
A uniform approach to constraint-solving for lists,

multisets, compact lists, and sets∗

Agostino Dovier† Carla Piazza† Gianfranco Rossi‡

October 26, 2006

Abstract

Lists, multisets, and sets are well-known data structures whose usefulness is widely rec-
ognized in various areas of Computer Science. They have been analyzed from an axiomatic
point of view with a parametric approach in [20] where the relevant unification algorithms
have been developed. In this paper we extend these results considering more general con-
straints, namely equality and membership constraints and their negative counterparts.

Keywords: Membership and Equality Constraints, Lists, Multisets, Compact Lists, Sets.

1 Introduction

Programming and specification languages allow to represent information by means of data
structures, each of them characterized by a specific organization of the elements involved and
by a corresponding access policy. In this paper we consider the following structures, which
represent distinct though strongly related abstractions: lists, multisets, compact lists, and sets.

Each of these four data structures contains an arbitrary (possibly empty) collection of ele-
ments of any type, where each element can be either an elementary data object or a composite
object. Let us define an aggregate as a data structure with this property. The basic difference
among the four considered aggregates lies in the specific handling of order and/or repetitions
of elements. Lists are ordered collections of elements, where duplicates are allowed. Multisets,
often called bags in the literature, are lists in which the ordering is irrelevant. Compact lists are
lists in which contiguous occurrences of the same element are collapsed into a single element.
Finally, in sets both ordering and duplicates are not relevant.

The importance of these data structures is widely recognized in various areas of Computer
Science. Lists are the classical example in use to introduce dynamic data structures in imperative
programming languages. They are the fundamental data structure in functional and logic
languages. Sets are the main data structure used in specification languages (e.g., in Z [33]) and in
high-level declarative programming languages [7, 22, 26, 28]; moreover imperative programming
languages may take advantage from the set data abstraction (e.g., SETL [34]). Multisets emerge
as the most natural data structure in several areas, ranging from coordination languages [6] to
Database theory [27], from membrane and DNA computing modeling [32] to linear logic [37].
The notion of compact list is much less developed and some examples of its application are
suggested in [20].

Lists, multisets, compact lists, and sets have been analyzed from an axiomatic point of view.
In [20], they have been studied in the context of Constraint Logic Programming languages, where
these aggregates are represented as terms by means on different constructors. Each aggregate
is associated to a theory which specifies the properties of the aggregate constructor symbol.

∗This work is partially supported by MIUR Project PRIN 2005015491.
†Dip. di Matematica e Informatica, Università di Udine. Via delle Scienze 206, 33100 Udine (Italy).

dovier|piazza@dimi.uniud.it
‡Dip. di Matematica, Università di Parma. Parco Area delle Scienze 53/A, 43100 Parma (Italy). gian-

franco.rossi@unipr.it

1

In [20], equalities between terms in each of the four theories are studied. In particular, the
unification problems in the equational theories, which describe the properties of the four aggre-
gates, are solved by providing unification algorithms for all of them. NP-unification algorithms
for sets and multisets are also presented in [1, 15].

In this paper we extend the results presented in [20] to the case of more general constraints.
The constraints we consider are conjunctions of literals based on both equality and membership
predicate symbols. For each aggregate, we introduce a first-order theory and we investigate the
problem of deciding whether a constraint is satisfiable in each model of the theory. We base
our decidability results on the introduction of a standard model and a solved-form for each
aggregate. These results allow us to solve the constraint satisfiability problems by applying
rewriting procedures which map satisfiable constraints into solved-form constraints.

The paper is organized as follows. In Section 2 we briefly discuss the existing results for
similar problems. After the preliminary definitions of Section 3, in Section 4 we recall from [20]
the first-order and equational theories of the four aggregates. In Section 5 we define the notion of
constraint and we identify the standard models for the theories used to describe the considered
aggregates. To ease the presentation, we choose the multiset theory as the working theory and we
briefly point out the differences in the other theories. We show that satisfiability of constraints
in standard models is equivalent to satisfiability in any model. Then we define the notion of
solved form for our constraints, and we prove that solved form constraints are satisfiable in the
proposed standard models. In Section 6 we describe the constraint rewriting procedures used
to eliminate all constraints not in solved form. We use these procedures in Section 7 to solve
the general satisfiability problem for the considered constraints. Some conclusions are drawn in
Section 8.

2 Related Works

The problem of set and multiset unification has been tackled by several authors, using different
representations (see [21] for a survey on the set unification problem). These problems are often
reduced to ACI and AC unification problems, respectively (see, e.g., [9, 30]). In these cases, a
union-based representation is usually employed, where the union binary function symbols
∪ and] are used as the set and multiset constructors, respectively. The operators ∪ and]
fulfill associativity (A) and commutativity (C). Moreover, ∪ is idempotent (I). In order to deal
with nested sets and multisets, the unary function symbols {·} and {[·]} are also included. They
act as singleton constructors for sets and multisets, respectively. Thus, the set {a, b, c} can be
represented as a term of the form {a}∪{b}∪{c} and the multiset {[a, b, b, c]} can be represented
as {[a]}] {[b]}]{[b]}]{[c]}. Since {·} and {[·]} are free function symbols, they do not fulfill any
particular axiom (see, e.g., [3]). Equational theories which also allow to deal with nested sets
and multisets are called general ACI and general AC, respectively.

Unification and disunification algorithms for general ACI and AC theories can be obtained
by exploiting both the results for simpler cases (unification with constants—[2]) and the combin-
ing approach developed in [4, 5]. This approach, however, due to its generality, tends to produce
a huge number of failing non-deterministic computation branches, which can be pruned using
more ad-hoc procedures.

The general problem of solving disequations with respect to a given equational theory has also
been addressed in [8], where a technique to transform disequations into universally quantified
unification problems is presented. The method described in [8] cannot be applied in the case of
theories over sets, since it can generate undecidable formulas. In fact, existentially quantified
formulas containing equations and disequations are decidable in the case of AC theories, as a
corollary of the results presented in [13]. Unfortunately, the same results cannot be applied
to ACI theories, hence to sets. These theories are studied in [18] where constraint solving
procedures are developed.

As far as membership and not-membership are concerned, we are not aware of studies that
extend those equational theories to encompass this kind of constraints. Actually, for sets, both
membership and not-membership could be easily defined in terms of equality and disequality

2

constraints: t ∈ s can be defined as {t}∪s = s and t /∈ s as {t}∪s 6= s. Conversely, for multisets,
membership t ∈ s can be defined as ∃X ({[t]}]X = s), where X is a new variable, while t /∈ s
can be defined as ∀X ({[t]}]X 6= s), i.e., using a formula with universal quantification. Note
that t /∈ s could be simplified to s = {[X]}∪R∧X 6= t∧ t /∈ R. On the contrary, t /∈ R, where R
is a variable, is not reducible to a system of equalities and disequalities. For lists and compact
lists of unknown length, both membership and not-membership cannot be defined in terms of
equality and disequality constraints.

The union-based representation can also be used for lists and compact lists, where the union
operator is associative for lists, and associative and partially idempotent for compact lists.

An alternative approach consists of considering a list-like representation based on an
element insertion constructor for each of the four aggregates (see Section 4). In [17] some
comparisons between the union-like and list-like representations are presented and they high-
light the different expressive powers. In particular, it turns out that the singleton operator is
not expressible using existentially quantified formulas with union. Furthermore, the list-based
representation is shown to be more natural for dealing with membership constraints. General
constraint solving procedures based on this approach, though limited to the case of sets, are
presented in [24, 23]. In [20] we consider the four data structures considered in this paper, using
the list-like representation for all of them, but limitedly to the case of unification. Note that
constraints on sets are particular cases of formulas of multi-level syllogistics, studied in [10],
where axioms for sets are not simply equational axioms. However, [10] is mainly concerned with
decidability results rather than with constraint solving procedures.

In this paper we make use of the list-like representation constraint solving procedures (that
can be used as decision procedures, as well) for constraints involving equality and membership
literals.

3 Preliminary Notions

Basic knowledge of first-order logic (e.g., [11, 25]) is assumed. We fix some notations and recall
some basic notions that will be used throughout the paper.

A first-order language L = 〈Σ,V〉 is defined by a signature Σ = 〈F ,Π〉 composed by a set F
of constant and function symbols, by a set Π of predicate symbols, and by a denumerable set
V of variables. The capital letters X,Y, Z, etc. are used to represent variables, while f , g, etc.
represent constant and function symbols, and p, q, etc. represent predicate symbols. X̄ and t̄
denote a (possibly empty) sequence of variables and terms, respectively.

The set of first-order terms (ground terms) built on F and V (F , respectively) are denoted by
T (F ,V) (T (F), respectively). The number of occurrences of constant and function symbols in a
term t is denoted by size(t), while FV(t̄) is the set of all the variables which occur in the terms t̄.
If ϕ is a first-order formula, FV(ϕ) is the set of free variables in ϕ. A formula is closed if it has no
free variables. ∃ϕ (∀ϕ) is used to denote the existential (universal, respectively) closure of the
formula ϕ, namely ∃X1 · · · ∃Xn ϕ (∀X1 · · · ∀Xn ϕ, respectively), where {X1, . . . , Xn} = FV(ϕ).
An axiom is a closed first-order formula. If Θ = {ϕ1, . . . , ϕn} is a set of axioms and A1, . . . , An

are names for the axioms ϕ1, . . . , ϕn, we refer to Θ simply as A1 · · ·An. In this work we
assume that any first-order theory T includes standard equality axioms: (=1) ∀X(X = X) and
(=2) ∀X∀Y ((X = Y) → (ϕ → ϕ′)) where ϕ is any first-order formula, X and Y are free in ϕ,
and ϕ′ is obtained from ϕ by replacing zero or more occurrences of X with Y [11, 25].

An equational axiom is a formula of the form ∀(` = r) where ` and r are terms. An equational
theory E is an axiomatization whose axioms are equational axioms. Given two terms ` and r,
we write ` ≈E r if the axioms in E can prove that ` is equal to r. A system of equations S is a
conjunction of equations `1 = r1 ∧ · · · ∧ `n = rn. An E-solution (a solution, when the context
is clear) of S is a substitution σ, which replaces variables with ground terms, such that for all
i ∈ {1, . . . , n} it holds σ(`i) ≈E σ(ri).

Given L = 〈Σ,V〉, a Σ-structure is a pair A = 〈A, I〉 where A 6= ∅ is the domain and I
is the interpretation function of each constant, function, and predicate symbols of Σ on A. A
valuation σ is a function from a subset of the set of variables V to A. When Σ is given, σ can

3

be uniquely extended to terms, and allows to assign truth values to formulas. A valuation σ is
said to be successful for ϕ if σ(ϕ) = true (briefly, A |= σ(ϕ)). A formula ϕ is satisfiable in A,
denoted by A |= ∃ϕ, if there exists a valuation σ such that A |= σ(ϕ). We say that A |= ϕ if
for every valuation σ from FV(ϕ) to A it holds that A |= σ(ϕ). Two formulas C1 and C2 are
equi-satisfiable in A if: C1 is satisfiable in A if and only if C2 is satisfiable in A. A structure A
is a model of a theory T if A |= ϕ for all ϕ in T . We say that T |= ϕ if A |= ϕ for all models
A of T .

4 The Theories

We recall from [20] the first-order axiomatic theories for the four aggregates. Each theory has
its own signature. Precisely, Π is {=,∈} and F contains (at least) the constant symbol nil and
exactly one among the following binary function symbols:

[· | ·] for lists, {[· | ·]} for multisets,
[[· | ·]] for compact lists, { · | · } for sets.

Moreover, each of the four signatures can contain an arbitrary number of fresh constant and
function symbols. The four function symbols above are referred as aggregate constructors. The
empty list, the empty multiset, the empty compact list, and the empty set are all denoted by
the constant symbol nil. We simplify syntactic notations for terms built using the aggregate
constructors in a standard way. In particular, the (multiset) term {[s1 | {[s2 | · · · {[sn | t]} · · ·]}]}
will be denoted by {[s1, . . . , sn | t]} or by {[s1, . . . , sn]} when t is nil. The same conventions will
be exploited also for the other aggregates.

In the following sections we introduce the axioms we need to define a theory for each aggre-
gate. Then the four theories are presented in Section 4.5.

4.1 Lists

The language LList is defined as 〈ΣList ,V〉, where ΣList = 〈FList , Π〉, [· | ·] and nil are in FList ,
and Π = {=,∈}. We recall that FList can contain other constant and function symbols. The
first-order theory List of lists is shown below.

(K) ∀X Y1 · · ·Yn (X 6∈ f(Y1, . . . , Yn)) f ∈ FList , f is not [· | ·]
(W) ∀Y V X (X ∈ [Y |V] ↔ X ∈ V ∨X = Y)

(F1) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)
f ∈ FList

(F2) ∀X1 · · ·XmY1 · · ·Yn (f(X1, . . . , Xm) 6= g(Y1, . . . , Ym)) f, g ∈ FList , f is not g

(F3) ∀X (X 6= t[X])
where t[X] denotes a term t having X as proper subterm

The three axiom schemas (F1), (F2), and (F3) (called freeness axioms, or Clark’s equality
axioms—see [12]) have been originally introduced by Mal’cev in [31]. Since [· | ·] belongs to
FList , axiom schema (F1) holds for [· | ·] as a particular case. (F3) states that there is no term
which is a proper subterm of itself (occurs check). Notice that (K) implies that ∀X (X /∈ nil).

4.2 Multisets

The language LMSet is defined as 〈ΣMSet ,V〉, where ΣMSet = 〈FMSet , Π〉, {[· | ·]} and nil are in
FMSet , and Π = {=,∈}. A theory of multisets—called MSet—can be obtained from the theory
of lists shown above. The constructor [· | ·] is replaced by the constructor {[· | ·]} in axiom
schema (K) and axiom (W). The behavior of this new symbol is regulated by the following
equational axiom

(Em
p) ∀XY Z {[X, Y |Z]} = {[Y,X |Z]} (permutativity)

4

which intuitively states that the order of elements in a multiset is immaterial. Axiom schema
(F1) does not hold for multisets, when f is {[· | ·]}. It is replaced by axiom schema (Fm

1):

(Fm
1) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)

for any f ∈ FMSet , f is not {[· | ·]}

The theory KWEm
p Fm

1 F2F3, however, is not endowed with a general criterion for establish-
ing equality and disequality between multisets. To obtain it, the following multiset extensionality
property is introduced: Two multisets are equal if and only if they have the same number of
occurrences of each element, regardless of their order. The axiom proposed in [20] to force this
property is the following:

(Em
k) ∀Y1Y2V1V2



{[Y1 |V1]} = {[Y2 |V2]} ↔

(Y1 = Y2 ∧ V1 = V2)∨
∃Z (V1 = {[Y2 |Z]} ∧ V2 = {[Y1 |Z]})




Axiom (Em
k) implies (Em

p). Axiom schema (Fm
3) is also introduced:

(Fm
3) ∀X1 · · ·XmY1 · · ·YnX

(
{[X1, . . . , Xm |X]} = {[Y1, . . . , Yn |X]}
→ {[X1, . . . , Xm]} = {[Y1, . . . , Yn]}

)

It reinforces the acyclicity condition imposed by standard axiom schema (F3). As a matter
of fact, X 6= {[a, b, b |X]} follows from (F3). Axiom schema (Fm

3) states for instance that, since
{[a, a, b]} 6= {[a, b, b]}, then {[a, a, b |X]} 6= {[a, b, b |X]}. This property is not a consequence of
the remaining part of the theory.

4.3 Compact Lists

The language LCList is defined as LCList = 〈ΣCList ,V〉, where ΣCList = 〈FCList ,Π〉, [[· | ·]] and
nil are in FCList , and Π = {=,∈}. The theory of compact lists—called CList—is obtained
from the theory of lists with only a few changes. The list constructor symbol is replaced by
the binary compact list constructor [[· | ·]] in (K) and (W). The behavior of this symbol is
regulated by the equational axiom

(Ec
a) ∀XY [[X, X |Y]] = [[X |Y]] (absorption)

which, intuitively, states that contiguous duplicates in a compact list are immaterial. As for
multisets, we introduce a general criterion for establishing both equality and disequality between
compact lists. This is obtained by introducing the following axiom:

(Ec
k) ∀Y1Y2V1V2




[[Y1 |V1]] = [[Y2 |V2]] ↔
(Y1 = Y2 ∧ V1 = V2)∨
(Y1 = Y2 ∧ V1 = [[Y2 |V2]])∨
(Y1 = Y2 ∧ [[Y1 |V1]] = V2)




Axiom (Ec
a) is implied by (Ec

k). Axiom schema (F1) is replaced by axiom schema (F c
1):

(F c
1) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)

for any f ∈ FCList , f is not [[· | ·]]

The freeness axiom (F3) needs to be suitably modified. The introduction of (F3) is motivated
by the requirement of finding solutions to equality constraints over Σ-structures whose domain

5

is based on the Herbrand Universe, where each term is modeled by a finite tree. As opposed
to lists and multisets, an equation such as X = [[nil |X]] admits a successful valuation over
compact lists. Precisely, a valuation that binds X to the term [[nil | t]], where t is any term.
Therefore, axiom schema (F3) is weakened as follows:

(F c
3) ∀X (X 6= t[X])

unless: t is of the form [[t1, . . . , tn |X]], with n > 0,
X /∈ FV(t1, . . . , tn), and t1 = · · · = tn

4.4 Sets

The language LSet is defined as LSet = 〈ΣSet ,V〉, where ΣSet = 〈FSet , Π〉, { · | · } and nil are in
FSet , and Π = {=,∈}. The last theory we consider is the theory Set of sets. Sets satisfy both
the permutativity and the absorption properties which, in the case of { · | · }, can be rewritten
as follows:

(Es
p) ∀XY Z {X,Y |Z} = {Y, X |Z}

(Es
a) ∀XY {X,X |Y } = {X |Y }

A criterion for testing equality (and disequality) between sets is obtained by merging the
multiset equality axiom (Em

k) and the compact list equality axiom (Ec
k):

(Es
k) ∀Y1Y2V1V2




{Y1 |V1} = {Y2 |V2} ↔
(Y1 = Y2 ∧ V1 = V2)∨
(Y1 = Y2 ∧ V1 = {Y2 |V2})∨
(Y1 = Y2 ∧ {Y1 |V1} = V2)∨

∃Z (V1 = {Y2 |Z} ∧ V2 = {Y1 |Z})




According to (Es
k), duplicates and ordering of elements in sets are immaterial. Thus, (Es

k)
implies the equational axioms (Es

p) and (Es
a). In [20] it is also proved that they are equivalent in

all Σ-structures where the domain is isomorphic to a subset of the set of ground terms (Herbrand
Universe). The theory Set also contains axioms (K), (W) with [· | ·] replaced by { · | · }, and
axiom schemas (F2). Axiom schema (F1) is replaced by:

(F s
1) ∀X1 · · ·XnY1 · · ·Yn

(
f(X1, . . . , Xn) = f(Y1, . . . , Yn)
→ X1 = Y1 ∧ · · · ∧Xn = Yn

)

for any f ∈ FSet , f is not { · | · }
The modification of axiom schema (F3) for sets simplifies the one used for compact lists:

(F s
3) ∀X (X 6= t[X])

unless: t is of the form {t1, . . . , tn |X} and X ∈ FV(t1, . . . , tn)

4.5 Equational Theories

We have shown that each aggregate constructor is precisely characterized by zero, one or two
equational axioms. In particular, lists do not require any axiom, multisets need the permuta-
tivity axiom (Em

p), compact lists use the absorption axiom (Ec
a), and sets are characterized by

both the permutativity axiom (Es
p) and the absorption axiom (Es

a).
Figure 1 summarizes the axiomatizations of the four theories.

5 Constraints, Standard Models, and Solved Form

In this section we first introduce the set of formulas we are interested in. These formulas
are called constraints and are basically the existentially quantified formulas of the languages
described in the previous section.

6

Theory empty with Equality Herbr. Acycl. Perm. Abs. Eq. Theory

List (K) (W) (F1) (F2) (F3) EList

MSet (K) (W) (Em
k) (F m

1) (F2) (F3) (F m
3) (Em

p) EMSet

CList (K) (W) (Ec
k) (F c

1) (F2) (F c
3) (Ec

a) ECList

Set (K) (W) (Es
k) (F s

1) (F2) (F s
3) (Es

p) (Es
a) ESet

Figure 1: Axioms for the four theories. From left to right, the name of the first-order theory,
the first-order axiom schemas, the equational axioms and the name of the equational theories.

Definition 5.1 (Constraints) Let T be either List or MSet or CList or Set. A T-constraint
CT is a conjunction of atomic LT-formulas or negation of atomic LT-formulas of the form sπ t,
where π ∈ Π, and s, t ∈ T (FT,V).

Throughout the paper we will use the following terminology to refer to particular kinds of
constraints: equality (disequality) constraints are conjunctions of atomic formulas of the form
s = t (s 6= t, respectively), while membership (not-membership) constraints are conjunctions of
membership atoms (negative membership literals, respectively), i.e. formulas of the form s ∈ t
(s 6∈ t, respectively).

We are interested in the problem of deciding whether a formula over one of the aggregates
is satisfiable in each model of the theory of that aggregate. We start tackling this problem by
introducing standard models for the four theories and giving a general notion of solved form
for constraints. We prove that: (1) the satisfiability of a constraint in the standard model is
equivalent to its satisfiability in each model (i.e., the theory and the standard model correspond
on the class of considered constraints); (2) solved form constraints are always satisfiable in the
corresponding standard model.

5.1 Standard Models

Each aggregate constructor is characterized by its equational theory (EList , EMSet , ECList , and
ESet). Using the appropriate equational theory we can define standard models for the first-order
theories List , MSet , CList , and Set . Each model is obtained as a partition of the Herbrand
Universe. To simplify our presentation, we describe in details only the multisets case.

Definition 5.2 The Σ-structure MSET for MSet is defined as follows.

1. The domain of the Σ-structure is the quotient T (FMSet)/ ≡MSet of the Herbrand Universe
T (FMSet) over the smallest congruence relation ≡MSet induced by the equational theory
EMSet on T (FMSet).

2. The interpretation of a term t is its equivalence class it with respect to ≡MSet .

3. = is interpreted as the identity on the domain T (FMSet)/ ≡MSet .

4. The interpretation of membership is: it ∈ is is true if and only if there is a term of the
form {[t1, . . . , tn, t | r]} in is .

In Lemma A.2 we prove that MSET is a model of MSet . We call it the standard model for
MSet . For the other aggregates the names of the models are LIST , CLIST , and SET . The
definition of these models is obtained by using the appropriate equational theory, in the very
same way as shown for multisets.

Definition 5.3 ([29]) Let L = 〈Σ,V〉 be a a first-order language, T be a theory on L, A be a
Σ-structure on L, and C be a class of first-order formulas on L. The theory T and the structure
A correspond on the class C if, for each ϕ ∈ C, we have that T |= ∃ϕ if and only if A |= ∃ϕ.

7

This property means that if ϕ is an element of C and ϕ is satisfiable in A, then it is satisfiable
in all the models of T . We prove that MSet and the standard model MSET correspond on the
class of constraints defined in Definition 5.1. In the proof we use some basic results which can
be found in the Appendix (Lemmas A.1–A.3). The proofs for the other theories are similar.
Intuitively all these proofs exploit two facts: our standard models are “minimal” models for
the theories (i.e., they are contained in each model) and the formulas are only existentially
quantified.

Theorem 5.4 The theory MSet and the model MSET correspond on MSet-constraints.

Proof. From Lemma A.2 it follows that MSET is a model of MSet, namely that if C is a first-order
formula and MSet |= C, then MSET |= C.

On the other hand, if ∃C is a formula with only existential quantifiers, then MSET |= ∃C if
and only if there exists a valuation σ such that MSET |= σ(C). Assume that M |= σ(C). From
Lemmas A.1 and A.3, we have that M |= ∃C for all models M of MSet. This implies that MSet |= ∃C.
2

5.2 Solved Form

We have proved that a constraint is satisfiable in each model if and only if it is satisfiable in
the standard one. However, we still have to develop a procedure which tests satisfiability in the
standard model. Such a procedure will be based on the notion of solved form.

Definition 5.5 A constraint C = c1 ∧ · · · ∧ cn is in solved form if for i ∈ {1, . . . , n}, ci has
one of the following forms:

• X = t and X does not occur neither in t nor elsewhere in C

• X 6= t and X does not occur in t

• t /∈ X and X does not occur in t.

Remark 5.6 In the case of multisets (sets) t ∈ X is equivalent to X = {[t |N]} (X = {t |N},
respectively) where N is a new variable. This allows us to always remove membership con-
straints. The property does not hold for lists and compact lists. In these cases the solved form
must include the further case

• t ∈ X and X does not occur in t.

This inclusion, however, requires the introduction of further semantics conditions in the def-
inition of the solved form for lists and compact lists. As a matter of fact, a constraint such
as

[[a |N]] ∈ Y ∧ [[a, a |N]] 6∈ Y

is unsatisfiable in CLIST , since [[a |N]] and [[a, a |N]] are equivalent terms in ECList . Fur-
thermore, the constraint

X ∈ Y ∧ Y ∈ X

is unsatisfiable in both LIST and CLIST . Intuitively, the additional conditions that must be
tested for the solved form constraint C in the case of lists and compact lists are: (i) membership
constraints in C do not form any cycle; (ii) for each pair of literals of the form t 6∈ X, t′ ∈ X
in C, t and t′ are not equivalent modulo ≡E, where E is the equational theory for either lists or
compact lists. Both conditions can be automatically tested. In particular, as concerns condition
(ii), we known from unification theory (see, e.g., [3, 35]) that given an equational theory E,
knowing whether two terms are equivalent modulo ≡E is the same as verifying whether the
two terms t and t′ are E-unifiable with empty mgu (ε). Thus, test (ii) is connected with the
availability of a unification algorithm for the theory E. In [20] it is proved that all four equational
theories we are dealing with are finitary (i.e., they admit a finite set of mgu’s that covers all
possible unifiers) and, moreover, the unification algorithms for the four theories are presented.
This gives us a decision procedure for the test. A more precise characterization of the additional
conditions for lists and compact lists can be found in [19].

8

We prove that solved form constraints are satisfiable in the corresponding standard models.
We prove the property for MSet-constraints.

Theorem 5.7 (Satisfiability of the Solved Form) Let C be a MSet-constraint in solved
form. Then MSET |= ∃C.

Proof. We split C into the three parts: C=, C /∈, and C 6=, containing =, /∈, and 6= literals, respectively.
We use the two auxiliary functions rank and find. The rank of a well-founded multiset is basically the
maximum nesting of braces needed to write it. Precisely:

rank(s) =


0 if s is not of the form {[u | v]}
max{1 + rank(u), rank(v)} if s is {[u | v]}

find(X, t) is a function that produces for each pair (X, t) a set of integer numbers indicating the ‘depth’
of the occurrences of the variable X in t. It can be defined as:

find(X, t) =

8
>>>><
>>>>:

∅ if t is a constant term
{0} if t is a variable X
{1 + n : n ∈ find(X, y)} if t is {[y | f(t1, . . . , tm)]}, f is not {[·|·]}
{1 + n : n ∈ find(X, t1) ∪ · · · ∪ find(X, tm)} if t is f(t1, . . . , tm), f is not {[·|·]}
{1 + n : n ∈ find(X, y)} ∪ find(X, s) if t is {[y | s]}, s 6= nil

We build a successful valuation γ of C, in various steps; since the valuation is on a domain whose
elements are terms, valuations are substitutions.

C= is of the form X1 = t1 ∧ · · · ∧Xm = tm. We define the substitution: θ1 = [X1/t1, . . . , Xm/tm].
C 6= is of the form Z1 6= s1 ∧ · · · ∧ Zo 6= so (Zi does not occur in si), and C /∈ is of the form

r1 /∈ Y1 ∧ · · · ∧ rn /∈ Yn (Yi does not occur in ri). Let W1, . . . , Wh be the variables in C different from
the variables X̄, Ȳ , Z̄ and let θ2 = [W1/nil, . . . , Wh/nil].

Let s̄ = 1 + max{rank(t) : t /∈ X occurs in θ2(C) or X 6= t occurs in θ2(C)}.
Let R1, . . . , Rj be the all the variables occurring in θ2(C

/∈ ∧ C 6=) (actually, all the variables Ȳ and
Z̄). Let n1, . . . , nj be auxiliary variables ranging over N. We build a system S of linear disequations
over the integers in the following way:

1. S = {ni > s̄ : ∀i ∈ {1, . . . , j}} ∪ {ni1 6= ni2 : ∀i1, i2 ∈ {1, . . . , j}, i1 6= i2}
2. For each literal Ri 6= s in θ2(C

6=) and for all k in {1, . . . , j}, i 6= k

S = S ∪ {ni 6= nk + c : ∀c ∈ find(Rk, s)}

3. For each literal r /∈ Ri in θ2(C
/∈) and for all k in {1, . . . , j}, i 6= k

S = S ∪ {ni 6= nk + c + 1 : ∀c ∈ find(Rk, r)}

We say that a linear disequality a 6= b over the integers is safe if, after expressions evaluation, it is
not of the form u 6= u. We say that a system A of linear disequations over the integers with variables
x1, . . . , xh is safe if each disequation in A is either a safe disequality or it is of the form xi > m, where m
is an integer number. A finite set of safe linear disequalities has always an infinite number of solutions
(see Lemma A.4 in the Appendix). We show that all disequalities of S are safe. The disequalities
generated at point (1) are safe by definition; those introduced in points (2) and (3) are safe since c
is always a positive number. Thus, it is possible to find an integer solution for the system S. Let
η = {n1 = n̄1, . . . , nj = n̄j} be a solution and define

θ3 = [Ri/{[nil]}n̄i : ∀i ∈ {1, . . . , j}]
where {[nil]}n̄ denotes the term {[· · · {[| {z }

n̄

nil]} · · ·]}.

It is immediate to see that in KWEm
k F m

1 F2F
3F m

3 it holds that {[nil]}x = {[nil]}y if and only if
x = y and {[nil]}x ∈ {[nil]}y if and only if x = y − 1 (see Lemma A.5 in the Appendix).

Let γ = θ1θ2θ3 (where sθ1θ2θ3 stands for θ3(θ2(θ1(s)))) and observe that Cγ is a conjunction of
ground literals. We show that KWEm

k F m
1 F2F

3F m
3 |= Cγ. We analyze each literal of C.

X = t : θ1(X) syntactically coincides with θ1(t) = t. The substitution θ2 makes the two identical terms
ground. A literal of this form is true in any model of equality.

Z 6= s : the following cases are possible:

9

• s is of the form {[nil]}p for some p < s̄. Zγ is of form {[nil]}n for some n > s̄. Since n > p
the result follows.

• s is of the form {[Wi]}p for some variable Wi and some p < s̄. Zγ is of form {[nil]}n for
some n > s̄. Since Wiγ = nil, the situation is identical to the previous case.

• s is of the form {[A]}p for some variable A among the Ȳ , Z̄, and some p < s̄. Then
find(A, t) = {p}. This means that the the constraint nZ 6= nA + p is introduced in S
and satisfied by the assignment η. Thus Zθ = {[nil]}nZ and tθ = {[nil]}nA+p. Since
nZ 6= nA + p the result follows as in the previous cases.

• If s is not in any of the previous forms, then sγ can be proved different from Zγ using a
sequence of applications of Em

k and F2.

r /∈ Y : four cases are possible:

• r is of the form {[nil]}p for some p < s̄. Y γ is of form {[nil]}n for some n > s̄. Since
n 6= p + 1 the result follows.

• r is of the form {[Wi]}p for some variable Wi and some p < s̄. Zγ is of form {[nil]}n for
some n > s̄. Since Wiγ = nil, the situation is identical to the previous case.

• r is of the form {[X]}p for some variable X among the Ȳ , Z̄, and some p ≤ s̄. Then
find(X, t) = {p}. This means that the the constraint nY 6= nX + p + 1 is introduced in
S and satisfied by the assignment η. Thus Y θ = {[nil]}nY and rθ = {[nil]}nX+p. Since
nY 6= nX + p + 1 the result follows as in the previous cases.

• If r is not in any of the previous forms, then rγ can be proved different from Y γ using
axiom W and a sequence of applications of Em

k and F2.

2

Hence a solved-form constraint can be seen as a symbolic representation for a non-empty
and possibly infinite set of valuations, i.e., the valuations satisfying it.

6 Constraint Rewriting Procedures

In this section we describe the procedures that allow us to obtain solved form constraints from
any given constraint C. Precisely, these procedures rewrite the constraint C either into an
equi-satisfiable disjunction of constraints in solved form or false. The constraint is rewritten
to false if and only if it is not satisfiable in the standard model. As a consequence of the
results of the previous sections these procedures decide the satisfiability of a constraint in each
model of the theory. Moreover, the disjunction of constraints in solved form given as output is
a finite representation for the valuations satisfying the input constraint.

All procedures have the same overall structure shown in Figure 2: they take a constraint
C as input and repeatedly select a conjunct c in C not in solved form (if any) and apply one
of the rewriting rules to it. The procedure stops when the constraint C is in solved form or it
contains false as one of its conjuncts.

The procedure is non-deterministic. Some rewriting rules have two or more possible non-
deterministic choices. Each non-deterministic computation returns a constraint in solved form
or false. Globally, the procedure returns a finite collection C1, . . . , Ck of constraints. The
input constraint C and the disjunction C1∨ · · ·∨Ck are equi-satisfiable in the standard models.
We show the details for the multiset case only. Details for the other procedures can be found
in [19].

6.1 Equality Constraints

Unification algorithms for verifying the satisfiability and producing the solutions of equality
constraints in the four aggregate theories have been proposed in [20]. These algorithms fall in
the general schema of Figure 2. Some determinism in the statement select c is added to ensure
termination. They are called:

10

Let T be one of the theories List ,MSet ,CList ,Set , π a symbol in {=, 6=,∈, 6∈}, and C a T-constraint

while C contains an atomic constraint c of the form ` π r not in solved form and C 6= false do
select c;
if c = false then return false

else if c = true then erase c
else apply to c any rewriting rule for T-constraints of the form ` π r;

return C

Figure 2: Main loop of constraint rewriting procedures

unify-List for lists unify-MSet (called unify-bags in [20]) for multisets
unify-CList for compact lists unify-Set for sets

and they are used unaltered in the four global constraint solvers that we propose in this paper.
The output of the algorithms is either false, when the input constraint is unsatisfiable, or

a collection of solved form constraints composed only by equality atoms. In Figure 3 we show
the rewriting rules for multiset unification.

Rules for unify-MSet

(1) X = X 7→ true

(2)
t = X

t is not a variable

ff
7→ X = t

(3)
X = t

X 6∈ FV(t), X occurs elsewhere in C

ff
7→

X = t and apply the substitution [X/t] to C

(4)
X = t

t is not X, X ∈ FV(t)

ff
7→ false

(5)
f(s1, . . . , sm) = g(t1, . . . , tn)

f is not g

ff
7→ false

(6)
f(s1, . . . , sm) = f(t1, . . . , tm)

m ≥ 0, f is not {[· | ·]}
ff

7→
s1 = t1 ∧ . . . ∧ sm = tm

(7)
{[t | s]} = {[t′ | s′]}

tail(s) and tail(s′) are not the same variable

ff
7→

(i) (t = t′ ∧ s = s′) ∨
(ii) (s = {[t′ |N]} ∧ {[t |N]} = s′)

(8)
{[t | s]} = {[t′ | s′]}

tail(s) and tail(s′) are the same variable

ff
7→

untail({[t | s]}) = untail({[t′ | s′]})

Figure 3: Rewriting rules of the unification algorithm for multisets

The algorithm uses the auxiliary functions tail and untail defined as follows:

tail(f(t1, . . . , tn)) = f(t1, . . . , tn) f is not {[· | ·]}, n ≥ 0
tail(X) = X X is a variable
tail({[t | s]}) = tail(s)
untail(X) = nil X is a variable
untail({[t | s]}) = {[t | untail(s)]}

The following lemma, which states the soundness and completeness of the unification rules,
has been proved in [20]. We report here the proof for the sake of completeness.

Lemma 6.1 ([20]) Let T be one of the theories List, MSet, CList, Set, and AT be the stan-
dard model for T. Let C be a T-constraint, C1, . . . , Ck be the constraints non-deterministically
returned by unify-T(C), and N̄i = FV(Ci) \ FV(C). Then AT |= ∀

(
C ↔ ∨k

i=1 ∃N̄iCi

)
.

11

Proof. Let us prove the property for each rule separately.

unify-MSet(1), (2), (3) They immediately follow from equality axioms.

unify-MSet(4) It is justified by axiom (F m
3).

unify-MSet(5) It is immediately justified by axiom schema (F 2).

unify-MSet(6) One direction follows from the equality axioms, the other one from axiom (F1)

unify-MSet(7) It is immediately justified by axiom (Em
k).

unify-MSet(8) It is immediately justified by axiom (F m
3) (the auxiliary funcion untail replace the variable

that occurs as tail of the two multisets with nil).

2

Remark 6.2 Consider the constraint

{[a |X]} = {[b |Y]} ∧ {[d |X]} = {[e |Y]}
If we apply rule (7ii) to the first equation and then to the second equation, we obtain:

X = {[b |N1]} ∧ {[a |N1]} = Y ∧X = {[e |N2]} ∧ {[d |N2]} = Y

Then, apply rule (2) to the second equation and then apply substitution (rule (4)) to the first
and second equation we get:

X = {[b |N1]} ∧ Y = {[a |N1]} ∧ {[b |N1]} = {[e |N2]} ∧ {[d |N2]} = {[a |N1]}
The first two equations are in solved form. The third and fourth equations constitute a constraint
absolutely equivalent to the starting one. This is a possible source of non-termination. However,
a simple selection strategy is sufficient to avoid this problem. From the initial system, apply
rule (7ii) to the first equation and then the two substotutions induced:

X = {[b |N1]} ∧ Y = {[a |N1]} ∧ {[d, b |N1]} = {[e, a |N1]}
Then rule (8) can be used removing “tail” variables:

X = {[b |N1]} ∧ Y = {[a |N1]} ∧ {[d, b]} = {[e, a]}
And in few steps termination (with failure) occurs. Basically the rule is “when a multiset-
multiset equation is selected, recursively processing first all the equations introduced by it”. This
rule is easy implemented using a stack. For more details, see [20].

6.2 Membership and Not-Membership Constraints

The rewriting procedures for membership and not-membership constraints on a specific aggre-
gate are obtained from the general schema of Figure 2, using the rewriting rules for membership
and not-membership constraints suitably instantiated with the corresponding theory. These
rules are justified by axioms (K) and (W) that hold in all the four theories. In Figure 4 we
show the rules in the case of multisets. Note that the rewriting rule (4) for in-MSet can be used
for sets and multisets, but not for the other theories (see also Remark 5.6). Thus, the rules for
membership constraints in the case of lists and compact lists only deal with cases (1)–(3), while
constraints of the form r ∈ X remain unchanged in the solved form.

Lemma 6.3 Let T be one of the theories List, MSet, CList, Set, and AT be the standard model
for the theory T. Let C be a T-constraint, C1, . . . , Ck be the constraints non-deterministically
returned by nin-T(in-T(C)), and N̄i = FV(Ci) \ FV(C). Then AT |= ∀

(
C ↔ ∨k

i=1 ∃N̄iCi

)
.

Proof. We prove soundness and completeness for multisets, thus with respect to the model MSET .
Soundness and completeness for the other aggregates can be proved in the very same way (with the
exception of rule (4)). Soundness and completeness is proved for each rewriting rule separately since
the rules are mutually exclusive.

12

Rules for in-MSet

(1)
r ∈ f(t1, . . . , tn)
f is not {[· | ·]}

ff
7→ false

(2) r ∈ {[t | s]} ¯ 7→ r = t ∨ (a)
r ∈ s (b)

(3)
r ∈ X

X ∈ FV(r)

ff
7→ false

(4)
r ∈ X

X 6∈ FV(r)

ff
7→ X = {[r |N]}

Rules for nin-MSet

(1)
r /∈ f(t1, . . . , tn)
f is not {[· | ·]}

ff
7→ true

(2) r /∈ {[t | s]}) ¯ 7→ r 6= t ∧ r /∈ s

(3)
r /∈ X

X ∈ FV(r)

ff
7→ true

Figure 4: Rewriting rules for membership and not-membership constraints

in-MSet(1) r ∈ f(t1, . . . , tn), with f different from {[· | ·]} is equivalent to false by axiom (K).

in-MSet(2) This is exactly axiom (W).

in-MSet(3) Assume that there is a valuation σ such that MSET |= σ(r ∈ X). This means that σ(X)
is an equivalence class which contains a term of the form: {[s1, . . . , sn, r′ | t]} for some terms
s1, . . . , sn, t and for some term r′ in the equivalence class σ(r). Axiom (F3) ensures that X
cannot be a subterm of r.

in-MSet(4) Assume that there is a valuation σ such that MSET |= σ(r ∈ X). This means that σ(X)
is an equivalence class which contains a term of the form: {[s1, . . . , sn, r′ | t]} for some terms
s1, . . . , sn, t and for some term r′ in σ(r). Since MSET is a model of (Em

k) this means that the
class σ(X) contains also {[r′, s1, . . . , sn | t]} for some terms s1, . . . , sn, t. Thus, it is a model of
X = {[r |N]}. The other direction is similar.

nin-MSet(1), (2), (3) Same proofs as for the corresponding in-MSet rules, using the same axioms.

2

6.3 Disequality Constraints

Rewriting rules for disequality constraints consist of a part common to the four theories (rules
(1)–(5)), and a part which is specific to each theory. In Figure 5 we show the rules for the
multiset case.

Some words are necessary to explain the rules which manage disequalities between multisets.
In particular, if we used directly axiom (Em

k) in rule(6.2) of Figure 5, we would have that:

{[t1 | s1]} 6= {[t2 | s2]} ↔ (t1 6= t2 ∨ s1 6= s2)∧
∀N (s2 6= {[t2 |N]} ∨ s1 6= {[t1 |N]})

Since an universal quantification is introduced, this is no longer a constraint according to Defi-
nition 5.1.

Alternatively, we could use the intuitive notion of multi-membership: x ∈i y if x belongs at
least i times to the multiset y. This way, one can provide an alternative version of equality and
disequality between multisets. In particular, we would have that:

{[t1 | s1]} 6= {[t2 | s2]} ↔ ∃X∃n (n ∈ N∧
(X ∈n {[t1 | s1]} ∧X /∈n {[t2 | s2]})∨
(X ∈n {[t2 | s2]} ∧X /∈n {[t1 | s1]}))

13

Rules for neq-MSet

(1)
d 6= d

d is a constant

ff
7→ false

(2)
f(s1, . . . , sm) 6= g(t1, . . . , tn)

f is not g

ff
7→ true

(3)
t 6= X

t is not a variable

ff
7→ X 6= t

(4)
X 6= X

X is a variable

ff
7→ false

(5)
f(s1, . . . , sn) 6= f(t1, . . . , tn)
n > 0, f is not consT(· , ·)

ff
7→ s1 6= t1∨ (1)

...
...

sn 6= tn (n)

(6.1)
{[t1 | s1]} 6= {[t2 | s2]}
tail(s1) and tail(s2)

are the same variable

9
=
; 7→ untail({[t1 | s1]}) 6= untail({[t2 | s2]})

(6.2)
{[t1 | s1]} 6= {[t2 | s2]}
tail(s1) and tail(s2)

are not the same variable

9
=
; 7→ (t1 6= t2 ∧ t1 /∈ s2)∨ (a)

({[t2 | s2]} = {[t1 |N]} ∧ s1 6= N) (b)

(7)
X 6= f(t1, . . . , tn)

X ∈ FV(t1, . . . , tn)

ff
7→ true

Figure 5: Rewriting rules for disequality constraints on multisets

In this case, however, the quantification over natural numbers is outside the language we are
studying. Conversely, the rewriting rule (6.2) adopted in Figure 5 avoids these difficulties
introducing only one existential quantification (∃N in the set of terms T (FMSet)).

Remark 6.4 Observe that, differently from multisets, the rewriting rule for disequality between
compact lists follows immediately from axiom (Ec

k). As a matter of fact, this axiom does not
introduce any new variable.

As concerns sets, axiom (Es
k) introduces an existentially quantified variable, as for multisets.

Thus, its direct application for stating disequality would require universally quantified constraints
that go outside the language. On the other hand, the rewriting rule (6.2) used for multisets
(Figure 5) cannot be used in this context. In fact, the property that s1 6= N implies {[t1 | s1]} 6=
{[t1 |N]}, holding for finite multisets, does not hold for sets. For instance, {a} 6= {a, b} but
{b, a} = {b, a, b}. Thus, this rewriting rule would be not correct for sets.

A rewriting rule for disequality constraints on sets, however, can be easily obtained by taking
the negation of the standard extensionality axiom for sets

(Ek) x = y ↔ ∀z (z ∈ x ↔ z ∈ y)

This leads to the following rewriting rule that replaces rules (6.1) and (6.1) of Figure 5 in the
case of disequality constraints on sets.

(6) {t1 | s1} 6= {t2 | s2}
} 7→

Z ∈ {t1 | s1} ∧ Z /∈ {t2 | s2}∨ (a)
Z ∈ {t2 | s2} ∧ Z /∈ {t1 | s1} (b)

Soundness and completeness of neq-MSet are proved by the following lemma.

Lemma 6.5 Let C be a MSet-constraint, C1, . . . , Ck be the constraints non-deterministically
returned by neq-MSet(C), and N̄i = FV(Ci) \ FV(C). Then MSET |= ∀

(
C ↔ ∨k

i=1 ∃N̄iCi

)
.

Proof. Let us prove the property for each rule separately.

14

neq-MSet(1), (3), (4) They immediately follow from equality axioms.

neq-MSet(2) It is justified by axiom (F2).

neq-MSet(5) One direction follows from the equality axioms, the other one from axiom (F m
1)

neq-MSet(6.1) It is immediately justified by axiom schema (F m
3).

neq-MSet(6.2) The constraint {[t1 | s1]} 6= {[t2 | s2]} is equivalent to:

t1 /∈ {[t2 | s2]} ∧ {[t1 | s1]} 6= {[t2 | s2]} ∨ (1)

t1 ∈ {[t2 | s2]} ∧ {[t1 | s1]} 6= {[t2 | s2]} (2)

Since we are looking for successful valuations over MSET that deal with multisets of finite
elements, axiom (Em

k) ensures that t1 /∈ {[t2 | s2]} implies {[t1 | s1]} 6= {[t2 | s2]}. Thus, formula
(1) is equivalent to t1 ∈ {[t2 | s2]} which, in turn, is equivalent by (W) to the disjunct (a) generated
by the rewriting rule.

Consider now formula (2). It is easy to see that

MSET |= ∀(t1 ∈ {[t2 | s2]} ↔ ∃M ({[t1 |M]} = {[t2 | s2]})) (3)

Thus, (2) is equivalent to

∃M ({[t1 |M]} = {[t2 | s2]} ∧ {[t1 | s1]} 6= {[t2 | s2]}) (4)

It remains to prove that (4) is equivalent to the disjunct (b), namely:

∃N (s1 6= N ∧ {[t2 | s2]} = {[t1 |N]}) (5)

(4) → (5) Assume that there exists M which satisfies (4). M = s1 will immediately lead to a
contradiction. Thus, (5) is satisfied by N = M .

(5) → (4) Assume that there exists N which satisfies (5). It immediately follows from the fact,
true for finite multisets, that s1 6= N implies {[t1 | s1]} 6= {[t1 |N]}. Thus, choose M = N .

2

Remark 6.6 In our theories an aggregate can be built starting from any ground uninterpreted
Herbrand term, called the kernel, and by adding to it the elements that compose the aggregate.
Thus, two aggregates can contain the same elements but nevertheless they can be different because
they have different kernels. For instance, the two terms {a | b} and {a | c} denote two different
sets containing the same elements (i.e., only a) but based on different kernels (i.e., b and c,
respectively).

Rewriting rules for disequality constraints on aggregates other than sets are formulated in
such a way to take care of the possibly different kernels without having to explicitly resort to
kernels. Conversely, the rewriting rule for disequality constraints on sets (similar to rule (6) of
neq MSet and its subrules) is not able to “force” disequality between two sets when they have
the same elements but different kernels. A possible completion of the above procedures to take
care of this case is presented in [24]. Basically, a new constraint (ker) is introduced and the
rewriting rule (6) is endowed with a third non-deterministic case: ker(s1) 6= ker(s2). For further
details, see [19].

7 Constraint Solving

Now we have all ingredients to address the problem of establishing whether a constraint C
is satisfiable in the corresponding standard model. Theorem 5.4 ensures that the property is
inherited by any model.

Constraint satisfiability for a theory T is checked by the non-deterministic rewriting pro-
cedure SATT shown in Figure 6. SATT is completely parametric with respect to the theory
involved and it iteratively uses the rewriting procedures presented in the previous sections, un-
til a fixed-point is reached, i.e., any new rewritings do not further simplify the constraint. This
happens when the constraint is either in solved form or it is false.

15

By Theorem 5.7 a constraint in solved form is guaranteed to be satisfiable in the corre-
sponding model. Moreover, it will be proved in Theorem 7.2 that the disjunction of solved
form constraints returned by SATT is equi-satisfiable in the standard model with the original
constraint C. Therefore, SATT can be used as a test procedure to check satisfiability of C: if it
is able to reduce C to at least one solved form constraint C ′, then C is satisfiable; otherwise,
C is unsatisfiable. The generated constraint in solved form can be exploited to compute all
possible successful valuations for C.

function SATT(C)
repeat

C′ := C;
C := unify-T(neq-T(nin-T(in-T(C))))

until C = C′;
return(C)

Figure 6: The satisfiability procedure, parametric with respect to T

The rest of this section is devoted to prove the crucial result of termination of the procedure
SATT(C), to prove its soundness and completeness, and, finally, to give some hints on its
complexity.

Theorem 7.1 (Termination) Let T be one of the theories List, MSet, CList, Set, and C be
a T-constraint. Each non-deterministic execution of SATT(C) terminates in a finite number of
steps. Moreover, the constraint returned is either false or a solved form constraint.

Proof. We give the proof for the case of MSet. The other proofs can be found in [19].
It is immediate to see, by the definitions of the procedures, that if C is different from false and

not in solved form, then some rewriting rule can be applied. If we apply a rewriting rule that leads to
false, then the process terminates. Thus, we do not analyze such rules in the rest of this proof.

We prove that the repeat cycle cannot loop forever. For doing that, we define a complexity measure
for constraints. Let us assume that constraints of the form X = t, with X neither in t nor elsewhere in
C, are removed from C. Similarly, we assume that true constraints are not counted in the complexity
measure. These two assumptions are safe since those constraints do not fire any new rule application.
The complexity measure that we associate with a constraint is the following triple:

compl(C) = 〈 α(C) = # vars in C,
β(C) = {[size(s) + size(t) : s op t ∈ C]},
γ(C) =

P
s op t∈C size(s) 〉

The first and third element of the triple are non-negative integers. The second is a multiset of
non-negative integers. Multisets of non-negative integers are well-ordered [16] by the ordering obtained
as the transitive closure of the rule:

{[s1, . . . , si−1, t1, . . . , tn, si+1, . . . , sm]} ≺ {[s1, . . . , sm]} ,

for i ∈ {1, . . . , m}, n ≥ 0, t1 < si, . . . , tn < si. The ordering on triples is the (well-founded) lexico-
graphical ordering.

We will prove that given a constraint C a constraint C′ with lower complexity is reached in a finite
number of non-failing successive rule applications. We show this property by case analysis. Most rule
applications decrease the complexity in one step. When this does not happen, we enter in more detail.

unify-MSet(1) α does not increase, β decreases.

unify-MSet(2) α and β do not increase. γ decreases, since size(X) = 0 and size(t) > 0.

unify-MSet(3) α decreases by 1.

unify-MSet(6) α does not increase. β decreases, since an equation of size 1 +
Pm

i=1 size(si) + size(ti) is
replaced by m smaller equations of size size(si) + size(ti).

unify-MSet(7) In this case the complexity may remain unchanged at the first step. However, the
unification algorithm adopts a selection strategy that ensures that after a finite number of steps,
either α decreases or α does not change and β decreases (see Remark 6.2).

16

unify-MSet(8) After one rule application, we are in case (7) with both the tails of the multisets non-
variables. After a finite number of steps, we enter the situation where α is unchanged and β
decreases.

in-MSet(2) α does not increase. β decreases, since a constraint of size 1 + size(r) + size(s) + size(t) is
non-deterministically replaced by one of smaller size, i.e. either size(r)+size(s) or size(r)+size(t).

nin-MSet(1), (3) α does not increase and β decreases.

nin-MSet(2) α does not increase. β decreases, since a constraint of size 1 + size(r) + size(s) + size(t) is
non-deterministically replaced by two constraints of smaller size size(r) + size(s) and size(r) +
size(t).

neq-MSet(2), (7) Trivially, α does not increase and β decreases.

neq-MSet(3) α and β do not increase. γ decreases, since size(X) = 0 and size(t) > 0.

neq-MSet(5) α does not increase. β decreases, since a constraint of size 1 +
Pm

i=1 size(si) + size(ti) is
non-deterministically replaced by one of size size(si) + size(ti).

neq-MSet(6.2) A unique application of this rule may not decrease the constraint complexity. However,
the rule removes {[t1 | s1]} 6= {[t2 | s2]} and introduces

{[t2 | s2]} = {[t1 |N]} ∧ (6)

s1 6= N (7)

Consider now the two cases:

1. {[t2 | s2]} is {[r1, . . . , rn]}
2. {[t2 | s2]} is {[r1, . . . , rn |A]}, for some variable A distinct from N that has just been intro-

duced.

In the first case the successive execution of unify-MSet replaces equation (6) by:

t1 = ri ∧N = {[r1, . . . , ri−1, ri+1, . . . , rn]}
for some i = 1, . . . , n. We have that

size(t1) + size(ri) < size({[t1 | s1]}) + size({[t2 | s2]}).
The equation N = {[r1, . . . , ri−1, ri+1, . . . , rn]} is eliminated by applying the substitution for N .
N occurs only in the constraint s1 6= N , that becomes s1 6= {[r1, . . . , ri−1, ri+1, . . . , rn]}. Again,
its size is strictly smaller than that of the original disequality constraint. Thus, after some further
steps, α remains unchanged while β decreases. Strictly speaking, some other actions may occur
during that sequence of actions. However, if no other rule (6.2) is executed, then all rules decrease
the complexity tuples. Conversely, if other rules of this form are executed, then we need to wait
for all the substitutions of this form to be applied. But they are all independent processes.

The second case is similar, but in such a case a substitution also for A is computed, ensuring that
α decreases.

neq-MSet(6.1) After one step, we are in the above situation (6.2).

2

The soundness and completeness result of the global constraint solving procedure for List, MSet,
CList, and Set follows from the lemmas in the previous sections. As observed in Remark 6.6,
the completeness of the Set case needs some care to deal with kernels.

Theorem 7.2 (Soundness - Completeness) Let T be one of the theories List, MSet, CList,
and Set, C be a T-constraint, and C1, . . . , Ck be the solved form constraints non-deterministically
returned by SATT(C), and N̄i be FV(Ci) \ FV(C). Then AT |= ∀

(
C ↔ ∨k

i=1 ∃N̄iCi

)
, where AT

is the model which corresponds with T.

Proof. We specialize the proof for the multiset case. Theorem 7.1 ensures the termination of each non-
deterministic branch. At each branch point, the number of non-deterministic choices is finite. Thus,
C1, . . . , Ck can be effectively computed. Both soundness and completeness results about the global
constraint solving procedure follow from the results proved individually for the procedures involved:
Lemma 6.1 for unification, Lemma 6.3 for in-MSet and nin-MSet , and Lemma 6.5 for neq-MSet. 2

17

Corollary 7.3 (Decidability) Given a T-constraint C, it is decidable whether AT |= ∃C,
where AT is one of the standard models LIST , MSET , CLIST , SET .

Proof. From Theorem 7.2 we know that C is equi-satisfiable with C1 ∨ · · · ∨ Ck. If all the Ci are
false, then C is unsatisfiable in LIST (MSET , CLIST , SET). Otherwise, it is satisfiable, since
solved form constraints are satisfiable (Theorem 5.7). 2

As far as complexity is concerned, we first need to distinguish between the complexity of the
constraint satisfiability problem and the complexity of the satisfiability procedure we present.

Complexities of the four unification problems are studied in [20]: the decision problem for
unification is proved to be solvable in linear time for lists, while it is NP-complete for the
other cases. In the case of lists, not only the unification problem is polinomial, but also the
problem involving equalities and disequalities. In particular, if a constraint on lists is a conjunc-
tion of equalities and disequalities, then its satisfiability is solvable in deterministic quadratic
time [3, 14]. On the other hand, the satisfiability problem for conjunctions of membership and
disequality constraints on lists is NP-hard. A reduction from 3-SAT is briefly discussed in [19].
The same reduction can be applied to the other aggregates. Since X 6= Y is equivalent to
X 6∈ {[Y]}, the above mentioned reduction can be adapted to prove the NP-hardness of the
satisfiability problem for constraints involving only membership and not-membership. In the
four aggregate theories, the satisfiability of a conjunction of disequalities and not-membership
can be tested in polynomial time by simply applying some reorderings on the terms and syntac-
tic checks. The case of disequalities on sets with a union-based approach has been considered
in [18].

Let us now comment on the complexity of our constraint rewriting procedures. The uni-
fication algorithm presented in [20] and briefly recalled here can generate terms which grow
exponentially. Consider for instance the constraint

X1 = f(X2, X2) ∧X2 = f(X3, X3) ∧ . . . ∧Xn−1 = f(Xn, Xn).

It is easy to see that if we apply all the substitutions, then X1 will be bound to a term whose size
is exponential with respect to n. However, as explained in [1, 15], it is possible to avoid explicit
substitutions, thus obtaining an implementation of the unification algorithm which works in
non-deterministic polynomial time. In our context, at the implementation level, terms can be
represented by linked structures. Precisely, a term f(t1, . . . , tn) can be represented by a node
labeled by f pointing to the nodes representing t1, . . . , tn. Each occurrence of a variable X
is associated to a unique node. In this way, explicit substitutions are implemented by node
collapsing. If we exploit such implementation in our constraint satisfiability procedure SATT,
we only need to perform some further checks at the end of the computation to guarantee the
satisfiability of the returned constraint. For instance, if we get a conjunct of the form X 6= t we
need to check that this is coherent with the equalities, i.e., we have to check that the pointers
of X and t do not syntactically generate the same terms. Hence, since the procedures for
membership, not-membership, and disequalities, work in non-deterministic polynomial time,
we can obtain a non-deterministic polynomial time implementation for SATT.

8 Conclusions

We have extended the results of [20] studying the constraint solving problem for four different
theories, namely the theories of lists, multisets, compact lists, and sets. The analyzed constraints
are conjunctions of literals based on equality and membership predicate symbols. We have
identified the standard models for these theories by showing that they correspond with the
theories on the class of considered constraints. We have developed a notion of solved form
(proved to be satisfiable) and presented the rewriting algorithms which allow this notion to be
used to decide the satisfiability problems for the four aggregates. In particular, we presented a
constraint solving technique parametric with respect to these theories and we have pointed out
the differences and similarities among the four kinds of aggregates.

18

An implementation of the results described in this paper can be found in the Constraint Logic
Programming language {log} (http://prmat.math.unipr.it/~gianfr/SETLOG/setlog_fd.
pl). In this language the aggregate theories discussed in this paper (except that for compact
lists) are combined all together to provide a general framework where to deal with several of the
proposed forms of aggregates simultaneously. As a matter of fact, the choices made in the ax-
iomatic definition of the theories, as well as the parametric definition of the relevant constraint
rewriting procedures, make their combination into a single general framework immediately fea-
sible, with only a very limited effort.

As further work it could be interesting to study the properties of the four aggregates in
presence of append-like operators (append for lists, ∪ for sets,] for multisets). These operators
cannot be defined without using universal quantifiers (or recursion) with the languages analyzed
in this paper [17].

References

[1] D. Aliffi, A. Dovier, and G. Rossi. From Set to Hyperset Unification. Journal of Functional
and Logic Programming, 1999(10):1–48. The MIT Press, September 1999.

[2] F. Baader and W. Büttner. Unification in commutative and idempotent monoids. Theo-
retical Computer Science 56 (1988), 345–352.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
Cambridge, 1998

[4] F. Baader and K. U. Schulz. Combination Techniques and Decision Problems for Disuni-
fication. Theoretical Computer Science, 142:229–255, 1995.

[5] F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. Journal of Symbolic Computation 21 (1996), 211–243.

[6] J. Banatre and D. Le Metayer. Programming by Multiset Transformation. Communications
of the ACM, 36(1):98–111. January 1993.

[7] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set Constructors in a Logic Database Lan-
guage. Journal of Logic Programming 10, 3 (1991), 181–232.

[8] H. Bückert. Solving Disequations in Equational Theories. In E. L. Lusk and R. A. Overbeek
eds., CADE 1988, Lecture Notes in Computer Science, Vol. 310, pages 517–526, 1988.

[9] W. Büttner. Unification in the Data Structure Sets. In Proc. of the Eight International
Conference on Automated Deduction (1986), J. K. Siekmann, Ed., vol. 230, Springer-Verlag,
Berlin, pp. 470–488.

[10] D. Cantone, E. G. Omodeo, and A. Policriti. Set Theory for Computing. From Deci-
sion Procedures to Declarative Programming with Sets. Monographs in Computer Science.
Springer-Verlag, Berlin, 2001.

[11] C. C. Chang and H. J. Keisler. Model Theory. Studies in Logic. North Holland, 1973.

[12] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293–321. Plenum Press, 1978.

[13] H. Comon. Complete Axiomatixations of Some Quotient Term Algebras. Theoretical
Computer Science, 118(2):167–191, 1993.

[14] J. Corbin and M. Bidoit. A rehabilitation of Robinson’s unification algorithm. In R.Mason
ed., Information Processing 1983, Elevisier Science Publishers (North Holland), pp. 909–
914.

19

[15] E. Dantsin and A. Voronkov. A Nondeterministic Polynomial-Time Unification Algorithm
for Bags, Sets and Trees. In W. Thomas ed., Foundations of Software Science and Com-
putation Structure, Lecture Notes in Computer Science, Vol. 1578, pages 180–196, 1999.

[16] N. Dershowitz and Z. Manna. Proving Termination with Multiset Ordering. Communica-
tion of the ACM 22, 8 (1979), 465–476.

[17] A. Dovier, C. Piazza, and A. Policriti. Comparing expressiveness of set constructor symbols.
In H. Kirchner and C. Ringeissen, eds., FROCOS’00, LNCS No. 1794, pp. 275–289, 2000.

[18] A. Dovier, C. Piazza, and E. Pontelli. Disunification in ACI1 Theories. Constraints (In-
ternational Journal), 9(1):35–91, 2004.

[19] A. Dovier, C. Piazza, and G. Rossi. A uniform approach to constraint-solving for lists,
multisets, compact lists, and sets. CoRR cs.PL/0309045.

[20] A. Dovier, A. Policriti, and G. Rossi. A uniform axiomatic view of lists, multisets, and
sets, and the relevant unification algorithms. Fundamenta Informaticae, 36(2/3):201–234,
1998.

[21] A. Dovier, E. Pontelli, and G. Rossi. Set unification. Tech. Rep. cs.LO/0110023, The Com-
puting Research Repository (CoRR), October 2001. http://arxiv.org/abs/cs.LO/0110023.
To appear in Theory and Practice of Logic Programming.

[22] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Language for Programming
in Logic with Finite Sets. Journal of Logic Programming, 28(1):1–44, 1996.

[23] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic programming.
ACM Transaction on Programming Language and Systems, 22(5):861–931, 2000.

[24] A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. In D. Miller, editor,
Proc. of International Logic Programming Symposium, ILPS’93. The MIT Press, Cam-
bridge, Mass., October 1993, pages 540–556.

[25] H. B. Enderton. A mathematical introduction to logic. Academic Press, 1973. 2nd printing.

[26] C. Gervet. Interval Propagation to Reason about Sets: Definition and Implementation of
a Practical Language. Constraints, 1:191–246, 1997.

[27] S. Grumbach and T. Milo. Towards tractable algebras for bags. Journal of Computer and
System Sciences, 52(3):570–588, 1996.

[28] P. M. Hill and J. W. Lloyd. The Gödel Programming Language. The MIT Press, Cambridge,
Mass., 1994.

[29] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of Logic
Programming, 19–20:503–581, 1994.

[30] M. Livesey and J. Siekmann. Unification of Sets and Multisets. Technical report, Institut
fur Informatik I, Universitat Karlsruhe, 1976.

[31] A. Mal’cev. Axiomatizable Classes of Locally Free Algebras of Various Types. In The
Metamathematics of Algebraic Systems, Collected Papers, chapter 23. North Holland, 1971.

[32] G. Pāun. Computing with Membranes. Journal of Computer and System Science, 61, 2000.

[33] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and Z, Second
Edition. Prentice Hall, 1996.

[34] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with sets,
an introduction to SETL. Springer-Verlag, Berlin, 1986.

20

[35] J. H. Siekmann. Unification theory. In C. Kirchner, editor, Unification. Academic Press,
1990.

[36] P. J. Stuckey. Negation and Constraint Logic Programming. Information and Computa-
tion 1, 12–33.

[37] A. Tzouvaras. The Linear Logic of Multisets. Logic Journal of the IGPL, Vol. 6, No. 6,.
pp. 901–916, 1998.

A Appendix: auxiliary proofs

We recall some technical definitions. Given two Σ-structures A and B, B = 〈B, (·)B〉 is a
substructure of A = 〈A, (·)A〉 if B ⊆ A and for all x ∈ B it holds that (x)A = (x)B. Given
two Σ-structures A and B, a function h : A −→ B is said to be an homomorphism from
A to B if: (i) ∀f ∈ F , a1, . . . , an ∈ A (h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))) and (ii)
∀p ∈ Π, a1, . . . , am ∈ A (pA(a1, . . . , am) → pB(h(a1), . . . , h(am))) . The function h is said to be
an isomorphism if f is bijective and in the property (ii) also the ← implication holds. Given
two Σ-structures A and B, an embedding of A in B is an isomorphism from A to a substructure
of B.

Lemma A.1 ([11]) Let A and B be two Σ-structures and let h be an embedding of A in B. If
ϕ is an open formula of L = 〈Σ,V〉, then for each valuation σ on A:

A |= σ(ϕ) ↔ B |= h(σ(ϕ)) .

Lemma A.2 MSET is a model of the theory MSet.

Proof. For each axioms/axiom schemas (A) of the theory MSet we need to prove that MSET
models (A) (briefly, MSET |= (A)). We give only the sketch of the proof.

(K), (W): The fact that MSET is a model of (K) and (W) is a consequence of the membership
predicate interpretation in MSET (cf. point (4) of Definition 5.2).

(F m
1): This axiom holds in MSET , since f(t1, . . . , tn) and f(s1, . . . , sn) belong to the same class in

MSET , only if for all i = 1, . . . , n it holds that ti and si belong to the same class.

(F2): It holds, by definition of MSET , since terms beginning with different free symbols belong to
different classes.

(F3), (F
m
3): Since each ground term has a finite size, both MSET |= (F3) and MSET |= (F m

3) hold;
it can be formally proved by induction on the complexity of the terms.

(Em
p): MSET is a model of (Em

p), since for any equational theory E, T (F)/ ≡E is a model of E [35].

(Em
k): MSET is a model of (Em

p), as seen in the previous point, but it is also the initial model, namely
two terms s and t are in the same class if and only if (Em

p) can prove that s = t. This is exactly
the meaning of the axiom (Em

k).

2

Lemma A.3 If M is a model of MSet, then the function h : T (FMSet)/ ≡EMSet−→ M , defined
as h(it) = tM, is an embedding of MSET in M.

Proof. We will prove the following facts:

1. The definition of h(it) does not depend on the choice of the representative of the class;

2. h is an homomorphism;

3. h is injective;

4. If h(it) ∈M h(is), then it ∈MSET is .

These facts imply the thesis.

21

1. If t1 and t2 are two terms such that
¨
§

¥
¦t1 =

¨
§

¥
¦t2 , then by definition (Em

p) |= t1 = t2. Since
A |= t1 = t2 holds in every model A of (Em

p), then in particular it holds in M, i.e., tM1 = tM2 .

2. We need to prove that:

(a) for all f ∈ FMSet and for all terms t1, . . . , tn ∈ T (FMSet) it holds that

h(fMSET (
¨
§

¥
¦t1 , . . . ,

¨
§

¥
¦tn)) = fM(h(t1), . . . , h(tn))

Now,

h(fMSET (
¨
§

¥
¦t1 , . . . ,

¨
§

¥
¦tn)) = h(f(t1, . . . , tn)) By fact (1) above

= (f(t1, . . . , tn))M By def. of h
= fM(tM1 , . . . , tMn) By def. of structure
= fM(h(t1), . . . , h(tn)) By def. of h

(b) For all terms t and s, if it ∈MSET is , then h(it) ∈M h(is). From it ∈MSET is , using
fact 1. above, we have that there is a term s′ in is of the form {[t |r]} and that h(is) = s′M.
Hence, we have that h(is) = {[tM | rM]}M; (W) ensures that h(it) = tM belongs to it.

3. We prove, by structural induction on t1, that if h(
¨
§

¥
¦t1) = h(

¨
§

¥
¦t2), then

¨
§

¥
¦t1 =

¨
§

¥
¦t2 .

Basis. Let t1 be a constant c. Since M is a model of axiom schema (F2), it can not be that
t2 = f(s1, . . . , sn), with f different from c. Hence, it must be that t2 = c.

Step. Let t1 be f(s1, . . . , sn), with f 6≡ {[· | ·]}. It cannot be t2 ≡ g(r1, . . . , rm), with g 6≡ f ,
since M is a model of (F2). So, it must be t2 ≡ f(r1, . . . , rn), and, by (F1), sMi = rMi , for all
i ≤ n. Using the inductive hypothesis we have

¨
§

¥
¦t1 =

¨
§

¥
¦t2 .

Let t1 be {[s1, . . . , sn | r]}, with r not of the form {[r1 | r2]}. Since it cannot be that t2 is
f(v1, . . . , vn) (from the previous case applied to t2), then it must be t2 is {[u1, . . . , um | v]}, for
some v not of the form {[v1 | v2]}. Let us assume, by contradiction, that

¨
§

¥
¦t1 6=

¨
§

¥
¦t2 , and tM1 = tM2 ,

while the thesis holds for all terms of lower complexity. From tM1 = tM2 we obtain that the two
terms have in M the same elements. Since M is a model of (W), the elements of tM1 are exactly
sM1 , . . . , sMn and the elements of tM2 are exactly uM1 , . . . , uMm . So, by inductive hypothesis, there
is a bijection b : {1, . . . , n} −→ {1, . . . , m} such that

¨
§

¥
¦si =

¨
§

¥
¦ub(i) . This means that m = n

and that there is a term t′2 in
¨
§

¥
¦t2 of the form {[s1, . . . , sm | v]}. Applying n times (Em

k), in all
possible ways, we obtain that rM = vM, hence by inductive hypothesis ir = iv . From this
fact, we conclude that

¨
§

¥
¦t2 =

¨
§

¥
¦t′2 =

¨
§

¥
¦{[s1, . . . , sn | r]} =

¨
§

¥
¦t1 , which is in contradiction with our

assumption.

4. If h(it) ∈M h(is), then tM ∈M sM and hence (K) implies that s must be a term of the form
{[t1 | t2]}. By induction on s using (W), we can prove that in particular s must be a term of the
form {[t1, . . . , ti, . . . , tn | r]}, with tM1 = tM = h(it). We have already proved that h is injective,
hence it must be t1 ∈ it , and from this we obtain it ∈MSET is .

2

We say that a linear disequality a 6= b over the integers is safe if, after expressions evaluation,
it is not of the form u 6= u. We say that a system A of linear disequations over the integers
with variables x1, . . . , xh is safe if each disequation in A is either a safe disequality or it is of
the form xi > m, where m is an integer number.

Lemma A.4 Let A be a safe system of linear disequations over the integers. A has always an
infinite number of solutions.

Proof. Let us partition the system A into two systems A 6=, which contains all the disequalities of
A, and A> which contains all the disequations of the form xi > m of A. We proceed by induction on
the number of variables in A.

If in A there is only one variable x1, then we can rewrite all the disequalities of A 6= in the form
x1 6= ai, where ai is a rational number. Let max be the maximum of all the ai and of all the integers
occurring in A>. All the integers greater of max are solutions of A.

If in A there are n variables x1, . . . , xn, then we concentrate on the variable x1. Each disequality of
A 6= can be rewritten in the form ai,1x1 6= pi(x2, . . . , xn), where pi(x2, . . . , xn) = ai,2x2 + . . . + ai,nxn +
ai,n+1 is a linear expression with integer coefficients over the variables x2, . . . , xn. Let max be the
maximum of all the |ai,j | and of all the integers occurring in A>. We assign to x1 value max + 1. We

22

prove that the system A′ obtained from A by replacing x1 with max+1 is a safe system in n−1 variables.
To prove this we have to prove that all the disequalities in A′ are safe. If in A there is a disequality of
the form ai,1x1 6= ai,n+1, then in A′ we have a disequality of the form ai,1(max + 1) 6= ai,n+1 which is
not reducible to u 6= u since the absolute value on the left side is greater than that on the right side.
If in A there is a disequality of the form ai,1x1 6= ai,2x2 + . . . + ai,nxn + ai,n+1 with at least one of the
ai,2, . . . , ai,n different from 0, then this trivially become a safe disequality in A′. Now we have that
each solution of A′ completed with x1 = max + 1 is a solution of A. Since by inductive hypothesis A′

has an infinite number of solutions, A has an infinite number of solutions. 2

Lemma A.5 In KWEm
k Fm

1 F2F
3Fm

3 it holds that:

(1) {[nil]}x = {[nil]}y if and only if x = y;

(2) {[nil]}x ∈ {[nil]}y if and only if x = y − 1.

Proof. Let us prove (1). If x = y, then we immediately get the thesis, since the two terms are
syntactically the same. On the other hand, let us assume that in KWEm

k F m
1 F2F

3F m
3 we can prove

{[nil]}x = {[nil]}y. We can safely assume that x ≥ y ≥ 0. We proceed by induction on x. If x = 0,
then we immediately have y = 0. If x > 0, then when we apply axiom Em

k to {[nil]}x = {[nil]}y we
get {[nil]}x−1 = {[nil]}y−1. By inductive hypothesis this implies x− 1 = y − 1, and hence x = y.

The proof of (2) can be similarly done exploiting axiom W instead of axiom Em
k . 2

23

