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Lattices

• A lattice P is a non-empty, partially

ordered set, such that x ∨ y and x ∧ y

exist for all x , y ∈ P
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Lattices

• A lattice P is a non-empty, partially

ordered set, such that x ∨ y and x ∧ y

exist for all x , y ∈ P

• A lattice is a graph

that can be viewed in 2D or in 3D

and it has strong symmetries and

repeated patterns
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Lattice Models
A cubic lattice (6 connected)

A cubic lattice (P ,E ) is defined:

◮ P = {(x , y , z) | x , y , z ∈ N}

◮ E = {(A,B) | A,B ∈ P ,
(Bx − Ax)

2 + (By − Ay )2 + (Bz − Az)
2 = 1}
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Lattice Models
A FCC lattice (12 connected)

An FCC lattice (P ,E ) is defined:

◮ P = {(x , y , z) | x , y , z ∈ N ∧ x + y + z is even}

◮ E = {(A,B) | A,B ∈ P ,
(Bx − Ax)

2 + (By − Ay )2 + (Bz − Az)
2 = 2}
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Lattice Models
A chess knight lattice (24 connected)

A chess knight lattice (P ,E ) is defined:

◮ P = {(x , y , z) | x , y , z ∈ N}

◮ E = {(A,B) | A,B ∈ P ,
(Bx − Ax)

2 + (By − Ay )2 + (Bz − Az)
2 = 5}
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Lattice models
Encoding using finite domains

◮ Lattice models are used to represent simplified models
for biological structures (e.g., proteins)

◮ The domain of a point P is a set of lattice points of the
form 〈x , y , z〉

◮ x , y , z have values on (a finite portion of) N

◮ However, poor propagation is obtained with this
encoding: P1 6= P2 is equivalent to

x1 6= x2 ∨ y1 6= y2 ∨ z1 6= z2

that introduces a disjunction

◮ If M is a “large enough” number, we could write:

M2x1 + My1 + z1 6= M2x2 + My2 + z2

◮ In this case, e.g., AC is polynomial, but the domains
size might be huge.
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Lattice models
The point as central entity

◮ COLA (COnstraint Solving on LAttices [DDP05]) is a
constraint solver for discrete lattices where the main
object is the point.

◮ The domain of a point is a box identified by two points

◮ COLA implements a 3D bounds consistency

◮ Protein folding prediction using COLA improves a 3D
finite domain encoding in SICStus Prolog

◮ COLA does not have yet global constraints

◮ In this paper we discuss about which global constraints
must be considered and the theoretical complexity of
their satisfiability and filtering problems

◮ The results are independent of COLA

[DDP05] A. Dal Palù, A. Dovier, and E. Pontelli. A New Constraint Solver for 3D Lattices and Its

Application to the Protein Folding Problem. LPAR2005, LNCS 3835, pp. 48–63, 2005.
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Global Constraints

◮ Given n variables X1, . . . ,Xn, with domains D1, . . . ,Dn,
a global constraint C on the variables X1, . . . ,Xn is a
subset C ⊆ D1 × · · · × Dn

◮ We are mainly interested in verifying two properties:
◮ consistency (CON): C 6= ∅
◮ generalized arc consistency (GAC):

∀i ∈ {1, . . . , n} ∀ai ∈ Di

∃a1 ∈ D1 · · · ∃ai−1 ∈ Di−1∃ai+1 ∈ Di+1 · · · ∃an ∈ Dn

(a1, . . . , an) ∈ C

◮ filtering is the process of removing values from the
domains of variables in order to obtain an equivalent
constraint which is GAC.

◮ We are interested in the complexities of these problem,
and (later) in approximation algorithms for them
whenever they are NP hard
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alldifferent

◮ Let X1, . . . ,Xn be variables with domains D1, . . . ,Dn:

alldifferent(X1, . . . ,Xn) = (D1 × · · · × Dn) \
{(a1, . . . , an) ∈ (D1 × · · · × Dn) :

∃i , j . (1 ≤ i < j ≤ n ∧ ai = aj)}

◮ CON and GAC properties, as well as performing GAC
filtering for alldifferent constraint can be done in
polynomial time (w.r.t. sum of domains size)—Regin

◮ The alldifferent constraint has a significant role in
the modeling of protein folding to express the fact that
a point in the lattice cannot be used to accommodate
two distinct amino acids.
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contiguous

◮ Let X1, . . . ,Xn be variables with domains D1, . . . ,Dn:

contiguous(X1, . . . ,Xn) = (D1 × · · · × Dn) \
{(a1, . . . , an) ∈ (D1 × · · · × Dn) :

∃ i . (1 ≤ i < n ∧ (ai , ai+1) /∈ E )}

where E is the set of lattice edges.
◮ It is equivalent to the conjunction of the n − 1 binary

constraints Ci ,i+1, with i ∈ {1, . . . , n − 1}, such that

Ci ,i+1 = (Di × Di+1)\
{(ai , ai+1) ∈ Di × Di+1 : (ai , ai+1) /∈ E}

◮ The graph induced by these constraint is acyclic. Thus,
under these conditions, AC implies GAC

◮ GAC, CON, and filtering can be done in polynomial time
◮ This constraints is used in protein folding to state that

amino acids contiguous in a sequence are contiguous in
the lattice
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Self Avoiding Walks
Basics

◮ A self avoiding walk (SAW) on a lattice 〈P ,E 〉 is simply
an acyclic path.

◮ Even removing symmetries, there are an exponential
number of self avoiding walks

◮ If the lattice is k-connected, and the walk length is n,
there are O((k − 1)n−1) (Θ((k − 2)n−1)) SAWs.
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Self Avoiding Walk
Constraint Definition

◮ Given n variables X1, . . . ,Xn, with domains D1, . . . ,Dn,
the global constraint saw is the following:

saw(X1, . . . ,Xn) =
contiguous(X1, . . . ,Xn) ∩ alldifferent(X1, . . . ,Xn)

◮ It is equivalent to a conjunction of binary constraints
(of contiguity and pairwise difference). AC works on
them. AC filtering is polynomial.

◮ GAC of contiguous and of alldifferent (separately)
is polynomial.

◮ You can iterate them for a fixpoint in polynomial time.
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Self Avoiding Walk
example

◮ Let D1 = {◦} and D2 = · · · = D10 be the set of grey
points.

◮ Consider saw(X1, . . . ,X10).
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Self Avoiding Walk
AC propagation: 38 points

D1 D2 D3 D4 D5

D6 D7 D8 D9 D10
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Self Avoiding Walk
Iterated contiguous and alldifferent GAC propagation — 19 points

D1 D2 D3 D4 D5

D6 D7 D8 D9 D10
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Self Avoiding Walk
saw GAC propagation — 17 points

D1 D2 D3 D4 D5

D6 D7 D8 D9 D10
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Self Avoiding Walk
Complexity

Theorem (NP completeness)

Determining whether a saw constraint is satisfiable is
NP-complete. Determining whether it is GAC is NP-hard.

◮ Proof Sketch: reduction from Hamiltonian Circuit (HC)

◮ HC is NP complete on special planar graphs.

◮ We basically map those graphs in a lattice, stretching
edges matching nodes of degree 2

◮ We then select two neighbor nodes α and β both of
degree 2.

◮ Assign D1 = {α},Dn = {β}, and introduce a suitable
number of variables with domain in all the points of the
lattice related to the initial graph.

◮ A saw exists iff there is a HC in the original graph.
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Self Avoiding Walk
Complexity

Theorem (NP completeness)

Determining whether a saw constraint is satisfiable is
NP-complete. Determining whether it is GAC is NP-hard.

◮ Proof Sketch: reduction from Hamiltonian Circuit (HC)

◮ HC is NP complete on special planar graphs.

◮ We basically map those graphs in a lattice, stretching
edges matching nodes of degree 2

◮ We then select two neighbor nodes α and β both of
degree 2.

◮ Assign D1 = {α},Dn = {β}, and introduce a suitable
number of variables with domain in all the points of the
lattice related to the initial graph.

◮ A saw exists iff there is a HC in the original graph.
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Self Avoiding Walk
Example of reduction
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alldistant

◮ This global constraints aims at considering the volume
of the ojects to be placed in the lattice.

◮ Given n variables X1, . . . ,Xn, with domains D1, . . . ,Dn,
and n numbers c1, . . . , cn:

alldistant(X1, . . . ,Xn, c1, . . . , cn) = (D1 × · · · × Dn) \
{(a1, . . . , an) ∈ (D1 × · · · × Dn) :
∃i , j . 1 ≤ i < j ≤ n ∧ Eucl(ai , aj) < (ci + cj )}

◮ Namely, we are looking for a solution
X1 = p1, . . . ,Xn = pn such that, for each pair
1 ≤ i , j ≤ n, we have that pi and pj are located at
distance at least ci + cj .
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alldistant
alldistant(X1, X2, X3, 2, 2, 2): AC vs GAC

D1 = D2 = D3 AC GAC
removes one node detects unsat
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alldistant
Complexity

Theorem (NP completeness)

Determining whether alldistant constraint is satisfiable is
NP-complete. Determining whether it is GAC is NP-hard.

Proof: reduction from Bin Packing.
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alldistant
From bin packing to alldistant(X1, X2, X3, X4, 4, 3, 5, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
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4

5

bin 1 bin 2

1 2 3 4
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alldistant
From bin packing to alldistant(X1, X2, X3, X4, 4, 3, 5, 1)
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alldistant
From bin packing to alldistant(X1, X2, X3, X4, 4, 3, 5, 1)
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Rigid block constraints
Basics

◮ In structure prediction it is helpful to use information
from known substructures of the protein/molecule

◮ For instance, secondary structure elements of a protein
(α-elices, β sheets)

◮ or more complex parts predicted by homology
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Rigid block constraints
Definition

◮ Given variables X1, . . . ,Xn with domains D1, . . . ,Dn

and a list ~B = B1, . . . ,Bn of lattice points

◮ block(X1, . . . ,Xn, ~B) is a n-ary constraint, whose
solutions are assignments of lattice points to the
variables X1, . . . ,Xn, that can be obtained from ~B
modulo translations and rotations.

◮ Given a lattice, only few rotations r are admissible (e.g.,
in the cubic lattice, we have that r = 16, and in the
FCC we have that r = 24).

◮ This finiteness allows us to prove that CON and GAC
are polynomial.
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Conclusions

◮ We have studied some reasonable global constraints on
lattices

◮ alldifferent and continuos have polynomial time
consistency test and GAC filtering

◮ saw and alldistant instead have NP complete
consistency test and NP hard filtering

◮ Some approximations for saw can be obtained by AC
filtering, by iterating GAC for alldifferent and
contiguous, or by using the 3-saw, 4-saw, etc. of
Backofen-Will

◮ Some approximations for alldistant can be obtained
by AC filtering, by alldifferent, or sweeping
(Beldiceanu and Carlsson).
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Future Work

◮ Implementing the global constraints presented, and
their complete/approximated GAC algorithms in COLA

◮ Studying other global constraints between blocks
(parallelism of secondary structures, angles between
them, or other already used by Krippahl and Barahona
for Docking)

◮ Hopefully, integrating the tool in a wider prediction tool
that makes use, e.g., of homology for detecting known
rigid blocks (actually, we are currently doing similar
things by hands).
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Summary

Please don’t miss the final discussion.

Don’t go away.

Great things will happen!
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