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Abstract. Auniverse composed by rational ground termsis characterized, both
constructively and axiomatically, where the interpreted constutick , which
designatesthe operation of adjoining one element to a set, coexists with free Her-
brand functors. Ordinary syntactic equivalence must be superseded by a bisim-
ilarity relation~, between trees labeled over a signature, that suitably reflects
the semantics abirh . Membership (definable agd‘e r =, (t withd) ~ t”)

meets the non-well-foundedness property characteristiypérset theoryA
goal-driven algorithm for solving the correspondungfication problems pro-

vided, it is proved to be totally correct, and exploited to show that the problem
itself is NP-complete. The results are then extended to the treatment of the op-
erator less , designating the one-element removal operation. Applications to
the automaton matching and type-finding problems are illustrated.

Keywords: Semantic unification, Bisimulations, Hypersets, Set theory, NP-
completeness

Introduction

Graphs are widely used among basic data structures for representing both terms
and sets (cf. [9, 1]). Such representation is particularly convenient and useful
for algorithmic manipulations in fields like declarative programming, seman-
tics of concurrency, and automated deduction. In view of applications in these
and other fields, it is rather natural to assume the finiteness of graphs that are
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to represent terms or sets; however, it is often convenient not to impose the
additional constraint of acyclicity. By resorting to cyclic representations one
is in fact enabled, to a limited but significant extent, to treat infinite terms (cf.
[23]) and non-well-founded sets (cf. [1]).

Well-established applications of the latter, today often cdigukrsetsre-
gard the handling of automata, and the modeling of linguistic self-referential
situations [7]. Supposedly, many more applications will be found in the mod-
eling of shared information systems: web-like databases [22], query languages
for semi-structured information [11], etc. Even though issues of computational
complexity still set a limit to such applications, hypersets and the related no-
tion of bisimulation offer the best conceptual framework for the treatment of
circular phenomena.

In this paper we studsational terms (cf. [24]) and circular sets, combined
into a very expressive and self-referential abstract type. Instances of the latter
type, calledblended ¢r hybrid) hypersetsare represented by graphs labeled
over a signature. The signature is, of course, to comprise one or more symbols
denoting operations over hypersets; itwillalso comprise free symbols, including
at least one constant. The share of the sighature needed to represent purely set-
theoretic terms consists of tleconstant and the binaryith operator whose
semantics can be intuitively conveyed by the following identity:

x withy = x U {y}.

The very modest set-theoretic signature constituted by these two symbols alone,
already suffices for the representation of the so-c&lérdditarily finitesets and
hypersets.

The main focus of this paper is the design ofj@al-driven unification
algorithmfor blended hypersets. After specifying such an algorithm, we show
how to extend it into a more versatile set-constraint manager capable of dealing
with negative information: to wit, we take into account the binary function
symbol less whose intuitive semantics is conveyed by the identity

xlessy=x\{y}.

The unification algorithm to be presented has a rather traditional struatiare,
Martelli-Montanari (cf. [25]): when applied to rational terms that do not involve
the set-theoretic constructs, it in fact behaves very much like well-established
algorithms, such as those proposed in [9, 26].

As already said, hypersets of the kind to be studied here result from a
combination of entities from two domains. In order to precisely specify our
unification problem, an axiomatization of the context under study is needed.
We propose a theory of rational terms and hypersets, minimal in some sense,
that can serve as a kernel for other, richer and accordingly more specialized,
theories. In the context of such theories, our unification algorithm can still be
exploited.
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From the axiomatic part of our study, an interesting kinship emerges be-
tween the axiom that Maher introduced in [24] to guarantee completeness of
the theory of infinite trees, and the axiom of bisimulation narAé4 in [1].

Both axioms are adopted below, because our theory was aimed at achieving as
much completeness as possible—though with least possible commitment.

It is worth emphasizing here that the theory to which our unification algo-
rithm refers is not —nor would easily be— axiomatized in merely equational
terms. The price we have to pay for this is that we cannot rely much on the vast
literature on unification (cf., e.g., [5]), which is mainly focused on equational
theories. To what extent and how our results can be recast in more conven-
tional terms is a main issue left open by this paper. A promising approach for
this is perhaps indicated by [19]; however, our current approach is closer to
tableau-handling techniques than to rewriting techniques.

We also carry out a complexity analysis, leading to the conclusions that the
proposed unification algorithm is in NP and that the unification problem under
study isNP-completeVarious studies on the complexity of this problem, even
restricted to sets (cf., among others, [21, 4, 32, 18]) show its intrinsic difficulty,
so that proposals for more efficient set-unification algorithms are necessarily
based on assumptions strongly limiting their field of application (cf. [31]).

The paper is organized as follows: after laying down in Section 1 an intuitive
rationale for the hyperset notion, we characterize in Section 2 the universe of
blended hypersets, both constructively and axiomatically. Section 3 presents
hyperset unification as a very high-level paradigm to solve the deterministic
finite-state automaton equivalence problem, along with a less classical, but
nevertheless interesting, automaton matching problem. Section 4 is devoted
to describing the blended hyperset unification algorithm, whose soundness,
completeness, and termination are then proved, and whose complexity behavior
is analyzed. In Section 5 itis shown how to extend the algorithm to deal with the
negative information introduced by the removal operatos . Finally, we end
with an application of blended hyperset unification to the type-finding problem,
illustrated in Section 6: it turns out that while ordinary sets in type expressions
suffice for the modeling of union data types, hypersets can play a role in the
modeling of recursive types.

Although this article is a continuation of [28], it should be readable as a
self-contained paper. There is, however, a dependency on a decision algorithm
of [28] in the (rather marginal) Section 5.

1 Naive Approach to Hyperset Theory, Based on the Analogy
with Terms

In this preliminary section, where we proceed in somewhat naive terms, we
will contrast ordinary (nested) sets with entities of a much richer variety, to be
called —after [6, 7]—hypersetsThese are also known by the naman-well-
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founded setin the thorough study [1]. Indeed, hypersets violate a principle
widely agreed upon in the field of Set Theory since von Neumann introduced,
in 1928, theegularityaxiom: traditional membership is a well-founded relation
over sets—the situation, with hypersets, is antithetic.

In parallel, we will contrast ordinary terms of first-order logic with terms of
the generalized kind treated, e.qg., in [23], Ch. 6. The latter have become familiar
to researchers in the field of Logic Programming by the naniefiofite terms
We will recognize a tight analogy between terms and sets: to state it simply,

sets are to hypersets as ordinary terms are to infinite terms.

In view of this parallel, the unified (or “blended”, or “hybrid”) data structure
to be investigated in this paper, encompassing both hypersets and generalized
terms, will come out quite naturally.

After characterizing the domain of blended hyperskts, (where X is a
signature—see below), we will tackle the problem of solving systems of equa-
tions overHs . In order to study this problem in greater generality, a convenient
starting point is to consider particularly heavily constrained systems

Xo = {Xot, .-, Xomo }
X1={X11, ..., Xom, }

Xn = {ana sy Xnmn }

of set equations. In this initial stage, we are assuming that the left-hand sides,
namelyXo, ..., X, are distinct from one another (even though some of the sets
they represent might coincide); moreover, each one okthein a right-hand
side must be the same as one of the symigl®n the left. As forn and the
m;S, they simply are non-negative integersiny, ..., m, € IN, as infinite sets
are beyond the scope of this paper.

By traditional methods, a system of this form admits a solution if and only
if there is an orderind(,,, ..., X,, of the X;,s such that any, ; occurring
in the right-hand side of the;,-th equation is one ok, ., ..., X, forh =
0, 1,...,n. Moreover, when thision-circularity conditionholds, uniqueness
of the solution ensues fromxtensionalitywhich is the postulate stating that
two sets are equal if and only if they have the same members) and from the
bi-implicationsvVz (z € {v1, ..., u} < \/jkzlz = v; ), one for each > 0,
that summarize the semantics of the constfuct . ., _}.

To move from ordinary sets to hypersets, we aggastulatehat any system
of the above form, whether circular or not, admits a solution, and that such a
solution is always unique.

1A proof of this fact goes as follows. If a solutiaXi; = &, ..., X, = &, exists, theX,s
can be ordered so that the ranks of the correspongjagio not increase: this ordering will
meet the desired property. Conversely, if a permutatiomith the stated property exists, then
m,, = 0 and, accordinglyX,, = @; moreover, the value of;, can be determined from those
of X X, forallh <n.

The1r o
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For example, both the equatidh= { X } and the system

Xo={X4, X3}
X1={X2 X3}
X2 ={X3}
X3 ={X1}
Xa=1{}

have solutions. Indicating b the hyperset such th& = {2}, we readily
recognize thal(; = X, = X3 = Q, X4 = 0, Xo = {#, 2} is a solution to
the system. This solution hence must be the only one—otherwise stated, one
can inferX; = X, andX; = X3 from the equalities\; = { X», X3}, X, =
{ X3}, X3 = { X1}, byvirtue of the new postulate, stronger than extensionality.
Of coursel £ Qand2 £ {4, Q },becaus& z(z ¢ ¥),Vz(z € Q < z = Q),
andvz (z € {0, Q} < (z =0 Vv z = Q)) all three hold, and therefo&has
no members2 has exactly one, ands, 2} has two.

Let us now switch to the realm of terms by considering a ‘flat’ system

Xo = fo(Xo1, ..., Xomg)

Xn = fn(xnl, ey Xnm,, ) ,

analogous to the one above, whefkge. . ., f, belong to asiGnaTURE X. This
means that is a collection of symbols, and that every symbok X has
an associatedecree (or “arity”) ar(s) € IN, stating the legal numbe# of
arguments of in any well-formed expression of the for,, ..., t,). In par-
ticular, a system like the one above would be ill-formed unkess ar( f;) held
fori =0, ..., n. Thisis the only new requirement: just as befoxe, ..., X,
must be distinct variables from whose collection e&ghis drawn. Variables
are now assumed to range over the don@incommonly known as theler-
brand universegenerated by. This domain consists of all ground terms over
the signature: accordingly, to solve the system one must substitute Eyery
by a ground termy, so that every equality gets transformed into a syntactic
identity.

The same non-circularity condition discussed earlier in connection with the
solvability of a system by ordinary sets, is a necessary and sufficient condition
for the solvability, oveG 5, of the new system. As before, the solution— y;,
if one exists, is obviously unique.

One way to move from ordinary terms to infinite terms, is by postulat-
ing that every system of the above form —even one with infinitely many
equations— admits a solution, and that the solution is unique. In circular
cases —or when is infinite— i.e., when the system contains equati&ps=
fioCo s Xigs o), Xiy = fi, (oo, Xiyy - . 2), . .. that form an infinite chain, some
ofthey;s, instead of being drawn frofy, will be drawn from a larger domain
Gy, known as thecompletion of the Herbrand universwer ¥ (cf. [23]). If
we allowed the number + 1 of equations to range from one to infinity, then
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the whole ofG 5, would be spanned by the solutions to flat systems &ydaut
since we will limit our consideration to finite systems, gus will come from
adomainGy intermediate betweeGy, andGy. The terms inGy, are usually
said to berational, and various methods exist for specifying them (grammars
and tree automata [16, 10], axioms [24], etc.).

In order to combine sets with ordinary terms and hypersets with infinite
terms, the first step will be to assume tRatomprises two symbolg,andwizh,
of respective degrees 0 and 2. Byrh, used as a left-associative infix operator,
we intend to designate the operation of inserting an element into a set—or, more
generally, into a hyperset. An expression of the fdram, ..., wy } will be
regarded, accordingly, as an abridged notatio@feith wy with - - - with wy;
more generally,

{wi, ..., wi |z} =pe (- (zwithwy) with---with wy)
(—
k
{wi, ... we} =pe{we, ..., we |0}

Any ground term whose outermost functor differs framt /. will be regarded
as a memberless entity, namedaor. Either? (our name for the ‘official
empty set) is the sole color, which happens only whkr= {#, with }, or
there are also other colors; these are the two cases calkedhnd BLENDED,
respectively. Quite unconventionally, we will allow insertions liRewith X

for any colorC distinct from@, regarding any hyperset that results from an
insertion of this kind as something distinct framwith X.

Unlike other functors, which merely play the role of syntactic constructors,
with has an intended meaning; hence we can no longer insist that every flat
system has a unique solution. For example, the equation { ¥ | X, } (which
meansXy = Xo U {#}) is satisfied by any set to whighbelongs, and hence
has the infinitely many solutions

Xo = {0, %J@}-.-}}, k=0,1,2,...

—and many more. As will emerge from the next section, to circumvent the new
difficulty it suffices to restrict one’s consideration to systems

n
/\ Xn = fiXn1s - s Xnar(s)) »
h=0
as above, whence one cannot extract an infinite chain

Xh0={7|Xh1}, Xhlz{*lxhz}’ thz{*|Xh3}’

of equations (clearly with repetitions). In a theory of blended hypersets, one will
postulate that every system of equations subject to this restriction admits one
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and only one solution. In atheory of blended sets, the existence (and uniqueness)
of a solution will presuppose non-circularity, as usual.

We have been approaching the notion of hypersetin terms of single-solution
systems of equations. We now address the questibat isan hyperset, pre-
cisely? A reasonable way of answering would be to circumscribe, from among
single-solution systems of equations, ‘canonical’ systems of a suitable kind. In
each system, the left-hand sidg of the first equation could be taken as the
variable of interest. Roughly, a system should be regarded as canonical when
every equation in it irredundantly contributes to the determination of the value
& of the variable of interest. One could identtfyut courtthe canonical system
with the hyperset.

Irredundancy presupposes, among othi@jsctivity: that is, the values of
distinct variables should be different. But how can one ascertain that this re-
quirement is fulfilled? An answer is contained in the constructive notion of
bisimulationin the next section. From now on, to clarify the presentation,
single-solution systems will be represented by graphs labeledXyverhile
their variables will be represented by nodes of such graphs.

2 Characterization of Blended Hypersets

In this section the notion dblended hypersewill be defined precisely, both
constructively (in Section 2.1) and axiomatically (in Section 2.2).

2.1 Intended hyperset model

The entities that form a Herbrand universe are sometimes characterized as
being finite trees coherently labeled over a signafirdt is easy to adjust

this abstract view of ground terms to the terms that formdbeapletionof

a Herbrand universe: to do this, it will suffice to withdraw the requirement
that labeled trees must have finitely many nodes. From this graph-theoretical
perspective, syntactic equivalence between terms turns out to coincide with the
notion of isomorphism between labeled, ordered trees.

Given a term7, one can ‘fold’ it by fusing two nodes, u of 7 into a
single node whenever the subterms rootend at are equivalent to each other.
This will yield an ordered multi-grapke, both rooted and directed, retaining
information of all essential features of: the picTure of 7, as we call it. If
there are no infinite paths in, this indicates that the origina” was already
finite: this is the case of aproinarY term. WhenZ is finite, 7 (which might
be infinite) is said to be raTioNnAL term.

If one restricts one’s own attention to rational terms and represents them
suitably (e.g., by their pictures), then, at least assuming the signattode
finite, even infinite terms can be algorithmically construed and manipulated.
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(a) (b)
with with
Xa={0{Xa} Xp = {Xp | Xp }
)

Fig. 1. The terms depicted by these graphs cannot be regarded as ground.

In the case under study, the construction of the universe is not entirely free.
We are assuming, in fact, thatcomprises a symbol, namelyizh , to which
a special, fixed meaning is attributed (cf. Section 1). The intuitive semantics
of this construct must reflect into the criteria we adopt for equivalencing la-
beled trees. Such criteria cease accordingly, in our specialized context, to be
purely syntactic. At an even more fundamental level, we will have to discard
certain trees labeled ov&l, that cannot be regarded as ground terms due to the
semantics ofwith .

To proceed more formally, let us start by recalling a classical definition (cf.
[23]), which still awaits a minor adaptation to our aims:

Definition 1 Acrounp TERM(OVerX) is a mappingZ :dom7) — X such
that

e the domain dorty") of 7 is a non-empty ordered tree whose roofJs
e forall vindoma), ar(7(v)) =|{i : [v,i]in dom.7)}|, where[v, i]
stands for the-th son ofv.?
(|

To avoidunder-specifiedituations, we then add:

Groundness restriction. The requirement henceforth becomes integral part of
the definition of (groundjerm that there be no infinite sequeneg vy, vy, . ..
of nodes withy (v;) = with andv; 1 = [v;, 1] for all i. O

To see why the presence of a paghvy, vo, ... as above, in a term, would
conflict with the very notion of groundness, let us examine the two graphs of
Fig. 1. Either of themis the picture of a labeled tree that violates the groundness
restriction. The left arc in either graph indicates —if anything— self-inclusion;
hence it conveys no information about the enti&, (and X, respectively)
represented by the root. The second arc of Fig. 1(a) indicate thast belong
to X4, a property which is clearly insufficient to characterig The right arc
of Fig. 1(b) indicates thaX, must belong to itself. I, were to be an ordinary
set, this would be an absurdity, but we are dealing with hypersets here. Since
membership can form cycles among such entities, we are again facing an under-
specified situation.

2 We follow [23] in identifying [[ay, . . ., a, ], aperlWith [aq, ..., a,, a,11), to keep the no-
tation simple.
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x0 x1 xz xa co 0 %
Xi = {Xig1, Ui}

T(e) = with
N
ces Up=0

T()= 9
Upn Uz Us U Uin={U;} (i=0,1,2,..)

Ug

Fig. 2. This graph is the picture of an irrational ter#h representing a cycle-free hyperséi.
Notice thatXy, as well as every element in its transitive closure, is finite.

Our next step will be to getrid of irrational terms (an example of set-theoretic
irrational term is the one whose picture is the graph of Fig. 2). Preliminary to
that, we need the notion bfsimulation which in turn presupposes the following
couple of auxiliary notions.

For every terny” and any indom (), letr, ..., t, anduo, ..., ug,—1 be
the sequences of nodes such that= v; 7 (1;) = with, 1,1 = [t;, 1] and
wi =[r,2]fori =0,...,8 -1 7(r,) # with . We denote byColor(v)
the noder, and say that thg;s are thes-PrRebecessor®f v.

Definition 2 Let7g, 771 be terms. Arelatio® C dom(79) x dom(77) is said
to be aBisimuLATION betweeryy and 7 iff: i) []1 #[], ii) whenyvy % vy, the
following hold:

e Colorg(vg) % Color,1(v1), Jo(vg) = 71(v1), and moreover
e to everye-predecessop, of v, in 7, (b = 0 or b = 1), there corresponds
at least one=-predecessop;_, of v1_;, in 71, such thatog % 01;

o if 79(vo) Zwith, then[vg,i] % [v1,i]fori =1,...,ar(Jo(vp)).
We write7y ~ 7 iff there is a bisimulatiorw? betweeryy and 73. O

Bisimulations are, in a sense, isomorphisms complying with the intended
(hyperset) semantics obith. Accordingly, 7 will be regarded as eational
term iff it has only finitely many subterms that cannot bisimulate one another.
To make this idea precise, let us denotedb the subterm of7 issuing from
a given node.

Definition 3 A ground term7 is said to beratioNAL iff there arevg, ..., v, in
dom(7) such that for every. in dom(7) there is ani, 0 < i < n, fulfilling
T v ~ T [. O

In conclusion, indicating b s , Gy the family of all rational ground terms
over X and its subfamily consisting of the terms that have finitely many nodes,
OUr HYPERSET UNIVERSEANdSET UNIVERSEWIll be

Hy =,Gx/ ~, Hy =4 Gx/ &
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X, — k . ok — X5
X1 = k(g(X3)) X1 =k(X4) | X2=k(Xs)
X2 = k(k(X3)) X4s— g ok — X5 X3 =h(Xe) | X4=g(X3)
Xs = h(h(g(X3))) N\ Xs = k(Xa) | Xo=h(Xa)
Xﬁ —~h —eoh — X3

Fig. 3. Two renderings (the one on the right ‘flat’) of the same ground labeled graph.

respectively. Representing 5~ the ~-class of7, the element insertion op-
eration and membership relation over these universes can be straightforwardly
defined as

T o withs T =puW”™, Ty es Tg (ffou? =~ T,
wherey is atree whose root, labelad 7, has left and right subtree isomorphic

to 7o, 71 respectively.
Every symbolf other thanwith in ¥ is interpretech la Herbrand, that

is to say, as the operation sending eactuple 77, ..., 7, withm = ar(f)
into.7~, where7 ([]) = fands[[il~ 7;,fori =1,...,m.

As was done in [28] with reference to tharecase only, we could provide
criteria for choosing &@anonical representativeut of eachr-class: represen-
tatives could then be taken as hypersets proper.

Let us now generalize our discussion by adjoining to our former signature
> a denumerably infinite collection” of new symbols of degree 0, named
VARIABLES. Labeled graphs, and in particular terms, whose labeling may involve
variables, or that may violate the above-stated groundness restriction, will be
said to beioLLow. As willemerge from Section 4, every hollow, rooted and finite
graph depicts aoLLecTion Of ground terms, obtainable from it via substitutions.

As illustrated by Fig. 2 and Fig. 3, any ground labeled grapipossibly
with cycles) can be variouslyenperRen up to isomorphism, as a conjunction
(consisting of a single element whehis finite and acyclic; infinite whew
is not rational) of first-order equalitie8, ,,, 4 (X, = t,) over the signature
> U7, where

e %is acollection of nodes @& comprising all nodes of devoid of entering
arcs, along with at least one node lying@nfor each infinite patho of ;

e the X, s belong toy”, hence they are not used as labelg/jrand they are
distinct from one another; thes are first-order ternisover the signature
YU{X, : ving).

To do that, one views as a collectiol %, : vin% } of finite acyclic rooted
graphs labeled ovex U { X, : vin%}, eachv in ¥ bearing the labek, and

3 Notice the distinction we are making between first-order (concrete) terms and terms in the
graph-theoretical sense.
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each¥, being in a sense ‘grafted’ into; then one takes as the first-order
term that straightforwardly corresponds4p.*

Viewed this way, a rational ground labeled grapfs just a special case of
what is usually called &lerbrand system

Definition 4 A HERBRAND SYSTEMIS a finite collection¢, = r1, ..., £, = r,}
of first-order equalities, wheret, r1, . .., £,, r, are terms over the signature
> U 7. A Herbrand syster# is said to berLat if every equalitye in ¢ has
either the formX =Y, or the formX = g(Y1, ..., Y,) withg in Z. O

Solving general systems of this kind over hypersets is the main unification
task coped with in this paper, that we will tackle in Section 4.

2.2 Axiomatic view of the blended hyperset universe

To state our axioms abolnypersets we will use a first-order language compris-
ing the constant, infix operatorswith andless , the (infix) predicates- and
€, and a number of functors to which we will resort in order to express most of
our axioms without using existential quantifiers. We often{usg . . ., wy | z}
and{ws, ..., wi} to shorten notation, as explained in Section 1.

It goes without saying that meets the usual properties of equality (see,
e.g., [27]), which we collectively denote by the lalfe]).

The symbols:, y, z, u, v, x;, xf’, y; will stand for distinct variables implic-
itly universally quantified in front of each axiom.

We begin with (a suitable adaptation of) theensionaLITY axiom, accord-
ing to which any two entities that have the same color and the same elements
are equal. Formally

‘(E)H(VZ (zex < ze€y) A coloroof (x) = color,of(y)) —>x=y.‘

Then we have axioms concerning the empty entities naroesks(in par-
ticular thenull set?) and theeLEMENT ADJUNCTION aNdELEMENT REMOVAL Oper-
ations, with and less .

(Ng.1) v ¢ color_of (u) color_of (W) =0
Wy 1) ve{ylu} & (veu vv=y) color_of ({y|u}) = color_of (u)

Lo.1) veulessy < (veu Nv#y) | colorof(ulessy) = color_of (u)

4 WhenY is rooted, finite and acyclic, so that its renderingfis= ¢, X not occurring ir¢, ¢
itself is calledrenderingof 4.

5 Depending on the context, a Herbrand sys#mmay be seen at times as a set/system of
equations, at times as a conjunction of equality atoms.
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TheaNTI-DIAGONAL andseLF-Loor axioms below ensure, for example, that
for any colory and any tuple, ..., v, of hypersets, the system

X ¢UVvIA - AX &V, ANX &x A colorof(x) =1y
of constraints, as well as the equation
X = {X,Ul,---,vmb’}

can be satisfied (one independently of the other).

(Dy) (x:antidiagonal(u,y) A (v equ:x)) —
(color,of(x) = color_of(y) N x ¢ v)
(Do) || x = self dloop(u, y) —
(color,of(x) = color_of(y) A (v ex < (veuvue= x)) )

We are arriving at the axioms essentially expressing our own weak ver-
sion of Aczel’'sanTi—FounpaTION Axiom AFA (see [1]). We name such axioms
ANTI-REGULARITY, (R), andHyPER-EXTENSIONALITY, (H). To introduce these two
schemes in informal terms close to the contents of Section 1, let us consider a
system

n
N = xm )
j=0

wheren > 0,m; > 0 for all j, xo, ..., x, are distinct variables, each;

is one ofxo, ..., x,, and thej-th ‘congruence’ of the system is a short for
Vz(z €x; < 21z = x;). Anti-regularity states that each such system
admits a solution with pre-assigned colors for ths. Hyper-extensionality
states that the solution is uniquely determined by the colors, even if we consider
a more general system of congruences

n
/\ .Xj E{le,...,ijj|Zj} .
j=0

wherez is a fixed ‘residue’ (in the preceding system,= ¢ for all ;).

In the formal specification below, we employ distinct auxiliary variables
XQ» -+ +» X9, X5, ..., Xy, and indicate by”,, ..., xb the variables; such that

s Mpy ’ jm]'

x;, occurs inside the right-hand side of tji¢h congruence.

5 The role and importance of these two axioms first emerged from [29] (cf. also [28]).
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R || Fxo---Fx, A O(color of(x])—color of (yj) A
Vi(zex; © V2 = x/k))

H) (/\ 0(color of(x ) = color of(x ) A

( Apmo Nico (%] EX < Vil ¥ _x]k))/\

Ve((zexP A Ngz#x)) « (zext A /\ Oz;éxl))))

—>/\,0 —le

Let us incidentally observe thégR) is a sort of weak form of Aczel'8FA 1,
while (H) corresponds té&\FA,. Notice also that the adoption @) makes
the extensionality axiontE) redundant (cf. [29, 28]).

The following five axioms are Clark’sreenessassumptions (cf. [8]), an
adaptation of Reiter's/eak pomain cLosurE AssumpTioN(cf. [30]), and a state-
ment, antithetic to theccurs-cHeck scheme (cf. [8, 30]), which generalizes
R).

Here we assume that our signatdreontains solely, with and the free
functors mentioned in previous sections. In particulass , colorof, and any
other functor introduced to state the axioms in this section, are nbt We
are to assume that, g, and all f,s appearing below, belong ; also, g is to
be distinct from bothwirh and f. Finally, letA = max{ar(h) : hinX, h #
with }.

Axiom (Ug) will only be included whenx has finite cardinality. Every
instance of —OC) results from a finite ground graphlabeled overz, where
it is not restrictive to assume thatis cyclic. The variables,, ..., x,, are in
one-to-one correspondence with the nodgs. ., v, of ¥; we are indicating
by f, the label of the node, by n, the degree off,, and byu} the j-th son
of v. The uniqueness requirement was introduced by Maher in [24] in order to
achieve completeness of his theory of infinite trees: this makes it very similar
to AFA. Such kinship will be exploited in a continuation of this paper to carry
out a reduction of thblendedhyperset unification problem to tipeirehyperset
unification problem (cf. [13]).

(Fo) Jxe, oo xn) # g(y1s vy Ym)

(F) | g(x1,ox) = g1, yn) —> (x1=y1 A-oA
Xn = Yn)
(Uo) x = color-of (u) —> Ix1---3IxXa Vjyins\(wirh)
x =h(x1, ..., Xerm)

(U color of (f(x1,..., %)) = f(x1,..., Xu)
(=OC) || 3! xug -+ Xu /\y node ofs Xv = JoGugs - ’xﬂr”w)
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Remark 1

1. To obtain from the preceding theory of hypersets a corresponding theory of
setswe should drogD.), (R) and(—OC), adopting a classicatecuLARITY
axiom and a suitable version of tleecurs-cHECck scheme of axioms (cf.
[14]).

2. Itisimmediate to see thét);) generalizegN,); also, it is plain to deduce
(Np) from the remaining axioms, includindJo). Hence one shall not list
(No.1) among the axioms when is finite. O

3 Expressiveness of Equation Systems Over Hypersets: An Example

One of the most common exploitations of hypersets is as a means to model
deterministic finite-state automata. As we will now see, the notions introduced
so far provide a well-suited framework for conceiving automaton manipulation
algorithms based on this kind of modeling. Another, rather distant, application
of hypersets will be considered in Section 6.

A deterministic finite automato(DFA for short) consists of a set =
{q0, - .., gn} Of states analphabety = {s1,..., sy} (With0 < M < 00), a
partialtransition functiond : 2 x ¥ — 2. Moreover, one of the states —say
go— is singled out as thmitial state, and there is a sef C 2 of accepting
stateg(for a full explanation of DFAs see, for instance, [2, 12]).

Given a DFAA as just said, one can construct a corresponding Herbrand
systemé 4 involving as many unknowns and equationsdakas states, in the
signatureX = { with , @, false, true } U % where all symbols savevith

have degree @, consists of the equations (one foreach O, ..., N)
M
X; = {fiyu | Jsu
h=1
where

fi is the truth value ofg; € 7,
Sin =0 if d(g;,s,) isundefined
Sin = {Usn, X; 1} if d(qi,sn) =q; .

Even thoughs 4 is not written in flattened form, it should be clear from the
discussion in Section 1 —echoed by the axigigsand(H) in Section 2.2—
that& 4 has a unique solution over hypersets: we can take the hyperset value of
Xo in this solution as a representation, more essential than the automaton itself,
of the regular language’(A) accepted bw.

This is essentially the same technique for translating finite automata into
hypersets provided in [7], where it is shown that graph bisimilarity (cf. our
Def. 2 of =) faithfully reflects equivalence between deterministic automata.

To illustrate how one can test whether or i6tA) = £ (B), for given
DFAs A andB, let us consider the following automata with alphabets}:
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b a
AYA
(D—@—@)
DFA A
Here, the sets of accepting states @rg = {q1, g2} andZ 3 = {q1}, respec-

tively.
In our framework, these automata can be modeled by the systems:
Ea={Xo={false, {a, X1}},
X1 = {true, {a, X2}, {b, X1}},
Xo ={true, {a, X2}, {b, Xa}} },
&g =1{ Xy =1{false, {a, X}}},
X1 = {true, {a, X1}, {b, X1}} }.
Both of these admit a solution, but it is not obvious that the systgm & U
{ Xo = X;} resulting from their combination has a solution as well: the latter
system contains in fact a pair of equations sharing the same left-han&side,

We are facing an instance of tiendedhyperset unification problem to
be discussed in full generality later on. In the case at hand, the answer to the
problem will be affirmative, because we can directly check on the automata that
I 4 &~ 7 g under a bisimulatiom, wheres , and.7  are the values yielded
for Xo and X, by &4 andé's.

The problem of testing the equivalence of two deterministic automata is
NL-complete (cf. [20]) and can be solved by very fast algorithms (cf. [2, 17]).
However, it would be wrong to expect from this deceptively simple example
that hyperset unification could be performed by suitably adapted versions of
those algorithms. Via a reduction to hyperset unification, we can solve the
more general problem of establishing wheth@aatially definedDFA can be
completed into a given deterministic automaton, a problem that we will show
to be NP-complete.

As an example of this kind of one-way matching, let us consider the problem
of establishing whether the following partially defined automatoh

b

A
@@=

whereH, K, andQ are unknown, can be instantiated so as it accepts the same
language as the previously seBRA A. In other words, we are to solve the
system¢, U &c U {Xo = Qo}, Whereé ¢ reads:

7 Note thata priori this automaton could even be non-deterministic.



308 A. Dovier et al.

Qo = {false, {a, 01}},
Q1 = {true, {b, 01}, {H, Q2}},
02 = {F2, {K, 01}},
{Fo|_} ={false, true},
{H,K|_}={a,b}.

Two solutions indeed exist: one of them yiel@s = Xo, 01 = Q02 = Xy,
H=a,K=b.

4 Hyperset Unification

The following notation is used below. Capital letteéfs Y, Z, etc. represent
variables;f, g, etc. stand for functional symbols (i.e. elements)f = de-
notes the syntactic identity relation between first-order terms Bvers”; ¢
denotes the result of replacing every occurrence of the variglidg Y in a
qguantifier-free first-order expressignandvars(¢) denotes the set of all vari-
ables occurring irp; dom(A) andran(A) denote the set of first, respectively
second, components of a binary relatiarHereafter we only need to consider
substitutions of the following kind:

Definition 5 A (ground)suesTitutionis @ mappingy from a finite subset of”
to the universeGy,. O

4.1 The Unification Problem

One carrppLy a substitutiory to a hollow grapt¥, thereby obtaining a ground
v, when dontiy) 2 7 N ran(%): to do that, one will graft an isomorphic copy
of y(X) in place of each nodelabeled?(v) = X, for all X in dom(y). After
observing that every first-order terms the concrete rendering of an acyclic
rooted grapty, labeled overxz U ¥ (see ending remarks of Section 2.1), one
realizes that the notatiorf makes sense too, provide@dm(y) 2 vars(t).
Thus we are ready to define:

Definition 6 AsoLuTtionto a Herbrand syster is a substitutiory that solves
all equations ing atonce. Thatis, foralt = r in &, bothdom(y) 2 vars(£) U
vars(r) and£” ~ r? hold. O

There are systems of equations of special forms for which a solution can be
determined quite easily.
Definition 7 A Herbrand systend is said to be irsoLvasLE FOrMif each equa-
tion in it has one of the forms:
e X =Y, withY distinct fromX and X not occurring elsewhere i#;



Applied Hyperset Unification 309

o X = f(Yy,...,Y,),orin particular X = {Y»| Y1}, with X not occurring
as left-hand side of any other equationdn

A Herbrand system in solvable form is said to deLiciT if it contains no
subsystem of the followingprerform:

XO = {Y0|X]_}, sy Xm—l = {Ym—llxm}v Xm = {Ym|X0}
(for m = O this reduces to the single equatidiy = {Yy|Xo}). O

To justify this nomenclature, let us see how readily a solution to a system
in solvable form can be found when the systemisLicit. One can proceed
to enlarge the system with all equatiofis= @, where eaclt is a variable
that, although occurring in the system, does not occur as left-hand side of any
of its equations. The ground imag€X) of each variableX in a solutiony,
can thus be read directly off the system. (Trivially, the solution to the enlarged
system is unique up ter; however the original system could have had many
other solutions.)

More generally, a system in solvable form can be modified until it becomes
explicit. Every modification step will introduce new variables; however each
solution to the modified system can be restricted to the old variables giving a
solution to the previous system. Thus, at the end, any solution to the explicit
system will also be a solution to the original system. To see this, note that
y(Xo) ~ y(X1) ~ --- ~ y(X,,) must hold in any solutioy, when there is a
zipperXo = {Yol X1}, ..., X1 = Y1l X}, X, = (Y| Xo}. Therefore,
as long as a there is a subsystem of this kind, we can replace it by the equations

Kl = {YOIKO}v e Km = {Ym—lle—l}’

XO = {Ym|Km}7 ey Xm = {Ym|Km} s

where Ky, ..., K,, are new variables. While the system resulting from this
modification is still in solvable form, it is closer to explicit form, because the
number of zippers has been reduced.

We are now ready to state the unification problem in very specific terms.
Systems in solvable form can, for that sake, be employed as templates of the
solutions to a given system:

Definition 8 Given a Herbrand system, soLving & amounts to producing a
finite set of Herbrand systems in solvable fafm. . ., &,,, such that

o for every solutiory to &, at least one of the;s has a solutior such that
y(X) = o (X) forall X invars(&)Nvars(&;);

o forany solutiory to any of thes; s, every substitutiop such thatlom(y) 2
vars(é) andy (X) = o(X) for all X in vars(&) Ndom(o), is a solution
to é&. O
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Each system in solvable form covers a family of solutions. The intuitive
meaning of the definition above, apart from the technical requirement concern-
ing variables, is the following: the sé&,, ..., &,} solvesé if any solution
to ¢ is also a solution for at least one of thes; moreover, every solution to
any cal k is also a solution t&. Notice that we are not requiring that the
variousé;s be independent: this means that there can be solutienthtt are
solutions to more than one of tes. The features of our theory make it hard to
develop here a syntactic criterion for comparing the generality of two systems
in solvable form, and, accordingly, finding suitable notiongraist general
unifier (mgu)and ofcomplete set of mgysee, e.qg., [5]). Of course, a preorder
can be imposed on systems as follows: given two systémsdE’, E is more
general tharE’ if any solution toE is also a solution t@&’. From this semantic
standpoint, the above sgt, ..., &, } contains (possibly properly) a minimal
set ofmost general systenis solvable form (otemplates of solutiongor &.

4.2 NP-hardness of the problem of finding a single hyperset unifier

One-way matching between automata, that is, the problem of instantiating a
partially defined automaton so as to make it equivalent to a fully specified DFA
(see end of Section 3), will turn out to be NP-complete. For the moment let us
prove its NP-hardness, by reducing to it the propositional 3-SAT problem: it
will emerge from Section 4.5, after the hyperset unification problem has been
algorithmically settled, that the problem can be solved non-deterministically in
polynomial time.
Given the formula

D=Ly VLloV Ll A AUy VLoV Ly3)

where, fori =1,2,3andj =1,...,n,

Ej,' =aj Orfj,' = —aj; and aji € {dl, ...,dk}
for a suitablek < 3 - n, we introduce distinct unknown®;, Ny, ..., Py, Ng,
and define the transformation functighas follows:

Pi |f L= dl',

Thus, in order to solve the instan®eof 3-SAT, it is sufficient to check whether
there exists an instantiation making the automaton

P, Ny N Py, Ny s Py, Ny 7\ 0, f(t11), . 0, f(4n1), )
~(w) &) & Fitwa), Fltra) f(lm),f(lna@

equivalent to the fully specified automaton bel®w:

8 To stay strictly inside the realm of pure (hyper)sets, one could replace/Qdnd 1 by{#}.
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@ 0,1 @ 0,1 0,1@ 0,1 0,1 @

Notice that the technique presented in Section 3 for expressing automa-
ton equivalence as a unification problem would not work properly for non-
deterministic automata: the equivalence problem for such automata is known
to reside at a higher level of complexity (it is in faeSPACEcomplete—
cf. [15]).

4.3 A unification algorithm, Hypeunify

Special chains of inclusions, introduced by the following definition, will play
an important role in our subsequent discussion:

Definition 9 AratHin a Herbrand systerd is a sequenc& o X, SENNNS (1

X,.1 of labeled edges such that = {Y;|X;.1}isin& forall i in {0,...,n}.
O

We now discuss the unification algorithm Hypamify described in Fig.4.
This algorithm gets an input which, without loss of generality, is assumed to
beflat (cf. Def. 4).

Hyper.unify performs a non-deterministic search. When reaching the leaf
of a successful branch of the search tree, it will output a systeémsolvable,
explicit, form. The whole search tree will be finite.

The algorithm makes also use of an auxiliary data structyre, keep track
of a number of temporary assumptions of the fding V. Action Fail1 may
detect a failure situation by checking whether one of the constr&imtsX in
% conflicts with the fact that’ must belong toX, by &.

Inits present version, Hypamify initializes# internally, and does not pro-
duce any information about it in the output. We will see, however, in Section 5,
that Hyperunify can be enhanced to deal with negated membership literals.
Then an initial value fom will be submitted as part of the input, and the final
value of# will be retained with the output.

Before we undertake analyzing the complexity of Hypeify —after which,
the correctness proof will be supplied— let us develop a little nomenclature and
some preliminary remarks and comments. It will be useful to think of a (non-
deterministic) execution of Hypamify as consisting of segments classified as
follows:

Phase: An iteration of the outer repeat, consisting of a preamble (i.e., a full
execution of the inner repeat), followed by the checks performed at the turn-
ing point, and (unless a termination has occurred) by one of the five actions
(a), (b.1)—(b.4) (when more than one of these is viable, one is arbitrarily
chosen).
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Hyper.unify(&: Herbrandsystem);
€ = 0;
repeat
Preamble: repeat
1. discard any reflexive equatiofls = X from &’
2. for each equatioa= X = Y in & such thatX occurs somewhere elsedfy do
beging = (g)Y‘U{X:Y})\{Y:Y}; % =%+ end;
3. aslong as there is a zippEp & X, & Y<”;1 X, & Xo
(with Xo, ..., X, distinct from one another) if, do
begin
&= (E\{ Xo= VolXa) ..., Xz = (ValX,). X, = (VlXo} ) U
{ Xo=¥olKo}, ... Xo = {Vu[Ku}, X1 = Xo,.... X, = Xo };
%::%U{YO¢K0 ..... Y,lgéKn};

end;

. Y Y Y, Y
4. aslong asthereis apakly <= X; < - <~ X1 < Xpi2

(with Yo, ..., ¥, distinct from one another) if, do
6= \{Xo=trlxs h u{xi=x0 }:
5. close? with respect to the rule: X Lving z ¢ Xin%impliesZ ¢ Vin @,
until nothing has been modified by the last iteration;
Turning point:

Fail_1: if there is an edg& L vin&withy ¢Xin%,
then exit with failure; /* this check could immediately follow action 5*/

Fail_2: if there are equation¥ = f(Xy,..., X,), andX = g(Yy,..., Y,,) in & with

f#s,
then exit with failure;

Succeed: iff is in solvable form, then exit with success returnifig
Actions: select arbitrarily an equatianin & enabling one of the following actions

@ e=X = f(X1,...,X,), f # with, and thereisar’ = X = f(Y1,...,Y,) in
&\ {e}:
&= (&\ {e’}) U { Xi1=Y,....X, =Y, }; /* removinge’ is inessential */

(b) e = X = {Y|V},andthereisan = X = {Z|W} ino@\{e}
(note thatX # V andX # W, thanks to action 3); perform one of the following actions:
(b.1) & :=(&\ {e’}) U { Y=Z,V=W }; [* removinge’ is inessential */
02 &=6u{x=v}
03) &=6u{x=w}

04 &=\ {ehu{v=izmw=pym}e=6u{r¢n z¢n}
forever.

Fig. 4. Hyperset unification algorithm

Stage: A series of consecutive phases that
e immediately follows either initialization or an execution of action (b.4);
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e either goes on forever, or terminates at the turning point, or ends with
an execution of action (b.4);
e does not comprise any execution of action (b.4), save, possibly, at the
end.
(An important fact we will discover later on is that no stage consists of
infinitely many phases: this will rule out the second of the above three
possibilities.)

Notice that new variables are introduced igtby actions 3 and (b.4) (they
are thek ;s and thev's, respectively).

Aswe are aboutto discuss, we can think that an equivalence relation between
variables is being implicitly calculated by Hypanify. Initially, each variable
makes an equivalence class by itself; then, the equivalence relation gets refined
by the preamble of each phase. Once they have become equivalent, two variables
are to represent the same hyperset; accordingly, as soon as a variable formerly
generated by action 3 or (b.4) becomes equivalent to an initial variable, we
identify the two with one another and cease to regard the generated variable as
‘new’ any more.

Let us now clarify the main purpose of each preamble, which is to decom-
pose the systemi into subsystems of the form

X1 SiY11, ..., Yag,)
t(=R= : :
XZ fm(lea---aYma,,,)

with £ +m > 1 (hopefully with f; = f; for all pairs ofi and j). These
subsystems will be mutually independent in the sense that

e no left-hand variabl&X; appears, globally, more than once;
e norepresentativevariableR occurs as left-hand side of a variable-variable
equation; apart from this® is entirely free to occur in right-hand sides.

Of course we may assume that representative variables are distinct in different
subsystems; thus, when < 1 holds for each one of the subsystems, a solvable
form results from the preamble.

As for the equivalence relation over variables hinted at above, it can be
characterized at the end of each preamble as being the reflexive and transitive
closure of the relatiof[ X, R] : X = Rin &}.

4.4 Termination of the Hypeunify algorithm

In this subsection we prove the termination of Hyjpeify; that is, we show that
every branch of the search tree of Hypaify eventually breaks off, reporting
failure or success. A rather coarse assessment of the maximum length of a
branch will result from initial analysis; this will be refined into a polynomial
bound on the overall complexity of the algorithm in Section 4.5.
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To measure the size of the input systémwe adopt the following two
parameters:

e v, the number of distinct variables ifn
e 50, the number of occurrences of functional symbolg ifincluding with).

For reasons to become clear soon, both the termination proof and the com-
plexity analysis will mainly consists in determining upper bounds for the num-
ber of stages, i.e. for the number of actions (b.4) performed along a branch.

Remark 2

1. Anew variableQ always shows up, atcreationtime, inaconféxt {Y|Q}
(whereV # Q andY # Q); later on, it can be moved to a different context
by actions 2, or (b.2)—(b.3). Anyway, it will never come to occupy a label

position over an edg# £ w:thatis to say, no equality = {Q|W} will
ever go intos unless afteQ has become equivalent to a pre-existing label,
in which case we no longer regard it as ‘new’.

2. It follows from the preceding observation and from the presence of actions
3 and 4 in Hypetunify that no pathXg & X, & .. & X, can have

lengthn > vg at the end of any preamble.
3. If an edgeXy & X, drawing its origin from an action 3 or (b.4) becomes

part of a zipperXy L X1 L) Xo, a failure will take place at the
next turning point. This follows from the fact that the creation of the edge

Xo & X, causes the constraifiy ¢ X; to be put ing; however the path
in question will cause action 3 to place the equatign= X, in &, which
will fire a Fail_1 termination.

4. The preceding observation implies that the overall number of arcs intro-
duced by action 3 is less than the number of occurrencesiof in the
initial system, bounded hyg. O

The following lemma implies that the algorithm terminates provided action
(b.4) is performed a finite numbérof times (cf. Corollary 2). Later on, with
Lemma 3, we will place a finite bound @n

Lemma 1 Consider a stage of a computation 8fyper_unify(&). Letv and

s be the number of inequivalent variables (initial or not) and the number of
occurrences of functional symbols &) as they are at the beginning of that
stage. Then the stage comprises at Mostv + sg + s phases.

Proof. First note that no action other than (b.4) increases

The numbew might increase due to executions of action 3, which however
cannot be exploited more thagtimes, as noticed in Remark 2.4. This potential
increase ob accounts for the addendusgin the thesis of the lemma.

We can henceforth focus on actions (a), (b.1)—(b.3), namely the ones from
which a non-deterministic choice is performed in every non-final phase.
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(a) and (b.1) causeto decrease; actions (b.2) and (b.3), although leaving
unchanged, set the ground for either a reduction iofthe next preamble or a
Fail_1 termination at the next turning point. ]

Corollary 2 Suppose action (b.4) is performed a finite nunibafitimes during
a computation o yper unify(&). Then the computation comprises at most
(k+1)-vo+ (k+2) - 50+ (k + 1)? phases.

Proof. Let Ny, ..., N; be the variables introduced by the successive execu-
tions of action (b.4). We can split the sequence of phases performed by Hy-
per.unify(&) into k + 1 successive stages determined by the introduction of the
N;s.

N]_ Nz Nk—l Nk

[ ] [ ] [ ] [ ] [ ] o

The first stage is based on a system with size parametarsglsg; hence, by
Lemma 1, it contains no more thar-kg + s+ so phases. After the application
of action (b.4), bothly andv get increased at most by one; therefore the second
stage, again by Lemma 1, contains no more than(lo + 1) + (so + 1) + so
phases. The overall situation is summarized by the following diagram:

®e ——> o m— ° ce ° S o
—— ——— ——
1+vg+s0+50 1+ (vo+1)+(so+1)+s0 1+ (vo+k)+(so+k)+so

The number of phases forming a whole computation is hence bounded by
Zf.‘zo(l + (vo + i) + (so + i) + so); however, it is appropriate to consider
the addendunsy only once, because it represents an upper bound on the num-
ber of edges introduced by action 3, which is a global quantity. Thus, no more
than(k + 1) - vg + (k + 2) - so + (k + 1)? phases can be performed. [ ]

It should be clear, already, that each phase lasts finitely long: we will be
more specific on this by assessing the complexity of a preamble in Section 4.5.

Let us now indicate byE; andC; the values o#% and% when the turning
point is reached for th@ + 1)-sttime. AnyE; induces an equivalence relation
~; among variables, as explained at the end of Section 4.3.

To place a bound on the numbkrof times (b.4) gets executed, we will
define in terms ofv; a tupler; of natural numbers so that modificationséf
% made during theé-th phase may cause,, to differ from t;. Changes of
will invariably lower it w.r.t. the lexicographic well-ordering of tuples, without
affecting its length.r gets lowered whenever a new variable is introduced,
which happens, in particular, with (b.4). This by itself ensures —in view of
Corollary 2— the termination of Hypaunify.

Notice that any lowering of a tupled, . . ., x,] w.r.t. this ordering can be
achieved by elementagecrease actionsf the following kind:
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e acomponent;, with x; > 0, gets decremented by one; simultaneously
(if j <0
e acomponent;, withi > j, is incremented by units, withiz > 0.

In the case at study, we will be able to show that such decrease actions will
always have (< i < 2; correspondingly, a decrease action will be named:

destruction:if 2 = 0,
climbing:if » =1,
generation:if h = 2.

To introducer, let us consider the set

Li={Y : X={Y|W} in E;}

of all Y's occurring in a contexX L W within E;. By Remarks 2.1-2/L;| <
|Lo| foralli > 0. Moreover, as easily sedil,;| = | Lo/ ~; |. We definer; to be
the tupler; = [xo, ..., x|1,] , Where each; is the cardinality of the following
set:

{ equations of the form = { _|W} in E; : |Lo| — |L;|
+{y:rv¢winCl=j}.
The initial valuerg of r clearly hasyg < sp andx; = --- = xj,; = 0.

Lemma 3 A stage always lowers the valueméxcept, possibly, when a Fil
exit is about to take place.

Proof. Actions 1, (a), (b.2), and (b.3) do not affectAction (b.1) always affects
7 as a destruction action.

The complexity functiorompl (t) has been carefully chosen in order that
action 2, whose effect is a sequence of destruction and generation actions,
cannot increase it.

Actions 3 and 5 may leave unchanged or affect it as climbing actions;
action 4 might cause to increase, but in this case Fdilwill immediately
cause termination.

If neitherY ¢ W nor Z ¢ V belongs tog, then action (b.4) makeslower
(it can be viewed as a generation action). Unless this is the case, an immediate
combination of action 3 with Fail will lead to termination. ]

Theorem 4 (termination) Let & be a flat system. TheH yper _unify(&) al-
ways terminates, no matter what sequence of non-deterministic choices has
been made.
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Proof. Lemma 3 ensures that a only finite number of actions (b.4) occur along
a branch of the computation. The claim follows, by Corollary 2. ]

One may wonder whether the above translation of Hypefy actions into
chains of destruction, climbing, and generation actions, may disclose a time
complexity assessment sharper than a simple termination result. Unfortunately,
this is not the case.

It can be shown that, starting with a tuple]. . ., x,] of natural numbers,
no more than

3w +3 o+ +3F < (gt xp) - 3

consecutive destruction, climbing, and generation actions can be performed.
This exponential bound cannot be improved significantly without refining
the technique: if, as in our case, the initial tuple has the form

[So,O,...,O],
N e’
-1
a chain consisting ofg - (2° — 1) generation actions followed hyg - 2°

destructions isa priori conceivable. However, as we will now see, a similar
chain does not reflect the behavior of any concrete Hypeéfly computation.

4.5 NP-completeness of the problem of finding a single hyperset unifier

In this subsection we prove that Hypenify belongs to the complexity class
NP. It hence follows that the hyperset unifiability problem is NP-complete, in
view of the reduction of 3-SAT to pure hyperset matching seen in Section 4.2.
For the termination proof, an adequately abstract view of the data struc-
ture &, ¥ manipulated by Hypeunify was provided above by the tupte the
decrease actions performed nsomehow mimicked the basic actions of Hy-
per.unify. Here, before undertaking the complexity analysis, we must resort to
a subtler abstract interpretation.
We will represents by a multi-graph% ¢, and% by a functionlev :
vars(&) —> IN. We momentarily defer the characterization/eb. As for
Y g, its constituents are:
e nodest' e ={Vi, Vo : Vi={_|Va}in&};
o labelszs ={y : ={Yv]|_}ins}
o directed labeled edges s = {V1 <5 Vi = {Y|Va}in ¢}.
Conceptually, the pai¥ ¢, lev gets updated at every turning point, like
As we have already proved termination, we are in a position to refer to the final
value of either of these structures. (Obviously, andl/ev, as well as their final
values, depend on the course of a non-deterministic computation.)
The following two examples are aimed at conveying an intuitive grasp of
why each non-deterministic branch contains a number of phases (equivalently,
a number of (b.4) actions) polynomially related to the sige- sg of &.
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Example 3 Starting with the set = { X = {A|V1}, X = {B|V2}, X =
{C|V3} } of membership constraints, a branch that maximizes the number of
stages will yield the following final value fo¥ ¢. Indicating by the arrowe

any edge removed by action (b.4), we have

Vi
A B
I N
X &V, &N,
C C C
NN N

Vs & Ny & N
Notice that the unification algorithm does not generate a variable corresponding

to each subset of a three-element set, a reason being that once thée édge
has been removed, it becomes impossible to re-exploit it in conjunction with

x & V3 to fire an action (b.4). O

Example 4 A branch that maximizes the number of phases for the Herbrand
system
E={X={Y1] A1}, A1={Y2| Az}, Ay ={Y3]| A3},
X ={Zi1|B1}, B1=1{Z;| B2} },

expressing the set unification problgit, Y, Y3| Az} = {Z1, Z» | By}, will
yield the following final value for ¢:

Az
Y3 Z1
Zz N
Az N
Y2 Z1 Y3 Zy
Z N Z N
A1 N NP
el 71 Yz Z2 Y:
£ N Zz
X Ny N
Z1 Y1 Z Y2
N L
B N?
Z Y1
N v
B>

. . . ]
Inspection of these examples leads to the following observations:

Remark 5

1. If one subtracts the initial number of edges/in from the number of edges
in the final 4 ;—counting also those that were removed by (b.4)— one
obtains twice the overall numbgrof (b.4) actions.
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2. The evolution of%¢ progressively limits the possibility to apply action
(b.4): calling into play again the decrease actions of Section 4.4, this means
that generation actions (the only potential source of exponentiality) become
less and less viable.

Sometimes the termination guarantee does not come from this phenomenon,
but, rather, from the presence®fconstraints. This does not emerge from
the two examples just seen, but can be seen from studying a system like the
following: X ={_|A}, X ={_|B},Y={_|A},Y={_|B}.

3. IfanodeX eventually inserted int@ ¢ has incoming edges in some phase, at
least one incoming edge will always be alive, till the end of the computation.

O

It is now time to introducéev:

Definition 10 Giventhe pai#, %, aLeveL-mAPPINGIS afunctiorlev : vars(&)
—> IN, satisfying the following conditions:

o for all edgeV; L Vo of ¢, if Y ¢ Vo belongs to%, then leyV,) =
lev(Vy) + 1, otherwise le¢V,) < lew(Vy) + 1;
o for all equationsVy = V5 in &, leWVy) = lew(V). O

Remark 61In the absence of negative information, a trivial level-mapping can
be obtained by simply setting to O all variables. On the other hand, it may be
the case that a level-mapping does not exist, as the following example shows:

Y
Xe———V

> Y3

N v Y3 ¢ V, Y> ¢ W both belonging to% .
w

Plainly, if a level-mappindev for &,  exists at all, it is not unique: one may
‘tune’ its construction so as it meet the condition

for all variabled/, lev(V) <| Lg |

(cf. the definition of thel;s in Section 4.4). This new condition —to be taken
from now on as part of the definition of a level-mapping— can easily be ful-
filled, e.g., by settindev(W) = 0 for at least one nod® in each connected
component of (the undirected graph underlyirg). O

W.r.t. alevel-mappingev, we say that an edgé Ly (or, more generally,
an ordered paiX, V) is of leveli if lev(V) =i.

Definition 11 Let ¢’ be the system in solvable form resulting from a (non-
deterministic) computation of Hypemify with input&: hence any variable
generated in such a computation occurséin Let, moreoverjev be a level-
mapping forg’” (hence fors). Then,
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e «(i) standsforthe number of edges of levial4 ¢. Alsox =, > rog (i) =

ILel .
i=€ a(i).

e (i) stands for the number of edges of leveltroduced in the computation
by action (b.4) (regardless of whether such edges surviweih Let also

= : ILgl .

B =ou 2o B) =35 BO). O

In view of Corollary 2, in order to guarantee the NP-completeness of Hy-
per.unify, it is sufficient to place polynomial bounds both on the total number
% of executions of (b.4) and on the number of actions taking place within a
single phase.

Theorem 5 In a successful branch @& yper _unify(¢&), if no variableX gen-
erated by action (b.4) ever joins another variatie(in the sense that either
X =Y orY = X is putintoé), theng is O @°).

Proof. First of all, let us focus on a couple of conditions necessary for an action
(b.4) to take place:

e two ‘parent’ edges of level concur to the action, wherg+ 1 is the level
of the two edges to be created—one of these parent edges will be deleted
by the action;

e since the parent edges must enter the same node, the latter cannot have a
single incoming edge when the action is fired.

Based on these remarks, we derive the following:

e 3(0) =0andB(1) < 2-«a(0).

e The presence of two generated edges at Ig¢vell implies that there is a
node at levelj — 1.
The overall number of generated nodes of level 1 is @; hence the
assumption that generated nodes never join —implying that nodes, once
generated, persist ifig retaining an incoming edge— ensures, jor 2,
that

Bj) = 2- (a(j—l)+ﬂ(j —p- ’S(JTz))

By unfolding these constraints ¢ we obtain

J
ﬂ(j)§2-<zi-a(j—i)) :
i=1

Since| Lg |< «, we conclude:

ILgl ILgl ;
B=Y Bh=2-[>DDiaj-i]|=0@.
j=0 j=1 i=1
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We are left with the task of showing that the assumption that generated
variables never join can be discarded from the statement of Theorem 5. To this
end, notice that two variables of level 1 becoming equivalent might generate
a situation in which action (b.4) can be performed. However, an inspection of
Hyper.unify (cf. proof of Theorem 6 below) shows that at the same time two
edges of levelj come to coincide. As a consequence, the overall number of
actions (b.4) (and heng®) cannot increase.

Theorem 6 In any computation of Hypeunify, no more thano @®) =
O ((s0)®) new variables can be generated.

Proof. In view of Theorem 5, we only need to show the following fact: if a
variable N introduced by action (b.4) as the tail of two edgésf— N and

w < N of leveli joins another variabld, then a pair of edges of levehas
not been used to generate two edges of levell.

In fact, in order forN to be unified withA, a seriesN = Aq, A =
Ao, ..., A, = A of equalities must be inferred by Hypanify. To get the
first equationNV = A1, the unification algorithm must perform action (b) with
one of the two equatiorid = {Y | N }orW = { Z | N }, together with an equa-
tionV ={C|B}orW = {C| B}. Asimple inspection of the four subcases
of action (b) shows that (b.1) is the only subcase that introduces an equation
N = B without leading to a subsequent Fai(note thatB = A). This means

that in such branch of a computation, the edgesc— B (or W £ B) and

vIinN (orw z N) of leveli cannot be used to fire action (b.4) and hence to
generate two edges of leviel- 1. ]

Corollary 7 (NP-completeness)Let & be a flat system. Then every single
branch generated during the executiontbfper uni fy(&) consists in a num-
ber of phases polynomially boundeduigi+ so.

Proof. From Theorem 6 we know that the numlieof variables generated by
action (b.4) of the algorithm is polynomially boundediig+ so. The thesis
follows from Corollary 2. ]

As already said, for a full NP-completeness proof we must place a bound
also on the number of actions within a phase. This is relatively easy, as we
know from the last propositions that a polynomial bound exists for the number
of new variables and functional symbols (edges) that can be introduced:

e action 1 can be performed ad most once for each variable; the same happens
with 2;

e action 3 can be performed total a number of times not exceeding as
noticed in Remark 2.4;

e the number of times action 4 gets executed is bounded by the number of
edges;
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e action 5 consists of an update of a system of constraints that relate to one
another a polynomially bounded number of variables.

4.6 Soundness and completeness of the Hypdy algorithm

In this section we will prove that the set unification algorithm Hypaify
presented above is sound and complete with respect to the axiomatic set theory
introduced in Section 2.2. These important properties of the algorithm can be
phrased as follows (proof to be supplied later on):

Theorem 8 Leté#, ..., & be the systems in solvable form produced as output
by Hyper _unify(&). Then the following holds:

k
(W), (B), (L), (=), (Fo), (F1) - ((@ < 30:1---30n \/f,) :

i=1
whereQq, ..., Q,, are all variables in thes;s that do not occur ir&. O

In order to achieve greater generality, we will prove the above result as
a consequence of an analogous result concerning a variant procedure named
Hyper_unify, (&, 4)—see Lemma 9 below. Although strictly akin to
Hyper.unify, Hyperunify, will not be guaranteed to terminate. The only dif-
ferences between the two procedures are:

e % isregarded as a new input parameter. Therefore, it shall not be initialized
to ¥ inside Hyperunify,;

e in actions 3 and (b.4), situations where Hypeify places a new pair into
%, Hyper.unify, is free to do the same or to lea¥eunchanged(Note that
the only remaining action that may affe€f which is action 5, remains as
before.)

Preliminary to stating the generalization of Theorem 8, we need a few
definitions.

Definition 12 A uniFy—TREeE is a directed unordered, non-empty tree, each of
whose nodes bears labelss,, ¥, meeting the following conditions:

e &, is aflat Herbrand system;
e %, is a collection of literals of the fornif ¢ Q, with Y and Q variables.
o Arelationship reflecting the behavior of Hypenify, holds betwee#,, %,

on the one hand and the tuple,,,%,,,..., Epys Gy where
w1, ..., up are the distinct children ob, on the other. The relationship
is as follows:

If the values o and¥ are settas, and¥, at the beginning of a phase, then,
depending on the first action that will affect either of them in the subsequent
execution of Hypeunify,, one has that:
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1,2,3,4,5,(a)p =1and¢,, and¥%,, are possible values df, ¢ after
the execution of the modifying action;

(b): p =4andé,, and%,, are possible values af, ¢ after the execution
of (bi);

none: p = 0. In this caseyp will be called a failure or a success leaf
in agreement with the kind of exit that takes place (cf. actions Eail
Fail 2, and Succeed).

A rriNGE Of a Unify-tree is a sef of nodes such that: every maximal path of
the tree contains at most one node fr6pand, if it contains none, it ends with
a failure leaf. O

It should be clear from this definition that for any given pair, 4., a
Unify-tree whose root is labeled,, %, exists. Unify-trees correspond in fact
to the parallel executions di yper_unify, (&, €,): there are two sources of
parallelism in Hypemnify,, namely action (b) and some freedom in putting
literals into%. However, it is only the branching caused by action (b) that gets
represented by a single Unify-tree.

Among others, a Unify-tree originates from the specific execution of
Hyper.unify, that is entirely alike to an execution of Hypenify, except for
the different initialization of¢. In this execution¥ literals are added when-
ever possible; moreover, the Unify-tree will be finite in this special case (cf.
Theorem 4), and its set of success leaves will constitute a fringe.

Lemma 9 Let.7 be a Unify-tree, with roop. Then, for any fringes of 7, the
following holds:

W), (B), (L), (=), (Fo), (F1) = ((59 NECo) <> 3Q1---30p \/ (v A %)),
vin S
whereQq, ..., Q,, are all the variables in th&, s that do not occur i@, A %,.
Proof. To prove the thesis, since
W), (B), (=), (Fo) = =(6u AN %)
trivially holds for every failure leajfs, it will suffice to check that every single
action of Hyper _unify, leads from a node to nodesuy, - - -, 1, such that
p
W), (B), (L), (=), (F1) ((6 NGy) < 3Zy---3Z, \/(@% N %J) :
i=1

whereZs, ..., Z, are the new variables (if any). In the following, each number
on the left indicates the action being analyzed.

1. X = X, being true by(=), can be discarded from,.
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2. Foranyformulap, X =Y A (X, Y)is equivalenttaX =Y A ¢ (Y, Y) by
(=).

3. Viewed as a formula, a zippéefy o X, &, X, & X Yyields
X; = Xo, henceY; € Xg, fori =0, ..., n—by (E) and(W). Accordingly,
by assigningXg less Y; to K;, one has bottXy = {Y;|K;} andY; & K; for
all i—by (W) and(L).

It follows that

(W), (E), (L) F (&, A %,) — 3Ko--- 3K, <c«§()u1 ~NGy A \Yi ¢ Ki) :
i=0

Conversely, as is easily seen,

(W)’ (=) = (@@ul A (gv) - (@@v /\(gv) .

4. FromXg & X1 L. & X1 & X,.2, by (W) and (E), it follows
thatXo = X;. Infact, Yy € X,,1, whenceYy € X, -+, Yo € X;1. Hence,
the insertion ofYy into X; has no effect and, thanks {e-), the equality
Xo = {Yo| X1} can be simplified intd{g = X;.

5. &, A%, is equivalent tas,, A %,, by virtue of (W) alone.

@ X=fX1,..., X )AX = f(Yy,..., Y, isequivalenttoX = f(Xq,...,
X)ANX1=Y1A---AX, =Y,. One direction follows frontF;), and the
other from(=).

(b) It is easy to infer fromW), (E), (L), and(=), that the following Venn
diagrams describe all possible situations underwhichl = X = {Y|V}A
X = {Z|W} holds:

X=V=WwW X=V X=W X
Ye ‘ Ye ‘ ‘ Ye ‘ ‘ Ye ‘
Y=27:
1 2 3 4
X=V=W X=V X=W X
Yo Ze Yo| Ze | [Yo| Ze| W |Ye||Ze|Vy
Y #Z: w 1%
y
5 6 7 8

Moreover, the same axioms yield that:
(b.1) diagrams 1, 4 describe all possibile situations under wf@chY =
Z ANV = W) holds;
(b.2) diagrams 1, 2, 5, 6 describe all possibile situations under which
¢ A X =YV)holds;
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(b.3) diagrams 1, 3, 5, 7 describe all possibile situations under whigh
¢ AN X =W)holds;
(b.4) diagrams 1, 8 describe all possibile situations under véntte AV =
{ZINYAW ={Y|N} ANY € N AZ & N) holds.
We conclude from this diagram analysis that the following holds

(e/\e’)(—)((e/\Y:ZAV:W)V(e/\e’/\X:V)\/(e/\e’
AX=W)VAN (e AV ={Z|IN} AW
:{Y|N}/\Y¢N/\Z§EN)).

Either one of the literal¥ ¢ N, Z ¢ N, or both, can be removed from the
right-hand side of this bi-implication, becald® (e AV = {ZIN} AW =
{Y|N}) easily yieldse'.° [

Proof of Theorem 8Let us consider the Unify-treeg,, 71 corresponding to
the executions of
Hyper_unify, (&, ) that respectively add literals

e whenever possible,
e never.

T o corresponds to the execution Bfyper _uni fy(&); hence itis finite, by
Theorem 4. The preceding lemma, referred to the friigeonsisting of all
success leaves of o, gives

&< 301---30, \/ (6,1 %).

v in So

7 1 clearly contains an isomorphic copy, of 7 o: every nodeu in 7 is
labeledé#,,, ¢, while the corresponding noge€ is labeled¢,,, ¥ in 7. We
consider the fringeS; of 77, consisting of all nodes’ s.t. v either belongs to
So or is a Faill leaf of 7. Again by Lemma 9, we have

&< 301-30,30m 1130 \/ 4.

Vv oin S

AssumingdQ; - - - 30, \/ &, onereadily obtaindQ - - - 30,4« \/ &,
v in Sy Vvoin Sy
whences follows. Conversely, frore, one derive3Q; - - - 30, \/ (ELNE,),
v in So
which entails3Q; - - - 30, \/ 8.

v in So

® Note that since the pairél, 8), (4,5), (6, 7) of diagrams are incompatible, none of the
alternatives (b.1)—(b.4) in Hypemify is superfluous.
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We conclude with the desired thesis< 30, ---30,, \/ & [ ]

v in So

An easy corollary of Theorem 8 is that Hypenify solves# in the sense
of Definition 8. As a matter of fact, any solution #ois also a solution to (at
least) one of the;s (provided a mapping for the new variablgs, ..., Q,, is
made explicit). As said after Definition 8, the $ét, ..., &} can be seen as a
complete set ofemplates of solutionfer &. Unfortunately, the various;s are
not necessarily independent, as it emerges from the following example:

Example 7 Let ¢ consist of the equations:
X={A|CL,X={B|D}LC={B|Z},D={A|Z},Z=1

Two possible non-deterministic computations return the systems:

6&1={A=B,C=D,X={B|D},D={B|Z},Z =40},
6r,={X={A|C},C={B|Z},D={A|Z},Z=0,N =127}

(to get the former, start by applying action (b.1); for the latter, apply first (b.4)
—which generates a new varialle— and then (b.1) twice). It is clear that
&» covers all the solutions &f; plus those in whickd and B are mapped into
different hypersets. Thug; is more general tha#,. O

Algorithms for detecting overlaps between solvable form systems will hope-
fully emerge from ongoing research. More specifically, let us assume that
Eo, ..., E,,1 are solvable form systems and that are the ‘relevant’ vari-
ables they share. That is, one regards solutigng; for E;, E; as being the
‘same’ solution whery;|~ = y;|4.One would like to

1. determine whether every solutionfg also solves at least one 6, ...,
En-i—l;

2. determine whether all solutions B£f also are solutions t@'q;

3. determine whethef, and E; have any solutions in common.

A solution to 2 seems to be at hand, whereas the more general problems 1
and 3 remain as yet somewhat puzzling.

5 Hyper_unify as a Set-Constraint Manager

We have seen in the preceding section that any systenvolving with, ¥, and
free functors, can be rewritten, equivalently, as a finite disjunctign. ., &
of systems in solvable form.

We now extend this result by showing that the unification algorithm intro-
duced in Section 4 is in fact sufficiently general to support the treatment of the
operatorless (to be interpreted in agreement withg ;) of Section 2.2). In the
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new broader context, however, the negative information contairnédinst be
retained as output of the system.

In order to handle flat systems of equations that involves , we might
choose to install into Hypeunify the explicit treatment of pairg ¢’ of equa-
tions of the following forms:

e=X=VliessY, e =X=WlessZ;
e=X=VliessY, =X={Z|W}
e=X=VliessY, ¢=X=f(Y1,...,Y),
wheref #£ less, f # with.
A simpler line of attack is to resort to the following non-deterministic pre-
processing technigue:

for every equatiorV = X less Y, add to¢ either

1. X={Y |V} or
2. X=V,
moreover, dw (=6 U{Y ¢ V }.

Clearly, 1 reflects the case wh&ne X holds, while 2 corresponds to the
caseY ¢ X. The correctness of our approach is based on the following lemma:

Lemma 10 (W), (E), L)FV =Xless Y <

((YEVAX={Y|VHV((Y€XAV=X)).
(I

It is easy to modify the proof of Theorem 8 so as to show that the input sys-
tem¢ is provably equivalent to the disjunctiop, IN;, - - - AN, (6: NEi) taken
over all pairss;, %; that result from the successful branches, aid. .., N;,
denote all variables, present i A %; but not in the originals, introduced
along thei-th such branch.

Somewhat disturbingly, such conjunctionsaoéguaranteed to be usefulin
general. Consider the followingnsatisfiablesystems = {X = {Y, X}, Y =
{X},Z = {B|A},Z = X less Y}.10 By using the rewriting of less
(case 1.) and two applications of action (b.1) of Hypeify we obtain the
system{B = X ={Y, X},Z =Y = {X}, A = ¢} together with the con-
straintY ¢ Z. The system alone is satisfiable and, by AczAFA, implies
X =Y = Z. Hence, its conjunction with the constralhtt Z placed intog by
the preprocessor, contradicts, very much lkkdoes, AFA—in our restricted
axiomatization of Section 2.2 it contradi¢td). An approach to eliminate use-
less disjuncts would be to exploit the decision test specified in Section 6 of
[28], but the latter works only in a context where free functors are not allowed
to occur. Therefore, give#; in solvable form ands;, we test for satisfiability
the following formula, implicitly keeping into account the freeness axioms:

10 For the sake of readability, we are not rewritiignto equi-satisfiable flat form.
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%; U {equations of the fornX = Y or of the form
X ={Y|V}in & } UFo(6) UF16) VA&,

where the formulae placed i o(&;), 71(&;), and%(&;), as indicated be-
low, force the correct interpretation w.r.t. the axiothy), (F;), and(Uy ;),
respectively:!

o 70(8) =pei{X#Y : X=f(Ve,....,V,),Y =g(Z1,...,Z,) bothin
&, and f # g}.

o 71(6i) = per Ufez\{with}fl(f, &), where for eachf, assuming that
X1 =P, v®), X = £ P, ... Y®) are all equations of
the formX = f(Y1, ..., Yu(p) in &;, we have

F1(f, 61) =oy { (/\Yifi) =Yﬁ) X=X, :0<i<j<ky.
h=1
o Let{X:=rm,...,X, =t,} bethe entire set
U fes\(wirn){ €Quations of the fornX = f(Y1, ..., Yar(p)) in &; }; then

UE) =pqA={An.... A~ N\ We¢AANX;=1{4))
={W|}ind&; j=1
whereA, A4, ..., A,, are new variables not occurring .

The formulae i (&;) reflect the fact that different uninterpreted terms must
denote different colors, by introducing sets, ..., A,, suitably witnessing
differences.

It is easy to prove that the above translation preserves satisfiability.

6 Type-Finding Through Hyperset Unification

This section is devoted to illustrating, through an example, how hyperset uni-
fication can be exploited for the task (more engaging than type-checking) of
type-finding As in Chapter 6 of [3] —with slight adaptations to our needs—
we can inductively definevpe exprEssIONSAS follows:

1. abasic type (such as boolean, char, integer, real) is a type expression;
2. there are type variables at will, each of them being a type expression;
3. iftrisatype expressionand, n, are natural numbers, thenaray ((n1,n;),t)

is a type expression;

11 Aset{py, - - -, ¢} of formulae is being identified with the conjuncti<;ﬁ'\1_‘,.=1 @;, as usual.
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4. ift11, ..o tumy, - ooy tat, - - -, b, @re type expressionsand. . ., i, arefield

names (i.e. identifiers), thewacord ({(i1, {t11, - - -, tamy })s - - - s (s {tn2s - - -

tam, })}) IS @ type expression;
5. if ¢ is a type expression, thewinter(t) is a type expression.

Analogues of type expressions in our sense —and, in fact, ofj@und
type expressions— can be found in the declarations of a most typical program-
ming language such as Pastalle may think, for example, that the Pascal
declaration type vector = array [1..10] of char binds the identifier vector to the
type expressiomrray({1, 10), char). The rationale for admitting type vari-
ables in the context of type-finding is that the problem, here, is to detect from
the way constructs are used in a program the types of program variables whose
declarations are missing. An automatic inference process aimed at solving this,
must somehow represent partially specified typledlow types, that is, type ex-
pressions involving variables, represent incompletely known types. Moreover,
they can represent polymorphic data types.

Sets serve two purposes in the type language. As argument of the record
constructor, a set reflects ourintention to attribute no significance to the ordering
of fields; for instance, both of the Pascal types

record record
next : list; data : char;
data : char next : list
end end

would be rendered by the same type expression in our framework.

Moreover, sets conveniently represent the union of types (the very same
idea was exploited, e.g., in [33, 34]). In this brief discussion type union has a
limited import, as we are using it only for multiply-valued record fields.

For recursive data types (such as lists or trees), a representation by rational
termsis appropriate. For such arepresentation, Herbrand systems are, of course,
very convenient.

A type constrainis a system of equations interrelating type expressions.
Among others, dype systencomprises rules for associating type constraints
with the various parts of a program: it is in this fashion that specific instances
of the type-finding problem are generated.

Figure 5 illustrates how a type solver works. For the sake of simplicity, we
are only considering straight code inside a single procedure body, and our type
analysis will be based on the following assumptions:

e next is a keyword, whose meaning is: the expressgidin.next has the
same data type asd);
o the data type of the keyword nil matches any pointer data type.

2 our ongoing illustration is based on a Pascal-like language only for the purpose of readability:

it is well-known that the applications of type-finding based on unification go well beyond the
tiny example to be elaborated here, and that this approach does not presuppose the language, to
which type-finding is applied, to be imperative.
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Pascal-like program  Type constraint

new(p); = P = pointer(Py),

pt.next ‘= nil; = Py = record({{(next,{P})| R1}),

pt.mode .= true; = Py =record({(mode,{boolean|Ci})|R2}),
ph.date .= 1965 = Py =record({{date, {integer | D1}) | R3}),

new(q); = Q = pointer(Q1),
gt.mode ‘= false; = Q1 =record({{mode, {boolean | C2}) | R4}),
qt.date := p; = Q1 =record({{(date, {P | D2}) | Rs}),
gt.next == p; = 01 = record({{next,{Q}) | Re}),

P=0

Fig. 5. A type system in action

P = pointer(record({
(next, {P}),
(mode, {boolean | C1}),
(date, {integer, P | D1}),
| R1}))

next ‘ o~ ‘ next ‘ o~ ‘
mode ‘ boolean ‘ mode ‘ boolean ‘
date ‘ integer ‘ date ‘ o—> ‘

Fig. 6. A solution to the type constraint

P and Q represent the types @f andg, respectively.

Figure 6 shows a system in solvable form returned by the Hyupédy
algorithm, upon elaboration of the type constraint above. One observes that
recursive types are modeled through membership cycles.
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