
A comparison of CLP(FD) and ASP solutions to
NP-complete problems?

Agostino Dovier1, Andrea Formisano2, and Enrico Pontelli3

1 Univ. di Udine, Dip. di Matematica e Informatica.dovier@dimi.uniud.it
2 Univ. di L’Aquila, Dip. di Informatica.formisano@di.univaq.it

3 New Mexico State University, Dept. Computer Science.epontell@cs.nmsu.edu

Abstract. This paper presents experimental comparisons between declarative
encodings of various computationally hard problems in both Answer Set Pro-
gramming (ASP) and Constraint Logic Programming (CLP) over finite domains.
The objective is to identify how the solvers in the two domains respond to dif-
ferent problems, highlighting strengths and weaknesses of their implementations
and suggesting criteria for choosing one approach versus the other. Ultimately, the
work in this paper is expected to lay the ground for transfer of concepts between
the two domains (e.g., suggesting ways to use CLP in the execution of ASP).

1 Introduction
The objective of this work is to experimentally compare the use of two distinct logic-
based paradigms in solving computationally hard problems. The two paradigms con-
sidered areAnswer Set Programming (ASP)[2] and Constraint Logic Programming
over Finite Domains (CLP(FD))[16]. The motivation for this investigation arises from
the successful use of both paradigms in dealing with various classes of combinatorial
problems, and the need to better understand their respective strengths and weaknesses.
Ultimately, we hope this work will provide indication for integration and cooperation
between the two paradigms (e.g., along the lines of [6]).

It is well-known [14, 2] that, given a propositional normal logic programP , decid-
ing whether or not it admits ananswer set[9] is a NP-complete problem. As a con-
sequence, any NP-complete problem can be encoded as a propositional normal logic
program under answer set semantics. Answer-set solvers [19] are programs designed
for computing the answer sets of normal logic programs; these tools can be seen as
theorem provers, or model builders, enhanced with several built-in heuristics to guide
the exploration of the solution space. Most ASP solvers rely on variations of the Davis-
Putnam-Longeman-Loveland procedure in their computations. Such solvers are often
equipped with a front-end that transforms a collection of non-propositional normal
clauses (with limited use of function symbols) in afinite set of ground instances of
such clauses. Some solvers provide classes ofoptimization statements, used to select
answer sets that maximize or minimize an objective function dependent on the content
of the answer set.

An alternative framework, frequently adopted to handle NP-complete problems, is
Constraint Logic Programming over Finite Domains[10, 16]. In this context, a finite

? This work is partially supported by GNCS2005 project on constraints and their applications.

domain of objects (typically integers) is associated to each variable in the problem spec-
ification, and the typical constraints are literals of the formss = t, s 6= t, s < t, s ≤ t,
wheres andt are arithmetic expressions. Encodings of NP-complete problems and of
search strategies are very natural and declarative in this framework. Indeed, a large lit-
erature has been developed presenting applications of CLP(FD) to a variety of search
and optimization problems [16].

In this paper, we report the outcomes of experiments aimed at comparing these two
declarative approaches in solving combinatorial problems. We address a set of compu-
tationally hard problems—in particular, we mostly consider decision problems known
to be NP-complete. We formalize each problem, both in CLP(FD) and in ASP, by tak-
ing advantage of the specific features available in each logical frameworks, attempting
to encode the various problems in the most declarative possible way. In particular, we
adopt aconstraint-and-generatestrategy for the CLP code, while in ASP we exploit
the usualgenerate-and-testapproach. Wherever possible, we make use of solutions to
these problems that have been presented and widely accepted in the literature.

With this work we intend to develop a bridge between these two logic-based frame-
works, in order to emphasize the strengths of each approach and in favor of potential
cross-fertilizations. This study also complements the system benchmarking studies, that
have recently appeared for both CLP(FD) systems [8, 17] and ASP solvers [1, 13, 11].

2 The Experimental Framework
In order to conduct our experiments, we selected one CLP(FD) implementation and two
ASP-solvers. The CLP programs have been designed for execution by SICStus Pro-
log 3.11.2 (using the libraryclpfd)—though the code is general enough to be used
on different platforms (e.g., ECLiPSe). The choice of SICStus has been suggested by
its good performance (better than ECLiPSe on some of the benchmarks at hand). The
ASP programs have been designed to be processed bylparse, the grounding preproces-
sor adopted by both the SModels (version 2.28) and the CModels (version 3.03) sys-
tems [19]. The CModels system makes use of a SAT solver to compute answer sets—in
our experiments we selected the default underlying SAT solver, namely mChaff.

We focused on well-known computationally-hard problems. Among them: Graph
k-coloring (Section 3), Hamiltonian circuit (Section 4), Schur numbers (Section 5),
protein structure prediction on a 2D lattice [3] (Section 6), planning in a block world
(Section 7), and generalized Knapsack (Section 8). Observe that, while some of the
programs have been drawn from the best proposals appeared in the literature, others
are novel solutions, developed in this project (e.g., the ASP implementation of the PF
problem and the planning implementation in CLP(FD)).

In the remaining sections of this paper, we describe the solutions to the various prob-
lems and report the results from the experiments. All the timing results, expressed in
seconds, have been obtained by measuring only the time needed for computing the first
solution, if any (CPU usage time)—thus, we ignore the time spent in reading the input,
as well as the time spent to ground the program, in the case of the ASP solvers. We used
theruntime option to measure the time in CLP(FD), that does not account for the time
spent for garbage collection and for system calls. All tests have been performed on a PC
(P4 processor 2.8 GHz, and 512 MB RAM memory) running Linux kernel 2.6.3. Com-
plete codes and results are reported inwww.di.univaq.it/˜formisano/CLPASP .

2

3 k-Coloring

The k-coloring problem computes the coloring of a graph usingk colors. The main
source of case studies adopted in our experiments is the repository of “Graph Coloring
and its Generalizations” [20], which provides a rich collection of instances, mainly
aimed at benchmarking algorithms and approaches to graph problems. Let us describe
the two formalizations ofk-coloring.

CLP(FD): In this formulation, we assume that the input graph is represented by a sin-
gle fact of the formgraph([1,2,3],[[1,2],[1,3],[2,3]]) , where the first argu-
ment represents the list of nodes (a list of integers), while the second argument is the set
of edges. This is a possible constrain-and-generate CLP(FD)-encoding ofk-coloring:

coloring(K, Output) :- graph(Nodes, Edges),
create_output(Nodes, Colors, Output), domain(Colors, 1, K),
different(Output, Edges), labeling([ff], Colors).

create_output([],[],[]).
create_output([N | Nodes], [C|Colors], [N-C|Output]) :-

create_output(Nodes, Colors, Output).
different(_, []).
different(Output, [[A,B]|R]) :- member(A-CA, Output),

member(B-CB, Output), CA #\= CB, different(Output, R).

In this program,Output is intended to be a list of pairs of variablesN-C where,
for each nodeN we introduce a color variableC in the range1 . . . K. The predicate
different imposes disequality constraints between variables related to adjacent nodes.
We used theff options oflabeling since it offered the best results for this problem.

ASP: Regarding the ASP encoding ofk-coloring we adopt a different representation
for graphs. Nodes are represented, as before, by natural numbers. Edges are rendered
by facts, as in the following instance:
node(1..138). edge(1,36). edge(2,45). ... edge(138,7). edge(138,36).

A natural ASP encoding of thek-coloring problem is:
(1) col(1..k).

(2) :- edge(X,Y), col(C), color(X,C), color(Y,C).

(3) 1 {color(X,C): col(C) }1 :- node(X).

Rule (1) states that there arek colors (the parameter is a constant to be initialized in
the grounding stage). The ASP-constraint(2) asserts that two adjacent nodes cannot
have the same color, while(3) states that each node has exactly one color. Note that,
by using domain restricted variables, the single ASP-constraint(2) states the property
that two adjacent nodes cannot have the same color for all edges〈X, Y 〉. The same
property is described by the predicatedifferent in the CLP(FD) code, but in that
case a recursive definition is required. This fact shows a common situation that will
be observed again in the following sections: ASP often permits a significantly more
compact encoding of the problem w.r.t. CLP(FD).

Results: We tested the above programs on more than one hundred instances drawn
from [20]. Such instances belong to various classes of graphs which come from dif-
ferent sources in the literature. Table 1 shows an excerpt of the results we obtained
for k-coloring with k = 3, 4, 5. The columns report the time (in seconds) using the

3

Instance 3-colorability 4-colorability 5-colorability
Graph V×E SModels CModels CLP(FD) SModels CModels CLP(FD) SModels CModels CLP(FD)
1-FullIns 5 282 × 3247 N 1.06 0.15 0.10 N – 0.23 2.90 N – 107.78 –
4-FullIns 4 690 × 6650 N 0.94 0.29 0.46 N 2.20 0.35 1.98 N 10.02 0.42 –
5-FullIns 4 1085 × 11395 N 1.72 0.47 1.26 N 4.67 0.57 3.58 N 23.79 0.70 –
3-FullIns 5 2030 × 33751 N 5.92 1.23 7.24 N 21.31 1.51 13.69 N – 1.96 –
4-FullIns 5 4146 × 77305 N 15.11 2.69 33.44 N 69.30 3.37 42.53 N 414.93 4.19 –
3-Insertions3 56 × 110 N 4.28 4.16 1281.18 Y 0.03 0.04 <0.01 Y 0.04 0.04 <0.01
4-Insertions3 79 × 156 N 328.25 1772.14 – Y 0.05 0.04 <0.01 Y 0.06 0.05 <0.01
2-Insertions4 149 × 541 N 1.20 0.15 2.04 ? – – – Y 0.25 0.07 0.01
4-Insertions4 475 × 1795 N – 1443.33 – ? – – – Y 3.402 0.32 –
2-Insertions5 597 × 3936 N 45.08 0.50 6.97 ? – – – ? – – –
DSJR500.1 500 × 3555 N 0.53 0.18 0.18 N 2.78 0.21 0.18 N – 0.26 0.19
DSJC500.1 500 × 12458 N 2.19 0.45 0.64 N 12.30 0.57 0.76 N 6328.45 6.21 46.55
DSJR500.5 500 × 58862 N 25.76 1.81 2.97 N 175.63 2.26 2.98 N 971.46 2.71 3.09
DSJC500.5 500 × 62624 N 28.29 1.92 3.15 N 376.35 2.36 3.19 N 2707.64 2.84 3.47
DSJR500.1c 500 × 121275 N 84.19 3.66 6.07 N 1083.17 4.54 6.18 N 9881.35 5.50 6.19
DSJC500.9 500 × 224874 N 74.44 3.39 5.67 N 543.02 4.29 5.67 N 3146.96 5.09 5.77
DSJC1000.1 1000 × 49629 N 12.99 1.61 5.01 N 241.43 2.02 5.06 N – 3.61 –
flat30020 0 300 × 21375 N 6.39 0.68 0.63 N 86.91 0.84 0.64 N 1555.37 1.08 0.69
flat30026 0 300 × 21633 N 6.45 0.70 0.65 N 131.91 0.87 0.67 N 3711.80 1.13 0.69
flat30028 0 300 × 21695 N 6.51 0.70 0.65 N 34.76 0.86 0.69 N 322.99 1.02 0.67
fpsol2.i.1 496 × 11654 N 2.75 0.41 0.77 N 24.98 0.52 0.77 N 205.12 0.61 0.84
fpsol2.i.2 451 × 8691 N 1.92 0.33 0.53 N 16.66 0.40 0.54 N 279.96 0.52 0.55
fpsol2.i.3 425 × 8688 N 1.91 0.32 0.5 N 16.63 0.40 0.51 N 277.91 0.49 0.51
gen200p0.9 44 200 × 17910 N 5.53 0.57 0.36 N 30.87 0.70 0.36 N 306.81 0.84 0.38
gen200p0.9 55 200 × 17910 N 5.54 0.57 0.36 N 39.56 0.71 0.36 N 287.14 0.85 0.38
gen400p0.9 55 400 × 71820 N 38.91 2.19 2.88 N 656.07 2.68 2.89 N 4892.74 3.24 2.93
gen400p0.9 65 400 × 71820 N 39.02 2.16 2.88 N 275.33 2.67 2.87 N 1563.52 3.22 2.92
gen400p0.9 75 400 × 71820 N 38.87 2.17 2.88 N 270.12 2.70 2.89 N 1608.19 3.22 2.94
inithx.i.1 864 × 18707 N 4.92 0.65 2.28 N 57.15 0.81 2.29 N 415.41 1.00 2.32
inithx.i.2 645 × 13979 N 3.50 0.50 1.28 N 34.19 0.63 1.28 N 268.87 0.83 1.31
inithx.i.3 621 × 13969 N 3.50 0.50 1.22 N 34.14 0.64 1.24 N 268.36 0.80 1.26
le4505a 450 × 5714 N 0.85 0.24 0.26 N 9.06 0.29 0.28 Y 190.38 12.30 5.29
le4505b 450 × 5734 N 0.85 0.24 0.29 N 7.77 0.29 0.3 Y 5146.86 0.98 0.48
le4505c 450 × 9803 N 1.64 0.37 0.44 N 9.98 0.46 0.44 Y 217.77 0.70 0.03
le4505d 450 × 9757 N 1.64 0.36 0.44 N 10.29 0.44 0.47 Y 530.63 0.60 0.08
mulsol.i.1 197 × 3925 N 0.58 0.17 0.10 N 2.80 0.20 0.10 N 19.07 0.24 0.11
mulsol.i.2 188 × 3885 N 0.57 0.17 0.10 N 2.83 0.20 0.09 N 31.25 0.24 0.11
mulsol.i.3 184 × 3916 N 0.58 0.16 0.09 N 2.86 0.20 0.10 N 31.93 0.25 0.10
mulsol.i.4 185 × 3946 N 0.58 0.17 0.10 N 2.92 0.20 0.10 N 32.83 0.25 0.11
mulsol.i.5 186 × 3973 N 0.59 0.17 0.10 N 2.93 0.20 0.09 N 33.02 0.26 0.11
wap05a 905 × 43081 N 11.39 1.38 2.96 N 62.81 1.73 2.96 N 949.66 2.07 2.96
wap06a 947 × 43571 N 11.63 1.42 3.25 N 62.70 1.75 3.24 N 1326.84 2.13 3.26
wap07a 1809 × 103368 N 31.98 3.28 15.14 N 191.06 4.12 15.14 N 2861.64 4.99 15.19
wap08a 1870 × 104176 N 32.07 3.31 16.17 N 192.54 4.15 16.22 N 3604.96 5.08 16.18

Table 1.Graphk-coloring (‘–’ denotes no answer in at least 30 minutes of CPU-time— ‘?’ means
that none of the three solvers gave an answer.)

three systems; the first column of each result indicates whether a solution exists for the
problem instance.

A particular class of graph coloring problems listed in [20] originates from encoding
a generalized form of theN -queens problem. Graphs for theM -N -queen problems are
obtained as follows. The nodes correspond to the cells of aN × N chessboard. Two
nodesu andv are connected by an (undirected) edge if a queen in the cellu attacks the
cell v. Solving theM -N -queens problem consists of determining whether or not such
graph isM -colorable. In the particular case whereM = N , this is equivalent to finding
N independent solutions to the classicalN -queens problem. Observe that, forM < N
the graph cannot be colored. We run a number of tests on this specific class of graphs.
Table 2 lists the results obtained forN = 5, . . . , 11 andM = N − 1, N, N + 1. For
the sake of completeness, we also experimented, on these instances, using the library
ugraphs of SICStus Prolog (a library independent from the libraryclpfd), where
thecoloring/3 predicate is provided as a built-in feature.ugraphs is slower than
CLP(FD) for small instances, however, it finds solutions in acceptable time for some
larger instances, whereas CLP(FD) times out.

4

Instance Solvability forM = N − 1 Solvability forM = N Solvability forM = N + 1
N V × E SModels CModels CLP(FD) ugraph SModels CModels CLP(FD) ugraph SModels CModels CLP(FD) ugraph

5 25 × 320 N 0.06 0.07 0.01 <0.01 Y 0.06 0.07 <0.01 <0.01 Y 0.07 0.08 <0.01 <0.01
6 36 × 580 N 1.00 0.11 0.01 <0.01 N 63.80 198.65 1.33 0.02 Y 0.66 0.19 <0.01 0.16
7 49 × 952 N 341.17 0.20 0.02 0.03 Y 1.95 0.18 <0.01 0.29 Y 0.54 14.08 0.02 0.35
8 64 × 1456 N – 0.42 0.16 0.89 N – – – 224.11 Y 116.50 1.28 1.04 807.22
9 81 × 2112 N – 0.85 1.37 106.64 ? – – – – Y – – 138.85 131.27
10 100 × 2940 N – 3.63 14.53 – ? – – – – ? – – – –
11 121 × 3960 N – 10.62 148.74 – ? – – – – ? – – – –

Table 2.TheM -N -Queens problem (‘–’ denotes no answer in 10 min. of CPU-time).

4 Hamiltonian Circuit

In this section we deal with the problem of establishing whether a directed graph ad-
mits an Hamiltonian circuit. The graph representations adopted are the same as in the
previous section.

CLP(FD): A possible CLP(FD) encoding is the following:

hc(N, Edges) :- length(Path, N), domain(Path, 1, N),
make_domains(Path, 1, Edges, N),
circuit(Path), labeling([ff], Path).

make_domains([], _, _, _).
make_domains([X|Y], Node, Edges, N) :-

findall(Z, member([Node,Z], Edges), Successors),
reduce_domains(N, Successors, X),
Node1 is Node+1, make_domains(Y, Node1, Edges, N).

reduce_domains(0, _, _) :- !.
reduce_domains(N, Successors, Var) :- N>0, member(N,Successors),

!, N1 is N-1, reduce_domains(N1, Successors, Var).
reduce_domains(N, Successors, Var) :-

Var #\= N, N1 is N-1, reduce_domains(N1, Successors, Var).

We use the built-in predicatecircuit , provided byclpfd in SICStus. In the
literal circuit(List) , the List is a list of domain variables or integers. The
goalcircuit ([X1, . . . , Xn]) constrains the variables so that the set of edges〈1, X1〉,
〈2, X2〉, . . . , 〈n,Xn〉 is an Hamiltonian circuit. The predicatemake domains restricts
the admissible values for the variableXi to the successors of nodei in the graph.

ASP:The following program for Hamiltonian circuit comes from the ASP literature [15]:

(1) 1 {hc(X,Y) : edge(X,Y)} 1 :- node(X).
(2) 1 {hc(Z,X) : edge(Z,X)} 1 :- node(X).
(3) reachable(X) :- node(X), hc(1,X).
(4) reachable(Y) :- node(X), node(Y), reachable(X), hc(X,Y).
(5) :- not reachable(X), node(X).

The description of the search space is given by rules(1) and(2) . They state that,
for each nodeX, exactly one outgoing edge(X,Y) and one incoming edge(Z,X)
belong to the circuit (represented by the predicatehc). Rules(3) and(4) define the
transitive closure of the relationhc starting from node number1. The “test” phase
is expressed by the ASP-constraint(5) , which weeds out the answer sets that do
not represent solutions to the problem. Also in this case, the ASP approach permits
a more compact encoding (even if in CLP(FD) we exploited the built-inscircuit
andfindall).

5

Instancenode×edges Hamiltonian?
SModels CModels CLP(FD)

hc1 200×1250 Y 2.99 37.59 0.34
hc2 200×1250 Y 2.99 1394.15 0.34
hc3 200×1250 Y 3.03 20.06 0.32
hc4 200×1250 Y 2.98 93.10 0.34
hc5 200×1250 N 1.44 0.22 0.24
hc6 200×1250 N 1.44 0.21 0.10
hc7 200×1250 N 1.44 0.20 0.25
hc8 200×1250 N 1.44 0.20 0.26

np10c 10×90 Y 0.01 0.05 0.0
np20c 20×380 Y 0.07 0.82 0.0
np30c 30×870 Y 0.26 0.27 0.01
np40c 40×1560 Y 0.91 4.38 0.02
np50c 50×2450 Y 2.59 118.18 0.03
np60c 60×3540 Y 7.38 24.81 0.05
np70c 70×4830 Y 15.68 9.47 0.07
np80c 80×6320 Y 27.79 12.55 0.11
np90c 90×8010 Y 45.66 128.25 0.15
2xp30 60×316 N 0.14 0.02 0.03

2xp30.1 60×318 Y 0.18 4.61 0.02
2xp30.2 60×318 Y – 2.69 5.38
2xp30.3 60×318 Y – 2.70 5.38
2xp30.4 60×318 N – – –
4xp20 80×392 N 0.24 0.04 0.04

4xp20.1 80×395 N – 1.47 0.04
4xp20.2 80×396 Y 0.37 3.32 0.03
4xp20.3 80×396 N 0.24 2.65 –

nv50a260 50×239 Y 0.12 0.95 0.01
nv50a280 50×263 Y 0.13 0.51 0.02
nv50a300 50×280 Y 0.14 0.16 0.02
nv50a340 50×303 Y 0.14 1.25 0.03
nv50a360 50×329 Y 0.15 1.14 0.02
nv50a380 50×354 Y 0.15 0.62 0.03
nv50a400 50×365 Y 0.16 0.17 0.02
nv50a420 50×375 Y 0.15 0.18 0.01

Instancenode×edges Hamiltonian?
SModels CModels CLP(FD)

nv50a440 50×401 Y 0.16 3.08 0.01
nv50a460 50×416 Y 0.17 0.22 0.02
nv50a480 50×422 Y 0.17 3.03 0.02
nv50a500 50×438 Y 0.17 0.71 0.03
nv50a520 50×459 Y 0.18 0.70 0.03
nv50a540 50×480 Y 0.18 1.18 0.01
nv50a560 50×500 Y 0.19 0.26 0.02
nv50a580 50×509 Y 0.18 0.42 0.03
nv60a320 60×304 Y 0.19 0.79 0.04
nv60a360 60×343 Y 0.19 8.15 0.03
nv60a420 60×389 Y 0.21 0.96 0.03
nv60a440 60×412 Y 0.23 8.90 0.03
nv60a460 60×423 Y 0.22 0.84 0.04
nv60a480 60×425 Y 0.22 1.60 0.03
nv60a500 60×455 Y 0.23 2.18 0.04
nv60a520 60×582 Y 0.23 0.35 0.03
nv60a540 60×587 Y 0.24 0.55 0.02
nv60a560 60×513 Y 0.26 0.20 0.03
nv60a580 60×532 Y 0.25 0.99 0.04
nv70a300 70×287 Y 0.21 0.79 0.04
nv70a320 70×306 Y 0.23 4.24 0.04
nv70a340 70×328 Y 0.24 1.87 0.05
nv70a360 70×346 Y 0.24 1.44 0.02
nv70a380 70×359 Y 0.25 0.44 0.04
nv70a400 70×386 Y 0.26 4.22 0.04
nv70a420 70×404 Y 0.27 4.63 0.04
nv70a440 70×423 Y 0.28 1.33 0.05
nv70a460 70×429 Y 0.28 3.00 0.03
nv70a480 70×460 Y 0.29 1.66 0.06
nv70a500 70×473 Y 0.29 1.73 0.03
nv70a520 70×478 Y 0.29 0.36 0.05
nv70a540 70×507 Y 0.31 4.19 0.04
nv70a560 70×516 Y 0.32 0.62 0.05
nv70a580 70×540 Y 0.32 1.00 0.04

Table 3.Hamiltonian circuit (‘–’ denotes no answer within 30 minutes of CPU-time).

Results:Most of the problem instances have been taken from the benchmarks used to
compare ASP-solvers [13]. Graphshc1 –hc8 are drawn fromwww.cs.uky.edu/ai/

benchmark-suite/hamiltonian-cycle.html . All other graphs are chosen from
assat.cs.ust.hk/Assat-2.0/hc-2.0.html . The graphsnpnc are complete di-
rected graphs withn nodes and one edge〈u, v〉 for each pair of distinct nodes. The
graphsnvvaa graphs are randomly generated graphs having at mostv nodes anda
edges. The instances2xp30 (resp.,4xp20) are obtained by joining 2 (resp., 4) copies
of the graphp30 (resp.,p20) plus 2 (resp., 3–4) new edges. Graphsp20 andp30 are
graphs provided in the SModels’ distribution [19]. Table 3 lists the results.

5 Schur Numbers
A setS ⊆ N is sum-freeif the intersection ofS and the setS + S = {x + y : x ∈
S, y ∈ S} is empty. TheSchur numberS(P) is the largest integern for which the
interval [1..n] can be partitioned inP sum-free sets. For instance,{1, 2, 3, 4} can be
partitioned inS1 = {1, 4} andS2 = {2, 3}. Observe that the setsS1 + S1 = {2, 5, 8}
andS2+S2 = {4, 5, 6} are sum-free. The set{1, 2, 3, 4, 5}, instead, originates at least 3
sum-free subsets, thus,S(2) = 4. It should be noted that so far only 4 Schur numbers
have been computed, i.e.,S(1) = 1, S(2) = 4, S(3) = 13, andS(4) = 44. The best
known bound forS(5) is 160 ≤ S(5) ≤ 315 [18].

CLP(FD): The following CLP(FD) code checks ifN can be partitioned intoP sum-
free parts, i.e., ifS(P) ≥ N .

schur(N,P) :- length(List,N), domain(List,1,P),
constraints(List,N), labeling([ff],List).

constraints(List, N) :- recursion(List,1,1,N).
recursion(_ ,I,_,N):- I>N, !.

6

Instance is Schur(P) ≥ N?
〈P, N〉 SModelsCModelsCLP(FD)

〈3, 11〉 Y 0.01 0.04 <0.01
〈3, 12〉 Y 0.01 0.04 <0.01
〈3, 13〉 Y 0.01 0.04 <0.01
〈3, 14〉 N 0.02 0.04 0.01
〈3, 15〉 N 0.02 0.04 0.03
〈3, 16〉 N 0.02 0.04 0.03
〈4, 40〉 Y 0.22 0.10 0.30
〈4, 41〉 Y 0.24 0.23 1.17
〈4, 42〉 Y 0.25 0.21 2.61
〈4, 43〉 Y 0.27 0.24 2.51
〈4, 44〉 Y 0.29 3.35 4.18
〈4, 45〉 N 510.01 891.66 –
〈4, 46〉 N 561.80 813.34 –
〈4, 47〉 N 767.80 791.57 –
〈4, 48〉 N 978.84 805.33 –
〈4, 49〉 N 1258.57 678.19 –
〈4, 50〉 N 1680.34 890.05 –
〈4, 51〉 N 1892.36 1046.73 –

Instance is Schur(P) ≥ N?
〈P, N〉 SModelsCModelsCLP(FD)

〈5, 100〉 Y – 0.39 0.31
〈5, 101〉 Y – 0.43 0.29
〈5, 102〉 Y – 0.41 0.35
〈5, 103〉 Y – 0.74 0.36
〈5, 104〉 Y – 5.01 0.34
〈5, 105〉 Y – 27.88 0.37
〈5, 106〉 Y – 38.55 0.40
〈5, 107〉 Y – 5.07 0.44
〈5, 108〉 Y – 2.80 0.43
〈5, 109〉 Y – 13.97 0.44
〈5, 110〉 Y – 33.12 54.71
〈5, 111〉 Y – 0.52 56.72
〈5, 112〉 Y – 0.54 58.44
〈5, 113〉 Y – 0.54 207.46
〈5, 114〉 Y – 11.63 1032.43
〈5, 115〉 Y – 82.13 1069.54
〈5, 116〉 Y – 60.53 1108.02
〈5, 117〉 Y – 761.11 1150.25

Table 4.Schur numbers (‘–’ denotes no answer within 30 minutes of CPU-time).

recursion(List,I,J,N):- I+J>N, !, I1 is I+1, recursion(List,I1,1,N).
recursion(List,I,J,N):- I>J, !, J1 is J+1, recursion(List,I,J1,N).
recursion(List,I,J,N):- K is I+J, J1 is J+1, nth(I,List,BI),

nth(J,List,BJ), nth(K,List,BK), (BI #= BJ) #=> (BK #\= BI),
recursion(List,I,J1,N).

The termList is a list ofNvariables (associated to the numbers1,. . . ,N), each of them
taking values in1..P . The value of theith variable identifies the block of the partition
i belongs to. The predicaterecursion states that for allI andJ , with 1≤ I ≤ J ≤N,
the numbersI , J andI+J must not be all in the same block.
ASP: The following is the ASP solution we employed.

(1) number(1..n). part(1..p).
(2) 1 { inpart(X,P) : part(P) } 1 :- number(X).
(3) :- number(X;Y), part(P), X<=Y, inpart(X,P),

inpart(Y,P), inpart(X+Y,P).
(4) :- number(X), part(P;P1), inpart(X,P), P1<P, not occupied(X,P1).
(5) occupied(X,P) :- number(X;Y), part(P), Y<X, inpart(Y,P).

The atominpart(X,P) represents the fact that numberX is assigned to partP . Rule
(2) generates the potential solutions, by assigning each integer to exactly one part. The
ASP-constraints(3) , (4) , and(5) remove unwanted solutions:(3) states that for
any X andY , the three numbersX, Y , andX + Y cannot belong to the same part.
Rules(4) and(5) remove symmetries, by selecting the free part with lowest index.

Results: Table 4 lists the timings we obtained. Let us observe that, unfortunately, we
are still far from the best known lower bound of 160 forS(5).

6 Protein Structure Prediction
Given a sequenceS = s1 · · · sn, with si ∈ {h, p}, the 2D, HP-protein structure
prediction problem(reduced from [3]) is the problem of finding a mapping (folding)
ω : {1, . . . , n} −→ N2 such that

(∀i ∈ [1, n− 1]})next(ω(i), ω(i + 1)) and (∀i, j ∈ [1, n])(i 6= j → ω(i) 6= ω(j))

7

7 8 9 10 11
7

8

9

10

11

-
-1

-
-1

-
-1u

u
r u

u
u r

u

7 8 9 10 11
7

8

9

10

11

-
-1

u
u
r
u u

u
r
u

u stands forh

r stands forp

Value: -3 Value: -1

Fig. 1. Two foldings forS = hhphhhph (n = 8). The leftmost one is minimal.

and minimizing the energy:∑
1 ≤ i ≤ n − 2
i + 2 ≤ j ≤ n

Pot(si, sj) · next(ω(i), ω(j))

where Pot(si, sj) ∈ {0,−1} andPot = −1 if and only if si = sj = h. The condition
next(〈X1, Y1〉, 〈X2, Y2〉) holds between two adjacent positions of a given lattice if and
only if |X1−X2|+|Y1−Y2| = 1. W.l.o.g., we setω(1) = 〈n, n〉 andω(2) = 〈n, n+1〉,
to remove some symmetries in the solution space.

Intuitively, we look for a self-avoiding walk that maximizes the number of con-
tacts between occurrences of objects (aminoacids) of kindh (see Figure 1). Contiguous
occurrences ofh in the input sequenceS contribute in the same way to the energy as-
sociated to each spatial conformation and thus they are not considered in the objective
function. Note that two objects can be in contact only if they are at an odd distance
in the sequence (odd property of the lattice). This problem is a version of the protein
structure prediction problem, whose decision problem is known to be NP-complete [4].

CLP(FD): A complete CLP(FD) encoding of this problem can be found inwww.di.

univaq.it/˜formisano/CLPASP . An extension of this code (in 3D, inside a realistic
lattice, and with a more complex energy function) has been used to predict the spatial
shape of real proteins [5].
ASP: As far as we know, there are no ASP formulations of this problem available in the
literature. A specific instance of the problem is represented as a set of facts, describing
the sequence of aminoacids. For instance, the protein denoted byhpphpphpph (or
simply (hpp)3h using regular expressions) is described as:

prot(1,h). prot(2,p). prot(3,p). prot(4,h). prot(5,p).
prot(6,p). prot(7,h). prot(8,p). prot(9,p). prot(10,h).

The ASP code is as follows:

(1) size(10). %%% size(N) where N is input length
(2) range(7..13). %%% [N-sqrt{N}, N+sqrt{N}]
(3) sol(1,N,N) :- size(N).
(4) sol(2,N,N+1) :- size(N).
(5) 1 { sol(I,X,Y) : range(X;Y) } 1 :- prot(I,Amino).
(6) :- prot(I1,A1), prot(I2,A2),neq(I1,I2),

sol(I1,X,Y), sol(I2,X,Y), range(X;Y).
(7) :- prot(I1,A1), prot(I2,A2), I2>1, eq(I1,I2-1), not next(I1,I2).
(8) next(I1,I2) :- prot(I1,A1), prot(I2,A2), I1<I2,

sol(I1,X1,Y1), sol(I2,X2,Y2), range(X1;Y1;X2;Y2),
1==abs(Y1-Y2)+abs(X2-X1).

8

Instance Optimization problem Decision problem
Input SequenceLength Min CLP(FD) SModels CLP(FD) SModelsCModels

h10 10 -4 0.14 0.91 0.01 0.65 0.69
h15 15 -8 1.93 13.21 0.04 2.84 2.69
h20 20 -12 201.58 1982.44 0.29 45.63 40.70
h25 25 -16 25576.38 – 817.71 3181.78 1165.26

(hpp)3h 10 -4 0.01 0.66 0.01 0.42 0.49
(hpp)5h 16 -6 0.32 26.95 0.22 22.46 16.58
(hpp)7h 22 -6 62.69 1303.13 12.75 35.96 161.25
(hpp)9h 28 -9 6758.45 – 1955.28 3369.78 1217.34

Table 5.Protein structure prediction (‘–’ denotes no answer within 10 hours of CPU-time).

(9) energy_pair(I1,I2) :- prot(I1,h), prot(I2,h),
next(I1,I2), I1+2<I2, 1==(I2-I1) mod 2.

(10) seq_proteins(I1,I2) :- prot(I1,A1), prot(I2,A2),
I1+2<I2, 1==(I2-I1) mod 2.

(11) maximize{ energy_pair(I1,I2) : seq_proteins(I1,I2) }.

Rules(1) and(2) , together with the predicateprot , define the domains. The range
N−√N..N +

√
N is a heuristic value used consistently in both the CLP(FD) and ASP

encodings. Rule(5) implements the “generate” phase: it states that each aminoacid
occupies exactly one position. Rules(3) and(4) fix the positions of the two initial
aminoacids (they eliminates symmetric solutions). The ASP-constraints(6) and(7)
state that there are no self-loops and that two contiguous aminoacids must satisfy the
next property. Rule(8) defines thenext relation, also including the odd property
of the lattice. The objective function is defined by Rule(9) , which determines the
energy contribution of the aminoacids, and rule(11) , that searches for a answer sets
maximizing the energy.

Results:The experimental results for the two programs are reported in Table 5. Since
CModels does not support optimization statements, we can only compare the perfor-
mance of SICStus and SModels. Nevertheless, we performed a series of tests relative
to the decision version of this problem, namely, answering the question “can the given
protein fold to reach a given energy level?”, using the energy results obtained by solving
the optimization version of the problem. The results are also reported in Table 5.

7 Planning
Planning is one of the most interesting applications of ASP. CLP(FD) has been used less
frequently to handle planning problems. A planning problem is based on the notions of
State (a representation of the world) andActions that change the states. We focus
on solving a planning problem in the block world domain. Let us assume to haveN
blocks (blocks1, . . . , N). In the initial state, the blocks are arranged in a single stack,
in increasing order, i.e., block 1 is on the table, block 2 is on top of block 1, etc. Block
N is on top of the stack. In thegoal state, there must be two stacks, composed of the
blocks with odd and even numbers, respectively. In both stacks the blocks are arranged
in increasing order, i.e., blocks 1 and 2 are on the table and blocksN − 1 andN are
on top of the respective stacks. The planning problem consists of finding a sequence of
T actions (plan) to reach the goal state, starting from the initial state. Some additional
restrictions must be met: first, in each state at most three blocks can lie on the table.
Moreover, a blockx cannot be placed on top of a blocky if y ≥ x.

9

CLP(FD): We study the encoding of block world planning problem in CLP(FD). The
code can be easily generalized as a scheme for encoding general planning problems.
The plan can be modeled as a listStates of T + 1 states. EachState is aN -tuple
[B1,...,BN] , whereBi=j means that blocki is placed on blockj . The casej=0
represents the fact that the blocki lies on the table. The initial state and the final state
are represented by the lists[0, 1, 2, 3, . . . , N− 1] and[0, 0, 1, 2, . . . , N− 2].

planning(NBlocks,NTime) :- init_domains(NBlocks,NTime,States),
initial_state(States), final_state(States),
init_actions(NBlocks,NTime,Actions),
forward(Actions,States), no_rep(Actions),
action_properties(Actions,States), term_variables(Actions,Vars),
labeling([leftmost],Vars).

init_domains(NBlocks,NTime,States) :- T1 is NTime+1,
length(States,T1), init_domains(NBlocks,States).

init_domains(_,[]).
init_domains(N,[S|States]) :- length(S,N),

init_domains(N,States), domain(S,0,N), count(0,S,’#=<’,3).
initial_state([State|_]) :- increasing_list(State).
final_state(Sts) :- append(_,[[0|FS]],Sts), increasing_list(FS).
init_actions(_,0,[]) :- !.
init_actions(N,T,[[Block,To_Block]|Acts]) :- T1 is T-1,

Block#\=To_Block, Block in 1..N, To_Block in 0..N,
(Block#<To_Block #=> To_Block#=0), init_actions(N,T1,Acts).

forward([],_).
forward([[Block,To_Block]|B],[CurrState,NextState|Rest]) :-

element(Block,NextState,To_Block), is_clear(CurrState,Block),
is_clear(CurrState,To_Block), element(Block,CurrState,Old),
Old#\=To_Block, forward(B,[NextState|Rest]).

is_clear([],_).
is_clear([A|B],X) :- (X#\=0 #=> A#\=X), is_clear(B,X).
no_rep([_]).
no_rep([[X1,_],[X2,Y2]|Rest]) :- X1#\=X2, no_rep([[X2,Y2]|Rest]).
action_properties([],_).
action_properties([[Block,_To]|Rest],[Current,Next|States]) :-

inertia(1,Block,Current,Next),
action_properties(Rest,[Next|States]).

inertia(_,_,[],[]).
inertia(N,X,[A|B],[C|D]) :-

N1 is N+1, inertia(N1,X,B,D), (X#\=N #=> A#=C).
increasing_list(List) :- sequence(List,0).
sequence([],_).
sequence([N|R],N) :- M is N+1, sequence(R,M).

The code follows the usual constrain-and-generate methodology. Theinit_domains
predicate generates the list of theNTime states and fixes the maximum number of ob-
jects admitted on the table in each state (using the built-in constraintcount). After
that, the initial and final states are initialized. The predicateinit_actions specifies
that a block can be moved either to the table or to another block having a smaller num-
ber. forward states that if a block is placed on another one, then both of them must

10

Instance Plan SModelsCModels SICStus
Blocks Length exists CLP(FD)

5 11 N 0.23 0.11 0.01
5 12 N 0.29 0.12 0.01
5 13 Y 0.33 0.16 0.02
6 22 N 2.61 8.16 0.11
6 23 N 3.60 9.86 0.13
6 24 N 4.73 6.46 0.18
6 25 N 6.44 13.40 0.25
6 26 N 8.64 8.31 0.32
6 27 Y 12.17 6.56 0.26
7 33 N 38.64 175.96 2.49
7 34 N 47.34 222.07 3.42
7 35 N 58.01 153.02 4.71
7 36 N 71.40 106.57 6.36
7 37 N 87.84 115.96 8.70
7 38 N 107.11 157.32 11.94
7 39 N 150.11 84.98 16.33
7 40 N 177.69 115.40 22.22
7 41 N 253.65 217.10 31.19
7 42 N 355.66 220.00 42.83
7 43 N 565.60 74.19 58.91
7 44 N 1126.52 169.01 80.59
7 45 N 2710.53 139.66 111.98
7 46 N 7477.13 299.01 158.03
7 47 N – 180.63 217.26
7 48 N – 209.73 299.31
7 49 N – 463.56 417.63
7 50 N – 542.98 586.73

Instance Plan SModelsCModels SICStus
Blocks Length exists CLP(FD)

7 51 N – 991.56 824.61
7 52 N – 1091.54 1097.13
7 53 N – 2044.34 1509.35
7 54 Y – 431.32 1104.16
8 40 N 193.31 115.40 21.73
8 41 N 234.96 300.55 29.48
8 42 N 279.35 126.93 41.57
8 43 N 335.08 196.62 55.66
8 44 N 404.43 874.70 78.75
8 45 N 475.71 231.80 110.08
8 46 N 579.54 351.47 158.71
8 47 N 682.70 193.02 205.57
8 48 N 808.11 52.04 285.94
8 49 N 947.37 463.65 386.23
8 50 N 1123.94 379.32 544.91
8 51 N 1328.18 192.87 748.38
8 52 N 1566.62 172.24 1049.58
8 53 N 1877.88 3440.71 1436.14
8 54 N 2257.87 212.60 2028.70
8 55 N 2717.22 178.01 2760.98
8 56 N 3308.28 4667.86 3875.05
8 57 N 4290.26 866.58 5101.24
8 58 N 5672.42 287.16 7240.92
8 59 N 7791.38 1769.51 9838.83
8 60 N 11079.03 903.1013917.36
8 61 N 18376.59 488.7819470.35
8 62 N 35835.76 4639.5827030.19

Table 6.Planning in blocks world (‘–’ denotes no answer in less than 3 hours).

beclear, i.e., without any block on top of them. The predicateno_rep guarantees that
two consecutive actions cannot move the same block. Finally,action_properties
forces the inertia laws (i.e., if a block is not moved, then it remains in its position).

ASP: There are several ways to encode a block world in ASP (e.g., [12, 2]). In our ex-
periments we adopted the code reported inwww.di.univaq.it/˜formisano/CLPASP .

Results:Table 6 reports the execution times from the three systems, for different num-
ber of blocks and plan lengths.

8 Knapsack
In this section we discuss a generalization of the knapsack problem. Let us assume to
haven types of objects, and each object of typei has sizewi and it costsci. We wish to
fill a knapsack withX1 object of type1, X2 objects of type2, and so on, so that:

n∑

i=1

Xiwi ≤ max size and
n∑

i=1

Xici ≥ min profit. (1)

wheremax size is the capacity of the knapsack andmin profit is the minimum
profit required.
CLP(FD): We represent the types of objects using two lists (containing the size and cost
of each type of object), e.g.,objects([2,4,8,16,32,64], [2,5,11,23,47,95]) .
The CLP(FD) encoding is:

knapsack(Max_Size,Min_Profit) :- objects(Weights,Costs),
length(Sizes,N), length(Vars,N), domain(Vars,0,Max_Size),
scalar_product(Sizes,Vars,#=<,Max_Size),

11

scalar_product(Costs,Vars,#>=,Min_Profit),
labeling([ff],Vars).

Observe that we used the built-inscalar product for implementing (1).4

ASP: The ASP-formulation of the knapsack problem we experimented with, is easily
obtainable from the classical encoding of the standard knapsack problem (i.e., withXi ∈
{0, 1}). The different kinds of objects are so represented as follows:

item(1..10).
#weight size(1,X1) = 2*X1. #weight size(2,X2) = 4*X2.
#weight size(3,X3) = 8*X3. #weight size(4,X4) = 16*X4.
#weight size(5,X5) = 32*X5. #weight size(6,X6) = 64*X6.
#weight size(7,X7) = 128*X7. #weight size(8,X8) = 256*X8.
#weight size(9,X9) = 512*X9. #weight size(10,X10) = 1024*X10.
#weight cost(1,X1) = 2*X1. #weight cost(2,X2) = 5*X2.
#weight cost(3,X3) = 11*X3. #weight cost(4,X4) = 23*X4.
#weight cost(5,X5) = 47*X5. #weight cost(6,X6) = 95*X6.
#weight cost(7,X7) = 191*X7. #weight cost(8,X8) = 383*X8.
#weight cost(9,X9) = 767*X9. #weight cost(10,X10) = 1535*X10.

The ASP encoding is the following:

(1) occs(0..max_size).
(2) 1 { in_sack(I,XI) : occs(XI) } 1 :- item(I).
(3) size(I,XI) :- item(I), occs(XI), in_sack(I,XI).
(4) cost(I,XI) :- item(I), occs(XI), in_sack(I,XI).
(5) cond_cost :- min_profit [cost(I,XI) : item(I) : occs(XI)].
(6) :- not cond_cost.
(7) cond_weight :- [size(I,XI) : item(I) : occs(XI)] max_size.
(8) :- not cond_weight.

Fact(1) fixes the domain for the variableXI . The Rule(2) states that, for each type
of objectsI , there is only one factin_sack(I,XI) in the answer set, representing
the number of objects of typeI in the knapsack. Rules(3) and(4) get the totalsize
andcost for each type of object present in the knapsack. Rules(5) –(8) establish
the constraints of minimum profit and maximum size. The two constantsmax size
andmin profit must be provided to lparse during grounding.

Results:Table 7 reports some of the results we obtained. The right-hand side columns
regard runs with 10-fold increase in objects’ costs andmin profit . We were not
able to obtain any result from CModels. For any of the instances we experimented with
(except the smallest ones, involving at most five types of objects) the corresponding
process was terminated by the operative system. The reason for this could be found
by observing that the run-time images of such processes grow very large in size (up to
4.5GB, in some instances). The mark (*) in Table 7, denotes instances where SMod-
els is not able to process the ground program—in such cases, SModels stops with the
message “sum of weights in weight rule too large... ”. The (**) denotes

4 The built-in predicateknapsack , available in SICStus Prolog, is a special case of
scalar product where the third argument is the equality constraint.

12

max size min profit Answer SICStusSModels
255 374 Y 0.02 0.34
255 375 N 0.03 6.25
511 757 Y 0.36 0.85
511 758 N 0.36 248.26
1023 1524 Y 8.81 2.59
1023 1525 N 8.75 –
2047 3059 Y 368.50 (*)
2047 3060 N 366.79 (*)

max size min profit Answer SICStusSModels
255 3740 Y 0.02 0.35
255 3750 N 0.03 6.27
511 7570 Y 0.36 (**)
511 7580 N 0.36 0.50
1023 15240 Y 8.75 (**)
1023 15250 N 8.69 1.03
2047 30590 Y 369.83 (**)
2047 30600 N 368.24 1.83

Table 7.Knapsack instances (‘–’ denotes no answer within 30 minutes of CPU-time).

instances where SModels reports the incorrect answer (No). For(511, 7570), setting
the value#weight cost(10,Q) = 1177*Q we obtain the correct solution (that
does not use objects of type 10), while with values greater than1177 something goes
astray—probably improperly handled large integers. This shows that currently ASP is
more sensible to number size w.r.t. CLP(FD). The behavior of SModels on(511, 7580),
(1023, 15250), and(2047, 30600) should be wrong, as well, but the absence of solu-
tions does not allow to point out it.

9 Discussion and Conclusions

We tested the CLP(FD) and ASP codes for various combinatorial problems. In the Ta-
bles 1–7 we reported the running times (in seconds) of the solutions to these problems
on different problem instances. Let us try here to analyze these results.

First of all, from the benchmarks, it is clear that ASP provides a more compact,
and probably more declarative, encoding; in particular, the reliance on grounding and
domain-restricted variables allows ASP to avoid use of recursion in many situations.

As far as running times are concerned, CLP(FD) definitely wins the comparison
vs. SModels. In a few cases, the running times are comparable, but in most of the
cases CLP(FD) runs significantly faster. Observe also that CModels is, in most of the
problems, faster than SModels; part of this can be justified by the fact that the programs
we are using are mostly tight [7], and by the high speed of the underlying SAT solver
used by CModels.

The comparison between CLP(FD) and CModels is more interesting. In thek-
coloring andN -M -queens cases, running times are comparable. In some of the classes
of graphs, CModels performs slightly better on all instances. More in general, whenever
the instances of a single class are considered, one of the two systems tends to always
outperform the other. This indicates that the behavior of the solver is significantly af-
fected by the nature of the specific problem instances considered (recall that each class
of graphs comes from encodings of instances of different problems [20]).

As one may expect, the bottom-up search strategy of ASP is less sensitive to the
presence of solutions w.r.t. the top down search strategy of CLP(FD). As a matter
of fact, CLP(FD) typically runs faster than CModels when a solution exists. More-
over, CLP(FD) behaves better on small graphs. For the Hamiltonian circuit problem,
CLP(FD) runs significantly faster—we believe this is due to the use of the built-in
global constraintcircuit , which guarantees excellent constraint propagation. In this
case, only in absence of solutions the running times are comparable—i.e., when the two
approaches are forced to traverse the complete search tree. A similar situation arises in
computing Schur numbers. When the solution exists and numbers are low, CLP(FD)

13

performs better. For larger instances (even with solutions), the running times are favor-
able to CModels.

Regarding the protein folding problem, CLP(FD) solves the problems much faster
than ASP. Also in this case, however, the ASP code appears to be simpler and more
compact than the CLP(FD) one. In general, in designing the CLP code, the program-
mer cannot easily ignore knowledge about the inference strategy implemented in the
CLP engine. The fact that CLP(FD) adopts a top-down depth-first strategy influences
programmer’s choices in encoding the algorithms.

For the planning problem, we observe that SModels runs faster than CModels for
small instances. In general, CLP(FD) performs better for small dimensions of the prob-
lem. On the other hand, when the dimension of the problem instance becomes large,
the behavior of CLP(FD) and SModels become comparable while CModels provides
the best performance. In fact, the performance of CModels does not seem to be signif-
icantly affected by the growth in the size of the problem instance, as clearly happens
for CLP(FD) and SModels. The same phenomenon can be also observed in other situa-
tions, e.g., in the Hamiltonian circuit and Schur numbers problems. In these cases, the
time spent by CModels to obtain a solution does not appear to be directly related to the
raw dimension of the problem instance. Initial experiments reveal that this phenomenon
arises even when different SAT-solvers are employed. Further studies are needed to bet-
ter understand to which extent the intrinsic structure of an instance biases CModels’
behavior, in particular the way in which CModels’ engine translates an ASP program
into a SAT-instance.

For the Knapsack problem, CModels is not applicable. CLP(FD) runs definitively
faster than SModels; furthermore, SModels becomes inapplicable and unreliable for
large problem instances.

Table 9 intuitively summarizes our observations drawn from the different bench-
marks. Although these experiments are quite preliminary, they actually provide already
some concrete indications that can be taken into account when choosing a paradigm to
tackle a problem. We can summarize the main points as follows:

• graph-based problems have nice compact encodings in ASP and the performance
of the ASP solutions is acceptable and scalable;

• problems requiring more intense use of arithmetic and/or numbers are declaratively
and efficiently handled by CLP(FD);

• for problems with no arithmetic, the exponential growth w.r.t. the input size is less
of an issue for ASP.

Coloring Hamilton Schur PF Planning Knapsack
CLP(FD) + ++ + + + +

ASP CModels ++ + ++ - + -
Table 8.Schematic results’ analysis. + (-) means that the formalism is (not) applicable. ++ that it
is the best when the two formalisms are applicable.

In the future we plan to extend our analysis to other problems and to other con-
straint solvers (e.g., BProlog, ILOG) and ASP-solvers (e.g., ASSAT, aspps, DLV). In
particular, we are interested in answering the following questions:

14

• is it possible to formalize domain and problem characteristics to lead the choice of
which paradigm to use?

• is it possible to introduce strategies to split problem components and map them to
cooperating solvers (using the best solver for each part of the problem)?

In particular, we are interested in identifying those contexts where the ASP solvers
perform significantly better than CLP. It seems reasonable to expect this behavior, for
instance, whenever incomplete information comes into play.

References
[1] C. Anger, T. Schaub, and M. Truszczynski. ASPARAGUS – the Dagstuhl Initiative.ALP

Newsletter, 17(3), 2004.
[2] C. Baral. Knowledge representation, reasoning and declarative problem solving. Cam-

bridge University Press, 2003.
[3] P. Clote and R. Backofen.Computational Molecular Biology. Wiley & Sons, 2001.
[4] P. Crescenzi et al. On the complexity of protein folding. InSTOC, pages 597–603, 1998.
[5] A. Dal Pal̀u, A. Dovier, and F. Fogolari. Constraint logic programming approach to protein

structure prediction.BMC Bioinformatics, 5(186):1–12, 2004.
[6] I. Elkabani, E. Pontelli, and T. C. Son. SModels with CLP and Its Applications: A Simple

and Effective Approach to Aggregates in ASP. InICLP, 73–89, 2004.
[7] E. Erdem and V. Lifschitz. Tight Logic Programs. InTPLP, 3:499-518, 2003.
[8] A. J. Fernandez and P. M. Hill. A Comparative Study of 8 Constraint Programming Lan-

guages Over the Boolean and Finite Domains.Constraints, 5(3):275–301, 2000.
[9] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In

ICLP, pages 1070–1080, MIT Press, 1988.
[10] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey.J. of Logic Program-

ming, 19/20:503–581, 1994.
[11] Y. Lierler and M. Maratea. CModels-2: SAT-based Answer Set Solver Enhanced to Non-

tight Programs. InLPNMR, pages 346–350. Springer Verlag, 2004.
[12] V. Lifschitz. Answer Set Planning. InLogic Programming and Non-monotonic Reasoning,

pages 373–374. Springer Verlag, 1999.
[13] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of A Logic Program By SAT Solvers.

In AAAI, pages 112–117. AAAI/MIT Press, 2002.
[14] V. W. Marek and M. Truszczynski. Autoepistemic Logic.JACM, 38(3):588–619, 1991.
[15] V. W. Marek and M. Truszczýnski. Stable models and an alternative logic programming

paradigm.The Logic Programming Paradigm, 375–398. Springer, 1999.
[16] K. Marriott and P. J. Stuckey.Programming with Constraints. MIT Press, 1998.
[17] M. Wallace, J. Schimpf, K. Shen, and W. Harvey. On Benchmarking Constraint Logic

Programming Platforms.Constraints, 9(1):5–34, 2004.
[18] E. W. Weisstein. Schur Number. From MathWorld–A Wolfram Web Resource.http:

//mathworld.wolfram.com/SchurNumber.html .
[19] Web references for some ASP solvers. ASSAT:assat.cs.ust.hk . CCalc:www.cs.

utexas.edu/users/tag/cc . CModels: www.cs.utexas.edu/users/tag/
cmodels . DeReS and aspps:www.cs.uky.edu/ai . DLV: www.dbai.tuwien.
ac.at/proj/dlv . SModels:www.tcs.hut.fi/Software/smodels .

[20] Web site of COLOR02/03/04: Graph Coloring and its Applications:http://mat.
gsia.cmu.edu/COLORING03 .

15

