
AAECC 9, 293–332 (1999)

Solvable Set/Hyperset Contexts: II. A Goal-Driven
Unification Algorithm for the Blended Case

Agostino Dovier,1 Eugenio G. Omodeo2, Alberto Policriti 3

1Universit̀a di Verona, Dipartimento Scientifico-Tecnologico, Strada Le Grazie 3, I-37134 Verona
(e-mail: dovier@sci.univr.it)
2Universit̀a di L’Aquila, Dipartimento di Matematica Pura ed Applicata, Via Vetoio Loc.
Coppito, I-67100 L’Aquila (e-mail: omodeo@univaq.it)
3Universit̀a di Udine, Dipartimento di Matematica e Informatica. Via delle Scienze 208,
I-33100 Udine (e-mail: policrit@dimi.uniud.it)

Received: March 4, 1996; revised version: August 24, 1998

Abstract. A universe composed by rational ground terms is characterized, both
constructively and axiomatically, where the interpreted constructwith , which
designates the operation of adjoining one element to a set, coexists with free Her-
brand functors. Ordinary syntactic equivalence must be superseded by a bisim-
ilarity relation≈, between trees labeled over a signature, that suitably reflects
the semantics ofwith. Membership (definable as “d ∈ t =Def(t with d) ≈ t”)
meets the non-well-foundedness property characteristic ofhyperset theory. A
goal-driven algorithm for solving the correspondingunification problemis pro-
vided, it is proved to be totally correct, and exploited to show that the problem
itself is NP-complete. The results are then extended to the treatment of the op-
erator less , designating the one-element removal operation. Applications to
the automaton matching and type-finding problems are illustrated.

Keywords: Semantic unification, Bisimulations, Hypersets, Set theory, NP-
completeness

Introduction

Graphs are widely used among basic data structures for representing both terms
and sets (cf. [9, 1]). Such representation is particularly convenient and useful
for algorithmic manipulations in fields like declarative programming, seman-
tics of concurrency, and automated deduction. In view of applications in these
and other fields, it is rather natural to assume the finiteness of graphs that are

294 A. Dovier et al.

to represent terms or sets; however, it is often convenient not to impose the
additional constraint of acyclicity. By resorting to cyclic representations one
is in fact enabled, to a limited but significant extent, to treat infinite terms (cf.
[23]) and non-well-founded sets (cf. [1]).

Well-established applications of the latter, today often calledhypersets, re-
gard the handling of automata, and the modeling of linguistic self-referential
situations [7]. Supposedly, many more applications will be found in the mod-
eling of shared information systems: web-like databases [22], query languages
for semi-structured information [11], etc. Even though issues of computational
complexity still set a limit to such applications, hypersets and the related no-
tion of bisimulation offer the best conceptual framework for the treatment of
circular phenomena.

In this paper we studyrational terms (cf. [24]) and circular sets, combined
into a very expressive and self-referential abstract type. Instances of the latter
type, calledblended (or hybrid) hypersets, are represented by graphs labeled
over a signature. The signature is, of course, to comprise one or more symbols
denoting operations over hypersets; it will also comprise free symbols, including
at least one constant. The share of the signature needed to represent purely set-
theoretic terms consists of the∅ constant and the binarywith operator whose
semantics can be intuitively conveyed by the following identity:

x with y = x ∪ {y} .
The very modest set-theoretic signature constituted by these two symbols alone,
already suffices for the representation of the so-calledhereditarily finitesets and
hypersets.

The main focus of this paper is the design of agoal-driven unification
algorithmfor blended hypersets. After specifying such an algorithm, we show
how to extend it into a more versatile set-constraint manager capable of dealing
with negative information: to wit, we take into account the binary function
symbol less whose intuitive semantics is conveyed by the identity

x less y = x \ {y} .
The unification algorithm to be presented has a rather traditional structure,à la
Martelli-Montanari (cf. [25]): when applied to rational terms that do not involve
the set-theoretic constructs, it in fact behaves very much like well-established
algorithms, such as those proposed in [9, 26].

As already said, hypersets of the kind to be studied here result from a
combination of entities from two domains. In order to precisely specify our
unification problem, an axiomatization of the context under study is needed.
We propose a theory of rational terms and hypersets, minimal in some sense,
that can serve as a kernel for other, richer and accordingly more specialized,
theories. In the context of such theories, our unification algorithm can still be
exploited.

Applied Hyperset Unification 295

From the axiomatic part of our study, an interesting kinship emerges be-
tween the axiom that Maher introduced in [24] to guarantee completeness of
the theory of infinite trees, and the axiom of bisimulation namedAFA in [1].
Both axioms are adopted below, because our theory was aimed at achieving as
much completeness as possible—though with least possible commitment.

It is worth emphasizing here that the theory to which our unification algo-
rithm refers is not —nor would easily be— axiomatized in merely equational
terms. The price we have to pay for this is that we cannot rely much on the vast
literature on unification (cf., e.g., [5]), which is mainly focused on equational
theories. To what extent and how our results can be recast in more conven-
tional terms is a main issue left open by this paper. A promising approach for
this is perhaps indicated by [19]; however, our current approach is closer to
tableau-handling techniques than to rewriting techniques.

We also carry out a complexity analysis, leading to the conclusions that the
proposed unification algorithm is in NP and that the unification problem under
study isNP-complete. Various studies on the complexity of this problem, even
restricted to sets (cf., among others, [21, 4, 32, 18]) show its intrinsic difficulty,
so that proposals for more efficient set-unification algorithms are necessarily
based on assumptions strongly limiting their field of application (cf. [31]).

The paper is organized as follows: after laying down in Section 1 an intuitive
rationale for the hyperset notion, we characterize in Section 2 the universe of
blended hypersets, both constructively and axiomatically. Section 3 presents
hyperset unification as a very high-level paradigm to solve the deterministic
finite-state automaton equivalence problem, along with a less classical, but
nevertheless interesting, automaton matching problem. Section 4 is devoted
to describing the blended hyperset unification algorithm, whose soundness,
completeness, and termination are then proved, and whose complexity behavior
is analyzed. In Section 5 it is shown how to extend the algorithm to deal with the
negative information introduced by the removal operatorless . Finally, we end
with an application of blended hyperset unification to the type-finding problem,
illustrated in Section 6: it turns out that while ordinary sets in type expressions
suffice for the modeling of union data types, hypersets can play a role in the
modeling of recursive types.

Although this article is a continuation of [28], it should be readable as a
self-contained paper. There is, however, a dependency on a decision algorithm
of [28] in the (rather marginal) Section 5.

1 Naive Approach to Hyperset Theory, Based on the Analogy
with Terms

In this preliminary section, where we proceed in somewhat naive terms, we
will contrast ordinary (nested) sets with entities of a much richer variety, to be
called —after [6, 7]—hypersets. These are also known by the namenon-well-

296 A. Dovier et al.

founded setsin the thorough study [1]. Indeed, hypersets violate a principle
widely agreed upon in the field of Set Theory since von Neumann introduced,
in 1928, theregularityaxiom: traditional membership is a well-founded relation
over sets—the situation, with hypersets, is antithetic.

In parallel, we will contrast ordinary terms of first-order logic with terms of
the generalized kind treated, e.g., in [23], Ch. 6. The latter have become familiar
to researchers in the field of Logic Programming by the name ofinfinite terms.
We will recognize a tight analogy between terms and sets: to state it simply,

sets are to hypersets as ordinary terms are to infinite terms.

In view of this parallel, the unified (or “blended”, or “hybrid”) data structure
to be investigated in this paper, encompassing both hypersets and generalized
terms, will come out quite naturally.

After characterizing the domain of blended hypersets,H6 (where6 is a
signature—see below), we will tackle the problem of solving systems of equa-
tions overH6. In order to study this problem in greater generality, a convenient
starting point is to consider particularly heavily constrained systems


X0 = {X01, . . . , X0m0 }
X1 = {X11, . . . , X1m1 }

...
...

...

Xn = {Xn1, . . . , Xnmn
}

of set equations. In this initial stage, we are assuming that the left-hand sides,
namelyX0, . . . , Xn, are distinct from one another (even though some of the sets
they represent might coincide); moreover, each one of theXijs in a right-hand
side must be the same as one of the symbolsXh on the left. As forn and the
mis, they simply are non-negative integers:n, m0, . . . , mn ∈ IN , as infinite sets
are beyond the scope of this paper.

By traditional methods, a system of this form admits a solution if and only
if there is an orderingXπ0, . . . , Xπn

of theXhs such that anyXπhj occurring
in the right-hand side of theπh-th equation is one ofXπh+1, . . . , Xπn

, for h =
0, 1, . . . , n.1 Moreover, when thisnon-circularity conditionholds, uniqueness
of the solution ensues fromextensionality(which is the postulate stating that
two sets are equal if and only if they have the same members) and from the
bi-implications∀ z (z ∈ { v1, . . . , vk} ↔

∨k
j=1 z = vj), one for eachk ≥ 0,

that summarize the semantics of the construct{ , . . . , }.
To move from ordinary sets to hypersets, we are topostulatethat any system

of the above form, whether circular or not, admits a solution, and that such a
solution is always unique.

1 A proof of this fact goes as follows. If a solutionX0 = ξ0, . . . , Xn = ξn exists, theXhs
can be ordered so that the ranks of the correspondingξhs do not increase: this ordering will
meet the desired property. Conversely, if a permutationπ with the stated property exists, then
mπn
= 0 and, accordingly,Xπn

= ∅; moreover, the value ofXπh
can be determined from those

of Xπh+1, . . . , Xπn
, for all h < n.

Applied Hyperset Unification 297

For example, both the equationX = {X } and the system


X0 = {X4, X3 }
X1 = {X2, X3 }
X2 = {X3 }
X3 = {X1 }
X4 = { }

have solutions. Indicating by� the hyperset such that� = {� }, we readily
recognize thatX1 = X2 = X3 = �, X4 = ∅, X0 = {∅, � } is a solution to
the system. This solution hence must be the only one—otherwise stated, one
can inferX1 = X2 andX1 = X3 from the equalitiesX1 = {X2, X3 }, X2 =
{X3 }, X3 = {X1 }, by virtue of the new postulate, stronger than extensionality.
Of course∅ 6= � and� 6= { ∅, � }, because∀ z (z /∈ ∅), ∀ z (z ∈ �↔ z = �),
and∀ z (z ∈ { ∅, � } ↔ (z = ∅ ∨ z = �)) all three hold, and therefore∅ has
no members,� has exactly one, and{ ∅, � } has two.

Let us now switch to the realm of terms by considering a ‘flat’ system


X0 = f0(X01, . . . , X0m0)
...

...
...

Xn = fn(Xn1, . . . , Xnmn
) ,

analogous to the one above, wheref0, . . . , fn belong to aSIGNATURE 6. This
means that6 is a collection of symbols, and that every symbols ∈ 6 has
an associatedDEGREE (or “arity”) ar(s) ∈ IN , stating the legal numberm of
arguments ofs in any well-formed expression of the forms(t1, . . . , tm). In par-
ticular, a system like the one above would be ill-formed unlessmi = ar(fi) held
for i = 0, . . . , n. This is the only new requirement: just as before,X0, . . . , Xn

must be distinct variables from whose collection eachXij is drawn. Variables
are now assumed to range over the domainG6 commonly known as theHer-
brand universegenerated by6. This domain consists of all ground terms over
the signature: accordingly, to solve the system one must substitute everyXh

by a ground termγh so that every equality gets transformed into a syntactic
identity.

The same non-circularity condition discussed earlier in connection with the
solvability of a system by ordinary sets, is a necessary and sufficient condition
for the solvability, overG6, of the new system. As before, the solutionXi 7→ γi ,
if one exists, is obviously unique.

One way to move from ordinary terms to infinite terms, is by postulat-
ing that every system of the above form —even one with infinitely many
equations— admits a solution, and that the solution is unique. In circular
cases —or whenn is infinite— i.e., when the system contains equationsXi0 =
fi0(. . . , Xi1, . . .), Xi1 = fi1(. . . , Xi2, . . .), . . . that form an infinite chain, some
of theγis, instead of being drawn fromG6, will be drawn from a larger domain
G6, known as thecompletion of the Herbrand universeover6 (cf. [23]). If
we allowed the numbern + 1 of equations to range from one to infinity, then

298 A. Dovier et al.

the whole ofG6 would be spanned by the solutions to flat systems over6; but
since we will limit our consideration to finite systems, ourγis will come from
a domainG6 intermediate betweenG6 andG6. The terms inG6 are usually
said to berational, and various methods exist for specifying them (grammars
and tree automata [16, 10], axioms [24], etc.).

In order to combine sets with ordinary terms and hypersets with infinite
terms, the first step will be to assume that6 comprises two symbols,∅andwith,
of respective degrees 0 and 2. Bywith , used as a left-associative infix operator,
we intend to designate the operation of inserting an element into a set—or, more
generally, into a hyperset. An expression of the form{w1, . . . , wk } will be
regarded, accordingly, as an abridged notation for∅with wk with · · ·with w1;
more generally,

{w1, . . . , wk | z } =Def (· · · (︸ ︷︷ ︸
k

z with wk) with· · ·with w1)

{w1, . . . , wk } =Def {w1, . . . , wk | ∅ }

Any ground term whose outermost functor differs fromwith will be regarded
as a memberless entity, named aCOLOR. Either∅ (our name for the ‘official’
empty set) is the sole color, which happens only when6 = {∅, with }, or
there are also other colors; these are the two cases calledPURE andBLENDED,
respectively. Quite unconventionally, we will allow insertions likeC with X

for any colorC distinct from∅, regarding any hyperset that results from an
insertion of this kind as something distinct from∅ with X.

Unlike other functors, which merely play the role of syntactic constructors,
with has an intended meaning; hence we can no longer insist that every flat
system has a unique solution. For example, the equationX0 = {∅ |X0 } (which
meansX0 = X0 ∪ {∅}) is satisfied by any set to which∅ belongs, and hence
has the infinitely many solutions

X0 = {∅, {· · · {︸ ︷︷ ︸
k

∅ } · · ·}} , k = 0, 1, 2, . . .

—and many more. As will emerge from the next section, to circumvent the new
difficulty it suffices to restrict one’s consideration to systems

n∧
h=0

Xh = fi(Xh1, . . . , Xh,ar(fi)) ,

as above, whence one cannot extract an infinite chain

Xh0 = { |Xh1 } , Xh1 = { |Xh2 } , Xh2 = { |Xh3 } , . . .

of equations (clearly with repetitions). In a theory of blended hypersets, one will
postulate that every system of equations subject to this restriction admits one

Applied Hyperset Unification 299

and only one solution. In a theory of blended sets, the existence (and uniqueness)
of a solution will presuppose non-circularity, as usual.

We have been approaching the notion of hyperset in terms of single-solution
systems of equations. We now address the question:what isan hyperset, pre-
cisely? A reasonable way of answering would be to circumscribe, from among
single-solution systems of equations, ‘canonical’ systems of a suitable kind. In
each system, the left-hand sideX0 of the first equation could be taken as the
variable of interest. Roughly, a system should be regarded as canonical when
every equation in it irredundantly contributes to the determination of the value
ξ of the variable of interest. One could identifytout courtthe canonical system
with the hypersetξ .

Irredundancy presupposes, among others,injectivity: that is, the values of
distinct variables should be different. But how can one ascertain that this re-
quirement is fulfilled? An answer is contained in the constructive notion of
bisimulation in the next section. From now on, to clarify the presentation,
single-solution systems will be represented by graphs labeled over6, while
their variables will be represented by nodes of such graphs.

2 Characterization of Blended Hypersets

In this section the notion ofblended hypersetwill be defined precisely, both
constructively (in Section 2.1) and axiomatically (in Section 2.2).

2.1 Intended hyperset model

The entities that form a Herbrand universe are sometimes characterized as
being finite trees coherently labeled over a signature6. It is easy to adjust
this abstract view of ground terms to the terms that form thecompletionof
a Herbrand universe: to do this, it will suffice to withdraw the requirement
that labeled trees must have finitely many nodes. From this graph-theoretical
perspective, syntactic equivalence between terms turns out to coincide with the
notion of isomorphism between labeled, ordered trees.

Given a termT, one can ‘fold’ it by fusing two nodesν, µ of T into a
single node whenever the subterms rooted atν, µ are equivalent to each other.
This will yield an ordered multi-graphP, both rooted and directed, retaining
information of all essential features ofT: the PICTURE of T, as we call it. If
there are no infinite paths inP, this indicates that the originalT was already
finite: this is the case of anORDINARY term. WhenP is finite,T (which might
be infinite) is said to be aRATIONAL term.

If one restricts one’s own attention to rational terms and represents them
suitably (e.g., by their pictures), then, at least assuming the signature6 to be
finite, even infinite terms can be algorithmically construed and manipulated.

300 A. Dovier et al.

Fig. 1. The terms depicted by these graphs cannot be regarded as ground.

In the case under study, the construction of the universe is not entirely free.
We are assuming, in fact, that6 comprises a symbol, namelywith , to which
a special, fixed meaning is attributed (cf. Section 1). The intuitive semantics
of this construct must reflect into the criteria we adopt for equivalencing la-
beled trees. Such criteria cease accordingly, in our specialized context, to be
purely syntactic. At an even more fundamental level, we will have to discard
certain trees labeled over6, that cannot be regarded as ground terms due to the
semantics ofwith .

To proceed more formally, let us start by recalling a classical definition (cf.
[23]), which still awaits a minor adaptation to our aims:

Definition 1 A GROUND TERM(over6) is a mappingT :dom(T) −→ 6 such
that

• the domain dom(T) of T is a non-empty ordered tree whose root is[] ;
• for all ν in dom(T), ar(T(ν)) = | { i : [ν, i] in dom(T) } | , where[ν, i]

stands for thei-th son ofν.2

�

To avoidunder-specifiedsituations, we then add:

Groundness restriction.The requirement henceforth becomes integral part of
the definition of (ground)TERM that there be no infinite sequenceν0, ν1, ν2, . . .

of nodes withT(νi) = with andνi+1 = [νi, 1] for all i. �
To see why the presence of a pathν0, ν1, ν2, . . . as above, in a term, would

conflict with the very notion of groundness, let us examine the two graphs of
Fig. 1. Either of them is the picture of a labeled tree that violates the groundness
restriction. The left arc in either graph indicates —if anything— self-inclusion;
hence it conveys no information about the entity (Xa and Xb respectively)
represented by the root. The second arc of Fig. 1(a) indicates that∅must belong
to Xa, a property which is clearly insufficient to characterizeXa. The right arc
of Fig. 1(b) indicates thatXb must belong to itself. IfXb were to be an ordinary
set, this would be an absurdity, but we are dealing with hypersets here. Since
membership can form cycles among such entities, we are again facing an under-
specified situation.

2 We follow [23] in identifying [[a1, . . . , an], an+1] with [a1, . . . , an, an+1], to keep the no-
tation simple.

Applied Hyperset Unification 301

Fig. 2. This graph is the picture of an irrational termT representing a cycle-free hypersetX0.
Notice thatX0, as well as every element in its transitive closure, is finite.

Our next step will be to get rid of irrational terms (an example of set-theoretic
irrational term is the one whose picture is the graph of Fig. 2). Preliminary to
that, we need the notion ofbisimulation, which in turn presupposes the following
couple of auxiliary notions.

For every termT and anyν in dom(T), letτ0, . . . , τg andµ0, . . . , µg−1 be
the sequences of nodes such that:τ0 = ν;T(τi) = with , τi+1 = [τi, 1] and
µi = [τi, 2] for i = 0, . . . , g − 1; T(τg) 6= with . We denote byColor(ν)

the nodeτg and say that theµis are the∈-PREDECESSORSof ν.

Definition 2 LetT0,T1 be terms. A relationB ⊆ dom(T0)×dom(T1) is said
to be aBISIMULATION betweenT0 andT1 iff: i) [] B [] , ii) whenν0 B ν1, the
following hold:

• Color0(ν0) B Color1(ν1), T0(ν0) = T1(ν1), and moreover
• to every∈-predecessor%b of νb in Tb (b = 0 or b = 1), there corresponds

at least one∈-predecessor%1−b of ν1−b in T1−b such that%0 B %1;
• if T0(ν0) 6=with, then[ν0, i] B [ν1, i] for i = 1, . . . , ar(T0(ν0)).

We writeT0 ≈ T1 iff there is a bisimulationB betweenT0 andT1. �

Bisimulations are, in a sense, isomorphisms complying with the intended
(hyperset) semantics ofwith. Accordingly,T will be regarded as arational
term iff it has only finitely many subterms that cannot bisimulate one another.
To make this idea precise, let us denote byTdν the subterm ofT issuing from
a given nodeν.

Definition 3 A ground termT is said to beRATIONAL iff there areν0, . . . , νn in
dom(T) such that for everyµ in dom(T) there is ani, 0 ≤ i ≤ n, fulfilling
Tdνi ≈ Tdµ. �

In conclusion, indicating byG6 , G6 the family of all rational ground terms
over6 and its subfamily consisting of the terms that have finitely many nodes,
our HYPERSET UNIVERSEandSET UNIVERSEwill be

H6 =Def G6/ ≈ , H6 =Def G6/ ≈

302 A. Dovier et al.

X1 = k(g(X3))

X2 = k(k(X3))

X3 = h(h(g(X3)))

• •

• •

• •

? ?

?

6

�

@
@

@R

X1 ⇀ k k ↼ X2

X4 ⇀ g k ↼ X5

X6 ⇀ h h ↼ X3

X1 = k(X4) X2 = k(X5)

X3 = h(X6) X4 = g(X3)

X5 = k(X3) X6 = h(X4)

Fig. 3. Two renderings (the one on the right ‘flat’) of the same ground labeled graph.

respectively. Representing byT≈ the≈-class ofT, the element insertion op-
eration and membership relation over these universes can be straightforwardly
defined as

T≈0 with6 T≈1 =Def W
≈ , T≈1 ∈6 T≈0 iff Def W ≈ T0 ,

whereW is a tree whose root, labeledwith,has left and right subtree isomorphic
to T0, T1 respectively.

Every symbolf other thanwith in 6 is interpreted̀a la Herbrand, that
is to say, as the operation sending eachm-tupleT≈1 , . . . ,T≈m with m = ar(f)

into T≈, whereT([]) = f andTd[i] ≈ Ti , for i = 1, . . . , m.
As was done in [28] with reference to thepurecase only, we could provide

criteria for choosing acanonical representativeout of each≈-class: represen-
tatives could then be taken as hypersets proper.

Let us now generalize our discussion by adjoining to our former signature
6 a denumerably infinite collectionV of new symbols of degree 0, named
VARIABLES. Labeled graphs, and in particular terms, whose labeling may involve
variables, or that may violate the above-stated groundness restriction, will be
said to beHOLLOW. As will emerge from Section 4, every hollow, rooted and finite
graph depicts aCOLLECTIONof ground terms, obtainable from it via substitutions.

As illustrated by Fig. 2 and Fig. 3, any ground labeled graphG (possibly
with cycles) can be variouslyRENDERED, up to isomorphism, as a conjunction
(consisting of a single element whenG is finite and acyclic; infinite whenG
is not rational) of first-order equalities

∧
ν in C (Xν = tν) over the signature

6 ∪V, where

• C is a collection of nodes ofG comprising all nodes ofG devoid of entering
arcs, along with at least one node lying on$ for each infinite path$ of G;
• theXνs belong toV, hence they are not used as labels inG, and they are

distinct from one another; thetνs are first-order terms3 over the signature
6 ∪ {Xν : ν in C}.
To do that, one viewsG as a collection{Gν : ν inC } of finite acyclic rooted

graphs labeled over6 ∪ {Xν : ν in C }, eachν in C bearing the labelXν and

3 Notice the distinction we are making between first-order (concrete) terms and terms in the
graph-theoretical sense.

Applied Hyperset Unification 303

eachGν being in a sense ‘grafted’ intoν; then one takes astν the first-order
term that straightforwardly corresponds toGν .4

Viewed this way, a rational ground labeled graphG is just a special case of
what is usually called aHerbrand system:

Definition 4 A HERBRAND SYSTEM is a finite collection{`1 = r1, . . . , `n = rn}
of first-order equalities,5 where`1, r1, . . . , `n, rn are terms over the signature
6 ∪ V. A Herbrand systemE is said to beFLAT if every equalitye in E has
either the formX = Y , or the formX = g(Y1, . . . , Yn) with g in 6. �

Solving general systems of this kind over hypersets is the main unification
task coped with in this paper, that we will tackle in Section 4.

2.2 Axiomatic view of the blended hyperset universe

To state our axioms abouthypersets, we will use a first-order language compris-
ing the constant∅, infix operatorswith and less , the (infix) predicates= and
∈, and a number of functors to which we will resort in order to express most of
our axioms without using existential quantifiers. We often use{w1, . . . , wk | z}
and{w1, . . . , wk} to shorten notation, as explained in Section 1.

It goes without saying that= meets the usual properties of equality (see,
e.g., [27]), which we collectively denote by the label(=).

The symbolsx, y, z, u, v, xi, x
b
i , yi will stand for distinct variables implic-

itly universally quantified in front of each axiom.
We begin with (a suitable adaptation of) theEXTENSIONALITY axiom, accord-

ing to which any two entities that have the same color and the same elements
are equal. Formally

(E) (∀z (z ∈ x ↔ z ∈ y) ∧ color of (x) = color of (y)) −→ x = y .

Then we have axioms concerning the empty entities namedCOLORS(in par-
ticular thenull set∅) and theELEMENT ADJUNCTION andELEMENT REMOVAL oper-
ations, with and less .

(N0 ,1) v /∈ color of (u) color of (∅) = ∅
(W0 ,1) v ∈ { y | u } ↔ (v ∈ u ∨ v = y) color of ({ y | u }) = color of (u)

(L0 ,1) v ∈ u less y ↔ (v ∈ u ∧ v 6= y) color of (u less y) = color of (u)

4 WhenG is rooted, finite and acyclic, so that its rendering isX = t , X not occurring int , t
itself is calledrenderingof G.
5 Depending on the context, a Herbrand systemE may be seen at times as a set/system of
equations, at times as a conjunction of equality atoms.

304 A. Dovier et al.

TheANTI−DIAGONAL andSELF−LOOP axioms below ensure, for example, that
for any colory and any tuplev1, . . . , vm of hypersets, the system

x /∈ v1 ∧ · · · ∧ x /∈ vm ∧ x /∈ x ∧ color of (x) = y

of constraints, as well as the equation

x = {x, v1, . . . , vm | y}

can be satisfied (one independently of the other).6

(D/∈) (x = anti diagonal(u , y) ∧ (v ∈ u ∨ v = x)) −→
(color of (x) = color of (y) ∧ x /∈ v)

(D∈) x = self loop(u , y) −→
(color of (x) = color of (y) ∧ (v ∈ x ↔ (v ∈ u ∨ v = x)))

We are arriving at the axioms essentially expressing our own weak ver-
sion of Aczel’sANTI−FOUNDATION AXIOM AFA (see [1]). We name such axioms
ANTI−REGULARITY, (6R), andHYPER−EXTENSIONALITY, (H). To introduce these two
schemes in informal terms close to the contents of Section 1, let us consider a
system

n∧
j=0

xj ≡ {xj1, . . . , xjmj
} ,

wheren ≥ 0, mj ≥ 0 for all j , x0, . . . , xn are distinct variables, eachxij

is one ofx0, . . . , xn, and thej -th ‘congruence’ of the system is a short for
∀ z (z ∈ xj ↔

∨mj

k=1 z = xjk). Anti-regularity states that each such system
admits a solution with pre-assigned colors for thexjs. Hyper-extensionality
states that the solution is uniquely determined by the colors, even if we consider
a more general system of congruences

n∧
j=0

xj ≡ {xj1, . . . , xjmj
| zj } ,

wherez is a fixed ‘residue’ (in the preceding system,zj = ∅ for all j).
In the formal specification below, we employ distinct auxiliary variables

x0
0, . . . , x

0
n, x1

0, . . . , x
1
n, and indicate byxb

j1, . . . , x
b
jmj

the variablesxb
h such that

xh occurs inside the right-hand side of thej -th congruence.

6 The role and importance of these two axioms first emerged from [29] (cf. also [28]).

Applied Hyperset Unification 305

(6R) ∃ x0 · · · ∃ xn

∧n
j=0 (color of (xj) = color of (yj) ∧

∀ z (z ∈ xj ↔
∨mj

k=1 z = xjk))
(H) (∧n

j=0 (color of (x0
j) = color of (x1

j) ∧
(
∧1

b=0

∧n
i=0 (xb

i ∈ xb
j ↔

∨mj

k=1 xb
i = xb

jk)) ∧
∀ z ((z ∈ x0

j ∧
∧n

i=0 z 6= x0
i) ↔ (z ∈ x1

j ∧
∧n

i=0 z 6= x1
i))))

−→ ∧n
j=0 x0

j = x1
j

Let us incidentally observe that(6R) is a sort of weak form of Aczel’sAFA1,
while (H) corresponds toAFA2. Notice also that the adoption of(H) makes
the extensionality axiom(E) redundant (cf. [29, 28]).

The following five axioms are Clark’sFREENESSassumptions (cf. [8]), an
adaptation of Reiter’sWEAK DOMAIN CLOSURE ASSUMPTION(cf. [30]), and a state-
ment, antithetic to theOCCURS−CHECK scheme (cf. [8, 30]), which generalizes
(6R).

Here we assume that our signature6 contains solely∅, with and the free
functors mentioned in previous sections. In particularless , color of, and any
other functor introduced to state the axioms in this section, are not in6. We
are to assume thatf , g, and allfνs appearing below, belong to6; also,g is to
be distinct from bothwith andf . Finally, letA = max{ ar(h) : h in 6 , h 6=
with }.

Axiom (U0) will only be included when6 has finite cardinality. Every
instance of(¬OC) results from a finite ground graphG labeled over6, where
it is not restrictive to assume thatG is cyclic. The variablesxν0, . . . , xν`

are in
one-to-one correspondence with the nodesν0, . . . , ν` of G; we are indicating
by fν the label of the nodeν, by nν the degree offν , and byµν

j thej -th son
of ν. The uniqueness requirement was introduced by Maher in [24] in order to
achieve completeness of his theory of infinite trees: this makes it very similar
to AFA . Such kinship will be exploited in a continuation of this paper to carry
out a reduction of theblendedhyperset unification problem to thepurehyperset
unification problem (cf. [13]).

(F0) f (x1 , . . . , xn) 6= g(y1 , . . . , ym)

(F1) g(x1 , . . . , xn) = g(y1 , . . . , yn) −→ (x1 = y1 ∧ · · · ∧
xn = yn)

(U0) x = color of (u) −→ ∃ x1 · · · ∃ xA

∨
h in 6\{ with }

x = h(x1, . . . , xar(h))

(U1) color of (f (x1 , . . . , xn)) = f (x1 , . . . , xn)

(¬OC) ∃ ! xν0 · · · xν`

∧
ν node ofG xν = fν(xµν

1
, . . . , xµν

nν
)

306 A. Dovier et al.

Remark 1

1. To obtain from the preceding theory of hypersets a corresponding theory of
sets, we should drop(D∈), (6R) and(¬OC), adopting a classicalREGULARITY

axiom and a suitable version of theOCCURS−CHECK scheme of axioms (cf.
[14]).

2. It is immediate to see that(U1) generalizes(N1); also, it is plain to deduce
(N0) from the remaining axioms, including(U0). Hence one shall not list
(N0,1) among the axioms when6 is finite. �

3 Expressiveness of Equation Systems Over Hypersets: An Example

One of the most common exploitations of hypersets is as a means to model
deterministic finite-state automata. As we will now see, the notions introduced
so far provide a well-suited framework for conceiving automaton manipulation
algorithms based on this kind of modeling. Another, rather distant, application
of hypersets will be considered in Section 6.

A deterministic finite automaton(DFA for short) consists of a setQ =
{q0, . . . , qN } of states, analphabetS = {s1, . . . , sM} (with 0 < M < ∞), a
partialtransition functiond : Q×S −→ Q. Moreover, one of the states —say
q0— is singled out as theinitial state, and there is a setF ⊆ Q of accepting
states(for a full explanation of DFAs see, for instance, [2, 12]).

Given a DFAA as just said, one can construct a corresponding Herbrand
systemEA involving as many unknowns and equations asA has states, in the
signature6 = { with ,∅, f alse, true } ∪ S where all symbols savewith

have degree 0.EA consists of the equations (one for eachi = 0, . . . , N)

Xi = {fi} ∪
M⋃

h=1

δih

where 


fi is the truth value ofqi ∈ F ,

δih = ∅ if d(qi, sh) is undefined,
δih = {{ sh, Xj }} if d(qi, sh) = qj .

Even thoughEA is not written in flattened form, it should be clear from the
discussion in Section 1 —echoed by the axioms(6R) and(H) in Section 2.2—
thatEA has a unique solution over hypersets: we can take the hyperset value of
X0 in this solution as a representation, more essential than the automaton itself,
of the regular languageL(A) accepted byA.

This is essentially the same technique for translating finite automata into
hypersets provided in [7], where it is shown that graph bisimilarity (cf. our
Def. 2 of≈) faithfully reflects equivalence between deterministic automata.

To illustrate how one can test whether or notL(A) = L(B), for given
DFAsA andB, let us consider the following automata with alphabet{a, b}:

Applied Hyperset Unification 307

Here, the sets of accepting states areFA = {q1, q2} andFB = {q1}, respec-
tively.

In our framework, these automata can be modeled by the systems:
EA = { X0 = {f alse, {a, X1}},

X1 = {true, {a, X2}, {b, X1}},
X2 = {true, {a, X2}, {b, X1}} } ,

EB = { X′0 = {f alse, {a, X′1}},
X′1 = {true, {a, X′1}, {b, X′1}} } .

Both of these admit a solution, but it is not obvious that the systemEA ∪ EB ∪
{X0 = X′0 } resulting from their combination has a solution as well: the latter
system contains in fact a pair of equations sharing the same left-hand side,X0.

We are facing an instance of theblendedhyperset unification problem to
be discussed in full generality later on. In the case at hand, the answer to the
problem will be affirmative, because we can directly check on the automata that
TA ≈ TB under a bisimulationB, whereTA andTB are the values yielded
for X0 andX′0 by EA andEB .

The problem of testing the equivalence of two deterministic automata is
NL-complete (cf. [20]) and can be solved by very fast algorithms (cf. [2, 17]).
However, it would be wrong to expect from this deceptively simple example
that hyperset unification could be performed by suitably adapted versions of
those algorithms. Via a reduction to hyperset unification, we can solve the
more general problem of establishing whether apartially definedDFA can be
completed into a given deterministic automaton, a problem that we will show
to be NP-complete.

As an example of this kind of one-way matching, let us consider the problem
of establishing whether the following partially defined automatonC,7

whereH , K, andQ are unknown, can be instantiated so as it accepts the same
language as the previously seenDFA A. In other words, we are to solve the
systemEA ∪ EC ∪ {X0 = Q0}, whereEC reads:

7 Note thata priori this automaton could even be non-deterministic.

308 A. Dovier et al.

Q0 = {f alse, {a, Q1}},
Q1 = {true, {b, Q1}, {H, Q2}},
Q2 = {F2, {K, Q1}},

{F2 | } = {f alse, true},
{H, K | } = {a, b} .

Two solutions indeed exist: one of them yieldsQ0 = X0, Q1 = Q2 = X1,
H = a, K = b.

4 Hyperset Unification

The following notation is used below. Capital lettersX, Y , Z, etc. represent
variables;f , g, etc. stand for functional symbols (i.e. elements of6); ≡ de-
notes the syntactic identity relation between first-order terms over6 ∪V; ϕX

Y

denotes the result of replacing every occurrence of the variableX by Y in a
quantifier-free first-order expressionϕ, andvars(ϕ) denotes the set of all vari-
ables occurring inϕ; dom(λ) andran(λ) denote the set of first, respectively
second, components of a binary relationλ. Hereafter we only need to consider
substitutions of the following kind:

Definition 5 A (ground)SUBSTITUTION is a mappingγ from a finite subset ofV
to the universeG6. �

4.1 The Unification Problem

One canAPPLY a substitutionγ to a hollow graphG, thereby obtaining a ground
Gγ , when dom(γ) ⊇ V∩ ran(G): to do that, one will graft an isomorphic copy
of γ (X) in place of each nodeν labeledG(ν) = X, for all X in dom(γ). After
observing that every first-order termt is the concrete rendering of an acyclic
rooted graphGt labeled over6 ∪V (see ending remarks of Section 2.1), one
realizes that the notationtγ makes sense too, provideddom(γ) ⊇ vars(t).
Thus we are ready to define:

Definition 6 A SOLUTION to a Herbrand systemE is a substitutionγ that solves
all equations inE at once. That is, for all̀ = r in E, bothdom(γ) ⊇ vars(`)∪
vars(r) and`γ ≈ rγ hold. �

There are systems of equations of special forms for which a solution can be
determined quite easily.

Definition 7 A Herbrand systemE is said to be inSOLVABLE FORM if each equa-
tion in it has one of the forms:

• X = Y , with Y distinct fromX andX not occurring elsewhere inE;

Applied Hyperset Unification 309

• X = f (Y1, . . . , Yn), or in particular X = {Y2 |Y1}, with X not occurring
as left-hand side of any other equation inE.

A Herbrand system in solvable form is said to beEXPLICIT if it contains no
subsystem of the followingZIPPERform:

X0 = {Y0|X1}, . . . , Xm−1 = {Ym−1|Xm}, Xm = {Ym|X0}
(for m = 0 this reduces to the single equationX0 = {Y0|X0}). �

To justify this nomenclature, let us see how readily a solution to a system
in solvable form can be found when the system isEXPLICIT. One can proceed
to enlarge the system with all equationsY = ∅, where eachY is a variable
that, although occurring in the system, does not occur as left-hand side of any
of its equations. The ground imageγ (X) of each variableX in a solutionγ ,
can thus be read directly off the system. (Trivially, the solution to the enlarged
system is unique up to≈; however the original system could have had many
other solutions.)

More generally, a system in solvable form can be modified until it becomes
explicit. Every modification step will introduce new variables; however each
solution to the modified system can be restricted to the old variables giving a
solution to the previous system. Thus, at the end, any solution to the explicit
system will also be a solution to the original system. To see this, note that
γ (X0) ≈ γ (X1) ≈ · · · ≈ γ (Xm) must hold in any solutionγ , when there is a
zipperX0 = {Y0|X1 }, . . . , Xm−1 = {Ym−1|Xm}, Xm = {Ym|X0}. Therefore,
as long as a there is a subsystem of this kind, we can replace it by the equations

K1 = {Y0|K0}, . . . , Km = {Ym−1|Km−1},
X0 = {Ym|Km}, . . . , Xm = {Ym|Km} ,

whereK0, . . . , Km are new variables. While the system resulting from this
modification is still in solvable form, it is closer to explicit form, because the
number of zippers has been reduced.

We are now ready to state the unification problem in very specific terms.
Systems in solvable form can, for that sake, be employed as templates of the
solutions to a given system:

Definition 8 Given a Herbrand systemE, SOLVING E amounts to producing a
finite set of Herbrand systems in solvable formE1, . . . ,Em, such that

• for every solutionγ to E, at least one of theEis has a solutionσ such that
γ (X) = σ(X) for all X in vars(E)∩ vars(Ei);
• for any solutionσ to any of theEis, every substitutionγ such thatdom(γ) ⊇

vars(E) andγ (X) = σ(X) for all X in vars(E) ∩ dom(σ), is a solution
to E. �

310 A. Dovier et al.

Each system in solvable form covers a family of solutions. The intuitive
meaning of the definition above, apart from the technical requirement concern-
ing variables, is the following: the set{E1, . . . ,Em} solvesE if any solution
to E is also a solution for at least one of theEis; moreover, every solution to
any cal Ei is also a solution toE. Notice that we are not requiring that the
variousEis be independent: this means that there can be solutions toE that are
solutions to more than one of theEis. The features of our theory make it hard to
develop here a syntactic criterion for comparing the generality of two systems
in solvable form, and, accordingly, finding suitable notions ofmost general
unifier (mgu)and ofcomplete set of mgus(see, e.g., [5]). Of course, a preorder
can be imposed on systems as follows: given two systemsE andE′, E is more
general thanE′ if any solution toE is also a solution toE′. From this semantic
standpoint, the above set{E1, . . . ,Em} contains (possibly properly) a minimal
set ofmost general systemsin solvable form (ortemplates of solutions) for E.

4.2 NP-hardness of the problem of finding a single hyperset unifier

One-way matching between automata, that is, the problem of instantiating a
partially defined automaton so as to make it equivalent to a fully specified DFA
(see end of Section 3), will turn out to be NP-complete. For the moment let us
prove its NP-hardness, by reducing to it the propositional 3-SAT problem: it
will emerge from Section 4.5, after the hyperset unification problem has been
algorithmically settled, that the problem can be solved non-deterministically in
polynomial time.

Given the formula

8 = (`11∨ `12∨ `13) ∧ · · · ∧ (`n1 ∨ `n2 ∨ `n3)

where, fori = 1, 2, 3 andj = 1, . . . , n,

`ji ≡ aji or `ji ≡ ¬aji and aji ∈ {d1, . . . , dk}
for a suitablek ≤ 3 · n, we introduce distinct unknownsP1, N1, . . . , Pk, Nk,

and define the transformation functionf as follows:

f (`) =
{

Pi if ` ≡ di,

Ni if ` ≡ ¬di.

Thus, in order to solve the instance8 of 3-SAT, it is sufficient to check whether
there exists an instantiation making the automaton

equivalent to the fully specified automaton below:8

8 To stay strictly inside the realm of pure (hyper)sets, one could replace 0 by∅, and 1 by{∅}.

Applied Hyperset Unification 311

Notice that the technique presented in Section 3 for expressing automa-
ton equivalence as a unification problem would not work properly for non-
deterministic automata: the equivalence problem for such automata is known
to reside at a higher level of complexity (it is in factPSPACE-complete—
cf. [15]).

4.3 A unification algorithm, Hyperunify

Special chains of inclusions, introduced by the following definition, will play
an important role in our subsequent discussion:

Definition 9 A PATH in a Herbrand systemE is a sequenceX0
Y0← X1

Y1← · · · Yn←
Xn+1 of labeled edges such thatXi = {Yi |Xi+1} is in E for all i in {0, . . . , n}.

�

We now discuss the unification algorithm Hyperunify described in Fig.4.
This algorithm gets an inputE which, without loss of generality, is assumed to
beflat (cf. Def. 4).

Hyper unify performs a non-deterministic search. When reaching the leaf
of a successful branch of the search tree, it will output a systemEi in solvable,
explicit, form. The whole search tree will be finite.

The algorithm makes also use of an auxiliary data structure,C, to keep track
of a number of temporary assumptions of the formW /∈ V . Action Fail 1 may
detect a failure situation by checking whether one of the constraintsY /∈ X in
C conflicts with the fact thatY must belong toX, byE.

In its present version, Hyperunify initializesC internally, and does not pro-
duce any information about it in the output. We will see, however, in Section 5,
that Hyperunify can be enhanced to deal with negated membership literals.
Then an initial value forC will be submitted as part of the input, and the final
value ofC will be retained with the output.

Before we undertake analyzing the complexity of Hyperunify —after which,
the correctness proof will be supplied— let us develop a little nomenclature and
some preliminary remarks and comments. It will be useful to think of a (non-
deterministic) execution of Hyperunify as consisting of segments classified as
follows:

Phase: An iteration of the outer repeat, consisting of a preamble (i.e., a full
execution of the inner repeat), followed by the checks performed at the turn-
ing point, and (unless a termination has occurred) by one of the five actions
(a), (b.1)–(b.4) (when more than one of these is viable, one is arbitrarily
chosen).

312 A. Dovier et al.

Hyper unify(E: Herbrandsystem);
C := ∅;
repeat
Preamble: repeat

1. discard any reflexive equationsX = X fromE;

2. for each equatione ≡ X = Y in E such thatX occurs somewhere else inE, do

beginE := (E X
Y ∪{X = Y }) \{Y = Y }; C := C X

Y end;

3. as long as there is a zipperX0
Y0← X1

Y1← · · · Yn−1← Xn

Yn← X0

(with X0, . . . , Xn distinct from one another) inE, do
begin

E := (E \{X0 = {Y0|X1}, . . . , Xn−1 = {Yn−1|Xn}, Xn = {Yn|X0}}) ∪
{X0 = {Y0|K0}, . . . , X0 = {Yn|Kn}, X1 = X0, . . . , Xn = X0 };

C := C ∪{Y0 /∈ K0, . . . , Yn /∈ Kn };
end;

4. as long as there is a pathX0
Y0← X1

Y1← · · · Yn← Xn+1
Y0← Xn+2

(with Y0, . . . , Yn distinct from one another) inE, do

E := (E \{X0 = {Y0|X1}}) ∪ {X1 = X0 };

5. closeC with respect to the rule:X
Y← V in E, Z /∈ X in C impliesZ /∈ V in C;

until nothing has been modified by the last iteration;
Turning point:

Fail 1: if there is an edgeX
Y← V in E with Y /∈ X in C,

then exit with failure; /* this check could immediately follow action 5*/

Fail 2: if there are equationsX = f (X1, . . . , Xn), andX = g(Y1, . . . , Ym) in E with
f 6≡ g,
then exit with failure;

Succeed: ifE is in solvable form, then exit with success returningE;
Actions: select arbitrarily an equatione in E enabling one of the following actions

(a) e ≡ X = f (X1, . . . , Xn), f 6≡ with , and there is ane′ ≡ X = f (Y1, . . . , Yn) in

E \{e}:

E := (E \{e′}) ∪{X1 = Y1, . . . , Xn = Yn }; /* removinge′ is inessential */

(b) e ≡ X = {Y |V }, and there is ane′ ≡ X = {Z|W } in E \{e}
(note thatX 6≡ V andX 6≡ W , thanks to action 3); perform one of the following actions:

(b.1) E := (E \{e′}) ∪{Y = Z, V = W }; /* removinge′ is inessential */

(b.2) E := E ∪{X = V };

(b.3) E := E ∪{X = W };

(b.4) E := (E\{e′})∪{V = {Z|N}, W = {Y |N}};C := C∪{Y /∈ N, Z /∈ N };
forever.

Fig. 4. Hyperset unification algorithm

Stage: A series of consecutive phases that
• immediately follows either initialization or an execution of action (b.4);

Applied Hyperset Unification 313

• either goes on forever, or terminates at the turning point, or ends with
an execution of action (b.4);
• does not comprise any execution of action (b.4), save, possibly, at the

end.
(An important fact we will discover later on is that no stage consists of
infinitely many phases: this will rule out the second of the above three
possibilities.)

Notice that new variables are introduced intoE by actions 3 and (b.4) (they
are theKis and theNs, respectively).

As we are about to discuss, we can think that an equivalence relation between
variables is being implicitly calculated by Hyperunify. Initially, each variable
makes an equivalence class by itself; then, the equivalence relation gets refined
by the preamble of each phase. Once they have become equivalent, two variables
are to represent the same hyperset; accordingly, as soon as a variable formerly
generated by action 3 or (b.4) becomes equivalent to an initial variable, we
identify the two with one another and cease to regard the generated variable as
‘new’ any more.

Let us now clarify the main purpose of each preamble, which is to decom-
pose the systemE into subsystems of the form

X1
...

X`


 = R =




f1(Y11, . . . , Y1a1)
...

...

fm(Ym1, . . . , Ymam
)

with ` + m ≥ 1 (hopefully withfi ≡ fj for all pairs of i and j). These
subsystems will be mutually independent in the sense that

• no left-hand variableXi appears, globally, more than once;
• no representativevariableR occurs as left-hand side of a variable-variable

equation; apart from this,R is entirely free to occur in right-hand sides.

Of course we may assume that representative variables are distinct in different
subsystems; thus, whenm ≤ 1 holds for each one of the subsystems, a solvable
form results from the preamble.

As for the equivalence relation over variables hinted at above, it can be
characterized at the end of each preamble as being the reflexive and transitive
closure of the relation{[X, R] : X = R in E}.

4.4 Termination of the Hyperunify algorithm

In this subsection we prove the termination of Hyperunify; that is, we show that
every branch of the search tree of Hyperunify eventually breaks off, reporting
failure or success. A rather coarse assessment of the maximum length of a
branch will result from initial analysis; this will be refined into a polynomial
bound on the overall complexity of the algorithm in Section 4.5.

314 A. Dovier et al.

To measure the size of the input systemE, we adopt the following two
parameters:

• v0, the number of distinct variables inE;
• s0, the number of occurrences of functional symbols inE (including with).

For reasons to become clear soon, both the termination proof and the com-
plexity analysis will mainly consists in determining upper bounds for the num-
ber of stages, i.e. for the number of actions (b.4) performed along a branch.

Remark 2

1. A new variableQalways shows up, at creation time, in a contextV = {Y |Q}
(whereV 6≡ Q andY 6≡ Q); later on, it can be moved to a different context
by actions 2, or (b.2)–(b.3). Anyway, it will never come to occupy a label

position over an edgeX
Q← W : that is to say, no equalityX = {Q|W } will

ever go intoE unless afterQ has become equivalent to a pre-existing label,
in which case we no longer regard it as ‘new’.

2. It follows from the preceding observation and from the presence of actions

3 and 4 in Hyperunify that no pathX0
Y1← X1

Y2← · · · Yn← Xn can have
lengthn > v0 at the end of any preamble.

3. If an edgeX0
Y0← X1 drawing its origin from an action 3 or (b.4) becomes

part of a zipperX0
Y0← X1

Y1← · · · Y0← X0, a failure will take place at the
next turning point. This follows from the fact that the creation of the edge

X0
Y0← X1 causes the constraintY0 6∈ X1 to be put inC; however the path

in question will cause action 3 to place the equationX0 = X1 in E, which
will fire a Fail 1 termination.

4. The preceding observation implies that the overall number of arcs intro-
duced by action 3 is less than the number of occurrences ofwith in the
initial system, bounded bys0. �

The following lemma implies that the algorithm terminates provided action
(b.4) is performed a finite numberk of times (cf. Corollary 2). Later on, with
Lemma 3, we will place a finite bound onk.

Lemma 1 Consider a stage of a computation ofHyper unify(E). Letv and
s be the number of inequivalent variables (initial or not) and the number of
occurrences of functional symbols inE, as they are at the beginning of that
stage. Then the stage comprises at most1+ v + s0+ s phases.

Proof. First note that no action other than (b.4) increasess.
The numberv might increase due to executions of action 3, which however

cannot be exploited more thans0 times, as noticed in Remark 2.4. This potential
increase ofv accounts for the addendums0 in the thesis of the lemma.

We can henceforth focus on actions (a), (b.1)–(b.3), namely the ones from
which a non-deterministic choice is performed in every non-final phase.

Applied Hyperset Unification 315

(a) and (b.1) causes to decrease; actions (b.2) and (b.3), although leavings

unchanged, set the ground for either a reduction ofv in the next preamble or a
Fail 1 termination at the next turning point.

Corollary 2 Suppose action (b.4) is performed a finite numberk of times during
a computation ofHyper unify(E). Then the computation comprises at most
(k + 1) · v0+ (k + 2) · s0+ (k + 1)2 phases.

Proof. Let N1, . . . , Nk be the variables introduced by the successive execu-
tions of action (b.4). We can split the sequence of phases performed by Hy-
per unify(E) into k+1 successive stages determined by the introduction of the
Nis.

N1 N2 Nk−1 Nk

• −−−−→ • −−−−→ • −−−−→ · · · −−−−→ • −−−−→ • −−−−→ ◦

The first stage is based on a system with size parametersv0 ands0; hence, by
Lemma 1, it contains no more than 1+v0+s0+s0 phases. After the application
of action (b.4), boths andv get increased at most by one; therefore the second
stage, again by Lemma 1, contains no more than 1+ (v0+ 1)+ (s0+ 1)+ s0

phases. The overall situation is summarized by the following diagram:

N1 N2 Nk

• −−−−→︸ ︷︷ ︸
1+v0+s0+s0

• −−−−→︸ ︷︷ ︸
1+(v0+1)+(s0+1)+s0

• −−−−→ · · · −−−−→ • −−−−→︸ ︷︷ ︸
1+(v0+k)+(s0+k)+s0

◦

The number of phases forming a whole computation is hence bounded by∑k
i=0(1 + (v0 + i) + (s0 + i) + s0); however, it is appropriate to consider

the addendums0 only once, because it represents an upper bound on the num-
ber of edges introduced by action 3, which is a global quantity. Thus, no more
than(k + 1) · v0+ (k + 2) · s0+ (k + 1)2 phases can be performed.

It should be clear, already, that each phase lasts finitely long: we will be
more specific on this by assessing the complexity of a preamble in Section 4.5.

Let us now indicate byEi andCi the values ofE andC when the turning
point is reached for the(i+ 1)-st time. AnyEi induces an equivalence relation
∼i among variables, as explained at the end of Section 4.3.

To place a bound on the numberk of times (b.4) gets executed, we will
define in terms of∼i a tupleτi of natural numbers so that modifications ofE,
C made during thei-th phase may causeτi+1 to differ from τi . Changes ofτ
will invariably lower it w.r.t. the lexicographic well-ordering of tuples, without
affecting its length.τ gets lowered whenever a new variable is introduced,
which happens, in particular, with (b.4). This by itself ensures —in view of
Corollary 2— the termination of Hyperunify.

Notice that any lowering of a tuple [x0, . . . , x`] w.r.t. this ordering can be
achieved by elementarydecrease actionsof the following kind:

316 A. Dovier et al.

• a componentxj , with xj > 0, gets decremented by one; simultaneously
(if j < `)
• a componentxi , with i > j , is incremented byh units, withh ≥ 0.

In the case at study, we will be able to show that such decrease actions will
always have 0≤ h ≤ 2; correspondingly, a decrease action will be named:

destruction:if h = 0,
climbing: if h = 1,
generation:if h = 2.

To introduceτ , let us consider the set

Li = { Y : X = {Y |W } in Ei}

of all Ys occurring in a contextX
Y← W within Ei . By Remarks 2.1–2,|Li | ≤

|L0| for all i ≥ 0. Moreover, as easily seen,|Li | = |L0/∼i |. We defineτi to be
the tupleτi = [x0, . . . , x|L0|] , where eachxj is the cardinality of the following
set:

{ equations of the form = { |W } in Ei : |L0| − |Li |

+ |{Y : Y /∈ W in Ci }| = j } .

The initial valueτ0 of τ clearly hasx0 ≤ s0 andx1 = · · · = x|L0| = 0.

Lemma 3 A stage always lowers the value ofτ except, possibly, when a Fail1
exit is about to take place.

Proof. Actions 1, (a), (b.2), and (b.3) do not affectτ . Action (b.1) always affects
τ as a destruction action.

The complexity functioncompl(τ) has been carefully chosen in order that
action 2, whose effect is a sequence of destruction and generation actions,
cannot increase it.

Actions 3 and 5 may leaveτ unchanged or affect it as climbing actions;
action 4 might causeτ to increase, but in this case Fail1 will immediately
cause termination.

If neitherY /∈ W norZ /∈ V belongs toC, then action (b.4) makesτ lower
(it can be viewed as a generation action). Unless this is the case, an immediate
combination of action 3 with Fail1 will lead to termination.

Theorem 4 (termination) LetE be a flat system. ThenHyper unify(E) al-
ways terminates, no matter what sequence of non-deterministic choices has
been made.

Applied Hyperset Unification 317

Proof. Lemma 3 ensures that a only finite number of actions (b.4) occur along
a branch of the computation. The claim follows, by Corollary 2.

One may wonder whether the above translation of Hyperunify actions into
chains of destruction, climbing, and generation actions, may disclose a time
complexity assessment sharper than a simple termination result. Unfortunately,
this is not the case.

It can be shown that, starting with a tuple [x0, . . . , x`] of natural numbers,
no more than

3` · x0+ 3`−1 · x1+ · · · + 30 · x` ≤ (x0+ · · · + x`) · 3`

consecutive destruction, climbing, and generation actions can be performed.
This exponential bound cannot be improved significantly without refining

the technique: if, as in our case, the initial tuple has the form

[s0, 0, . . . , 0︸ ︷︷ ︸
`−1

] ,

a chain consisting ofs0 · (2` − 1) generation actions followed bys0 · 2`

destructions isa priori conceivable. However, as we will now see, a similar
chain does not reflect the behavior of any concrete Hyperunify computation.

4.5 NP-completeness of the problem of finding a single hyperset unifier

In this subsection we prove that Hyperunify belongs to the complexity class
NP. It hence follows that the hyperset unifiability problem is NP-complete, in
view of the reduction of 3-SAT to pure hyperset matching seen in Section 4.2.

For the termination proof, an adequately abstract view of the data struc-
tureE, C manipulated by Hyperunify was provided above by the tupleτ : the
decrease actions performed onτ somehow mimicked the basic actions of Hy-
per unify. Here, before undertaking the complexity analysis, we must resort to
a subtler abstract interpretation.

We will representE by a multi-graphGE, and C by a function lev :
vars(E) −→ IN . We momentarily defer the characterization oflev. As for
GE, its constituents are:

• nodesNE = {V1, V2 : V1 = { |V2 } in E};
• labelsLE = {Y : = {Y | } in E};
• directed labeled edgesAE = {V1

Y←2 : V1 = {Y |V2} in E}.

Conceptually, the pairGE, lev gets updated at every turning point, likeτ .
As we have already proved termination, we are in a position to refer to the final
value of either of these structures. (Obviously,GE andlev, as well as their final
values, depend on the course of a non-deterministic computation.)

The following two examples are aimed at conveying an intuitive grasp of
why each non-deterministic branch contains a number of phases (equivalently,
a number of (b.4) actions) polynomially related to the sizev0+ s0 of E.

318 A. Dovier et al.

Example 3 Starting with the setE = { X = {A|V1}, X = {B|V2}, X =
{C|V3} } of membership constraints, a branch that maximizes the number of
stages will yield the following final value forGE. Indicating by the arrow←◦
any edge removed by action (b.4), we have

V1
A

↙◦
B

↖
X

B←◦ V2
A←◦ N1

C

↖
C

↖
C

↖
V3

B← N2
A← N3

Notice that the unification algorithm does not generate a variable corresponding

to each subset of a three-element set, a reason being that once the edgeX
A← V1

has been removed, it becomes impossible to re-exploit it in conjunction with

X
C← V3 to fire an action (b.4). �

Example 4 A branch that maximizes the number of phases for the Herbrand
system

E = { X = {Y1 | A1 }, A1 = {Y2 | A2 }, A2 = {Y3 | A3 },
X = {Z1 | B1 }, B1 = {Z2 | B2 } },

expressing the set unification problem{Y1, Y2, Y3 |A3} = {Z1, Z2 |B2}, will
yield the following final value forGE:

A3
Y3↙◦

Z1↖
A2 N

(3)

2
Y2↙◦

Z1↖
Y3↙◦

Z2↖
A1 N

(2)

2 N
(4)

1
Y1↙◦

Z1↖
Y2↙◦

Z2↖
Y3↙

X N
(1)

1 N
(3)

1
Z1↖

Y1↙◦
Z2↖

Y2↙
B1 N

(2)

1
Z2↖

Y1↙
B2

�
Inspection of these examples leads to the following observations:

Remark 5

1. If one subtracts the initial number of edges inGE from the number of edges
in the finalGE—counting also those that were removed by (b.4)— one
obtains twice the overall numberβ of (b.4) actions.

Applied Hyperset Unification 319

2. The evolution ofGE progressively limits the possibility to apply action
(b.4): calling into play again the decrease actions of Section 4.4, this means
that generation actions (the only potential source of exponentiality) become
less and less viable.
Sometimes the termination guarantee does not come from this phenomenon,
but, rather, from the presence ofC-constraints. This does not emerge from
the two examples just seen, but can be seen from studying a system like the
following: X = { |A }, X = { |B }, Y = { |A }, Y = { |B } .

3. If a nodeX eventually inserted intoGE has incoming edges in some phase, at
least one incoming edge will always be alive, till the end of the computation.

�

It is now time to introducelev:

Definition 10 Given the pairE,C, aLEVEL−MAPPING is a functionlev : vars(E)

−→ IN , satisfying the following conditions:

• for all edgeV1
Y← V2 of GE, if Y /∈ V2 belongs toC, then lev(V2) =

lev(V1)+ 1, otherwise lev(V2) ≤ lev(V1)+ 1;
• for all equationsV1 = V2 in E, lev(V1) = lev(V2). �

Remark 6In the absence of negative information, a trivial level-mapping can
be obtained by simply setting to 0 all variables. On the other hand, it may be
the case that a level-mapping does not exist, as the following example shows:

X
Y1←−−−−−−−−− V

Y2↖
Y3↙ Y3 /∈ V, Y2 /∈ W both belonging toC .

W

Plainly, if a level-mappinglev for E,C exists at all, it is not unique: one may
‘tune’ its construction so as it meet the condition

for all variablesV , lev(V) ≤| LE |
(cf. the definition of theLis in Section 4.4). This new condition —to be taken
from now on as part of the definition of a level-mapping— can easily be ful-
filled, e.g., by settinglev(W) = 0 for at least one nodeW in each connected
component of (the undirected graph underlying)GE. �

W.r.t. a level-mappinglev, we say that an edgeX
Y← V (or, more generally,

an ordered pairX, V) is of leveli if lev(V) = i.

Definition 11 Let E′ be the system in solvable form resulting from a (non-
deterministic) computation of Hyperunify with inputE: hence any variable
generated in such a computation occurs inE′. Let, moreover,lev be a level-
mapping forE′ (hence forE). Then,

320 A. Dovier et al.

• α(i)stands for the number of edges of leveli inGE. Also,α =Def

∑∞
i=0 α(i) =∑|LE|

i=0 α(i).
• β(i) stands for the number of edges of leveli introduced in the computation

by action (b.4) (regardless of whether such edges survive inGE′). Let also

β =Def

∑∞
i=0 β(i) =∑|LE|i=0 β(i). �

In view of Corollary 2, in order to guarantee the NP-completeness of Hy-
per unify, it is sufficient to place polynomial bounds both on the total number
β

2 of executions of (b.4) and on the number of actions taking place within a
single phase.

Theorem 5 In a successful branch ofHyper unify(E), if no variableX gen-
erated by action (b.4) ever joins another variableY (in the sense that either
X = Y or Y = X is put intoE), thenβ is O(α3).

Proof. First of all, let us focus on a couple of conditions necessary for an action
(b.4) to take place:

• two ‘parent’ edges of levelj concur to the action, wherej + 1 is the level
of the two edges to be created—one of these parent edges will be deleted
by the action;
• since the parent edges must enter the same node, the latter cannot have a

single incoming edge when the action is fired.

Based on these remarks, we derive the following:

• β(0) = 0 andβ(1) ≤ 2 · α(0).
• The presence of two generated edges at levelj − 1 implies that there is a

node at levelj − 1.
The overall number of generated nodes of levelj − 1 is β(j−2)

2 ; hence the
assumption that generated nodes never join —implying that nodes, once
generated, persist inGE retaining an incoming edge— ensures, forj ≥ 2,
that

β(j) ≤ 2 ·
(

α(j − 1)+ β(j − 1)− β(j − 2)

2

)
.

By unfolding these constraints onβ, we obtain

β(j) ≤ 2 ·
(

j∑
i=1

i · α(j − i)

)
.

Since| LE |≤ α, we conclude:

β =
|LE|∑
j=0

β(j) ≤ 2 ·

|LE|∑

j=1

j∑
i=1

i · α(j − i)


 = O(α3) .

Applied Hyperset Unification 321

We are left with the task of showing that the assumption that generated
variables never join can be discarded from the statement of Theorem 5. To this
end, notice that two variables of levelj+1 becoming equivalent might generate
a situation in which action (b.4) can be performed. However, an inspection of
Hyper unify (cf. proof of Theorem 6 below) shows that at the same time two
edges of levelj come to coincide. As a consequence, the overall number of
actions (b.4) (and henceβ) cannot increase.

Theorem 6 In any computation of Hyperunify, no more thanO(α3) =
O
(
(s0)

3
)

new variables can be generated.

Proof. In view of Theorem 5, we only need to show the following fact: if a

variableN introduced by action (b.4) as the tail of two edgesV
Y← N and

W
Z← N of level i joins another variableA, then a pair of edges of leveli has

not been used to generate two edges of leveli + 1.
In fact, in order forN to be unified withA, a seriesN = A1, A1 =

A2, . . . , An = A of equalities must be inferred by Hyperunify. To get the
first equationN = A1, the unification algorithm must perform action (b) with
one of the two equationsV = {Y |N } orW = {Z |N }, together with an equa-
tion V = {C |B } or W = {C |B }. A simple inspection of the four subcases
of action (b) shows that (b.1) is the only subcase that introduces an equation
N = B without leading to a subsequent Fail1 (note thatB ≡ A). This means

that in such branch of a computation, the edgesV
C← B (or W

C← B) and

V
Y← N (or W

Z← N) of level i cannot be used to fire action (b.4) and hence to
generate two edges of leveli + 1.

Corollary 7 (NP-completeness)Let E be a flat system. Then every single
branch generated during the execution ofHyper unify(E) consists in a num-
ber of phases polynomially bounded inv0+ s0.

Proof. From Theorem 6 we know that the numberk of variables generated by
action (b.4) of the algorithm is polynomially bounded inv0 + s0. The thesis
follows from Corollary 2.

As already said, for a full NP-completeness proof we must place a bound
also on the number of actions within a phase. This is relatively easy, as we
know from the last propositions that a polynomial bound exists for the number
of new variables and functional symbols (edges) that can be introduced:

• action 1 can be performed ad most once for each variable; the same happens
with 2;
• action 3 can be performedin total a number of times not exceedings0, as

noticed in Remark 2.4;
• the number of times action 4 gets executed is bounded by the number of

edges;

322 A. Dovier et al.

• action 5 consists of an update of a system of constraints that relate to one
another a polynomially bounded number of variables.

4.6 Soundness and completeness of the Hyperunify algorithm

In this section we will prove that the set unification algorithm Hyperunify
presented above is sound and complete with respect to the axiomatic set theory
introduced in Section 2.2. These important properties of the algorithm can be
phrased as follows (proof to be supplied later on):

Theorem 8 LetE1, . . . ,Ek be the systems in solvable form produced as output
byHyper unify(E). Then the following holds:

(W), (E), (L), (=), (F0), (F1) `
(
E↔ ∃Q1 · · · ∃Qm

k∨
i=1

Ei

)
,

whereQ1, . . . , Qm are all variables in theEis that do not occur inE. �

In order to achieve greater generality, we will prove the above result as
a consequence of an analogous result concerning a variant procedure named
Hyper unify∗(E,C)—see Lemma 9 below. Although strictly akin to
Hyper unify, Hyper unify∗ will not be guaranteed to terminate. The only dif-
ferences between the two procedures are:

• C is regarded as a new input parameter. Therefore, it shall not be initialized
to ∅ inside Hyperunify∗;
• in actions 3 and (b.4), situations where Hyperunify places a new pair into

C, Hyper unify∗ is free to do the same or to leaveC unchanged. (Note that
the only remaining action that may affectC, which is action 5, remains as
before.)

Preliminary to stating the generalization of Theorem 8, we need a few
definitions.

Definition 12 A UNIFY−TREE is a directed unordered, non-empty tree, each of
whose nodesν bears labelsEν,Cν meeting the following conditions:

• Eν is a flat Herbrand system;
• Cν is a collection of literals of the formY /∈ Q, with Y andQ variables.
• A relationship reflecting the behavior of Hyperunify∗ holds betweenEν,Cν

on the one hand and the tupleEµ1,Cµ1, . . . ,Eµp
,Cµp

, where
µ1, . . . , µp are the distinct children ofν, on the other. The relationship
is as follows:
If the values ofE andC are set toEν andCν at the beginning of a phase, then,
depending on the first action that will affect either of them in the subsequent
execution of Hyperunify∗, one has that:

Applied Hyperset Unification 323

1, 2, 3, 4, 5, (a):p = 1 andEµ1 andCµ1 are possible values ofE, C after
the execution of the modifying action;

(b): p = 4 andEµi
andCµi

are possible values ofE, C after the execution
of (b.i);

none:p = 0. In this case,ν will be called a failure or a success leaf
in agreement with the kind of exit that takes place (cf. actions Fail1,
Fail 2, and Succeed).

A FRINGE of a Unify-tree is a setS of nodes such that: every maximal path of
the tree contains at most one node fromS, and, if it contains none, it ends with
a failure leaf. �

It should be clear from this definition that for any given pairE∗,C∗, a
Unify-tree whose root is labeledE∗,C∗ exists. Unify-trees correspond in fact
to the parallel executions ofHyper unify∗(E∗,C∗): there are two sources of
parallelism in Hyperunify∗, namely action (b) and some freedom in putting
literals intoC. However, it is only the branching caused by action (b) that gets
represented by a single Unify-tree.

Among others, a Unify-tree originates from the specific execution of
Hyper unify∗ that is entirely alike to an execution of Hyperunify, except for
the different initialization ofC. In this execution,C literals are added when-
ever possible; moreover, the Unify-tree will be finite in this special case (cf.
Theorem 4), and its set of success leaves will constitute a fringe.

Lemma 9 LetT be a Unify-tree, with root%. Then, for any fringeS ofT, the
following holds:

(W), (E), (L), (=), (F0), (F1) `
(
(E% ∧ C%)↔ ∃Q1 · · · ∃Qm

∨
ν in S

(Eν ∧ Cν)

)
,

whereQ1, . . . , Qm are all the variables in theEνs that do not occur inE%∧C%.

Proof. To prove the thesis, since

(W), (E), (=), (F0) ` ¬(Eµ ∧ Cµ)

trivially holds for every failure leafµ, it will suffice to check that every single
action ofHyper unify∗ leads from a nodeν to nodesµ1, · · · , µp such that

(W), (E), (L), (=), (F1) `
(

(Eν ∧ Cν)↔ ∃Z1 · · · ∃Z`

p∨
i=1

(Eµi
∧ Cµi

)

)
,

whereZ1, . . . , Z` are the new variables (if any). In the following, each number
on the left indicates the action being analyzed.

1. X = X, being true by(=), can be discarded fromEν .

324 A. Dovier et al.

2. For any formulaϕ, X = Y ∧ ϕ(X, Y) is equivalent toX = Y ∧ ϕ(Y, Y) by
(=).

3. Viewed as a formula, a zipperX0
Y0← X1

Y1← · · · Yn−1← Xn

Yn← X0 yields
Xi = X0, henceYi ∈ X0, for i = 0, . . . , n—by (E) and(W). Accordingly,
by assigningX0 less Yi to Ki , one has bothX0 = {Yi |Ki} andYi 6∈ Ki for
all i—by (W) and(L).
It follows that

(W), (E), (L) ` (Eν ∧ Cν)→ ∃K0 · · · ∃Kn

(
Eµ1 ∧ Cν ∧

n∧
i=0

Yi 6∈ Ki

)
.

Conversely, as is easily seen,

(W), (=) ` (Eµ1 ∧ Cν)→ (Eν ∧ Cν) .

4. FromX0
Y0← X1

Y1← · · · Yn← Xn+1
Y0← Xn+2 , by (W) and(E), it follows

thatX0 = X1. In fact,Y0 ∈ Xn+1, whenceY0 ∈ Xn, · · · , Y0 ∈ X1. Hence,
the insertion ofY0 into X1 has no effect and, thanks to(=), the equality
X0 = {Y0|X1} can be simplified intoX0 = X1.

5. Eν ∧ Cν is equivalent toEµ1 ∧ Cµ1 by virtue of(W) alone.
(a) X = f (X1, . . . , Xn)∧X = f (Y1, . . . , Yn) is equivalent toX = f (X1, . . . ,

Xn)∧X1 = Y1∧ · · · ∧Xn = Yn. One direction follows from(F1), and the
other from(=).

(b) It is easy to infer from(W), (E), (L), and(=), that the following Venn
diagrams describe all possible situations under whiche∧e′ ≡ X = {Y |V }∧
X = {Z|W } holds:

Y = Z :

X = V = W

Y•

1

X = V

Y•

W

2

X = W

V

Y•

3

X

Y•

V = W

4

Y 6= Z :

X = V = W

Y• Z•

5

X = V

W

Y• Z•

6

X = W

Y• Z•
V

7

X

W Y• Z• V

N

8

Moreover, the same axioms yield that:
(b.1) diagrams 1, 4 describe all possibile situations under which(e ∧ Y =

Z ∧ V = W) holds;
(b.2) diagrams 1, 2, 5, 6 describe all possibile situations under which(e ∧

e′ ∧X = V) holds;

Applied Hyperset Unification 325

(b.3) diagrams 1, 3, 5, 7 describe all possibile situations under which(e ∧
e′ ∧X = W) holds;

(b.4) diagrams 1, 8 describe all possibile situations under which∃N (e∧V =
{Z|N} ∧W = {Y |N} ∧ Y 6∈ N ∧ Z 6∈ N) holds.

We conclude from this diagram analysis that the following holds

(e ∧ e′)↔
(

(e ∧ Y = Z ∧ V = W) ∨ (e ∧ e′ ∧X = V) ∨ (e ∧ e′

∧X = W) ∨ ∃N (e ∧ V = {Z|N} ∧W

= {Y |N} ∧ Y /∈ N ∧ Z /∈ N)

)
.

Either one of the literalsY /∈ N , Z /∈ N , or both, can be removed from the
right-hand side of this bi-implication, because∃N (e∧V = {Z|N} ∧W =
{Y |N}) easily yieldse′.9

Proof of Theorem 8Let us consider the Unify-treesT0,T1 corresponding to
the executions of
Hyper unify∗(E,∅) that respectively addC literals

• whenever possible,
• never.

T0 corresponds to the execution ofHyper unify(E); hence it is finite, by
Theorem 4. The preceding lemma, referred to the fringeS0 consisting of all
success leaves ofT0, gives

E↔ ∃Q1 · · · ∃Qm

∨
ν in S0

(Eν ∧ Cν) .

T1 clearly contains an isomorphic copyT′0 of T0: every nodeµ in T0 is
labeledEµ,Cµ, while the corresponding nodeµ′ is labeledEµ,∅ in T′0. We
consider the fringeS1 of T1 consisting of all nodesν ′ s.t.ν either belongs to
S0 or is a Fail1 leaf ofT0. Again by Lemma 9, we have

E↔ ∃Q1 · · · ∃Qm∃Qm+1 · · · ∃Qm+k

∨
ν ′ in S1

Eν .

Assuming∃Q1 · · · ∃Qm

∨
ν in S0

Eν,one readily obtains∃Q1 · · · ∃Qm+k

∨
ν ′ in S1

Eν,

whenceE follows. Conversely, fromE, one derives∃Q1 · · · ∃Qm

∨
ν in S0

(Eν∧Cν),

which entails∃Q1 · · · ∃Qm

∨
ν in S0

Eν .

9 Note that since the pairs(1, 8), (4, 5), (6, 7) of diagrams are incompatible, none of the
alternatives (b.1)–(b.4) in Hyperunify is superfluous.

326 A. Dovier et al.

We conclude with the desired thesis:E↔ ∃Q1 · · · ∃Qm

∨
ν in S0

Eν .

An easy corollary of Theorem 8 is that Hyperunify solvesE in the sense
of Definition 8. As a matter of fact, any solution toE is also a solution to (at
least) one of theEis (provided a mapping for the new variablesQ1, . . . , Qm is
made explicit). As said after Definition 8, the set{E1, . . . ,Ek} can be seen as a
complete set oftemplates of solutionsfor E. Unfortunately, the variousEis are
not necessarily independent, as it emerges from the following example:

Example 7 Let E consist of the equations:

X = {A |C}, X = {B |D}, C = {B |Z}, D = {A |Z}, Z = ∅
Two possible non-deterministic computations return the systems:

E1 = {A = B, C = D, X = {B |D}, D = {B |Z}, Z = ∅} ,
E2 = {X = {A |C}, C = {B |Z}, D = {A |Z}, Z = ∅, N = Z}

(to get the former, start by applying action (b.1); for the latter, apply first (b.4)
—which generates a new variableN— and then (b.1) twice). It is clear that
E2 covers all the solutions ofE1 plus those in whichA andB are mapped into
different hypersets. Thus,E1 is more general thanE2. �

Algorithms for detecting overlaps between solvable form systems will hope-
fully emerge from ongoing research. More specifically, let us assume that
E0, . . . , En+1 are solvable form systems and thatW are the ‘relevant’ vari-
ables they share. That is, one regards solutionsγi, γj for Ei, Ej as being the
‘same’ solution whenγi |W = γj |W.One would like to

1. determine whether every solution toE0 also solves at least one ofE1, . . . ,

En+1;
2. determine whether all solutions ofE0 also are solutions toE1;
3. determine whetherE0 andE1 have any solutions in common.

A solution to 2 seems to be at hand, whereas the more general problems 1
and 3 remain as yet somewhat puzzling.

5 Hyper unify as a Set-Constraint Manager

We have seen in the preceding section that any systemE involving with ,∅, and
free functors, can be rewritten, equivalently, as a finite disjunctionE1, . . . ,Ek

of systems in solvable form.
We now extend this result by showing that the unification algorithm intro-

duced in Section 4 is in fact sufficiently general to support the treatment of the
operatorless (to be interpreted in agreement with(L0,1) of Section 2.2). In the

Applied Hyperset Unification 327

new broader context, however, the negative information contained inC must be
retained as output of the system.

In order to handle flat systems of equations that involveless , we might
choose to install into Hyperunify the explicit treatment of pairse, e′ of equa-
tions of the following forms:

e ≡ X = V less Y , e′ ≡ X = W less Z;
e ≡ X = V less Y , e′ ≡ X = {Z |W };
e ≡ X = V less Y , e′ ≡ X = f (Y1, . . . , Yn),

wheref 6≡ less , f 6≡ with .

A simpler line of attack is to resort to the following non-deterministic pre-
processing technique:

for every equationV = X less Y , add toE either

1. X = {Y |V }; or
2. X = V ;

moreover, doC := C ∪ {Y /∈ V }.
Clearly, 1 reflects the case whenY ∈ X holds, while 2 corresponds to the

caseY 6∈ X. The correctness of our approach is based on the following lemma:

Lemma 10 (W), (E), (L) ` V = X less Y ↔
((Y 6∈ V ∧X = {Y |V }) ∨ (Y 6∈ X ∧ V = X)) .

�

It is easy to modify the proof of Theorem 8 so as to show that the input sys-
temE is provably equivalent to the disjunction

∨
i ∃Ni1 · · · ∃Niki

(Ei ∧Ci) taken
over all pairsEi ,Ci that result from the successful branches, andNi1, . . . , Niki
denote all variables, present inEi ∧ Ci but not in the originalE, introduced
along thei-th such branch.

Somewhat disturbingly, such conjunctions arenotguaranteed to be useful in
general. Consider the followingunsatisfiablesystem:E = {X = {Y, X }, Y =
{X }, Z = {B |A }, Z = X less Y}.10 By using the rewriting of less

(case 1.) and two applications of action (b.1) of Hyperunify we obtain the
system{B = X = {Y, X }, Z = Y = {X }, A = ∅} together with the con-
straintY /∈ Z. The system alone is satisfiable and, by Aczel’sAFA , implies
X = Y = Z. Hence, its conjunction with the constraintY /∈ Z placed intoC by
the preprocessor, contradicts, very much likeE does,AFA—in our restricted
axiomatization of Section 2.2 it contradicts(H). An approach to eliminate use-
less disjuncts would be to exploit the decision test specified in Section 6 of
[28], but the latter works only in a context where free functors are not allowed
to occur. Therefore, givenEi in solvable form andCi , we test for satisfiability
the following formula, implicitly keeping into account the freeness axioms:

10 For the sake of readability, we are not rewritingE into equi-satisfiable flat form.

328 A. Dovier et al.

Ci ∪ {equations of the formX = Y or of the form

X = {Y |V } in Ei } ∪F0(Ei) ∪F1(Ei) ∪U(Ei) ,

where the formulae placed inF0(Ei), F1(Ei), andU(Ei), as indicated be-
low, force the correct interpretation w.r.t. the axioms(F0), (F1), and(U0 ,1),
respectively:11

• F0(Ei) =Def {X 6= Y : X = f (V1, . . . , Vm), Y = g(Z1, . . . , Zn) both in
Ei , and f 6≡ g }.
• F1(Ei) = Def

⋃
f∈6\{ with }F1(f,Ei), where for eachf , assuming that

X1 = f (Y
(1)
1 , . . . , Y (1)

n), . . . , Xk = f (Y
(k)
1 , . . . , Y (k)

n) are all equations of
the formX = f (Y1, . . . , Yar(f)) in Ei , we have

F1(f,Ei) =Def

{(
n∧

h=1

Y
(i)
h = Y

(j)

h

)
↔ Xi = Xj : 0 < i < j ≤ k

}
.

• Let {X1 = t1, . . . , Xm = tm} be the entire set⋃
f∈6\{ with }{equations of the formX = f (Y1, . . . , Yar(f)) in Ei }; then

U(Ei) =Def A = {A1, . . . , Am} ∧
∧

={W | } in Ei

W /∈ A ∧
m∧

j=1

Xj = {Aj }

whereA, A1, . . . , Am are new variables not occurring inEi .

The formulae inU(Ei) reflect the fact that different uninterpreted terms must
denote different colors, by introducing setsA1, . . . , Am suitably witnessing
differences.

It is easy to prove that the above translation preserves satisfiability.

6 Type-Finding Through Hyperset Unification

This section is devoted to illustrating, through an example, how hyperset uni-
fication can be exploited for the task (more engaging than type-checking) of
type-finding. As in Chapter 6 of [3] —with slight adaptations to our needs—
we can inductively defineTYPE EXPRESSIONSas follows:

1. a basic type (such as boolean, char, integer, real) is a type expression;
2. there are type variables at will, each of them being a type expression;
3. if t is a type expression andn1, n2 are natural numbers, thenarray(〈n1,n2〉,t)

is a type expression;

11 A set{ϕ1, · · · , ϕ`} of formulae is being identified with the conjunction
∧`

j=1 ϕj , as usual.

Applied Hyperset Unification 329

4. if t11, . . . , t1m1, . . . , tn1, . . . , tnmn
are type expressions andi1, . . . , in are field

names (i.e. identifiers), thenrecord({〈i1, {t11, . . . , t1m1}〉, . . . ,〈in, {tn1, . . . ,

tnmn
}〉}) is a type expression;

5. if t is a type expression, thenpointer(t) is a type expression.
Analogues of type expressions in our sense —and, in fact, of ourground

type expressions— can be found in the declarations of a most typical program-
ming language such as Pascal.12 We may think, for example, that the Pascal
declaration type vector = array [1..10] of char binds the identifier vector to the
type expressionarray(〈1, 10〉, char). The rationale for admitting type vari-
ables in the context of type-finding is that the problem, here, is to detect from
the way constructs are used in a program the types of program variables whose
declarations are missing. An automatic inference process aimed at solving this,
must somehow represent partially specified types.Hollow types, that is, type ex-
pressions involving variables, represent incompletely known types. Moreover,
they can represent polymorphic data types.

Sets serve two purposes in the type language. As argument of the record
constructor, a set reflects our intention to attribute no significance to the ordering
of fields; for instance, both of the Pascal types

record
next : list;
data : char

end

record
data : char;
next : list

end
would be rendered by the same type expression in our framework.

Moreover, sets conveniently represent the union of types (the very same
idea was exploited, e.g., in [33, 34]). In this brief discussion type union has a
limited import, as we are using it only for multiply-valued record fields.

For recursive data types (such as lists or trees), a representation by rational
terms is appropriate. For such a representation, Herbrand systems are, of course,
very convenient.

A type constraintis a system of equations interrelating type expressions.
Among others, atype systemcomprises rules for associating type constraints
with the various parts of a program: it is in this fashion that specific instances
of the type-finding problem are generated.

Figure 5 illustrates how a type solver works. For the sake of simplicity, we
are only considering straight code inside a single procedure body, and our type
analysis will be based on the following assumptions:
• next is a keyword, whose meaning is: the expression〈id〉↑.next has the

same data type as〈id〉;
• the data type of the keyword nil matches any pointer data type.

12 Our ongoing illustration is based on a Pascal-like language only for the purpose of readability:
it is well-known that the applications of type-finding based on unification go well beyond the
tiny example to be elaborated here, and that this approach does not presuppose the language, to
which type-finding is applied, to be imperative.

330 A. Dovier et al.

Pascal-like program Type constraint

new(p); ⇒ P = pointer(P1),

p↑.next := nil; ⇒ P1 = record({〈next,{P }〉 |R1}),
p↑.mode := true; ⇒ P1 = record({〈mode, {boolean |C1}〉 |R2}),
p↑.date := 1965; ⇒ P1 = record({〈date, {integer |D1}〉 |R3}),
new(q); ⇒ Q = pointer(Q1),

q↑.mode := f alse; ⇒ Q1 = record({〈mode, {boolean |C2}〉 |R4}),
q↑.date := p; ⇒ Q1 = record({〈date, {P |D2}〉 |R5}),
q↑.next := p; ⇒ Q1 = record({〈next,{Q}〉 |R6}),

P = Q

Fig. 5. A type system in action

P = pointer(record({
〈next, {P }〉,
〈mode, {boolean |C1}〉,
〈date, {integer, P |D1}〉,

|R1}))

next

mode

date

◦→
boolean

integer

next

mode

date

◦→
boolean

◦→

Fig. 6. A solution to the type constraint

P andQ represent the types ofp andq, respectively.
Figure 6 shows a system in solvable form returned by the Hyperunify

algorithm, upon elaboration of the type constraint above. One observes that
recursive types are modeled through membership cycles.

Acknowledgments.We are grateful to Giorgio Levi, who encouraged us in pursuing to an end
the research reported in this paper. We are much obliged to Gianfranco Rossi, whose qualified
contribution emerges from a large part of the paper. Davide Aliffi and Enrico Pontelli actively
contributed to the early phases of the discussion. Angelo Monti acted as a consultant on the
complexity issues related to finite automata. Partial funding came from the Italian National
Research Council (CNR coordinated project SETA), from Compulog 2 (Esprit project 6810),
from MURST 40% projects (Calcolo algebrico e simbolico, Logica matematica e applicazioni,
Tecniche formali per la specifica, l’analisi, la verifica, la sintesi e la trasformazione di sistemi
software), and from MURST 60% (Programmazione logica con insiemi).

References

1. Aczel., P. Non-well-founded sets. Lecture Notes, Vol. 14 Center for the Study of Language
and Information, Stanford, 1988

2. Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms.
Reading Mass: Addison-Wesley, 1974

Applied Hyperset Unification 331

3. Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and Tools.
Reading Mass: Addison-Wesley, 1985

4. Arenas-Śanchez, P., Dovier, A.: A Minimality Study for Set Unification. The Journal of
Functional and Logic Programming 7, pp. 1–49, 1997

5. Baader, F., and Schulz, K. U. Unification Theory. In: Bibel W. Schmitt P.H. eds., Automated
Deduction: a basis for applications, Vol 1, pp. 211–243, Hingham MA: Kluwer 1998

6. Barwise, J., Moss, L.: Hypersets. The Mathematical Intelligencer, 13(4), 31–41 (1991)
7. Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenom-

ena, Lecture Notes, Center for the Study of Language and Information. Stanford, 1996
8. Clark, K. L. Negation as Failure. In: Gallaire H. and Minker, J. (eds.), Logic and Databases,

pp. 293–321 New York: Plenum Press, 1978
9. Colmeraurer, A. Prolog and Infinite Trees. In: Clark, K. L. Tärnlund, S.-̊A . (eds.), Logic

Programming, pp. 231–251 New York: Academic Press, 1982
10. Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tommasi, M. Tree automata

techniques and applications (Forthcoming book)
11. Cortesi, A., Dovier, A., Quintarelli, E., Tanca, L.: Operational and Abstract Semantics of

a Query Language for Semi-Structured Information. In: Fraternali, P. Geske, U. Ruiz, C.
Seipel, D. (eds.), Proceedings of 6th International Workshop on Deductive Databases and
Logic Programming DDLP’98, p 127–139. GMD Report 22, June 1998

12. Davis, M. D., Sigal, R., and Weyuker, E. J. Computability, complexity, and languages -
Fundamentals of theoretical computer science. Computer Science ad scientific computing,
New York: Academic Press, 1994

13. Dovier, A. Computable Set Theory and Logic Programming. PhD thesis, University of Pisa,
1996

14. Dovier, A., Omodeo, E. G., Pontelli, E., Rossi, G.-F.{log}: A Language for Programming
in Logic with Finite Sets. The Journal of Logic Programming, 28(1), 1– 44, 1996

15. Garey, M. R., Johnson, D. S. Computers and Intractability — A Guide to the Theory of
NP-Completeness. New York: Freeman 1979

16. Gecseg, F., Steinby, M. Tree automata. Akadmiai Kiado, Budapest, 1984
17. Hopcroft, J.E. An n log n algorithm for minimizing states in a finite automaton, In

Kohavi, Z., Paz, A. (eds.), Theory of Machines and Computations. pp. 189–196. New York
Academic Press 1971

18. Hibti, M. Décidabilit́e et complexit́e de syst̀emes de contraintes ensemblistes. PhD thesis
N.464, Universit́e de Franche-Comté, 1995

19. Inverardi, P., and Nesi, M. Deciding Observational Congruence of Finite-State CCS Ex-
pressions by Rewriting, Theoretical Computer Science, 139(1 & 2), 315–354 (1995)

20. Jones, N. D., Lien, Y. E. New problems complete for nondeterministic log space, Mathe-
matical Systems Theory, 10, 1–17 (1976)

21. Kapur D., Narendran P. NP-Completeness of the Set Unification and Matching Problems.
In: Siekmann J. H. (ed.), CADE 1986, pp. 489-495 LNCS 230, Berlin: Springer, 1986

22. L isitsa, A. P., Sazonov, V. Yu: Bounded hyperset theory and web-like data bases. In:
Gottlob, G. Leitsch, A. Mundici, D. (eds), Computational Logic and Proof Theory, 5th Kurt
Gödel Colloquium, LNCS, 1289 p 172–185, Berlin: Springer 1997

23. LLloyd, J. W. Foundations of Logic Programming. Berlin: Springer 1987
24. Maher, M. J. Complete Axiomatizations of the Algebras of Finite, Rational and Infinite

Trees. In Proceedings of 3rd Symposium Logic in Computer Science Edinburgh, 1988,
pp. 349–357

25. Martelli, A., Montanari, U. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems 4, 258–282, (1982)

26. Martelli, A., Rossi, G. Stepwise Development of an Algorithm for Unification over Infinite
Terms. Computers and Artificial Intelligence 9(3), 209–239 (1990)

27. Mendelson, E. Introduction to Mathematical Logic. Princeton, NJ; Van Nostrand 1979

332 A. Dovier et al.

28. Omodeo, E. G., Policriti, A. Solvable set/hyperset contexts: I. Some decision procedures
for the pure, finite case. Comm. Pure Appl. Math., 48(9/10) (special issue dedicated to J. T.
Schwartz), 1123–1155 (1995)

29. Omodeo, E. G., and Policriti, A. Decision procedures for set/hyperset contexts. In: Miola, A.
(ed.), Design and implementation of symbolic computation systems (1993), Vol. 722 of
Lecture Notes in Computer Science, 722 pp. 192–215, Berlin: Springer

30. Shepherdson, J. C. Negation in Logic Programming. In: Minker, J. (ed.), Foundations of
Deductive Databases and Logic Programming, pp. 19–88, Los Altos, CA: Morgan Kaufmann
1988

31. Shmueli, O., Tsur, S., Zaniolo, C. Compilation of Set Terms in the Logic Data Language
(LDL). Journal of Logic Programming 12 (1), 89–120 (1992)

32. Stolzenburg, F. Membership-Constraint and Complexity in Logic Programming with Sets.
In: Baader, F. Schulz, K. U. (eds.), Proc. First Int’l Workshop on Frontier of Combining
Systems, p 285–302, Hingkham MA: Kluwer 1996

33. Tenenbaum, A. M. Type determination for very high level languages. Courant Computer
Science Rep. 3, Courant Inst. of Mathematical Sciences, New York University New York,
1974

34. Weiss, G. Recursive data types in SETL: automatic determination, data language description,
and efficient implementation. Computer Science Dept., Tech. Rep. 201, Courant Inst. of
Mathematical Sciences, New York University, New York, 1986

