8): Same as (m7) when both S and S′ are nil.

Soundness and completeness of this algorithm are assured by the following:

Theorem 9 (Soundness and Completeness). Let e ∧ E be an equation system, e an equation not in solved
form, and E1, . . . , Eh be the equation systems non-deterministically resulting from the application of the ac-
tion of Unify bags fired by e. Let N1, . . . , Nk be the variables occurring in E1, . . . , Eh but not in e ∧ E; then
KWmEm

k F ′
1F2F3 ⊢ e ∧ E ↔ ∃N1, . . . , Nk

∨h
i=1 Ei.

Proof. (Sketch) The proof can be performed by case analysis, proving the claim for each single action. In
particular one can observe that, since two multisets are equal if and only if they contain the same number of
occurrences of each element, then the problem

{[s1, . . . , sm |X]} .
= {[t1, . . . , tn |X]}

(action (m8)) is perfectly equivalent to the problem

{[s1, . . . , sm]} .
= {[t1, . . . , tn]} .

Moreover, soundness and completeness of action (m7) follows from the strict analogy of this action with axiom
(Em

k).

Before concluding this subsection, we want to point out an open problem for the multiset unification problem
presented above, namely: is there a unification algorithm for multisets that incrementally computes a minimal
complete set (cf., e.g., [24]) of unifiers?

17

Unify clist actions(E ,e);
case e of

(c1)–(c3) as (m1)–(m3) of Unify bag actions

(c4)
X

.
= f(t0, . . . , tn)

f ̸≡ [[· | ·]] and X occurs in t

}
7→ fail

(c5)
X

.
= [[t0, . . . , tn | f(t)]]

X occurs in t0 or . . . or in tn or

f ̸≡ [[· | ·]] and X occurs in t

 7→ fail

(c6)
X

.
= [[t0, . . . , tn |X]]

X does not occur in t0, . . . , tn

}
7→

E1 := (t0
.
= t1 ∧ · · · ∧ t0

.
= tn) ∧ E1; push(X

.
= [[t0 |N]] , E2)

(c7)
f(s1, . . . , sm)

.
= g(t1, . . . , tn)

f ̸≡ g

}
7→ fail

(c8)
f(s1, . . . , sm)

.
= f(t1, . . . , tm)

f ̸≡ [[· | ·]]

}
7→

E1 := (s1
.
= t1 ∧ · · · ∧ sm

.
= tm) ∧ E1

(c9) [[t | s]] .
= [[t′ | s′]] ∧ E 7→

(i) E1 := (t
.
= t′) ∧ E1; push(s

.
= s′ , E2)

(ii) E1 := (t
.
= t′) ∧ E1; push([[t | s]]

.
= s′ , E2)

(iii) E1 := (t
.
= t)′ ∧ E1; push(s

.
= [[t′ | s′]] , E2).

Figure 4: Compact list unification rewriting rules

Indeed, the set of solutions computed by Unify bags is not minimal, since it may contain also solutions
which are obtainable by instantiation of other computed solutions (i.e., less general solutions). Furthermore,
Unify bags may compute through non-determinism repeated equivalent solutions, that is solutions which turn
out to be identical in the given theory.

For example, given the equation {[A,A |S]} .
= {[A |S′]}, whose complete set of unifiers contains the unique

solution [S′/{[A |S]}], Unify bags computes the three solutions, [S′/{[A |S]}], [S′/{[A |S]}], [S/{[A |N]}, S′/{[A,A |N]}],
where the first two are identical solutions, and the third one is less general than the previous two.

The corresponding minimality problems for compact lists and sets is also open. To obtain minimality in
general, the unification algorithms should be modified so as to deal with various significant special cases. First
contributions for a solution—limited to the set unification problem but easily adaptable to other contexts—are
presented in [2, 25], and are not considered here for space limits. Such optimizations, however, are independent
from the non-deterministic complexity analysis of the algorithms, which is another interesting line of research.

3.4 Unification of hybrid compact lists

The main part of the unification algorithm for hybrid compact lists is exactly the same as that of the unification
algorithm for multisets shown in Figure 2 (where, of course, calls to Unify bag actions are replaced by calls to
Unify clist actions) and is not repeated here.

As discussed in § 2.3, axiom (F3) of the standard case must be modified so as to adhere to the semantics
of the compact list constructor [[· | ·]]. This is reflected into the occur-checks performed by actions (c4)–(c6) of
the compact list unification algorithm of Figure 4.

The other important difference with respect to standard list unification is the addition of action (c9) which
reflects the extensionality principle for compact lists expressed by axiom (Ec

k).

Soundness and completeness of the algorithm are easy to prove, as done for the corresponding Theorem 9.

Theorem 10 (Soundness and Completeness). Let e ∧ E be an equation system, e an equation not in solved
form, and E1, . . . , Eh be the equation systems non-deterministically resulting from the application of the ac-
tion of Unify clists fired by e. Let N1, . . . , Nk be the variables occurring in E1, . . . , Eh but not in e ∧ E; then
KW cEc

kF
′
1F2F

c
3 ⊢ e ∧ E ↔ ∃N1, . . . , Nk

∨h
i=1 Ei.

The termination issue, on the contrary, deserves some special attention and will be discussed in detail in
the next subsection.

18

3.4.1 Termination of the compact list unification algorithm

The complexity measure adopted for proving termination of the multiset unification algorithm does not work
well with action (c6) of Unify clists. Indeed, action (c6) leaves AE (i.e., the number of non-eliminable variables)
unchanged, whereas BE may increase (in particular, when n = 0, X

.
= [[t0 |X]] gets replaced by X

.
= [[t0 |N]]

and the subsequent substitution [X/[[t0 |N]]] causes BE to increase if X occurs elsewhere in the system).
To prove that, in spite of this, the algorithm still terminates for any input system E , we need to introduce

a different complexity measure. Intuitively, the problem with the measure adopted for multiset unification is
that the size of a variable is 0, whereas we need to be able to associate with a variable a “measure” which is
left unchanged (or possibly lowered) by subsequent substitutions over that variable.

The following definitions and results will serve to prove termination of the unification algorithm for compact
lists. Let p ≥ 0 and ΦE be the set of all possible functions mapping variables of the system E to the integer
numbers 0, . . . , p. Let us define the following (higher-order) function PRK (pseudo-rank):

PRKE(η)(t) =


η(t), η ∈ ΦE if t is a variable

1 + maxmj=1 PRKE(η)(tj) if t is f(t1, . . . , tm)

max{1 + PRKE(η)(s), PRKE(η)(r)} if t is [[s | r]]

The pseudo-rank function combines the notion of height of a term with the (equally widespread) notion of rank
of a set. Note that compact list terms which are equivalent in the theory, though not syntactically identical
(e.g., [[a |N]] and [[a, a |N]]) have the same pseudo-rank value.

Lemma 7. For any satisfiable system E, there exists a k ≥ 0 and a function η ∈ ΦE such that

PRKE(η)(ℓ) = PRKE(η)(r) ≤ k

for each equation ℓ
.
= r in E (η is called a valid variable assignment for E).

Proof. If E is satisfiable then there is at least a substitution σ = [X1/t1, . . . , Xn/tn] for the variables in E
that makes all pairs of terms ℓ

.
= r in E simultaneously identical in the considered theory. Thus, one can take

η̄(Xj) = PRKE(η̄)(tj), for all j ∈ {1, . . . , n}, where η̄ is the (constant) variable assignment function mapping
all (possibly none) free variables of tj to 0. It turns out also that the value of k can be chosen to be not greater
than the number p of occurrences of non-variable symbols in E.

Let E0, E1, E2, . . . be the successive values of E along a branch of the Unify clists(E) execution not ending
with a failure.

Some of the functions in ΦEi which are valid variable assigments for Ei may turn out to be no longer valid
for Ei+1, as it follows from the following example: let E0 ≡ f(X,Y)

.
= f(Y,X) and consider the valid variable

assignment η0 = [X/0, Y/1]. The latter is not a valid variable assignment for the system E1 ≡ X
.
= Y ∧Y

.
= X

obtained by the application of action (c8) to E0.
Conversely, it is easy to prove that a valid variable assignment for Ei+1 is necessarily valid also for Ei.

Moreover,

Lemma 8. Let E0, . . . , Ek be the successive values of E along a branch of a Unify clists(E) execution. If Ek is
satisfiable, then there is a valid variable assignment for Ek bounded by the number p of occurrences of functional
symbols in the initial system E0.

Proof. By induction on k ≥ 0. The base case (k = 0) follows by Lemma 7.
Assume the result holds for Ei. All actions, but (c6), do not introduce new terms in the system: they simply

use the existing terms, whose PRK is, by hypothesis, not greater than p. In particular, variable substitution
(action (c3)) replaces a variable X with a (already existing) term t whose PRK is necessarily the same as
the PRK of X due to the presence in the system of the equation X

.
= t. Action (c8), as well as action (c9),

replaces two terms with two or more (sub) terms of lower or equal PRK. Action (c6), on the contrary, builds
a new term, [[t0 |N]]. However, the presence in Ei+1 of the equation X

.
= [[t0 |N]], forces the pseudo-rank of

N to be not greater than the pseudo-rank of X (that is, by hypothesis, not greater than p).

The non-determinism of the algorithm might generate sequences of systems such that Ek is not satisfiable
even if E0 is satisfiable. We need to be sure that when there is no valid variable assignment for a system
Ek (e.g., when Ek ≡ X

.
= f(Y) ∧ Y

.
= f(X)) the computation terminates by failure. To this aim, we will

define a weaker notion of validity for a variable assignment: a function η is said to be a partially valid variable
assignment for Ek in E0, . . . , Ek if

19

1. PRK(η, ℓ) ≤ p and PRK(η, r) ≤ p for all ℓ
.
= r in Ek, where p is the number of occurrences of functional

symbols in the initial system E0; furthermore,

2. PRK(η,X) = PRK(η, t) for all solved form equations X
.
= t of Ek.

Clearly, a valid variable assignment is also a partially valid variable assignment. Moreover, any sequence
E0, . . . , Ek of systems produced by the computation admits a partially valid variable assignment. As a matter
of fact, only at the time of an occur-check failure there are the preconditions that avoids the existence of a
partially valid variable assignment.

Theorem 11. Unify clists terminates for any input system E.

Proof. Assume η be a partially valid variable assignment function for E0, E1, E2, . . . (hence, the algorithm is
not halted by occur-check failure). Let the measure of an equation e ≡ ℓ

.
= r of a system E with respect to η

be defined as
measure(η, e) = PRKE(η)(ℓ) + PRKE(η)(r) ,

and let E ′ denote the system obtained from E by considering only its non-solved equations.
The following tuple of integers will be used as a complexity measure to prove termination of the algorithm:

C(η, E) = ⟨ | {e in E ′ : measure(η, e) = 2 · p} |,
. . . ,
| {e in E ′ : measure(η, e) = 0} | ⟩ .

For each different action of the algorithm one can see that any successful phase (as in the proof of Theorem 8
a phase is a single action when the stack is empty, a finite sequence of actions devoted to empty the stack,
otherwise) starting with this action, decreases C(η, E), according to the lexicographic ordering among tuples of
integers. In particular (the number on the left indicates the first action of a phase):

6 : The presence in the new system of the equation X
.
= [[t0, . . . , tn |N]] forces the pseudo-rank of N to be

not greater than the pseudo-rank of X, which implies that C(η, E) does not increase in consequence of the
replacement of X

.
= [[t0, . . . , tn |X]] by X

.
= [[t0 |N]] in E1. C(η, E) will decrease thanks to action (c3),

which is required to be performed immediately after, as part of the same phase.

9 : One can view the global effect of the phase starting with action (c9) as that of replacing the selected
equation

e ≡ [[t0, . . . , tn | h]]
.
= [[t′0, . . . , t

′
m | k]]

by a collection ti1
.
= t′j1 , . . . , tip

.
= t′jp of equations relating elements of the two compact lists, plus one

equation e′ regarding the urelements h and k, as explained in detail below.

The measure of the selected equation e exceeds that of any ti
.
= t′j equation generated by action (c9).

Hence we only need to focus on the equations concerning h and k. Two cases need to be considered.

� Neither h nor k is a variable: since the measure of e′ cannot exceed the measure of e, action (c8),
immediately performed on e′, will cause C(η, E) to decrease.

� At least one between h and k is a variable: e′ has the form h
.
= [[t′i1 , . . . , t

′
iq
| k]], or k .

= [[ti1 , . . . , tiq |h]].
Action (c3), immediately performed on e′, will cause C(η, E) to decrease.

Thanks to the well-foundedness of the lexicographic ordering on tuples of non-negative integers, it will follow
that the Ei sequence eventually terminates, which proves our thesis.

Remark 5. Comparing C(η, E) with the complexity measure used for proving termination of the multiset
unification algorithm, one can observe that: C(η, E) subsumes both AE—the transformation of a variable from
non-eliminable to eliminable reduces C(η, E)—and CE—the removal of an equation from E reduces C(η, E). As
concerns BE , instead, the notion of size of a term is replaced by the notion of pseudo-rank which allows us to
give an appropriate weight to variables in advance.

20

Unify set actions(E , e);
case e of

(s1)–(s5) as (c1)–(c5) of Unify clist actions

with [[· | ·]] replaced by {· | ·}

(s6)
X

.
= {t0, . . . , tn |X}

X does not occur in t0, . . . , tn

}
7→

push(X
.
= {t0, . . . , tn |N}, E2)

(s7)–(s8) as (c7)–(c8) of Unify clist actions

with [[· | ·]] replaced by {· | ·}

(s9)
{t | s} .

= {t′ | s′}
tail(s) and tail(s′) are

not the same variable

 7→

(i) E1 := (t
.
= t′) ∧ E1; push(s

.
= s′ , E2)

(ii) E1 := (t
.
= t′) ∧ E1; push({t | s}

.
= s′ , E2)

(iii) E1 := (t
.
= t′) ∧ E1; push(s

.
= {t′ | s′} , E2)

(iv) push(s
.
= {t′ |N} , E2); push({t |N} .

= s′ , E2)

(s10)
{t0, . . . , tm |X} .

= {t′0, . . . , t′n |X}
X variable

}
7→

select arbitrarily i in {0, . . . , n}; choose one among:

(i) E1 := (t0
.
= t′i) ∧ E1;

push({t1, . . . , tm |X} .
= {t′0, . . . , t′i−1, t

′
i+1, . . . , t

′
n |X}, E2)

(ii) E1 := (t0
.
= t′i) ∧ E1;

push({t0, . . . , tm |X} .
= {t′0, . . . , t′i−1, t

′
i+1, . . . , t

′
n |X}, E2)

(iii) E1 := (t0
.
= t′i) ∧ E1;

push({t1, . . . , tm |X} .
= {t′0, . . . , t′n |X}, E2)

(iv) push(X
.
= {t0 |N}, E2);

push({t1, . . . , tm |N} .
= {t′0, . . . , t′n |N}, E2).

Figure 5: Set unification rewriting rules

3.5 Unification of hybrid sets

The main (deterministic) part of the unification algorithm for hybrid sets is still the same as that of the multiset
unification algorithm of Figure 2 (still replacing calls to Unify bag actions by calls to Unify set actions). The
remaining part of the algorithm (function Unify set actions—see Figure 5) is in a sense a combination of the
unification algorithms for multisets and for compact lists shown in the previous two subsections.

As done with multisets and compact lists, we find it convenient to split E into two parts, E1 and E2, where
E2 is dealt with as a stack, and to add some deterministic control to the algorithm in order to assure its
termination.

The most important differences with respect to the algorithms presented so far are actions (s6), (s9), and
(s10).

Action (s6) differs from the corresponding action (c6) of the compact list unification algorithm in that a
solution to the equation X

.
= {t0, . . . , tn |X} does not necessarily require that t0, . . . , tn are unifiable terms,

since duplicates are immaterial in a set.
Action (s9)—whose aim is the reduction of set-set equations—is simply obtained by merging actions (m7)

and (c9) of the previous two algorithms, since, as already noticed in § 2.4, the set equality axiom Es
k comprises

Em
k and Ec

k. In particular, cases (ii) and (iii) of action (s9) take care of duplicates in the left-hand side
term and in the right-hand side term, respectively. Case (iv), instead, takes care of permutativity of the set
constructor {· | ·}.

Finally, action (s10) deals with the case of equations of the form

{t0, . . . , tm |X} .
= {t′0, . . . , t′n |X} ,

where the two sides are set terms with the same variable tail element. The problem with this kind of equations
is the same singled out in § 3.3. However, in this case, the given equation can not be simply replaced by the
equation {t0, . . . , tm} .

= {t′0, . . . , t′n}, since there are other possible solutions not covered by this new equation.
For instance, the equation {a, b |X} .

= {b |X}, which has no solution as a multiset unification problem, has the

21

two distinct solutions, X = {a |N} and X = {a, b |N}, as a set unification problem. To preserve completeness,
therefore, the algorithm is forced to consider non-deterministically each element of one of the two sets involved
in the set-set equation, so as to explore all possible combinations. Clearly, this solution opens a big (though
finite) number of alternatives, possibly leading to redundant solutions. In [2] it is shown how to improve the
algorithm from this point of view.

Termination of this algorithm can be easily proved along the lines of the termination proof of the compact
list unification algorithm.

Theorem 12 (Termination). Unify bags terminates for any input system E.

Sketch. Use the same complexity measure C(η, E) adopted in proving Theorem 11. In order to extend this proof
to the case of sets, one can further see that both actions (s6) and (s9)iv (not present in Unify clist actions) lower
the value of C(η, E), and that the combination of these with other actions does not negatively influence the
behaviour of C(η, E). Furthermore, in action (s10) an equation of the form X

.
= {ti1 , . . . , tiq , t′j1 , . . . , t

′
jq′

|X} is

added to the working system. After actions (s6) and (s3) are performed on this equation, C decreases.

Theorem 13 (Soundness and Completeness). Let e ∧ E be an equation system, e an equation not in solved
form, and E1, . . . , Eh be the equation systems non-deterministically resulting from the application of the ac-
tion of Unify sets fired by e. Let N1, . . . , Nk be the variables occurring in E1, . . . , Eh but not in e ∧ E; then
KW sEs

kF
′
1F2F

s
3 ⊢ e ∧ E ↔ ∃N1, . . . , Nk

∨h
i=1 Ei.

Complete proofs that the algorithm is sound and complete with respect to the given set theory, along with
the complete termination proof, can be found in [9, 6].

Finally, let us remark that the algorithm of Figure 5 is the algorithm used in the language {log}, a logic
programming language enriched with finite sets [9]. This algorithm has been also used almost unchanged within
the set constraint satisfiability procedure of the {log} language reconsidered as an instance of the general CLP
scheme [10, 7].

4 Conclusions and further research

In the first part of the paper we have presented axiomatically specified first-order theories of lists, multisets,
compact lists, and sets. Such axiomatizations have been shown to be especially suitable for the integration with
free functor symbols governed by the classical Clark’s axioms in the context of Constraint Logic Programming.
Moreover, the adaptations of the extensionality principle to the various theories taken into account have been
exploited in the design of unification algorithms presented in the second part of the paper.

All the theories presented can be combined providing frameworks to deal with several of the proposed data
structures simoultaneously. The unification algorithms proposed can be combined (merged) as well to produce
engines for such combination theories.

The open problem of devising minimal (irredundant) unification algorithms for multisets, compact lists,
and sets, has been briefly discussed and represents one of the most important (at least from a practical point
of view) next step in this research.

Other two important lines for further research are the following: the adaptation of the results presented
to the case of non-well-founded sets and/or rational terms; the extension of the unification algorithms into
general purpose constraint solvers capable of dealing with negative information. Both these problems have
been tackled, in the case of sets, in [8, 10].

Acknowledgements

We are grateful to Eugenio G. Omodeo for his precious suggestions and comments in many parts of the paper.
Enrico Pontelli actively helped us in proving termination of the set unification algorithm.

References

[1] Apt, K. R. Introduction of Logic Programming. In Handbook of Theoretical Computer Science, vol. B:
Formal Models and Semantics, J. van Leeuwen, Ed. Elsevier and The MIT Press, 1990.

22

[2] Arenas-Sánchez, P., and Dovier, A. A minimality study for set unification. Journal of Functional and
Logic Programming, 1997(7):1–49.

[3] Bellé, D., and Parlamento, F. Undecidability of Weak Membership Theories. In Proceedings of the
International Conference on Logic and Algebra (in memory of R. Magari) (1994).

[4] Bernays, P. A system of axiomatic set theory. Part I. The Journal of symbolic logic 2 (1937), 65–77.

[5] Clark, K. L. Negation as Failure. In Logic and Databases, H. Gallaire and J. Minker, Eds. Plenum Press,
1978, pp. 293–321.

[6] Dovier, A. Computable Set Theory and Logic Programming. PhD thesis, Università degli Studi di Pisa,
March 1996. TD–1/96.

[7] Dovier, A., Piazza, C., Pontelli, E., and Rossi, G. On the Representation and Management of Finite Sets
in CLP-languages. In J. Jaffar, editor, Proceedings of 1998 Joint International Conference and Symposium
on Logic Programming, pages 40–54. The MIT Press, Cambridge, Mass., June 1998.

[8] Dovier, A., Omodeo, E. G., and Policriti, A. Solvable set/hyperset contexts: II. a goal-driven unification
algorithm for the blended case. Applicable Algebra in Engineering, Communication and Computing, 1998.
(To appear)

[9] Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G. {log}: A Language for Programming in Logic with
Finite Sets. Journal of Logic Programming 28, 1 (1996), 1–44.

[10] Dovier, A., and Rossi, G. Embedding Extensional Finite Sets in CLP. In Proc. of Int’l Logic Programming
Symposium, ILPS’93 (1993), D. Miller, Ed., The MIT Press, Cambridge, Mass., pp. 540–556.

[11] Herbrand, J. Recherches sur la theorie de la demonstration. Master’s thesis, Université de Paris, 1930.
Also in Ecrits logiques de Jacques Herbrand, PUF, Paris, 1968.

[12] Jaffar, J., and Maher, M. J. Constraint Logic Programming: A Survey. The Journal of Logic Programming
19–20 (1994), 503–581.

[13] Kapur, D., and Narendran, P. NP-completeness of the set unification and matching problems. In 8th
International Conference on Automated Deduction (1986), J. H. Siekmann, Ed., vol. 230 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 489–495.

[14] Kunen, K. Set Theory. An Introduction to Independence Proofs. Studies in Logic. North Holland, Ams-
terdam, 1980.

[15] Lassez, J. L., Maher, M. J., and Marriot, K. Unification Revisited. In Foundations of Deductive Databases
and Logic Programming, J. Minker ed., Morgan Kaufmann Publishers, pp. 587–625, 1987.

[16] Lloyd, J. W. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition.

[17] Mal’cev, A. Axiomatizable Classes of Locally Free Algebras of Various Types. In The Metamathematics
of Algebraic Systems, Collected Papers. North Holland, Amsterdam, 1971, ch. 23.

[18] Martelli, A., and Montanari, U. An efficient unification algorithm. ACM Transactions on Programming
Languages and Systems 4 (1982), 258–282.

[19] Montagna, F., and Mancini, A. A minimal predicative set theory. Notre Dame Journal of Formal Logic
35 (1994), 186–203.

[20] Omodeo, E. G., Policriti, A., and Rossi., G. F. Che genere di insiemi/ multi-insiemi/ iperinsiemi incor-
porare nella programmazione logica? In Proc. Eighth Italian Conference on Logic Programming (1993),
D. Saccà, Ed., pp. 55–70.

[21] Parlamento, F., and Policriti, A. Decision Procedures for Elementary Sublanguages of Set Theory IX.
Unsolvability of the Decision Problem for a Restricted Subclass of δ0-Formulas in Set Theory. Communi-
cations of Pure and Applied Mathematics 41 (1988), 221–251.

23

[22] Paterson, M. S., and Wegman, M. N. Linear unification. Journal of Computer System Science 16, 2
(1978), 158–167.

[23] Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., and Schonberg., E. Programming with sets, an introduction
to SETL. Springer-Verlag, Berlin, 1986.

[24] Siekmann, J. H. Unification theory. In Unification, C. Kirchner, Ed. Academic Press, 1990.

[25] Stolzenburg, F. Membership-Constraint and Complexity in Logic Programming with Sets. In Proc. First
Int’l Workshop on Frontier of Combining Systems (1996), F. Baader and K. U. Schulz, Eds., Kluwer
Academic Publishers.

[26] Tarski, A., and Givant, S. A Formalization of Set Theory without Variables, vol. 41 of Colloquium Publi-
cations. American Mathematical Society, 1986.

[27] Vaught, R. L. On a Theorem of Cobham Concerning Undecidable Theories. In Proceedings of the 1960
International Concress (1962), E. Nagel, P. Suppes, and A. Tarski, Eds., Stanford University Press,
Stanford, pp. 14–25.

24

